
Name: Geva Kipper I.D: 307876219

3D Printing Project

2D Part Orienting

Abstract
The project deals with the problem of orienting a given polygon 𝑃 without the use of sensors. We

focus on a method called oblivious push-plans, which means we push 𝑃 using a straight arm from

several different directions, and construct this series of directions such that 𝑃 will always end up in

the same, predetermined orientation, regardless of the orientation in which it is given to us.

The project includes the implementation of several algorithms that construct valid and optimal push-

plans for a given polygon 𝑃, as well as a simulation program which can be used to demonstrate how

the push-plan we obtain operates on different orientations of 𝑃.

Theoretical background
The centroid of the polygon 𝑃, which takes a major role in the analysis of the push operation, is the

center of mass of a uniform-density object in the shape of 𝑃. We compute it by the formula:

𝐶𝑥 =
1

6𝐴
∑(𝑥𝑖 + 𝑥𝑖+1)

𝑛−1

𝑖=0

(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖) 𝐶𝑦 =
1

6𝐴
∑(𝑦𝑖 + 𝑦𝑖+1)

𝑛−1

𝑖=0

(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

 Where 𝑥𝑖, 𝑦𝑖 are the 𝑥 and 𝑦 coordinates of the 𝑖-th vertex of 𝑃, 𝑥𝑛: = 𝑥0, 𝑦𝑛: = 𝑦0, and 𝐴 is the

signed area of 𝑃, given by:

𝐴 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

The radius function 𝜌: [0,2𝜋) → ℝ maps a direction 𝑑 to the distance from the centroid of 𝑃 to the

ground when 𝑃 is rotated by 𝑑. We can compute the convex hull of 𝑃 first, and then find the

minimum and maximum points of 𝜌(𝑑) by simultaneously sweeping two sphere arrangements:

1. The arrangement of normals of the edges of 𝑃 (the ‘Gaussian map’ of 𝑃).

2. The arrangement of directions from the centroid to the vertices of 𝑃 (the ‘central map’).

It can be shown that a local minimum of the radius function corresponds to an edge of the convex

hull, 𝐶𝐻(𝑃), and that when pushed from some direction 𝑑, 𝑃 eventually stops rotating, and one of

the edges of 𝐶𝐻(𝑃) is aligned to the pushing arm. We say that 𝑃 rests on this edge of 𝐶𝐻(𝑃).

The push function 𝑝(𝑑): [0,2𝜋) → [0,2𝜋) maps a direction 𝑑 to the normal of the edge of 𝐶𝐻(𝑃)

that 𝑃 rests on when pushed from direction 𝑑 (in the rotated coordinate system of 𝑃).

The function 𝑝(𝑑) is constant between consecutive local maxima of the radius function, and its value

is the normal of the edge corresponding to the local minimum between them.

Algorithms implemented
The project includes the implementation of the following algorithms:

1) An algorithm by Chen and Ierardi [2], which finds a push-plan of length at most 𝑛, and runs

in time 𝑂(𝑛 log 𝑛) for general polygons and 𝑂(𝑛) for convex polygons.

2) An algorithm suggested by Goldberg, described in [3], which finds an optimal push-plan (one

with minimal length) in 𝑂(𝑛4) time.

3) An improved version of the above algorithm, whose running time is 𝑂(𝑛2 log 𝑛).

We provide brief reviews of the implemented algorithms. For the full details and analysis of the

algorithms see the bibliography section below.

1) Chen-Ierardi algorithm

The algorithm of Chen and Ierardi finds a push-plan whose length is at most 𝑛.1 It works by

constructing the push function of 𝑃, and finding the largest and second-largest half-angles in the

push function of 𝑃, marked by 𝛼 and 𝛽 in the figure below. We then choose an angle 𝑥 ∈ [𝛽, 𝛼]. As

Chen and Ierardi show, if we push the polygon from angles 0, 𝑥, 2𝑥, … , (𝑛 − 1)𝑥, it must end up on

the stable orientation corresponding to the angle 𝛼. Finding 𝛼 and 𝛽 takes 𝑂(𝑛 log 𝑛) time for

general polygons and 𝑂(𝑛) for convex polygons.

2) Goldberg’s algorithm

Goldberg’s algorithm [3] constructs an optimal push-plan. That is, one with minimal length. It works

by constructing a graph 𝐺 = (𝑉, 𝐸), where the vertices 𝑉 are the 𝑛2 intervals between pairs of

stable orientations of 𝑃. We connect two intervals 𝐼, 𝐽 ∈ 𝑉 by an edge if, knowing that the polygon

lies on one of the stable orientations in 𝐼, there is some direction from which we can push 𝑃 that will

guarantee it ends up in some stable orientation in 𝐽. This can be determined in 𝑂(1) time.

In this graph 𝐺 we then find the shortest path, of length 𝑘, from the ‘full’ interval, containing all

stable orientations, to a singleton interval. By the construction we can choose a series of push

directions of length 𝑘 which guarantees that 𝑃 always ends up in the same orientation.

3) Improved version

The construction of the interval graph requires going over all pairs of intervals 𝐼, 𝐽, which takes

𝑂(𝑛4) time, but in fact we only need to consider the edge from 𝐼 to the shortest interval 𝐽 that can

be reached from 𝐼 by a single push. This allows us to make the algorithm more efficient, and

Goldberg [1] described a version of the algorithm that runs in 𝑂(𝑛2) time. This project also includes

a nearly-optimal implementation with a time complexity of 𝑂(𝑛2 log 𝑛).

Bibliography
[1] Goldberg, K. Y. (1993). Orienting polygonal parts without sensors. Algorithmica, 10(2), 201-225.

[2] Chen, Y. B., & Ierardi, D. J. (1995). The complexity of oblivious plans for orienting and

distinguishing polygonal parts. Algorithmica, 14(5), 367-397.

[3] van der Stappen, A. F., Berretty, R. P., Goldberg, K., & Overmars, M. H. (2002). Geometry and

part feeding. In Sensor Based Intelligent Robots (pp. 259-281). Springer, Berlin, Heidelberg.

1 Longer plans are required to support polygons for which the largest half-angle in the push function is non-
unique, but their length is still O(n), and this was not implemented in the project.

Implementation considerations
The algorithms in this project were implemented in C++, making use of CGAL, and they only use

exact computation. In this section we describe some of the code elements that were implemented

for the algorithms. The algorithms support convex as well as non-convex polygons.

Additional information can be found in the documentation within the code.

SphereArrangement_1: This class was written to represent a general arrangement on the one-

dimensional sphere 𝑆1. The underlying Vertex type is templated by the Direction_2 type, describing

the geometry of the vertices. It also supports extending the vertices with data of a template type. An

overlay function was implemented, allowing us to overlay two sphere arrangements in linear time.

Angle_2: This class was written to represent an exact angle between two directions. All angle

operations and comparisons are performed in an exact manner using CGAL. It has convenient

functions like comparison operators and a method to select an arbitrary direction within the given

angle. Exact comparisons, for example, are required by the Chen-Ierardi algorithm, where we need

to find the largest and second largest half-angles of the push function.

Sphere functions: Functions on 𝑆1 are represented as arrangements on the sphere. Every vertex 𝑣 is

assigned a data value indicating the value of the function on the edge that begins at 𝑣 and ends at

the next vertex 𝑢. The Gaussian map, direction map, radius function and push function are all

maintained using this structure.

Constructing the push function: We first overlay the Gaussian map and the central map of 𝑃.

Not every edge-normal constitutes a local minimum in the radius function. For

example, the normal marked in purple does not – if the polygon is pushed on the

corresponding edge, it will not be stable and will fall over. The push function steps,

such as the normal marked in cyan, correspond to edges 𝑒𝑖 such that the normal

𝑛(𝑒𝑖) is located in the overlay immediately between the direction vectors from the

centroid of 𝑃 to the vertices of 𝑒𝑖. In this case, 𝑛(𝑒𝑖) is immediately between 𝑑(𝑣𝑖)

and 𝑑(𝑣𝑖+1) and thus 𝑛(𝑒𝑖) is a minimum point for the radius function and

constitutes a step for the push function of 𝑃.

Identifiying edges of the interval graph: To implement Golberg’s algorithm, we need to know which

pairs of intervals to connect. We define two properties of an interval of stable orientations:

Consider the interval between two stable orientations, [𝑑1, 𝑑2].

The known-angle of the interval, 𝛼, is the angle between the first and last stable

orientations. The fit-angle of the interval, 𝛽, is the angle between the local-

maximum of the push function 𝑚1 preceding 𝑑1, and 𝑚2, the one following 𝑑2.

The interval 𝐼1 can then be ‘collapsed’ into the interval 𝐼2 by a single push iff the

size of the known-angle of 𝐼1 is at most the size of the fit-angle of 𝐼2, and

any push direction between 𝐴𝑛𝑔𝑙𝑒(𝑚1, 𝑑1) and 𝐴𝑛𝑔𝑙𝑒(𝑚2, 𝑑2) will do.

Graph algorithms: BGL, also known as the boost::graph library, was used for graph algorithms,

specifically BFS that is used within in Goldberg’s algorithm.

Simulation
The simulation is written in Python, and it simulates the physics of the push-plan operating on the

polygon. The same push-plan is demonstrated on multiple copies of the polygon simultaneously to

show that it works regardless of the starting orientation. Additional information can be found in the

documentation within the code.

Simulating pushed polygons: The simulation uses the pymunk 2D physics simulation library. We

simulate objects ‘lying on a table’, which is not the typical case for such physical simulation, so

configuring the physical environment to describe our situation was not immediate.

Open-Source contribution to pymunk: During the development of the simulation I found and

reported a bug in the pymunk library. While debugging it I found several possible solutions and

suggested them to the maintainer of the package, who implemented one of the said solutions.

The full details can be found on the GitHub page: https://github.com/viblo/pymunk/issues/118

Numerical inaccuracies: Unlike the C++ code, the simulation is only approximate and the polygon

sometimes ends up in the wrong orientation due to these numerical inaccuracies. With the time

limitation of the project I decided to leave it this way, as it is not a critical feature.

Non-convex polygons: The pymunk library does not support collisions with non-convex polygons.

Therefore, even though the algorithms can generate push-plans for non-convex polygons, we will

not be able to simulate these plans.

https://github.com/viblo/pymunk/issues/118

Usage

Dependencies

The python simulation requires installing pymunk and pygame, which can be done by:

 pip install pymunk

 pip install pygame

The C++ code requires having CGAL configured, and it also requires CMake for compilation.

Running the algorithms

The C++ program, called part_orient, is compiled using CMake. Several randomly generated

examples are provided and they can be used to test the program. All examples provided are convex

due to the simulation limitations described above. After compilation, the code can be executed by:

./part_orient <polygon_path> For instance:

./part_orient ./examples/pres.cin

It will then write to standard output:

1. The push function of the input polygon, as described earlier.

2. A naive 𝑂(𝑛) push-plan that orients the input polygon (“naïve”).

3. An optimal push-plan that orients the input polygon (“optimal”).

The push-plans will also be saved to files, which will in this example be named:

./examples/pres.cin.naive.plan ./examples/pres.cin.optimal.plan

Running the simulation

After generating a push-plan using the part_orient program, we can visualize it by running:

python simulation/simulation.py <polygon_path> <plan_path> For instance:

python simulation/simulation.py ./examples/pres.cin ./examples/pres.cin.optimal.plan

This should display a window with 4 copies of the input polygon being oriented simultaneously by

the provided push-plan.

