
Tiling with Squares and Packing
Dominos in Polynomial Time

Anders Aamand, Mikkel Abrahamsen, Thomas D. Ahle, Peter M. R. Rasmussen

Max Black, 1946: Two diagonally opposite corners
have been removed from a chessboard. Can 31 1× 2
dominos be placed to cover the remaining squares?

Max Black, 1946: Two diagonally opposite corners
have been removed from a chessboard. Can 31 1× 2
dominos be placed to cover the remaining squares?

International Mathematical Olympiad 2004:
For which m and n can an m× n rectangle be tiled
with ’hooks’ of the following type:

Motivation

Motivation

Motivation

Motivation

Motivation of domino packing

Motivation of domino packing

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

P

Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

P

2
2

Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

P

2
2

Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

Packing: How many non-overlapping copies of Q
can be fit inside P?

P

2
2

2
1

Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

Packing: How many non-overlapping copies of Q
can be fit inside P?

P

2
2

2
1

Tiling: Can a given large polyomino P be tiled
with copies of a given small polyomino Q?

Polyomino: A polygonal region in the plane with axis-parallel edges
and corners of integral coordinates.

Packing: How many non-overlapping copies of Q
can be fit inside P?

P

Our paper: Q ∈
{

,
}

2
2

2
1

Representing a polyomino

Representing a polyomino

Usual way:
Store coordinates of each cell:
[, , , , , , . . .]
Area representation

Representing a polyomino

Usual way:
Store coordinates of each cell:
[, , , , , , . . .]
Area representation

Compact way:
Store coordinates of corners.
Corner representation

Example

(0, 0)

(2k, 2k)

Example

(0, 0)

(2k, 2k)

Corner representation:
[(0, 0), (2k, 0), (2k, 2k), (0, 2k)]

Example

(0, 0)

(2k, 2k)

Corner representation:
[(0, 0), (2k, 0), (2k, 2k), (0, 2k)]

Area representation:
[(0, 0), (1, 0), (2, 0), . . . , (2k, 0),
(0, 1), (1, 1), (2, 1), . . . , (2k, 1),

...
(0, 2k), (1, 2k), (2, 2k), . . . , (2k, 2k)]

Goal

(0, 0)

(2k, 2k)
Known algorithms:
Assume area representation ⇒
Time polynomial in the area.

Goal

(0, 0)

(2k, 2k)
Known algorithms:
Assume area representation ⇒
Time polynomial in the area.

Goal:
Assume corner representation.
Find algorithms with running time
O(poly(n)).
n: the number of corners.

Results

Shapes Tiling Packing

NP-complete

? ?

?

2

2

2

1

Results

Shapes Tiling Packing

No holes: O(n)
Holes: O(n log n)

NP-complete

Õ(n3) Õ(n3)

2

2

2

1

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Tiling with 2× 2 squares

Can be done in O(A) time.

Tiling with 2× 2 squares

Can be done in O(A) time.

Polynomial-time algorithm but in the area of P !

I1

I2

I3

I4

I5

x(ej) x(ej+1)

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e1

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e1

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e1

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e1

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e1

I1

I2

I3

I4

I5

x(ej) x(ej+1)

e2
e3

e4

e6
e4

e5

e1

No holes: O(n) time!

No holes: O(n) time!

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

No holes: O(n) time!

r

child

child child

parent

Packing dominos

P

Packing dominos

P G(P)

Packing dominos

P

Maximum domino packing of P ↔ Maximum matching of G(P)

G(P)

Packing dominos

P

Maximum domino packing of P ↔ Maximum matching of G(P)

G(P)

Packing dominos

P

Maximum domino packing of P ↔ Maximum matching of G(P)

Time O(A3/2) for maximum domino packing using
Hopcroft-Karp, where A is the area of P (Berman et al. ’82)

G(P)

Packing dominos

P

Maximum domino packing of P ↔ Maximum matching of G(P)

Time O(A3/2) for maximum domino packing using
Hopcroft-Karp, where A is the area of P (Berman et al. ’82)

G(P)

Multiple source multiple sink maximum flow: Õ(A) [Borradaile et
al., SICOMP 2017].

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

All polynomial
in the area!

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

Hardness
Beauquier et al. ’95, Pak & Yang ’13, Fowler et al. ’81, Berman et al ’90:

Various hardness results for tiling and packing.

All polynomial
in the area!

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

Hardness
Beauquier et al. ’95, Pak & Yang ’13, Fowler et al. ’81, Berman et al ’90:

Various hardness results for tiling and packing.

Berman et al ’90:

Deciding if k 2× 2 squares can be packed in a polyomino (with holes) is NP-complete.

All polynomial
in the area!

=⇒ O(A logA) alg. for tiling with dominos.

Related work

Algorithms

Conway & Lagarias ’90 and Thurston ’90:

Combinatorial Group Theory approach for deciding tileability.

Kenyon & Kenyon ’92:

Tiling a hole-free polyomino with 1×m and k × 1 rectangles in time O(A).

Tiling a hole-free polyomino with k ×m and m× k rectangles in time O(A2).

Remila ’05:

Tiling a hole-free polyomino with k ×m and k′ ×m′ rectangles in time O(A2)

Hardness
Beauquier et al. ’95, Pak & Yang ’13, Fowler et al. ’81, Berman et al ’90:

Various hardness results for tiling and packing.

Berman et al ’90:

Deciding if k 2× 2 squares can be packed in a polyomino (with holes) is NP-complete.

Berger ’66:

Deciding if a finite set of polyominos can tile the plane is Turing-complete

All polynomial
in the area!

=⇒ O(A logA) alg. for tiling with dominos.

Packing Dominos in Õ(n3) time

This Talk

Packing Dominos in Õ(n3) time

This Talk

Assume no holes

General idea

Ignore parts of P where an optimal
packing is trivial and leaves no
uncovered squares.

Create graph G∗ of size O(poly n)
for the remaining part.

Find maximum matching M in G∗.

Return |M |+ area(P)−V (G∗)
2 .

Simple algorithm

P P ′

?

Simple algorithm

P P ′

?

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

Simple algorithm

> 9n

Simple algorithm

≈ 6n> 9n

Simple algorithm

≈ 6n

> 9n

≈ 6n

> 9n

Simple algorithm

≈ 6n

> 9n

≈ 6n

> 9n

area O(n4)⇒

time Õ(n4)

Running time of simple algorithm

n
n

Õ(n4)

Cubic-time algorithm (assume no holes)

P

Cubic-time algorithm (assume no holes)

Q

P

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P P ′ = P \Q

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P

Find all pipes of length at least
twice their width.

P ′ = P \Q

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P

Find all pipes of length at least
twice their width.

Shorten each pipe

P ′ = P \Q

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P

Find all pipes of length at least
twice their width.

Shorten each pipe

P ′ = P \Q

Distance ≈ bn/2c

Cubic-time algorithm (assume no holes)

Q

P

Find all pipes of length at least
twice their width.

Shorten each pipe

P ′ = P \Q

Distance ≈ bn/2c

shorten

Cubic-time algorithm (assume no holes)

Q

P P ′

Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.

Q

P P ′

Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.
Thus, G∗ has order O(n3)

Q

P P ′

Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.
Thus, G∗ has order O(n3)

G∗ is planar and bipartite.

Q

P P ′

Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.
Thus, G∗ has order O(n3)

G∗ is planar and bipartite.
Find maximum matching M using a multiple-source multiple-sink
maximum flow alg., O(n3 log3 n) time.

Q

P P ′

Cubic-time algorithm (assume no holes)

In reduced instance G∗, each vertex is of distance O(n) to an
original corner.
Thus, G∗ has order O(n3)

G∗ is planar and bipartite.
Find maximum matching M using a multiple-source multiple-sink
maximum flow alg., O(n3 log3 n) time.

Return |M |+ area(P)−V (G∗)
2 .

Q

P P ′

Offsets

B(A, r): Offset of A by distance r wrt. ‖ · ‖∞.

A
B(A, 2)

A
B(A,−1)

a = (x0, y0)

b = (x1, y1)

‖a− b‖∞ = max{|x0 − x1|, |y0 − y1|}

Consistent Parity

A polyomino P ⊂ R2 has consistent parity if all first coordinates
of corners of P have the same parity and vice versa for the second
coordinates

Consistent Parity

A polyomino P ⊂ R2 has consistent parity if all first coordinates
of corners of P have the same parity and vice versa for the second
coordinates

Observation: If P has no
holes and consistent parity
then each component of
P \B(P,−1) is Hamiltonian.

P

Augmenting paths

Let G be a graph, M a matching of G.

A path P = v1, v2, . . . , v2k of G is augmenting if v1 and
v2k are unmatched and (v2i, v2i+1) ∈M , i = 1, . . . , k − 1

Augmenting paths

Let G be a graph, M a matching of G.

A path P = v1, v2, . . . , v2k of G is augmenting if v1 and
v2k are unmatched and (v2i, v2i+1) ∈M , i = 1, . . . , k − 1

augment

Augmenting paths

Let G be a graph, M a matching of G.

A path P = v1, v2, . . . , v2k of G is augmenting if v1 and
v2k are unmatched and (v2i, v2i+1) ∈M , i = 1, . . . , k − 1

Lemma (Berge). Let G be a
graph and M a matching of
G which is not maximum.
Then there exists an
augmenting path between two
unmatched vertices of G.

augment

Augmenting paths

Let G be a graph, M a matching of G.

A path P = v1, v2, . . . , v2k of G is augmenting if v1 and
v2k are unmatched and (v2i, v2i+1) ∈M , i = 1, . . . , k − 1

Lemma (Berge). Let G be a
graph and M a matching of
G which is not maximum.
Then there exists an
augmenting path between two
unmatched vertices of G.

augment

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

P

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

P

P0

Structural Result 1

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

P

P0

Q Q

Structural Result 1

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

P

P0

Q Q

Structural Result 1

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let subpolyomino P0 ⊆ P be maximal with consistent parity.

P0

P

Let r = bn/2c and Q = B(P0,−r). Note that Q has consistent parity.

P

P0

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Q
Q

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Q
Q

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

If covering is not maximum, use Berge’s Lemma.

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

If covering is not maximum, use Berge’s Lemma.

u

v

Ti

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

If covering is not maximum, use Berge’s Lemma.

u

v

u

v

Ti Ti

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

Let Q be any tiling of Q

Tile P0 \Q layer by layer. Tilings T1, . . . , Tr.

Finally pack dominos into P \ P0, leaving at most n uncovered cells.

If covering is not maximum, use Berge’s Lemma.

u

v

u

v

Has to repeat at most r = bn/2c times

Ti Ti

Proof
P

P0

Main Lemma. There
exists a maximum domino
packing of P restricting to
a tiling of Q.

u

v

u

v

Has to repeat at most r = bn/2c times

Important:
P has no holes ⇒
u and v are both ’outside’ each
of the Hamiltonian cycles.

Ti Ti

Reduced instance

Issue: There can be exponentially long and narrow ’pipes’ ⇒
he size can be exponential.

However, any point of P ′ = P \Q is of distance O(n) to ∂P ′

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k ’notches’

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

’notches’

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

’notches’

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

’notches’

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Now fill in
horizontal
dominos

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Now fill in
horizontal
dominos

Structural Result 2: Shortening Pipes

Consider ’pipes’ of the form:

` even

k

Color black and white in chessboard fashion with b black cells and
w white cells. Assume b ≥ w.

Lemma. If ` ≥ 2k, then
the number of uncovered
cells in a maximum domino
packing is b− w

Now fill in
horizontal
dominos

Running time

Compute P0

Compute offset
Find long pipes
Find maximum matching

Running time:
O(n log n)
O(n log n)
O(n log n)
O(n3 log3 n)

What if there are holes?

QQ

Simple algorithm

≈ 6n

> 9n

≈ 6n

> 9n

Time: Õ(n4).

Correctness of simple algorithm

ci

ci+1

v1 v2

R′2 Q

R1

R3

v′1 v′2

> 3n

> 9n

b3n/2c offset

Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Packing 2× 2 squares is NP-complete when P has
holes. Can it be solved in polynomial time if P is
hole-free?

