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International Mathematical Olympiad 2004:
For which m and n can an m X n rectangle be tiled
with "hooks’ of the following type:
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with copies of a given small polyomino ()7

Packing: How many non-overlapping copies of ()
can be fit inside P?
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Representing a polyomino

Usual way:

Store coordinates of each cell:
[.7.7‘7.7.7’7°":|

Area representation

Compact way:
Store coordinates of corners.
Corner representation
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Example

________________________

Corner representation:
(0,0), (2%,0), (2", 2), (0,2") EIEERAKIENEY

________________________

Area representation:
(0,0), (1,0),(2,0),...,(2%,0),
(0,1),(1,1),(2,1),...,(2%,1),

(ojzk),(1,2k),(2,2k),...,(2k,2k)]
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Goal

Known algorithms:
Assume area representation =
Time polynomial in the area.

Goal:
Assume corner representation.

Find algorithms with running time

O(poly(n)).

n: the number of corners.

(2%, 2F)

(0, 0)
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Results

Shapes Tiling Packing
£ No holes: O(n) NP-complete
2 Holes: O(nlogn)
1 ~ ~
2 O(n) O(n’)
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iling with 2 x 2 squares

Can be done in O(A) time.

Polynomial-time algorithm but in the area of P!
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Hopcroft-Karp, where A is the area of P (Berman et al. '82)
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Maximum domino packing of P <> Maximum matching of G(P)

Time O(A?/?) for maximum domino packing using

Hopcroft-Karp, where A is the area of P (Berman et al. '82)

Multiple source multiple sink maximum flow: O(A) [Borradaile et
al., SICOMP 2017].
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Various hardness results for tiling and packing.

Berman et al '90:
Deciding if k 2 x 2 squares can be packed in a polyomino (with holes) is NP-complete.

Berger '66:
Deciding if a finite set of polyominos can tile the plane is Turing-complete
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Packing Dominos in O(n?) time

Assume no holes



General idea

lgnore parts of P where an optimal
packing is trivial and leaves no
uncovered squares.

Create graph G of size O(poly n)
for the remaining part.

Find maximum matching M in G*. H

Return | M| +

area(P)—V (G*)
- .
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Running time of simple algorithm
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Cubic-time algorithm (assume no holes)

p P'=P\Q

: !
\ Distance ~ |n /2| : :

|'\

Find all pipes of length at least
twice their width.

*shorten

Shorten each pipe
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Cubic-time algorithm (assume no holes)

P P’

In reduced instance G*, each vertex is of distance O(n) to an
original corner.

Thus, G* has order O(n?)

G* is planar and bipartite.

Find maximum matching M using a multiple-source multiple-sink
maximum flow alg., O(n?®log® n) time.

area(P)—V(G*)
Return | M| + 5 .




Offsets

B(A,r): Offset of A by distance 7 wrt. || - || -

A A

a = ($o,yo)

la = bllec = max{[zo — 21}, [yo — y1]}

= (1,y1)



Consistent Parity

A polyomino P C R? has consistent parity if all first coordinates
of corners of P have the same parity and vice versa for the second
coordinates




Consistent Parity

A polyomino P C R? has consistent parity if all first coordinates

of corners of P have the same parity and vice versa for the second
coordinates

Observation: If P has no
holes and consistent parity
then each component of

P\ B(P,—1) is Hamiltonian.
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Augmenting paths
Let G be a graph, M a matching of G.

A path P = v1,v9,...,v9; of G Iis augmenting if v{ and
Vo are unmatched and (vo;,v9;01) € M, 1 =1,...,k—1

NN N

laugment

W

Lemma (Berge). Let G be a

graph and M a matching of I
G which is not maximum. I
P!

Then there exists an
augmenting path between two
unmatched vertices of (.
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Main Lemma. There
exists a maximum domino
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Tile Py \ Q layer by layer. Tilings 71,...,7;.

Finally pack dominos into P \ Py, leaving at most n uncovered cells.
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Important:

P has no holes =

Py

u and v are both 'outside’ each

of the Hamiltonian cycles.

)

u

Ti

L

-

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of ().

|

u

Has to repeat at most r = |n /2| times

,7; “:




Reduced instance

Issue: There can be exponentially long and narrow 'pipes’ =
he size can be exponential.

However, any point of P' = P\ @ is of distance O(n) to 0P’
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Consider 'pipes’ of the form:

¢ even
L1 IIIIIIII
| | . .
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BAEEEEEEn S T dominos Ll

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b > w.

Lemma. /If¢ > 2k, then
the number of uncovered L ||
cells in a maximum domino 5 -~
packing is b — w .




Running time

Running time:
Compute P, O(nlogn)
Compute offset O(nlogn)
Find long pipes O(nlog n)
Find maximum matching O(n log® n)



What if there are holes?




Simple algorithm
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Correctness of simple algorithm
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Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?
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Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Packing 2 x 2 squares is NP-complete when P has
noles. Can it be solved in polynomial time if P is
nole-free?




