
Navigation:	Up,	Table	of	Contents,	Bibliography,	Index,	Title	Page

2D	Planar	Maps
Introduction
Planar	maps	are	embeddings	of	topological	maps	into	the	plane.	A	planar	map	subdivides	the	plane	into	vertices,	edges,
and	faces.	The	vertices,	edges,	and	faces	of	a	subdivision	are	the	embeddings	of	their	topological	map	counterparts	into
the	plane,	such	that	(1)	each	vertex	is	embedded	as	a	planar	point,	(2)	each	edge	is	embedded	as	a	bounded	x-
monotone	curve,	and	does	not	contain	vertices	in	its	interior,	and	(3)	each	face	is	a	maximal	connected	region	of	the
plane	that	does	not	contain	edges	and	vertices	in	its	interior.

The	Planar_map_2<Dcel,Traits>	class	is	derived	from	the	Topological_map<Dcel>	class.	While	the
Topological_map<Dcel>	base	class	provides	the	necessary	combinatorial-related	capabilities,	the
Planar_map_2<Dcel,Traits>	class	provides	all	the	geometric-related	capabilities	required	to	maintain	planar	maps
induced	by	interior-disjoint	x-monotone	curves,	and	perform	geometric	queries,	such	as	point	location.

In	this	chapter	we	review	the	data	and	functionality	added	to	the	Planar_map_2<Dcel,Traits>	class	over	that	of	the
Topological_map<Dcel>	class.	The	combinatorial	capabilities	of	the	base	class	are	covered	in	chapter		 ,	Topological
Maps.

Terms	and	Definitions

Before	we	expose	a	code	fragment	that	manipulates	a	planar	map,	let	us	define	precisely	some	of	the	terms	used	here
after.

Curve
-	the	image	of	a	continuous	1-1	mapping	into	the	plane	of	any	one	of	the	following:	the	closed	unit	interval	(arc),
the	open	unit	interval	(unbounded	curve),	or	the	unit	circle	(closed	curve).	In	all	cases	a	curve	is	non	self-
intersecting.	Segments,	lines,	rays,	conic	sections	are	examples	of	curves.

X-monotone	curve
-	a	curve	that	intersects	any	vertical	line	in	at	most	one	point,	or	a	vertical	segment.

Face
-	a	maximal	connected	region	of	the	plane	that	does	not	contain	any	vertex	or	edge.	We	consider	a	face	to	be	open,
and	its	boundary	is	formed	by	vertices	and	halfedges	of	the	subdivision.	The	halfedges	are	oriented	around	a	face
so	that	the	face	they	bound	is	to	their	left.	This	means	that	halfedges	on	the	outer	boundary	of	a	face	are	traversed
in	counterclockwise	order,	and	halfedges	on	the	inner	boundaries	(holes)	of	a	face	are	traversed	in	clockwise
order.	Halfedges	around	a	vertex	are	also	traversed	in	clockwise	order.

Point	Location
-	a	query	applied	to	a	planar	map.	Given	a	map	and	a	query	point	p,	find	the	region	of	the	map	containing	p.

A	simple	Program

The	simple	program	listed	below	constructs	a	planar	map	of	three	segments

#include	<CGAL/Cartesian.h>
#include	<CGAL/MP_Float.h>
#include	<CGAL/Quotient.h>
#include	<CGAL/Pm_segment_traits_2.h>
#include	<CGAL/Pm_default_dcel.h>
#include	<CGAL/Planar_map_2.h>

typedef	CGAL::Quotient<CGAL::MP_Float>				Number_type;
typedef	CGAL::Cartesian<Number_type>						Kernel;
typedef	CGAL::Pm_segment_traits_2<Kernel>	Traits;
typedef	Traits::Point_2																			Point_2;
typedef	Traits::X_monotone_curve_2								X_monotone_curve_2;
typedef	CGAL::Pm_default_dcel<Traits>					Dcel;
typedef	CGAL::Planar_map_2<Dcel,Traits>			Planar_map;

int	main()
{
		Planar_map	pm;
		X_monotone_curve_2	cv[3];
		Point_2	a1(0,0),	a2(0,4),	a3(4,0);
	
		cv[0]	=	X_monotone_curve_2(a1,a2);
		cv[1]	=	X_monotone_curve_2(a2,a3);
		cv[2]	=	X_monotone_curve_2(a3,a1);
		pm.insert(&cv[0],	&cv[3]);

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map/Chapter_main.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/contents.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/biblio.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/manual_index.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/title.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Topological_map_ref/Class_Topological_map.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Topological_map_ref/Class_Topological_map.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Topological_map_ref/Class_Topological_map.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Topological_map/Chapter_main.html#I1_ChapterTopologicalMap
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0


		return	0;
}

The	constructed	planar	map	is	instantiated	with	the	Pm_segment_traits_2	traits	class	to	handle	segments	only.	It
consists	of	two	faces,	a	triangular	face	and	the	unbounded	face.	This	program	is	not	very	useful,	as	it	ends	immediately
after	the	planar	map	is	constructed.	Let	us	add	something	useful,	such	as	querying	whether	a	point	is	located	in	the
interior	of	the	single	face	of	our	planar	map.	All	we	need	to	do	is	issue	the	following	statements:

		Point_2	p(1,1);
		typedef	Planar_map::Locate_type	lt;
		(void)	pm.locate(p,	lt);
		if	(lt	!=	Planar_map::FACE)
				std::cout	<<	"Point	location	failed!"	<<	std::endl;
		else
				std::cout	<<	"Point	location	passed!"	<<	std::endl;

The	information	returned	from	the	locate()	function	is	not	analyzed	further,	as	this	program	is	presented	to	illustrates	a
simple	usage	only.

Let	us	make	our	simple	example	a	bit	more	interesting,	and	draw	the	planar	map	with	Qt,	as	exemplified	in	the	code
fragments	below.	First,	we	must	add	the	following	include	directives:

#include	<qapplication.h>

#include	<CGAL/IO/Qt_widget.h>

#include	<CGAL/IO/Pm_Window_stream.h>

Next,	we	create	a	Qt	widget:

		QApplication	app(argc,	argv);
		CGAL::Qt_widget	widget;
		app.setMainWidget(widget);
		widget.resize(400,400);
		widget.set_window(-0.5,	4.5,	-0.5,	4.5);
		widget.show();

Now,	we	can	send	the	planar	map	to	a	Qt	widget	after	constructing	one::

		ws	<<	pm;

Software	Design
The	Planar_map_2<Dcel,Traits>	class	is	parameterized	with	two	objects.	The	Dcel	object	maintains	a	doubly-connected
edge	list	that	represents	the	underlying	topological	data	structure.	The	Traits	object	provides	the	geometric
functionality,	and	is	tailored	to	handle	a	specific	family	of	curves.	It	encapsulates	the	number	type	used	and	the
coordinate	representation.	This	package	contains	traits	classes	that	handle	various	types	of	curves	(e.g.,	segments,
polylines,	conics,	etc.).

The	combinatorial	entities	have	a	geometric	mapping,	e.g.,	a	vertex	of	a	planar	map	has	a	Point	data	member	and	a
halfedge	has	a	X_monotone_curve_2	(x-monotone	curve)	data	member.

The	Planar_map_2<Dcel,Traits>	class	consists	of	a	three	other	components.	(1)	It	includes	a	set	of	interface	functions
that	allow	you	to	construct,	modify,	query,	save,	and	restore	a	planar	map,	(2)	It	is	parameterized	with	a	traits	concept
class	that	defines	the	abstract	interface	between	planar	maps	and	the	primitives	they	use,	and	(3)	some	of	its
constructors	allow	you	to	choose	between	various	point-location	strategies.	The	point-location	strategy	has	a	significant
impact	not	only	on	the	performance	of	point-location	queries,	but	also	on	the	performance	of	the	operations	that	modify
the	planar	map.

Operations

The	set	of	operations	you	can	apply	to	a	planar	map	is	divided	into	four	subsets,	namely	constructors,	modifiers,
queries,	and	input/output	operations.

Construction

A	default	constructor	as	well	as	a	copy	constructor	are	available.	However,	if	you	want	to	override	the	default	point-
location	strategy,	you	must	provide	the	strategy	you	choose	as	the	single	parameter	to	the	constructor.	See	section		
for	further	information.

Modification

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/qapplication.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Qt_widget.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Pm_Window_stream.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map/Chapter_main.html#PM_sec:point_location


Once	a	planar	map	has	been	constructed,	you	can	insert	an	x-monotone	curve	or	a	collection	of	x-monotone	curves	into
the	map,	remove	a	curve	already	in	the	map,	split	a	curve	already	in	the	map	into	two	curves,	and	merge	two	curves
already	in	the	map,	given	that	the	resulting	curve	can	be	handled	by	the	traits	class.	All	these	operations	can	be
repeated	and	performed	at	any	order.

Insertion	of	a	collection	of	x-monotone	curves	into	a	planar	map	that	is	not	empty	is	not	supported	yet.	However,	the
aggregate	insertion	of	a	collection	of	curves	into	an	empty	map	is	drastically	more	efficient	than	the	incremental
insertion	of	the	curves	one	at	a	time,	as	the	aggregate	insertion	exploits	a	dedicated	efficient	sweep	line	algorithm.
Notice,	that	the	traits	function	curves_compare_y_at_x_left()	is	not	required,	nor	are	the	point_reflect_in_x_and_y()	and
curve_reflect_in_x_and_y()	functions,	if	aggregate	insertion	is	the	only	modification	performed	and	no	queries	are
performed.

When	additional	information	detailed	below	is	available,	special	insertion	function	can	be	used	to	expedite	the	insertion
of	a	single	curve.	This	information	may	consists	of	one	of	the	following:	(1)	the	face	containing	the	curve	to	be	inserted,
(2)	the	vertex	containing	a	curve	endpoint,	(3)	the	two	vertices	containing	the	two	curve	endpoints	respectively,	or	(4)
the	halfedges	whose	incident	vertices	contain	the	curve	endpoints	respectively.	The	time	complexity	of	the	insertion
operation	reduces	to	O(1),	when	the	incident	halfedges	are	available	and	provided	to	the	corresponding	special	insert
function.

The	code	fragment	listed	below	demonstrates	the	use	of	some	of	the	special	insertion-functions.

		Planar_map	pm;
		Point_2	a0(0,	0),	a1(2,	0),	a2(1,	2);

		X_monotone_curve_2	cv[3];
		cv[0]	=	X_monotone_curve_2(a0,	a1);
		cv[1]	=	X_monotone_curve_2(a1,	a2);
		cv[2]	=	X_monotone_curve_2(a2,	a0);

		Planar_map::Halfedge_handle	e[3];		
		e[0]	=	pm.insert_in_face_interior(cv[0],	pm.unbounded_face());
		e[1]	=	pm.insert_from_vertex(cv[1],	e[0]);
		e[2]	=	pm.insert_at_vertices(cv[2],	e[1],	e[0]->twin());

Two	halfedges	are	constructed	as	a	result	of	inserting	a	single	curve	into	a	planar	map.	One	of	the	two	new	halfedges	is
returned	from	the	applied	function.	The	insert()	and	the	insert_in_face_interior()	insertion	functions	return	the	new
halfedge	directed	in	the	same	way	as	the	input	curve.	There	are	two	flavors	of	insert_from_vertex()	and	two	falvours	of
insert_at_vertices()	functions.	One	accepts	vertices	and	the	other	accepts	halfedges	as	additional	information	to
expedite	the	insertion.	These	functions	return	the	new	halfedge	directed	according	to	the	additional	information,
regardless	of	the	input-curve	direction.	The	insert_from_vertex()	functions	return	the	new	halfedge	that	has	the	given
vertex	as	its	source	vertex,	when	a	vertex	is	provided.	When	a	halfedge	is	provided	instead	of	a	vertex,	the	target	vertex
of	the	given	halgedge	is	the	source	of	the	returned	new	halfedge.	The	insert_at_vertices()	functions	return	the	new
halfedge,	that	has	the	given	vertices	as	its	source	and	target	vertices	respectively,	when	vertices	are	provided.	When
halfedges	are	provided	instead	of	vertices,	the	target	vertices	of	the	given	halgedges	are	the	source	and	target	of	the
returned	new	halfedge	respectively.

The	next	example	exploits	the	most	efficient	speacial	insertion-functions,	and	provided	to	untangle	their	subtleties.
Figure	 	contains	the	drawing	of	the	planar	map	generated	by	the	code	fragment	listed	below.

Figure:		A	planar	map	generated	by	special	insertion	functions

		Planar_map	pm;
		X_monotone_curve_2	cv1(Point_2(1.0,	0.0),	Point_2(3.0,	2.0));
		X_monotone_curve_2	cv2(Point_2(4.0,	-1.0),	Point_2(3.0,	-2.0));
		X_monotone_curve_2	cv3(Point_2(4.0,	-1.0),	Point_2(1.0,	0.0));
		X_monotone_curve_2	cv4(Point_2(1.0,	0.0),	Point_2(4.0,	1.0));
		X_monotone_curve_2	cv5(Point_2(3.0,	2.0),	Point_2(4.0,	1.0));
		X_monotone_curve_2	cv6(Point_2(6.0,	0.0),	Point_2(4.0,	-1.0));
		X_monotone_curve_2	cv7(Point_2(4.0,	1.0),	Point_2(6.0,	0.0));

		Halfedge_handle	h1	=	pm.insert_in_face_interior(cv1,	pm.unbounded_face());
		Halfedge_handle	h2	=	pm.insert_in_face_interior(cv2,	pm.unbounded_face());
		Halfedge_handle	h3	=	pm.insert_at_vertices(cv3,	h2->twin(),	h1->twin());
		Halfedge_handle	h4	=	pm.insert_from_vertex(cv4,	h1->twin());
		Halfedge_handle	h5	=	pm.insert_at_vertices(cv5,	h1,	h4);
		Halfedge_handle	h6	=	pm.insert_from_vertex(cv6,	h3->twin());
		Halfedge_handle	h7	=	pm.insert_at_vertices(cv7,	h5,	h6);

Queries

In	addition	to	the	queries	provided	by	the	Topological_map<Dcel>	base	class,	you	can	perform	point	location	and
vertical	ray	shoot	queries,	and	find	out	whether	a	given	point	is	contained	in	a	given	face.

The	point	location	and	vertical	ray-shoot	functions,	namely

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map/Chapter_main.html#PM_sec:insert_at
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Topological_map_ref/Class_Topological_map.html#Cross_link_anchor_0


Halfedge_handle	locate(const	Point_2	&	p	,	Locate_type	&	lt),	and
Halfedge_handle	vertical_ray_shoot(const	Point_2	&	p,	Locate_type	&	lt,	bool	up_direction	)

return	the	type	of	the	feature	that	has	been	located	through	the	Locate_type	reference	parameter.

Figure	 	contains	the	drawing	of	the	planar	map	generated	by	example1.	This	example	issues	a	vertical-ray	shoot	query
illustrated	in	the	figure	as	well.	The	code	of	this	program	is	listed	below.

Figure:		The	map	generated	by	example1

The	constructed	planar	map	is	instantiated	with	the	Pm_segment_traits_2	traits	class	to	handle	segments	only.	The
traits	class	is	instanciated	in	turn	with	the	CGAL	Cartesian	kernel.	The	later	is	instanciated	with	the	field	of	quotions	of
multi-precision	floating-point	as	the	number	type.	The	planar	map	consists	of	five	segments	that	induce	three	faces.
After	the	construction	of	the	map,	its	validity	is	verified,	follwed	by	a	vertical-ray	shoot.

//	examples/Planar_map/example1.C
//	------------------------------

#include	"short_names.h"

#include	<CGAL/Cartesian.h>
#include	<CGAL/Quotient.h>
#include	<CGAL/Pm_segment_traits_2.h>
#include	<CGAL/Pm_default_dcel.h>
#include	<CGAL/Planar_map_2.h>
#include	<iostream>
#include	<iterator>
#include	<algorithm>

typedef	CGAL::Quotient<long>														Number_type;
typedef	CGAL::Cartesian<Number_type>						Kernel;
typedef	CGAL::Pm_segment_traits_2<Kernel>	Traits;
typedef	Traits::Point_2																			Point_2;
typedef	Traits::X_monotone_curve_2								X_monotone_curve_2;
typedef	CGAL::Pm_default_dcel<Traits>					Dcel;
typedef	CGAL::Planar_map_2<Dcel,Traits>			Planar_map;

int	main()
{
		//	Create	an	instance	of	a	Planar_map:
		Planar_map	pm;
		X_monotone_curve_2	cv[5];

		Point_2	p0(1,	4),	p1(5,	7),	p2(9,	4),	p3(5,	1);

		//	Create	the	curves:
		cv[0]	=	X_monotone_curve_2(p0,	p1);
		cv[1]	=	X_monotone_curve_2(p1,	p2);
		cv[2]	=	X_monotone_curve_2(p2,	p3);
		cv[3]	=	X_monotone_curve_2(p3,	p0);
		cv[4]	=	X_monotone_curve_2(p0,	p2);
		
		std::cout	<<	"The	curves	of	the	map	:"	<<	std::endl;
		std::copy(&cv[0],	&cv[5],
												std::ostream_iterator<X_monotone_curve_2>(std::cout,	"\n"));
		std::cout	<<	std::endl;

		//	Insert	the	curves	into	the	Planar_map:
		std::cout	<<	"Inserting	the	curves	to	the	map	...	";
		pm.insert(&cv[0],	&cv[5]);
		std::cout	<<	((pm.is_valid())	?	"map	valid!"	:	"map	invalid!")	<<	std::endl
												<<	std::endl;
		
		//	Shoot	a	vertical	ray	upward	from	p:
		Point_2	p(4,	3);
		Planar_map::Locate_type	lt;

		std::cout	<<	"Upward	vertical	ray	shooting	from	"	<<	p	<<	std::endl;	
		Planar_map::Halfedge_handle	e	=	pm.vertical_ray_shoot(p,	lt,	true);
		std::cout	<<	"returned	the	curve	"	<<	e->curve()	<<	",	oriented	toward	"	
			 				<<	e->target()->point()	<<	std::endl;	
		return	0;
}

The	output	of	the	program	is:

the	curves	of	the	map	:
1/1	4/1	5/1	7/1
5/1	7/1	9/1	4/1

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map/Chapter_main.html#PM_sec:shoot
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Enum_Locate_type


9/1	4/1	5/1	1/1
5/1	1/1	1/1	4/1
1/1	4/1	9/1	4/1

Inserting	the	curves	to	the	map	...	map	valid!

Upward	vertical	ray	shooting	from	4/1	3/1
returned	the	curve	1/1	4/1	9/1	4/1,	oriented	toward	1/1	4/1

IO

The	Planar	Map	package	supports	saving,	restoring,	and	drawing	of	planar	maps.	Each	traits	class	shipped	with	this
package	contains	the	necessary	I/O	operators	to	save,	restore	and	draw	the	type	of	curves	it	handles	and	the	type	of	the
curve	endpoint.

A	simple	textual	format	of	a	planar	map	representation	can	be	written	to	the	standard	output	with	the	Extractor	(	>>	)
operator	defined	for	Planar_map_2.	The	same	format	can	be	read	from	the	standard	input	with	the	Inserter	(	<<	)
operator	defined	for	Planar_map_2.	Add	the	include	directive	below	to	include	these	operator	definitions,

#include	<CGAL/IO/Pm_iostream.h>

Advanced	formats,	such	as	XML-based,	are	currently	considered,	but	haven't	been	implemented	yet,	nor	has	a	binary
format.

With	the	use	of	the	Pm_drawer	class	a	planar	map	representation	can	be	sent	to	a	graphic	stream,	such	as
CGAL::Qt_widget,	Postscript	file,	or	Geomview	window.	Add	the	include	directive	below	to	include	this	class	definition.

#include	<CGAL/IO/Pm_drawer.h>

Drawing	a	planar	map	with	Geomview	or	producing	Postscript	that	represents	a	planar	map,	can	be	done	by	applying
the	Inserter	operator	to	the	appropriate	graphic	stream	and	the	planar	map	instance.	Add	the	corresponding	include
directive	below,	to	include	any	if	these	class	definitions.

#include	<CGAL/IO/Pm_Postscript_file_stream.h>

#include	<CGAL/IO/Pm_Geomview_stream.h>

If	you	intend	to	save,	restore,	or	draw	a	planar	map,	you	must	define	I/O	operators	for	the	point	and	curve	types	defined
in	your	Traits	classes,	in	case	these	operations	are	not	present.	The	traits	classes	provided	in	the	Planar	Map	packages,
e.g.,	Pm_segment_traits_2	and	Pm_conic_traits_2,	contain	the	appropriate	definitions	to	save	a	textual	representation	of
a	planar	map	to	the	standard	output,	restore	it	from	the	standard	input,	and	draw	it	to	a	CGAL	window	stream.

I/O	for	User	Defined	Planar	Maps	and	the	I/O	Format

If	you	wish	to	add	your	own	attributes	planar	map	components.	If	those	attributes	are	to	be	written	as	part	of	the	planar
map	representation	(respectively,	are	to	be	re-read	later)	a	specialized	reader	(scanner)	class	(writer	class,	resp.)
should	be	defined	for	the	special	planar	map.	This	is	done	preferably	by	making	it	a	sub	class	of	the	class
Pm_file_scanner	(Pm_file_writer,	resp.)	and	overriding	all	the	relevant	function	for	scanning	(writing,	resp.)	the	changed
components.

After	the	definition	of	the	inherited	class,	you	have	to	call	the	function	read	of	Planar	map	(resp.,	the	global	function
write_pm	)	with	the	inherited	class	as	a	parameter.

The	same	applies	for	extending	the	output	graphic	streams	to	include	additional	attributes	only	for	this	purpose	a	new
drawer	class	has	to	be	defined.	This	is	done	preferably	by	making	this	class	inherit	the	class	Pm_drawer.	In	order	to
send	the	special	planar	map	to	the	graphic	stream	one	should	call	the	global	function	draw_pm	with	this	class	and	their
planar	map	as	parameters.

Format			The	chosen	format	does	not	follow	an	existing	standard	format.	Generally,	the	format	contains	lists	of	the
components	of	a	planar	map	followed	by	each	other.	For	each	component	we	write	its	associative	geometric	information
and	some	topological	information	in	order	to	be	able	to	update	the	Dcel	efficiently.	The	format	is	detailed	below.

1.	 The	data	begins	with	a	line	of	three	integer	values	specifying	the	number	of	vertices,	halfedges	and	faces	in	the
planar	map.

2.	 The	vertices	list:	each	component	in	the	vertices	list	contains	the	point	of	its	associative	vertex.
3.	 The	halfedges	list:	each	halfedge	component	is	written	by	an	index	indicating	the	vertex	origin	of	the	halfedge,	and

a	curve	specifying	the	halfedge	curve.
4.	 The	faces	list:	each	component	in	the	faces	list	contains	its	outer	boundary,	if	the	face	is	bounded,	and	a	list	of	its

holes	which	can	be	empty	in	case	the	face	has	no	holes.	The	format	of	the	outer	boundary	is	the	number	of
halfedges	of	its	connected	component	followed	by	the	indices	indicating	the	halfedges	of	that	component,	those
indices	have	the	same	order	of	the	halfedges	on	the	connected	component.	The	format	of	the	list	of	the	holes	is
first	the	number	of	holes	followed	by	the	connected	components	per	each	hole,	the	format	of	each	connected

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Pm_iostream.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_drawer.html#Cross_link_anchor_15
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Pm_drawer.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Pm_Postscript_file_stream.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/include/CGAL/IO/Pm_Geomview_stream.h
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_scanner.html#Cross_link_anchor_12
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_drawer.html#Cross_link_anchor_15
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_draw_pm.html#Cross_link_anchor_16


components	resembles	the	format	of	the	outer	boundary	specified	above.
5.	 Lines	beginning	with	'#'	serve	as	comments	and	are	ignored.
6.	 The	format	does	not	differentiate	between	spaces	and	new	lines,	except	new	lines	which	belong	to	commented

lines.	And	hence,	writing	the	planar	map	in	one	single	line	having	no	comments	is	also	considered	legal.	If	you
would	like	to	keep	the	commented	lines,	they	may	write	all	the	components	between	two	consecutive	commented
lines	in	one	single	line.

The	current	format	may	not	be	comfortable	for	a	user	to	read	because	of	the	extensive	use	of	indices.	You	can	print	a
planar	map	in	a	verbose	format	(shorthand	for	verbose	mode	format).	The	skeleton	of	the	verbose	format	is	the	same.
However,	in	order	for	the	output	to	be	clearer	for	a	human	reader	points	and	halfedges	are	explicitly	written	rather
than	being	represented	by	indices.	Also	the	direction	of	the	halfedges	are	printed	in	a	more	convenient	way	to	read.
This	verbose	format	cannot	be	scanned	by	the	reading	functions	of	Planar_map_2.

Example

The	example	below	presents	a	representation	of	a	planar	map	containing	one	triangle	with	the	coordinates	(0,0),	(1,1)
and	(2,0).	The	Planar_map_2	instance	that	was	used	to	produce	this	example	was	templated	with	the
Pm_segment_traits_2	class,	which	in	turn	was	templated	with	the	representation	class	Cartesian<leda_rational>.	The
first	line	specifies	that	the	planar	map	has	three	vertices,	six	halfedges,	and	2	faces	(the	triangle	and	the	unbounded
face).	The	list	of	vertices	each	represented	by	its	associated	point	follows,	as	shown	in	the	output	example.	The	next	list
is	the	one	of	halfedges,	each	component	is	represented	by	its	index	(0,1	or	2)	in	the	vertices	list	and	its	associated
segment.	The	faces	list	is	presented	next.	It	starts	with	the	unbounded	face	having	one	hole	which	is	the	triangle,	this
connected	component	specifies	that	the	hole	has	three	halfedges	with	the	indices	4,	0	and	3.	The	next	face	presenting
the	triangle	is	written	in	the	same	manner.

#	-------------------------------------	Printing	Planar	map
#	--------------------------------------------------------
#	Printing	number	of	vertices	halfedges	and	faces	in	Planar	map
3	6	2
#	3	vertices
#	------------------------------------------
1/1	1/1
0/1	0/1
2/1	0/1
#	6	halfedges
#	------------------------------------------
0	0/1	0/1	1/1	1/1
1	0/1	0/1	1/1	1/1
0	1/1	1/1	2/1	0/1
2	1/1	1/1	2/1	0/1
1	2/1	0/1	0/1	0/1
2	2/1	0/1	0/1	0/1
#	2	faces
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	UNBOUNDED
#	number	halfedges	on	outer	boundary
0
#	number	of	holes
1
#	inner	ccb
#	number	halfedges	on	inner	boundary
3
4	0	3	
#	finish	writing	face
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	outer	ccb
#	number	halfedges	on	outer	boundary
3
5	2	1	
#	number	of	holes
0
#	finish	writing	face
#	------------------------------------------
#	-------------------------------------	End	of	Planar	map
#	--------------------------------------------------------

Example	of	User	Defined	I/O	Functions

The	following	program	demonstrates	the	usage	of	I/O	functions	while	users	have	an	additional	attribute	in	their	planar
map.	The	attribute	chosen	here	is	adding	an	associative	color	to	each	vertex.	First	the	program	extends	the	Dcel	to
maintain	this	attribute.	Second,	the	program	extends	the	Pm_file_writer	class	to	handle	the	newly	defined	vertex.	It
simply	overrides	the	functions	for	writing	a	vertex	to	print	the	color	of	the	vertex	as	well.	Finally,	the	main	function
defines	an	empty	Planar	map,	reads	it	from	the	standard	input	stream,	and	then	set	all	vertices	colors.	It	then	defines
an	object	of	its	extended	writer	class	and	parameterize	the	function	write_pm	with	that	object.

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14


//	examples/Planar_map/example10.C
//	-------------------------------

#include	<CGAL/Cartesian.h>
#include	<CGAL/Quotient.h>
#include	<CGAL/Pm_default_dcel.h>
#include	<CGAL/Planar_map_2.h>
#include	<CGAL/Pm_segment_traits_2.h>
#include	<CGAL/IO/Pm_iostream.h>
#include	<CGAL/IO/write_pm.h>
#include	<iostream>
#include	<string>

template	<class	Pt>
class	Pm_my_vertex	:	public	CGAL::Pm_vertex_base<Pt>
{
public:
		Pm_my_vertex()	:	CGAL::Pm_vertex_base<Pt>()	{	}

		void	set_color(const	std::string	&	c)	{	color	=	c;	}
		std::string	get_color()	const	{	return	color;}
		
private:
		std::string	color;
};

//	building	new	dcel	with	my	vertex	base.
template	<class	Traits>
class	Pm_my_dcel	:	
		public	CGAL::Pm_dcel<Pm_my_vertex<typename	Traits::Point_2>,
															CGAL::Pm_halfedge_base<typename	Traits::X_monotone_curve_2>,	
																							CGAL::Pm_face_base>	
{
public:		//	Creation
		Pm_my_dcel()	{	}
};

//	extend	the	drawer	to	print	the	color	as	well.	
template	<class	PM>
class	Pm_my_file_writer	:	public	CGAL::Pm_file_writer<PM>
{
public:
		typedef	typename	PM::Vertex_handle													Vertex_handle;
		typedef	typename	PM::Vertex_const_handle							Vertex_const_handle;
		typedef	typename	PM::Vertex_iterator											Vertex_iterator;
		typedef	typename	PM::Vertex_const_iterator					Vertex_const_iterator;

		Pm_my_file_writer(std::ostream	&	o,	const	PM	&	pm,	bool	verbose	=	false)	:	
				CGAL::Pm_file_writer<PM>(o,	pm,	verbose)	{	}
		
		void	write_vertex(Vertex_const_handle	v)	const
		{
				out()	<<	v->point()	<<"		";
				out()	<<	v->get_color()<<	std::endl;
		}
};

typedef	CGAL::Quotient<int>															NT;
typedef	CGAL::Cartesian<NT>															Kernel;
typedef	CGAL::Pm_segment_traits_2<Kernel>	Traits;
typedef	Pm_my_dcel<Traits>																Dcel;
typedef	CGAL::Planar_map_2<Dcel,Traits>			Planar_map;
typedef	Planar_map::Vertex_iterator							Vertex_iterator;

int	main()
{
		Planar_map	pm;
		std::cin	>>	pm;
	
		std::cout	<<	"*	*	*	Demonstrating	definition	of	user	attributes	for	"
												<<	"Planar	map	components"	<<	std::endl	<<	std::endl
												<<	std::endl;
		
		//	Update	the	colors	for	halfedge	and	vertex:
		for	(Vertex_iterator	v_iter	=	pm.vertices_begin();	
							v_iter	!=	pm.vertices_end();	
							++v_iter)
				v_iter->set_color("BLUE");

	//	Print	the	map	to	output	stream	with	the	user	attributes:
		std::cout	<<	"*	*	*	Printing	the	Planar	map"	<<	std::endl;
		std::cout	<<	std::endl;
		

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_dcel.html#Cross_link_anchor_8
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0


		Pm_my_file_writer<Planar_map>		writer(std::cout,	pm);	
		CGAL::write_pm(pm,	writer,	std::cout);

		return	0;
}

The	input	of	the	program	is	a	text	file	presenting	the	Planar	map:

#	-------------------------------------	Printing	Planar	map
#	--------------------------------------------------------
#	Printing	number	of	vertices	halfedges	and	faces	in	Planar	map
3	6	2
#	3	vertices
#	------------------------------------------
1/1	1/1
0/1	0/1
2/1	0/1
#	6	halfedges
#	------------------------------------------
0	0/1	0/1	1/1	1/1
1	0/1	0/1	1/1	1/1
0	1/1	1/1	2/1	0/1
2	1/1	1/1	2/1	0/1
1	2/1	0/1	0/1	0/1
2	2/1	0/1	0/1	0/1
#	2	faces
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	UNBOUNDED
#	number	halfedges	on	outer	boundary
0
#	number	of	holes
1
#	inner	ccb
#	number	halfedges	on	inner	boundary
3
4	0	3	
#	finish	writing	face
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	outer	ccb
#	number	halfedges	on	outer	boundary
3
5	2	1	
#	number	of	holes
0
#	finish	writing	face
#	------------------------------------------
#	-------------------------------------	End	of	Planar	map
#	--------------------------------------------------------

The	output	is	the	Planar	map	written	in	both	formats,	non	verbose	and	verbose.	In	addition	the	two	lists	(non	verbose
and	verbose)	of	halfedges	are	written.

*	*	*	Demonstrating	definition	of	user	attributes	for	Planar	map	components

*	*	*	Printing	the	Planar	map

#	-------------------------------------	Begin	Planar	Map
#	--------------------------------------------------------
#	Number	of	vertices	halfedges	and	faces	in	Planar	map
3	6	2
#	3	vertices
#	------------------------------------------
1/1	1/1		BLUE
0/1	0/1		BLUE
2/1	0/1		BLUE
#	6	halfedges
#	------------------------------------------
0	0/1	0/1	1/1	1/1
1	0/1	0/1	1/1	1/1
0	1/1	1/1	2/1	0/1
2	1/1	1/1	2/1	0/1
1	2/1	0/1	0/1	0/1
2	2/1	0/1	0/1	0/1
#	2	faces
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	UNBOUNDED

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14


#	number	halfedges	on	outer	boundary
0
#	number	of	holes
1
#	inner	ccb
#	number	halfedges	on	inner	boundary
3
4	0	3	
#	finish	writing	face
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	outer	ccb
#	number	halfedges	on	outer	boundary
3
5	2	1	
#	number	of	holes
0
#	finish	writing	face
#	------------------------------------------
#	-------------------------------------	End	Planar	Map
#	--------------------------------------------------------

More	details	are	given	in	sections	File_header,	Pm_file_scanner<Planar_map>,	Pm_file_writer<Planar_map>	and
Pm_drawer<Planar_map>.

Traits	Classes

The	planar	map	class	is	parameterized	with	the	concept	class	PlanarMapTraits_2	that	defines	the	abstract	interface
between	planar	maps	and	the	primitives	they	use.	It	must	define	two	types	of	objects,	namely	X_monotone_curve_2	and
Point_2,	where	the	type	of	the	endpoints	of	an	X_monotone_curve_2-type	curve	is	Point_2.	In	addition,	the	traits	class
must	provide	a	set	of	operations	on	these	two	types.

We	supply	a	default	traits	class	for	segments,	namely	Pm_segment_traits_2<Kernel>,	where	Kernel	is	a	kernel
representation	type,	e.g.,	Homogeneous	or	Cartesian.	This	traits	class	handles	finite	line	segments	in	the	plane.	In	this
class	the	X_monotone_curve_2	and	Point_2	types	are	defined	as	the	CGAL	kernel	types	Kernel::Segment_2	and
Kernel::Point_2	respectively,	and	the	CGAL	kernel	operations	on	these	types	are	exploited	to	implement	the	required
functions.	The	leda_rat_kernel_traits	class	exploits	LEDA's	rational	kernel	and	its	efficient	predicates.	As	a	model	that
conforms	to	the	CGAL	kernel	concept,	it	can	be	injected	to	the	Pm_segment_traits_2<Kernel>	class.
leda_rat_kernel_traits	class	is	available	as	an	external	package.

Models	of	PlanarMapTraits_2	are	meant	to	serve	as	arguments	for	the	respective	template	parameter	of
CGAL::Planar_map_2<Dcel,Traits>.	However,	it	should	be	noted	that	each	model	of	PlanarMapTraits_2	defines	a	family
of	curves	and	primitive	geometric	operations	thereof.	Sometimes,	the	only	implementation	available	for	the
manipulation	of	a	certain	family	of	curves	is	one	of	the	supplied	traits	classes.	A	scenario	where	one	uses	a	traits	class
object	to	manipulate	such	curves	without	maintaining	planar	maps	is	certainly	possible.

ArrangementTraits_2	concept	is	a	refinements	of	the	PlanarMapWithIntersectionsTraits_2	concept,	and	the	latter	is	a
refinement	of	the	PlanarMapTraits_2	concept.	Therefore,	all	models	of	the	formers	are	models	of	the	latter.	There	are
several	supplied	traits	classes	for	the	Arrangement	that	you	can	use.	These	classes	are	described	at	the	end	of	Chapter	
	(2D	Arrangements).

Point	Location	Strategies

Some	of	the	basic	operations	on	planar	maps	are	queries	such	as	``what	is	the	location	of	a	point	in	the	map?'',	or
``which	curve	is	vertically	above	the	point?''.	The	answer	to	these	geometric	queries	can	be	obtained	through	the	use	of
the	Planar	Map	package,	along	with	several	algorithms	available	for	you	to	choose	from.

The	class	has	a	point	location	function	(namely,	the	locate	function	that	determines	which	feature	of	the	map	contains	a
given	query	point)	which	is	also	used	internally	in	the	insert	function.	You	can	define	which	algorithm	to	use	in	the	point
location	queries.	This	is	done	with	a	point	location	class	passed	to	the	map	in	the	constructor.	The	class	passed	should
be	derived	from	the	base	class	Pm_point_location_base	which	is	a	(pure	virtual)	base	class	that	defines	the	interface
between	the	algorithm	implemented	by	the	users	and	the	planar	map.	This	follows	the	known	Strategy	pattern
	[GHJV95].	The	indirection	overhead	due	to	the	virtual	functions	is	negligible	since	the	optimal	point	location	algorithm
(e.g.,	the	one	implemented	in	our	default	strategy)	takes	 (logn)	time.	We	have	derived	three	concrete	classes	for	point
location	strategies,	the	default	strategy,	based	on	trapezoidal	decomposition	of	the	map,	the	naive	strategy,	which	goes
over	all	the	vertices	and	halfedges	of	the	planar	map	and	the	walk-along-a-line	strategy,	which	improves	the	naive	one
by	``walking''	only	along	the	zone	of	the	vertical	ray	emanating	from	the	query	point.	All	three	strategies	are	classes
that	inherit	Pm_point_location_base<Planar_map>.	More	details	are	give	in	sections
Pm_default_point_location<Planar_map>,	Pm_naive_point_location<Planar_map>	and
Pm_walk_along_a_line_point_location<Planar_map>.

Trade-off	Issues		The	main	trade-off	among	the	three	strategies	implemented,	is	between	time	and	storage.	Using	the
naive	or	walk	strategies	takes	more	time	but	saves	storage	space.

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_File_header.html#Cross_link_anchor_11
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_scanner.html#Cross_link_anchor_12
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_drawer.html#Cross_link_anchor_15
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Concept_PlanarMapTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Concept_PlanarMapTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Concept_PlanarMapTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Arrangement_2_ref/Concept_ArrangementTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Pm_with_intersections_2_ref/Concept_PlanarMapWithIntersectionsTraits_2.html#Cross_link_anchor_1
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Concept_PlanarMapTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Arrangement_2/Chapter_main.html#I1_ChapterArrangement_2
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/biblio.html#Biblio_ghjv-dpero-95
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_default_point_location.html#Cross_link_anchor_2
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_naive_point_location.html#Cross_link_anchor_3
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_walk_along_a_line_point_location.html#Cross_link_anchor_4


Another	trade-off	depends	on	the	need	for	point	location	queries	compared	to	the	need	for	other	functions.	If	you	do	not
need	point	location	queries,	but	do	need	other	modifying	functions	(e.g.,	remove_edge,	split_edge	and	merge_edge)
then	using	the	naive	or	walk	strategies	is	preferable.	Note	that	using	the	insert	function	invokes	the	point	location
query,	therefore	when	using	the	naive	or	walk	strategies	it	is	recommended	to	use	the	specialized	insertion	functions	:
insert_in_face_interior,	insert_from_vertex	and	insert_at_vertices.	For	example,	when	using	the	planar	map	to	represent
polygons	(e.g.,	when	computing	boolean	operations	on	polygons)	it	might	be	preferable	to	use	the	walk	strategy	with
the	specialized	insertion	functions.

There	are	two	modes	of	the	default	strategy	which	enables	you	to	choose	whether	preprocessing	should	be	performed
or	not	(read	more	in	the	section	stated	above).	There	is	a	trade-off	between	those	two	modes.	If	preprocessing	is	not
used,	the	building	of	the	structure	is	faster.	However,	for	some	input	sequences	the	structure	might	be	unbalanced	and
therefore	queries	and	updates	might	take	longer,	especially,	if	many	removal	and	split	operation	are	performed.

Implementation
Robustness

The	Planar_map_2<Dcel,Traits>	class	can	handle	all	inputs	and	requires	no	general	position	assumption.	Calculations
are	exact	and	leave	no	place	for	errors	of	any	kind.	Nevertheless,	since	the	input	curves	are	disjoint	in	their	interiors,
no	construction	of	intersection	points	are	performed.	Therefore,	filtered	kernel	can	definitely	expedite	the	various
operations.

Programming	Tips

This	section	presents	some	tips	on	how	to	tune	CGAL::Planar_map_2<Dcel,Traits>	for	best	performance.

Before	we	list	specific	tips,	we	remind	you	that	compiling	programs	with	debug	flags	turned	off,	and	with	optimization
flags	turned	on,	significantly	reduces	running	time.

1.	 The	default	point	location	strategy	(i.e.	using	trapezoidal	decomposition)	is	the	fastest	one	when	queries	are
concerned.	However,	since	it	has	to	build	a	search	structure	it	might	slow	down	the	incremental	building	process
of	the	map.	If	it	is	known	in	advance	that	there	will	not	be	many	point	location	or	vertical	ray	shoot	queries	use
another	point	location	strategy	(such	as	the	walk	or	simple	strategies)	which	does	not	slow	down	the	building
process	(no	search	structure	is	being	built).

2.	 Prior	knowledge	of	the	combinatorial	structure	of	the	map	can	be	used	to	accelerate	insertion	time.	The
specialized	insertion	functions,	i.e	insert_in_face_interior,	insert_from_vertex	or	insert_at_vertices	should	be	used
according	to	this	information.	The	insert	function	performs	point	location	queries	and	then	calls	one	of	the	other
update	functions	and	therefore	takes	more	time.	The	function	insert_in_face_interior	even	takes	constant	time.	The
other	two	are	linear	in	the	worst	case,	but	should	be	much	faster	most	of	the	time.

Insertion	of	a	polygon,	which	is	represented	by	a	list	of	segments	along	its	boundary,	into	an	empty	planar	map
should	be	done	in	the	following	way.	First,	some	segment	should	be	inserted	using	insert_in_face_interior	with	the
unbounded	face.	Then	a	segment	with	a	common	end	point	can	be	inserted	using	insert_from_vertex	and	so	on
with	the	rest	of	the	segments	but	last.	The	last	segment	can	be	inserted	using	insert_at_vertices	since	both	it
endpoints	are	represented	as	vertices	of	the	map	and	are	known	in	advanced.

3.	 If	you	have	LEDA	installed	it	is	recommended	to	use	the	specialized	traits	classes	Pm_leda_segment_traits_2	or
Arr_leda_polyline_traits.	These	traits	classes	are	much	faster	since	they	are	specialized	for	LEDA's	rational
geometric	kernel.	Note	that	these	traits	classes	are	models	of	PlanarMapTraits_2	since	they	model	its	refinement,
the	ArrangementTraits_2	concept.

Example	Programs
Example	of	IO	functions

The	following	program	demonstrates	the	use	of	I/O	functions	provided	for	planar	maps.	First	the	program	demonstrates
a	trivial	use	of	the	I/O	functions:	it	defines	an	empty	instance	of	Planar_map_2,	reads	the	planar	map	representation
text	from	the	standard	input	stream,	and	then	prints	the	resulting	planar	map	to	the	standard	output	stream.

Second,	it	presents	the	usage	of	the	verbose	format,	by	defining	Pm_file_writer	with	the	verbose	flag	set	to	true,	and
then	calls	the	function	write_pm.	A	usage	of	the	interface	of	the	class	Pm_file_writer	is	also	presented,	by	calling	its
function	write_halfedges,	which	prints	all	the	halfedges	of	the	map.	In	addition,	the	program	presents	the	operators
writing	the	resulting	Planar	map	to	a	postscript	file	when	LEDA	is	installed.	The	demo	for	the	planar	map	package
makes	use	of	the	output	operator	of	Planar_map_2<Dcel,Traits>	to	a	window	stream	(see	at
<CGAL_ROOT>/demo/Planar_map/demo.C	).

//	examples/Planar_map/example9.C
//	------------------------------

#include	"short_names.h"

#include	<CGAL/Cartesian.h>
#include	<CGAL/Quotient.h>

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Concept_PlanarMapTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Arrangement_2_ref/Concept_ArrangementTraits_2.html#Cross_link_anchor_9
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0


#include	<CGAL/Pm_default_dcel.h>
#include	<CGAL/Planar_map_2.h>
#include	<CGAL/Pm_segment_traits_2.h>
#include	<CGAL/IO/write_pm.h>
#include	<CGAL/IO/Pm_iostream.h>
#include	<iostream>

//	#define	CGAL_POSTSCRIPT
#if	defined(CGAL_USE_LEDA)	&&	defined(CGAL_POSTSCRIPT)
#include	<CGAL/IO/Pm_Postscript_file_stream.h>
#endif

typedef	CGAL::Quotient<int>																					NT;
typedef	CGAL::Cartesian<NT>																					Kernel;
typedef	CGAL::Pm_segment_traits_2<Kernel>							Traits;
typedef	CGAL::Pm_default_dcel<Traits>											Dcel;
typedef	CGAL::Planar_map_2<Dcel,Traits>									Planar_map;
typedef	CGAL::Pm_file_writer<Planar_map>								Pm_writer;

int	main()
{	
		Planar_map	pm;
		Pm_writer	verbose_writer(std::cout,	pm,	true);
		Pm_writer	writer(std::cout,	pm);

		std::cout	<<	"*	*	*	Demonstrating	a	trivial	use	of	IO	functions"
												<<	std::endl	<<	std::endl;
		std::cin		>>	pm;
		std::cout	<<	pm;
		
		std::cout	<<	std::endl;
		std::cout	<<	"*	*	*	Presenting	the	use	of	verbose	format"	<<	std::endl;
		std::cout	<<	std::endl;
		CGAL::write_pm(pm,	verbose_writer,	std::cout);
		
		std::cout	<<	std::endl;
		std::cout	<<	"*	*	*	Demonstrating	the	use	of	the	writer	class	interface."
												<<	std::endl;
		std::cout	<<	"*	*	*	Printing	all	halfedges	in	non	verbose	format"
												<<	std::endl	<<	std::endl;
		writer.write_halfedges(pm.halfedges_begin(),	pm.halfedges_end());
		std::cout	<<	std::endl;
		std::cout	<<	"*	*	*	Printing	all	halfedges	in	a	verbose	format"	<<	std::endl
												<<	std::endl;
		verbose_writer.write_halfedges(pm.halfedges_begin(),	pm.halfedges_end());
			
#if	defined(CGAL_USE_LEDA)	&&	defined(CGAL_POSTSCRIPT)
		//	Print	to	Postscript	file:
		CGAL::Postscript_file_stream		LPF(500,	500	,"pm.ps");
		LPF.init(-3,3,-3);
		LPF.set_line_width(1);
		LPF	<<	pm;
#endif

		return	0;
}

The	input	of	the	program	is	a	text	file	which	holds	the	planar	map	representation	in	a	special	format	(which	is
presented	in	the	reference	pages	of	the	the	Planar	Map	package.	This	representation	appears	as	the	first	block	in	the
output	file.

The	output	is	the	Planar	map	includes	both	formats,	non-verbose	and	verbose.	In	addition	the	two	lists	(non-verbose	and
verbose)	of	halfedges	are	written.

*	*	*	Demonstrating	a	trivial	use	of	IO	functions

#	-------------------------------------	Begin	Planar	Map
#	--------------------------------------------------------
#	Number	of	vertices	halfedges	and	faces	in	Planar	map
3	6	2
#	3	vertices
#	------------------------------------------
1/1	1/1
0/1	0/1
2/1	0/1
#	6	halfedges
#	------------------------------------------
0	0/1	0/1	1/1	1/1
1	0/1	0/1	1/1	1/1
0	1/1	1/1	2/1	0/1
2	1/1	1/1	2/1	0/1
1	2/1	0/1	0/1	0/1
2	2/1	0/1	0/1	0/1

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_segment_traits_2.html#Cross_link_anchor_10
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Planar_map_2.html#Cross_link_anchor_0
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Class_Pm_file_writer.html#Cross_link_anchor_13
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map_ref/Function_write_pm.html#Cross_link_anchor_14


#	2	faces
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	UNBOUNDED
#	number	halfedges	on	outer	boundary
0
#	number	of	holes
1
#	inner	ccb
#	number	halfedges	on	inner	boundary
3
4	0	3	
#	finish	writing	face
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	outer	ccb
#	number	halfedges	on	outer	boundary
3
5	2	1	
#	number	of	holes
0
#	finish	writing	face
#	------------------------------------------
#	-------------------------------------	End	Planar	Map
#	--------------------------------------------------------

*	*	*	Presenting	the	use	of	verbose	format

#	-------------------------------------	Begin	Planar	Map
#	--------------------------------------------------------
#	Number	of	vertices	halfedges	and	faces	in	Planar	map
3	6	2
#	3	vertices
#	------------------------------------------
1/1	1/1
0/1	0/1
2/1	0/1
#	6	halfedges
#	------------------------------------------
0/1	0/1	1/1	1/1		towards		1/1	1/1
0/1	0/1	1/1	1/1		towards		0/1	0/1
1/1	1/1	2/1	0/1		towards		1/1	1/1
1/1	1/1	2/1	0/1		towards		2/1	0/1
2/1	0/1	0/1	0/1		towards		0/1	0/1
2/1	0/1	0/1	0/1		towards		2/1	0/1
#	2	faces
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	UNBOUNDED
#	number	halfedges	on	outer	boundary
0
#	number	of	holes
1
#	inner	ccb
#	number	halfedges	on	inner	boundary
3
2/1	0/1	0/1	0/1		towards		0/1	0/1
0/1	0/1	1/1	1/1		towards		1/1	1/1
1/1	1/1	2/1	0/1		towards		2/1	0/1

#	finish	writing	face
#	------------------------------------------
#	writing	face
#	------------------------------------------
#	outer	ccb
#	number	halfedges	on	outer	boundary
3
2/1	0/1	0/1	0/1		towards		2/1	0/1
1/1	1/1	2/1	0/1		towards		1/1	1/1
0/1	0/1	1/1	1/1		towards		0/1	0/1

#	number	of	holes
0
#	finish	writing	face
#	------------------------------------------
#	-------------------------------------	End	Planar	Map
#	--------------------------------------------------------

*	*	*	Demonstrating	the	use	of	the	writer	class	interface.
*	*	*	Printing	all	halfedges	in	non	verbose	format



0	0/1	0/1	1/1	1/1
1	0/1	0/1	1/1	1/1
0	1/1	1/1	2/1	0/1
2	1/1	1/1	2/1	0/1
1	2/1	0/1	0/1	0/1
2	2/1	0/1	0/1	0/1

*	*	*	Printing	all	halfedges	in	a	verbose	format

0/1	0/1	1/1	1/1		towards		1/1	1/1
0/1	0/1	1/1	1/1		towards		0/1	0/1
1/1	1/1	2/1	0/1		towards		1/1	1/1
1/1	1/1	2/1	0/1		towards		2/1	0/1
2/1	0/1	0/1	0/1		towards		0/1	0/1
2/1	0/1	0/1	0/1		towards		2/1	0/1

Navigation:	Up,	Table	of	Contents,	Bibliography,	Index,	Title	Page

www.cgal.org.	Feb	17,	2004.

file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/Planar_map/Chapter_main.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/contents.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/biblio.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/manual_index.html
file:///home/efif/lap-dawn/space/home/efif/trees/tcgl_svn/tags/HEAD/www/Manuals/doc_html/basic_lib/title.html
http://www.cgal.org/

