Tiling with Squares and Packing Dominos in Polynomial Time

Anders Aamand, Mikkel Abrahamsen, Thomas D. Ahle, Peter M. R. Rasmussen

Max Black, 1946: Two diagonally opposite corners have been removed from a chessboard. Can 31 1×2 dominos be placed to cover the remaining squares?

Max Black, 1946: Two diagonally opposite corners have been removed from a chessboard. Can 31 1×2 dominos be placed to cover the remaining squares?

International Mathematical Olympiad 2004: For which m and n can an $m \times n$ rectangle be tiled with 'hooks' of the following type:

Motivation of domino packing

- defect
- 📕 defective die
- 📒 good die
- 📒 partial edge die

Motivation of domino packing

- defect
- 📕 defective die
- 📒 good die
- 📒 partial edge die

Tiling: Can a given large polyomino P be tiled with copies of a given small polyomino Q?

Tiling: Can a given large polyomino P be tiled with copies of a given small polyomino Q?

Tiling: Can a given large polyomino P be tiled with copies of a given small polyomino Q?

Packing: How many non-overlapping copies of Q can be fit inside P?

Tiling: Can a given large polyomino P be tiled with copies of a given small polyomino Q?

Packing: How many non-overlapping copies of Q can be fit inside P?

2

Tiling: Can a given large polyomino P be tiled with copies of a given small polyomino Q?

Packing: How many non-overlapping copies of Q can be fit inside P?

Our paper:
$$Q \in \{ \square, \square \}$$

Representing a polyomino

Representing a polyomino

Usual way:

Store coordinates of each cell:

Area representation

Representing a polyomino

Usual way:

Store coordinates of each cell:

Area representation

Compact way: Store coordinates of corners. *Corner representation*

Example

Example

Example

Corner representation: $[(0,0), (2^k, 0), (2^k, 2^k), (0, 2^k)]$

Area representation: $[(0,0), (1,0), (2,0), \dots, (2^{k},0), (0,1), (1,1), (2,1), \dots, (2^{k},1), \vdots$ \vdots $(0,2^{k}), (1,2^{k}), (2,2^{k}), \dots, (2^{k},2^{k})]$

Goal

Known algorithms:

Assume area representation \Rightarrow Time polynomial in the area.

Goal

Known algorithms: Assume area representation \Rightarrow

Time polynomial in the area.

Goal:

Assume corner representation. Find algorithms with running time O(poly(n)). n: the number of corners.

Results

Results

Shapes	Tiling	Packing
$2 \boxed{2}$	No holes: $O(n)$ Holes: $O(n \log n)$	NP-complete
	$\widetilde{O}(n^3)$	$\widetilde{O}(n^3)$

Tiling with 2×2 squares

Tiling with 2×2 squares

Tiling with 2×2 squares

Can be done in O(A) time.

Tiling with 2×2 squares

Can be done in O(A) time.

Polynomial-time algorithm but in the area of P!

No holes: O(n) time!

No holes: O(n) time!

No holes: O(n) time!

No holes: O(n) time!

Maximum domino packing of $P \leftrightarrow$ Maximum matching of G(P)

Maximum domino packing of $P \leftrightarrow$ Maximum matching of G(P)

Maximum domino packing of $P \leftrightarrow$ Maximum matching of G(P)

Time $O(A^{3/2})$ for maximum domino packing using Hopcroft-Karp, where A is the *area* of P (Berman et al. '82)

Maximum domino packing of $P \leftrightarrow$ Maximum matching of G(P)

Time $O(A^{3/2})$ for maximum domino packing using Hopcroft-Karp, where A is the *area* of P (Berman et al. '82)

Multiple source multiple sink maximum flow: $\widetilde{O}(A)$ [Borradaile et al., SICOMP 2017].

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability.

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Remila '05:

Tiling a hole-free polyomino with $k \times m$ and $k' \times m'$ rectangles in time $O(A^2)$

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

All polynomial in the area!

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Remila '05:

Tiling a hole-free polyomino with $k \times m$ and $k' \times m'$ rectangles in time $O(A^2)$

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

All polynomial in the area!

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Remila '05:

Tiling a hole-free polyomino with $k \times m$ and $k' \times m'$ rectangles in time $O(A^2)$

Hardness

Beauquier et al. '95, Pak & Yang '13, Fowler et al. '81, **Berman et al '90**: Various hardness results for tiling and packing.

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

All polynomial in the area!

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Remila '05:

Tiling a hole-free polyomino with $k \times m$ and $k' \times m'$ rectangles in time $O(A^2)$

Hardness

Beauquier et al. '95, Pak & Yang '13, Fowler et al. '81, **Berman et al '90**: Various hardness results for tiling and packing.

Berman et al '90:

Deciding if $k \ 2 \times 2$ squares can be packed in a polyomino (with holes) is NP-complete.
Related work

Algorithms

Conway & Lagarias '90 and Thurston '90: Combinatorial Group Theory approach for deciding tileability. $\implies O(A \log A)$ alg. for tiling with dominos.

All polynomial in the area!

Kenyon & Kenyon '92:

Tiling a hole-free polyomino with $1 \times m$ and $k \times 1$ rectangles in time O(A). Tiling a hole-free polyomino with $k \times m$ and $m \times k$ rectangles in time $O(A^2)$.

Remila '05:

Tiling a hole-free polyomino with $k \times m$ and $k' \times m'$ rectangles in time $O(A^2)$

Hardness

Beauquier et al. '95, Pak & Yang '13, Fowler et al. '81, **Berman et al '90**: Various hardness results for tiling and packing.

Berman et al '90:

Deciding if $k \ 2 \times 2$ squares can be packed in a polyomino (with holes) is NP-complete. Berger '66: Deciding if a finite set of polyominos can tile the plane is Turing-complete

This Talk

Packing Dominos in $\widetilde{O}(n^3)$ time

This Talk

Packing Dominos in $\widetilde{O}(n^3)$ time

Assume no holes

General idea

Ignore parts of P where an optimal packing is trivial and leaves no uncovered squares.

Create graph G^* of size O(poly n) for the remaining part.

Find maximum matching M in G^* .

Return $|M| + \frac{\operatorname{area}(P) - V(G^*)}{2}$.

1

Running time of simple algorithm

P

Find all *pipes* of length at least twice their width.

Find all *pipes* of length at least twice their width.

Shorten each pipe

Find all *pipes* of length at least twice their width.

Shorten each pipe

In reduced instance G^* , each vertex is of distance O(n) to an original corner.

In reduced instance G^* , each vertex is of distance O(n) to an original corner.

Thus, G^* has order $O(n^3)$

In reduced instance G^* , each vertex is of distance O(n) to an original corner.

Thus, G^* has order $O(n^3)$

 G^* is planar and bipartite.

In reduced instance G^* , each vertex is of distance O(n) to an original corner.

Thus, G^* has order $O(n^3)$

 G^* is planar and bipartite.

Find maximum matching M using a multiple-source multiple-sink maximum flow alg., $O(n^3 \log^3 n)$ time.

In reduced instance G^* , each vertex is of distance O(n) to an original corner.

Thus, G^* has order $O(n^3)$

 G^* is planar and bipartite.

Find maximum matching M using a multiple-source multiple-sink maximum flow alg., $O(n^3 \log^3 n)$ time.

Return $|M| + \frac{\operatorname{area}(P) - V(G^*)}{2}$.

Offsets

B(A, r): Offset of A by distance r wrt. $\|\cdot\|_{\infty}$.

Consistent Parity

A polyomino $P \subset \mathbf{R}^2$ has **consistent parity** if all first coordinates of corners of P have the same parity and vice versa for the second coordinates

Consistent Parity

A polyomino $P \subset \mathbf{R}^2$ has **consistent parity** if all first coordinates of corners of P have the same parity and vice versa for the second coordinates

Observation: If *P* has no holes and consistent parity then each component of $P \setminus B(P, -1)$ is Hamiltonian.

Let G be a graph, M a matching of G.

A path $P = v_1, v_2, \ldots, v_{2k}$ of G is **augmenting** if v_1 and v_{2k} are unmatched and $(v_{2i}, v_{2i+1}) \in M$, $i = 1, \ldots, k-1$

Let G be a graph, M a matching of G.

A path $P = v_1, v_2, \ldots, v_{2k}$ of G is **augmenting** if v_1 and v_{2k} are unmatched and $(v_{2i}, v_{2i+1}) \in M$, $i = 1, \ldots, k-1$

Let G be a graph, M a matching of G.

A path $P = v_1, v_2, \ldots, v_{2k}$ of G is **augmenting** if v_1 and v_{2k} are unmatched and $(v_{2i}, v_{2i+1}) \in M$, $i = 1, \ldots, k-1$

Lemma (Berge). Let G be a graph and M a matching of G which is not maximum. Then there exists an augmenting path between two unmatched vertices of G.

Let G be a graph, M a matching of G.

A path $P = v_1, v_2, \ldots, v_{2k}$ of G is **augmenting** if v_1 and v_{2k} are unmatched and $(v_{2i}, v_{2i+1}) \in M$, $i = 1, \ldots, k-1$

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let $r = \lfloor n/2 \rfloor$ and $Q = B(P_0, -r)$. Note that Q has consistent parity.

Let subpolyomino $P_0 \subseteq P$ be maximal with consistent parity.

Let $r = \lfloor n/2 \rfloor$ and $Q = B(P_0, -r)$. Note that Q has consistent parity.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells. If covering is not maximum, use Berge's Lemma.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells. If covering is not maximum, use Berge's Lemma.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells. If covering is not maximum, use Berge's Lemma.

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Let ${\mathcal Q}$ be any tiling of Q

Tile $P_0 \setminus Q$ layer by layer. Tilings $\mathcal{T}_1, \ldots, \mathcal{T}_r$.

Finally pack dominos into $P \setminus P_0$, leaving at most n uncovered cells. If covering is not maximum, use Berge's Lemma.

Has to repeat at most $r = \lfloor n/2 \rfloor$ times

Main Lemma. There exists a maximum domino packing of P restricting to a tiling of Q.

Important:

P has no holes \Rightarrow

u and v are both 'outside' each of the Hamiltonian cycles.

Has to repeat at most $r = \lfloor n/2 \rfloor$ times

Reduced instance

Issue: There can be exponentially long and narrow 'pipes' \Rightarrow he size can be exponential.

However, any point of $P' = P \setminus Q$ is of distance O(n) to $\partial P'$

Consider 'pipes' of the form:


```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```



```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:


```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:


```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:


```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \ge w$.

```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \ge w$.

```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \ge w$.

```
Lemma. If \ell \ge 2k, then
the number of uncovered
cells in a maximum domino
packing is b - w
```


Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \ge w$.

Lemma. If $\ell \ge 2k$, then the number of uncovered cells in a maximum domino packing is b - w

Consider 'pipes' of the form:

Color black and white in chessboard fashion with b black cells and w white cells. Assume $b \ge w$.

Lemma. If $\ell \ge 2k$, then the number of uncovered cells in a maximum domino packing is b - w

Running time

	Running time:
Compute P_0	$O(n \log n)$
Compute offset	$O(n \log n)$
Find long pipes	$O(n \log n)$
Find maximum matching	$O(n^3 \log^3 n)$

What if there are holes?

Correctness of simple algorithm

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Open problems

Can domino tiling/packing be solved faster with a reduction to a flow problem?

Packing 2×2 squares is NP-complete when P has holes. Can it be solved in polynomial time if P is hole-free?