Tiling with Squares and Packing Dominos in Polynomial Time

Anders Aamand, Mikkel Abrahamsen, Thomas D. Ahle, Peter M. R. Rasmussen

Max Black, 1946: Two diagonally opposite corners have been removed from a chessboard. Can 311×2 dominos be placed to cover the remaining squares?

Max Black, 1946: Two diagonally opposite corners have been removed from a chessboard. Can 311×2 dominos be placed to cover the remaining squares?

International Mathematical Olympiad 2004:
For which m and n can an $m \times n$ rectangle be tiled with 'hooks' of the following type:

Motivation

Motivation

Motivation

Motivation

Motivation of domino packing

- - defect
\square - defective die
\square - good die
\square - partial edge die

Motivation of domino packing

- - defect
\square - defective die
\square - good die
\square - partial edge die

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.
 can be fit inside P ?

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.
 can be fit inside P ?

Polyomino: A polygonal region in the plane with axis-parallel edges and corners of integral coordinates.
 can be fit inside P ?
Our paper: $Q \in\{\square, \square\}$

Representing a polyomino

Representing a polyomino

Usual way:
Store coordinates of each cell:
$[\bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \ldots]$
Area representation

Representing a polyomino

Usual way:
Store coordinates of each cell:
$[\bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \ldots]$
Area representation

Compact way:
Store coordinates of corners.
Corner representation

Example

Example

Corner representation: $\left[(0,0),\left(2^{k}, 0\right),\left(2^{k}, 2^{k}\right),\left(0,2^{k}\right)\right]$

Example

Corner representation: $\left[(0,0),\left(2^{k}, 0\right),\left(2^{k}, 2^{k}\right),\left(0,2^{k}\right)\right]$

Area representation:
$\left[(0,0),(1,0),(2,0), \ldots,\left(2^{k}, 0\right)\right.$,
$(0,1),(1,1),(2,1), \ldots,\left(2^{k}, 1\right)$,
$\left.\left(0,2^{k}\right),\left(1,2^{k}\right),\left(2,2^{k}\right), \ldots,\left(2^{k}, 2^{k}\right)\right]$

Goal

Known algorithms:
Assume area representation \Rightarrow Time polynomial in the area.

Goal

Known algorithms:
Assume area representation \Rightarrow Time polynomial in the area.

Goal:
Assume corner representation.
Find algorithms with running time $O($ poly $(n))$.

n : the number of corners.

Results

Results

Shapes	Tiling	Packing
2	No holes: $O(n)$ Holes: $O(n \log n)$	NP-complete
$2 \square$		
1	$\widetilde{O}\left(n^{3}\right)$	$\widetilde{O}\left(n^{3}\right)$

Tiling with 2×2 squares

Can be done in $O(A)$ time.

Tiling with 2×2 squares

Can be done in $O(A)$ time.

Polynomial-time algorithm but in the area of P !

No holes: $O(n)$ time!

Packing dominos

Packing dominos

Packing dominos

Maximum domino packing of $P \leftrightarrow$ Maximum matching of $G(P)$

Packing dominos

Maximum domino packing of $P \leftrightarrow$ Maximum matching of $G(P)$

Packing dominos

Maximum domino packing of $P \leftrightarrow$ Maximum matching of $G(P)$
Time $O\left(A^{3 / 2}\right)$ for maximum domino packing using Hopcroft-Karp, where A is the area of P (Berman et al. '82)

Packing dominos

Maximum domino packing of $P \leftrightarrow$ Maximum matching of $G(P)$
Time $O\left(A^{3 / 2}\right)$ for maximum domino packing using Hopcroft-Karp, where A is the area of P (Berman et al. '82)

Multiple source multiple sink maximum flow: $\widetilde{O}(A)$ [Borradaile et al., SICOMP 2017].

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.
$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.
$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.
$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.
Remila '05:
Tiling a hole-free polyomino with $k \times m$ and $k^{\prime} \times m^{\prime}$ rectangles in time $O\left(A^{2}\right)$

Related work

Algorithms

Conway \& Lagarias '90 and Thurston ' 90 :
Combinatorial Group Theory approach for deciding tileability.

All polynomial in the area!

$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.
Remila '05:
Tiling a hole-free polyomino with $k \times m$ and $k^{\prime} \times m^{\prime}$ rectangles in time $O\left(A^{2}\right)$

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.

All polynomial in the area!

$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.
Remila '05:
Tiling a hole-free polyomino with $k \times m$ and $k^{\prime} \times m^{\prime}$ rectangles in time $O\left(A^{2}\right)$

Hardness

Beauquier et al. '95, Pak \& Yang '13, Fowler et al. '81, Berman et al '90:
Various hardness results for tiling and packing.

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.

All polynomial in the area!

$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.
Remila '05:
Tiling a hole-free polyomino with $k \times m$ and $k^{\prime} \times m^{\prime}$ rectangles in time $O\left(A^{2}\right)$

Hardness

Beauquier et al. '95, Pak \& Yang '13, Fowler et al. '81, Berman et al '90:
Various hardness results for tiling and packing.

Berman et al '90:

Deciding if $k 2 \times 2$ squares can be packed in a polyomino (with holes) is NP-complete.

Related work

Algorithms

Conway \& Lagarias '90 and Thurston '90:
Combinatorial Group Theory approach for deciding tileability.

All polynomial in the area!

$\Longrightarrow O(A \log A)$ alg. for tiling with dominos.

Kenyon \& Kenyon '92:
Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time $O(A)$.
Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O\left(A^{2}\right)$.
Remila '05:
Tiling a hole-free polyomino with $k \times m$ and $k^{\prime} \times m^{\prime}$ rectangles in time $O\left(A^{2}\right)$

Hardness

Beauquier et al. '95, Pak \& Yang '13, Fowler et al. '81, Berman et al '90:
Various hardness results for tiling and packing.
Berman et al '90:
Deciding if $k 2 \times 2$ squares can be packed in a polyomino (with holes) is NP-complete.
Berger '66:
Deciding if a finite set of polyominos can tile the plane is Turing-complete

This Talk

Packing Dominos in $\widetilde{O}\left(n^{3}\right)$ time

This Talk

Packing Dominos in $\widetilde{O}\left(n^{3}\right)$ time
Assume no holes

General idea

Ignore parts of P where an optimal packing is trivial and leaves no uncovered squares.

Create graph G^{*} of size $O($ poly $n)$ for the remaining part.

Find maximum matching M in G^{*}.

Return $|M|+\frac{\operatorname{area}(P)-V\left(G^{*}\right)}{2}$.

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

area $O\left(n^{4}\right) \Rightarrow$
time $\widetilde{O}\left(n^{4}\right)$

Running time of simple algorithm

$$
\widetilde{O}\left(n^{4}\right)
$$

Cubic-time algorithm (assume no holes)

Cubic-time algorithm (assume no holes)

Cubic-time algorithm (assume no holes)

Cubic-time algorithm (assume no holes)

Cubic-time algorithm (assume no holes)

Find all pipes of length at least twice their width.

Cubic-time algorithm (assume no holes)

Find all pipes of length at least
 twice their width.

Shorten each pipe

Cubic-time algorithm (assume no holes)

Find all pipes of length at least
 twice their width.

Shorten each pipe

Cubic-time algorithm (assume no holes)

Find all pipes of length at least twice their width.

Shorten each pipe

Cubic-time algorithm (assume no holes)

Cubic-time algorithm (assume no holes)

In reduced instance G^{*}, each vertex is of distance $O(n)$ to an original corner.

Cubic-time algorithm (assume no holes)

In reduced instance G^{*}, each vertex is of distance $O(n)$ to an original corner.
Thus, G^{*} has order $O\left(n^{3}\right)$

Cubic-time algorithm (assume no holes)

In reduced instance G^{*}, each vertex is of distance $O(n)$ to an original corner.
Thus, G^{*} has order $O\left(n^{3}\right)$
G^{*} is planar and bipartite.

Cubic-time algorithm (assume no holes)

In reduced instance G^{*}, each vertex is of distance $O(n)$ to an original corner.
Thus, G^{*} has order $O\left(n^{3}\right)$
G^{*} is planar and bipartite.
Find maximum matching M using a multiple-source multiple-sink maximum flow alg., $O\left(n^{3} \log ^{3} n\right)$ time.

Cubic-time algorithm (assume no holes)

In reduced instance G^{*}, each vertex is of distance $O(n)$ to an original corner.
Thus, G^{*} has order $O\left(n^{3}\right)$
G^{*} is planar and bipartite.
Find maximum matching M using a multiple-source multiple-sink maximum flow alg., $O\left(n^{3} \log ^{3} n\right)$ time.

Return $|M|+\frac{\operatorname{area}(P)-V\left(G^{*}\right)}{2}$.

Offsets

$B(A, r)$: Offset of A by distance r wrt. $\|\cdot\|_{\infty}$.

$$
b=\stackrel{\bullet}{\bullet\left(x_{1}, y_{1}\right) \quad a=\left(x_{0}, y_{0}\right)} \xrightarrow[\bullet]{\|a-b\|_{\infty}=\max \left\{\left|x_{0}-x_{1}\right|,\left|y_{0}-y_{1}\right|\right\}}
$$

Consistent Parity

A polyomino $P \subset \mathbf{R}^{2}$ has consistent parity if all first coordinates of corners of P have the same parity and vice versa for the second coordinates

Consistent Parity

A polyomino $P \subset \mathbf{R}^{2}$ has consistent parity if all first coordinates of corners of P have the same parity and vice versa for the second coordinates

Observation: If P has no holes and consistent parity

then each component of $P \backslash B(P,-1)$ is Hamiltonian.

Augmenting paths

Let G be a graph, M a matching of G.
A path $P=v_{1}, v_{2}, \ldots, v_{2 k}$ of G is augmenting if v_{1} and $v_{2 k}$ are unmatched and $\left(v_{2 i}, v_{2 i+1}\right) \in M, i=1, \ldots, k-1$

Augmenting paths

Let G be a graph, M a matching of G.
A path $P=v_{1}, v_{2}, \ldots, v_{2 k}$ of G is augmenting if v_{1} and $v_{2 k}$ are unmatched and $\left(v_{2 i}, v_{2 i+1}\right) \in M, i=1, \ldots, k-1$

Augmenting paths

Let G be a graph, M a matching of G.
A path $P=v_{1}, v_{2}, \ldots, v_{2 k}$ of G is augmenting if v_{1} and $v_{2 k}$ are unmatched and $\left(v_{2 i}, v_{2 i+1}\right) \in M, i=1, \ldots, k-1$

Lemma (Berge). Let G be a graph and M a matching of
G which is not maximum.
Then there exists an
augmenting path between two unmatched vertices of G.

Augmenting paths

Let G be a graph, M a matching of G.
A path $P=v_{1}, v_{2}, \ldots, v_{2 k}$ of G is augmenting if v_{1} and $v_{2 k}$ are unmatched and $\left(v_{2 i}, v_{2 i+1}\right) \in M, i=1, \ldots, k-1$

augment

Lemma (Berge). Let G be a graph and M a matching of G which is not maximum.
Then there exists an
augmenting path between two unmatched vertices of G.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Structural Result 1

Let subpolyomino $P_{0} \subseteq P$ be maximal with consistent parity.

Let $r=\lfloor n / 2\rfloor$ and $Q=B\left(P_{0},-r\right)$. Note that Q has consistent parity.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q

Proof

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells.
If covering is not maximum, use Berge's Lemma.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells. If covering is not maximum, use Berge's Lemma.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells.
If covering is not maximum, use Berge's Lemma.

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Let \mathcal{Q} be any tiling of Q
Tile $P_{0} \backslash Q$ layer by layer. Tilings $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$.
Finally pack dominos into $P \backslash P_{0}$, leaving at most n uncovered cells.
If covering is not maximum, use Berge's Lemma.

Has to repeat at most $r=\lfloor n / 2\rfloor$ times

Proof

Main Lemma. There
exists a maximum domino packing of P restricting to a tiling of Q.

Important:
P has no holes \Rightarrow
u and v are both 'outside' each
of the Hamiltonian cycles.

Has to repeat at most $r=\lfloor n / 2\rfloor$ times

Reduced instance

Issue: There can be exponentially long and narrow 'pipes' \Rightarrow he size can be exponential.

However, any point of $P^{\prime}=P \backslash Q$ is of distance $O(n)$ to ∂P^{\prime}

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then
the number of uncovered
cells in a maximum domino
packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Now fill in horizontal dominos

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Now fill in horizontal dominos

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Structural Result 2: Shortening Pipes

Consider 'pipes' of the form:

Now fill in horizontal dominos

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \geq w$.

Lemma. If $\ell \geq 2 k$, then the number of uncovered cells in a maximum domino packing is $b-w$

Running time

	Running time:
Compute P_{0}	$O(n \log n)$
Compute offset	$O(n \log n)$
Find long pipes	$O(n \log n)$
Find maximum matching	$O\left(n^{3} \log ^{3} n\right)$

What if there are holes?

Simple algorithm

Time: $\widetilde{O}\left(n^{4}\right)$.

Correctness of simple algorithm

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Packing 2×2 squares is NP-complete when P has holes. Can it be solved in polynomial time if P is hole-free?

