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International Mathematical Olympiad 2004:
For which m and n can an m× n rectangle be tiled
with ’hooks’ of the following type:
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and corners of integral coordinates.
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Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

Packing: How many non-overlapping copies of Q
can be fit inside P?
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Our paper: Q ∈
{

,
}
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Representing a polyomino

Usual way:
Store coordinates of each cell:
[ , , , , , , . . .]
Area representation

Compact way:
Store coordinates of corners.
Corner representation
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Example

(0, 0)

(2k, 2k)

Corner representation:
[(0, 0), (2k, 0), (2k, 2k), (0, 2k)]

Area representation:
[(0, 0), (1, 0), (2, 0), . . . , (2k, 0),
(0, 1), (1, 1), (2, 1), . . . , (2k, 1),

...
(0, 2k), (1, 2k), (2, 2k), . . . , (2k, 2k)]
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Goal

(0, 0)

(2k, 2k)
Known algorithms:
Assume area representation ⇒
Time polynomial in the area.

Goal:
Assume corner representation.
Find algorithms with running time
O(poly(n)).
n: the number of corners.
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Shapes Tiling Packing

NP-complete
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Results

Shapes Tiling Packing

No holes: O(n)
Holes: O(n log n)

NP-complete

Õ(n3) Õ(n3)
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Tiling with 2× 2 squares

Can be done in O(A) time.



Tiling with 2× 2 squares

Can be done in O(A) time.

Polynomial-time algorithm but in the area of P !
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Packing dominos

P

Maximum domino packing of P ↔ Maximum matching of G(P )

Time O(A3/2) for maximum domino packing using
Hopcroft-Karp, where A is the area of P (Berman et al. ’82)

G(P )

Multiple source multiple sink maximum flow: Õ(A) [Borradaile et
al., SICOMP 2017].
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Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

Hardness
Beauquier et al. ’95, Pak & Yang ’13, Fowler et al. ’81, Berman et al ’90:

Various hardness results for tiling and packing.

Berman et al ’90:

Deciding if k 2× 2 squares can be packed in a polyomino (with holes) is NP-complete.

Berger ’66:

Deciding if a finite set of polyominos can tile the plane is Turing-complete

All polynomial
in the area!

=⇒ O(A logA) alg. for tiling with dominos.
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This Talk



Packing Dominos in Õ(n3) time
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Assume no holes



General idea

Ignore parts of P where an optimal
packing is trivial and leaves no
uncovered squares.

Create graph G∗ of size O(poly n)
for the remaining part.

Find maximum matching M in G∗.

Return |M |+ area(P )−V (G∗)
2 .
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Simple algorithm

≈ 6n

> 9n

≈ 6n

> 9n

area O(n4)⇒

time Õ(n4)



Running time of simple algorithm

n
n

Õ(n4)
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Cubic-time algorithm (assume no holes)

Q

P

Find all pipes of length at least
twice their width.

Shorten each pipe

P ′ = P \Q

Distance ≈ bn/2c

shorten
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Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.
Thus, G∗ has order O(n3)

G∗ is planar and bipartite.
Find maximum matching M using a multiple-source multiple-sink
maximum flow alg., O(n3 log3 n) time.

Return |M |+ area(P )−V (G∗)
2 .

Q

P P ′



Offsets

B(A, r): Offset of A by distance r wrt. ‖ · ‖∞.

A
B(A, 2)

A
B(A,−1)

a = (x0, y0)

b = (x1, y1)

‖a− b‖∞ = max{|x0 − x1|, |y0 − y1|}
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coordinates



Consistent Parity

A polyomino P ⊂ R2 has consistent parity if all first coordinates
of corners of P have the same parity and vice versa for the second
coordinates

Observation: If P has no
holes and consistent parity
then each component of
P \B(P,−1) is Hamiltonian.

P
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Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

u

v

u

v

Has to repeat at most r = bn/2c times

Important:
P has no holes ⇒
u and v are both ’outside’ each
of the Hamiltonian cycles.

Ti Ti



Reduced instance

Issue: There can be exponentially long and narrow ’pipes’ ⇒
he size can be exponential.

However, any point of P ′ = P \Q is of distance O(n) to ∂P ′
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Running time

Compute P0

Compute offset
Find long pipes
Find maximum matching

Running time:
O(n log n)
O(n log n)
O(n log n)
O(n3 log3 n)



What if there are holes?

QQ



Simple algorithm

≈ 6n

> 9n

≈ 6n

> 9n

Time: Õ(n4).



Correctness of simple algorithm

ci

ci+1

v1 v2

R′2 Q

R1

R3

v′1 v′2

> 3n

> 9n

b3n/2c offset



Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?
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Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Packing 2× 2 squares is NP-complete when P has
holes. Can it be solved in polynomial time if P is
hole-free?


