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Polygon triangulation, basics



Polygon triangulation, definitions

• Diagonal in a polygon is an open line segment that connects two 
vertices and lies completely inside the polygon

• Triangulation of a polygon is a subdivision of a polygon by a maximal 
set of diagonals that are pairwise disjoint 

[CGAA]



Polygon triangulation, facts

• Every simple polygon admits a triangulation

• The triangulation of a simple polygon with 𝑛 vertices uses 𝑛 − 3
diagonals and has 𝑛 − 2 triangles

[CGAA]



Art gallery



Guarding an art gallery

• A point guard (or camera) placed inside the gallery sees every point in 
the gallery to which it can be connected with an open line segment 
that lies completely in the interior of the gallery (interior of a polygon 
or interior of a polyhedron)

[L4vK]



How many cameras do we need to guard a 
simple polygon with 𝑛 vertices?
• max-min problem

𝑔(𝑃): the minimum number of cameras to guard the simple polygon 𝑃

𝑔(𝑛): the maximum of 𝑔(𝑃) over all simple polygons with n vertices

we prepare for the worst case

• Optimization: finding the minimum number of cameras for a given 
polygon is NP-hard

We will focus on the max-min problem



How many guards are necessary?



• g(3)=1, g(4)=1, g(5)=1, g(6)=2, g(7)=?



Art gallery theorem

Τ𝑛 3 cameras are sometimes necessary and always sufficient to guard 
a simple polygon



Lower bound



Upper bound ingredients

• The dual graph of a triangulation of a simple polygon

• Graph coloring

• The triangulation graph: 
• V: the vertices of the polygon 

• E: the edges of the polygon and the diagonals of the triangulation



The dual of a triangulation

• Like the dual of a plane graph, without 
the vertex for the unbounded face and its 
incident edges

• The dual graph of the triangulation of a 
simple polygon is a tree 

• Three consecutive vertices along the 
boundary of a polygon 𝑢, 𝑣, 𝑤, define an 
ear iff 𝑢𝑤 is a diagonal

• A simple polygon has at least two ears

[breakout] [L4vK]



Graph coloring

• Graph coloring is an assignment of labels, called colors, to the vertices 
of a graph such that no two adjacent vertices share the same color. 
The chromatic number χ(G) of a graph G is the minimal number of 
colors for which such an assignment is possible.

[wikipedia]



Side note

The four color theorem
Given any separation of a plane into 
contiguous regions, producing a figure called 
a map, no more than four colors are required 
to color the regions of the map so that no 
two adjacent regions have the same color.

The chromatic number of a planar graph ≤ 4

[wikipedia]



The triangulation graph is 3-colorable

• Recall, the triangulation graph: 
• V: the vertices of the polygon 

• E: the edges of the polygon and the diagonals of the triangulation



Upper bound

• 3 color the triangulation graph

• Take the color used by the least number of vertices, and place 
cameras at these vertices

• All the triangles are guarded and there are at most Τ𝑛 3 such vertices

QED

[Fisk 1978, Chvátal 1975], [Meisters 1975]



Finding the cameras’ placement

• By traversing the dual graph of the triangulation, say in depth first. 
When we reach a new node (a new triangle) all the vertices of the 
already visited triangles have been properly colored. We reach the 
new triangle via an edge and hence two colors have already been 
used for this triangle, and we color the remaining vertex 𝑣 with the 
third color. Since the graph is a tree, the other triangles having the 
vertex 𝑣 have not been traversed yet.

• 𝑂(𝑛) time for a triangulated polygon with 𝑛 vertices.



Art galley problems keep attracting research

• Fixed-parameter results

• Exact solutions (some CGAL based)

• Sensor placement

Video

http://www.computational-geometry.org/SoCG-videos/socg13video/

http://www.computational-geometry.org/SoCG-videos/socg13video/


Triangulating a monotone 
polygon



Monotone polygons

• A polygon is monotone with respect to a line ℓ
iff every line perpendicular to ℓ intersects the 
polygon in a connected set (in particular the 
empty set)

• A 𝑦-monotone polygon has a top vertex, a 
bottom vertex and two chains connecting these 
vertices, which together form the boundary of 
the polygon [CGAA]



Triangulating a 𝑦-monotone polygon

High-level view

• Sort the vertices top-down by merging the vertices along the two 
chains

• Initialize a stack and push the first two vertices into the stack

• With the next vertex 𝑣 add all possible diagonals to vertices in the 
stack, while producing triangles and popping these vertices 

• Push 𝑣 into the stack

• Assume for now that there are no horizontal edges; if vertices in 
different chains have the same 𝑦-coordinate, we consider the left 
vertex to be higher



Example

• Invariant of the algorithm: At the beginning of each step, the part of 
the polygon that has not yet been triangulated and lies above the last 
seen vertex has the shape of a funnel with one (incomplete) edge on 
one side and a reflex chain of vertices on the other side



Case I: the next vertex is on the non-chain 
side



Case II: the next vertex is on the chain side



Takes 𝑂(𝑛) time



Trapezoidal decomposition
of a polygon



• There are many useful decompositions of a polygon, most of them 
into convex pieces

[Agawal-Flato-H]



Trapezoidal decomposition of  polygon

• Special case of a procedure for planar maps (which we’ll see in a few 
weeks) and for general subdivisions in any dimension

• Extend horizontal rays leftwards and rightwards from each vertex, 
inside the polygon, until they hit the polygon boundary





Algorithm

• How to represent the trapezoidal decomposition (TD)?

DCEL

• What is the complexity of the TD?

O(n)

• How can we compute the TD?

Sweep-line algorithm

• How much time does it take for a polygon with 𝑛 vertices?
𝑂(𝑛 log 𝑛)



Triangulating a simple polygon



Approach

• Decompose the polygon into 𝑦-monotone polygons using diagonals

• Triangulate each of the 𝑦-monotone polygons using the linear-time 
algorithm that we saw earlier

• Stitch together all the sub-triangulations into the desired result

• We will use DCEL to represent the intermediate results as well as the 
final result

• We rely on a key observation connecting inner cusps and 𝑦-
monotonicity 



Inner cusps

• An inner cusp of a polygon is a reflex vertex (whose interior angle is 
greater than 𝜋), and both its neighboring vertices are either above it 
(merge vertex) or below it (split vertex)

• We assume, for now and as before, that there are no horizontal edges



Key observation

• A polygon is 𝑦-monotone iff it has no inner cusps

• ⟹ trivial

• ⟸



Removing inner cusps

• We will kill all the inner cusps by extending a diagonal upward from 
each split vertex and downward from each merge vertex

• These diagonals will partition the input polygon into 𝑦-monotone 
polygons

• We find the desired diagonals using the trapezoidal decomposition

• Each (horizontal) base of each trapezoid is induced by a single vertex 
of the polygon (assuming no two vertices with the same 𝑦-
coordinate)



Adding diagonals

• If the upper base of a trapezoid 
𝑡 is induced by a merge vertex 𝑣, 
we connect 𝑣 to the vertex 
inducing the lower base of 𝑡

• If the lower base of a trapezoid 𝑡
is induced by a split vertex 𝑣, we 
connect 𝑣 to the vertex inducing 
the upper base of 𝑡



Overall algorithm

• Using sweep line we compute the trapezoidal decomposition and the 
extra diagonals, using a DCEL to split the polygon into 𝑦-monotone 
polygons, in 𝑂(𝑛 log 𝑛) time

• We triangulate each of the 𝑦-monotone polygons

• The number of edges in all the 𝑦-monotone polygons together is at 
most 3𝑛, therefore triangulating them takes 𝑂(𝑛) time altogether

• We obtained an 𝑂(𝑛 log 𝑛) time algorithm to triangulate a simple 
polygon, using 𝑂(𝑛) space



Handling degeneracies

• Our concern are vertices with the same 𝑦-coordinate

• We rotate the polygon infinitesimally 

• This induces a complete top-to-bottom ordering of events in the 
sweep-line algorithm as well as in triangulating each monotone 
polygon 



Can one do better?

• Yes

• Bernard Chazelle:
Triangulating a Simple Polygon in Linear Time. Discret. Comput. 
Geom. 6: 485-524 (1991)

https://dblp.uni-trier.de/db/journals/dcg/dcg6.html#Chazelle91


Polyhedron tetrahedralization



The problem

• Given a simple polyhedron with 𝑛 vertices, how many cameras are 
needed to guard it?

• What is a simple polyhedron?

• Euler’s formula applies and the number of edges and facets is 𝑂(𝑛)

• The cameras are omni-directional

• How about cameras at the vertices?



Tetrahedron

• 3-simplex

[wikipedia] [quora]



Generalizing triangulation to 3D

• Tetrahedralization: partitioning the interior of a polyhedron into 
tetrahedra, whose vertices are selected from vertices of the 
polyhedron

• Even simple polyhedra of genus zero (without holes)  are not 
necessarily tetrahedralizable (see Ex 2.3)



Lower bound

• Ω(𝑛 Τ3 2) cameras are necessary to cover this polyhedron

• Seidel’s construction from Art Gallery Theorems and Algorithms by 
O’Rourke



Lower bound, cont’d

• On the front face mark squares of side length 
1 in a 𝑘 ∗ 𝑘 regular array with distance 1 + 𝜀
between rows and columns, where 𝜀 ≪ 1

• Attach a 1 × 1 × (𝐿 − 𝜀) box behind each 
square and remove the square to cerate a 
deep dent reaching almost till the back face

• Repeat the same procedure for the right face 
and the top face such that none of the box 
dents intersect

• The polyhedron has 𝑛 = 8(3𝑘2 + 1) vertices



Lower bound, cont’d

• Point 𝑥 at the bottom figure is at the center 
of a cube of size (1 + 𝜀) × (1 + 𝜀) × (1 + 𝜀)
bounded by six box dents and has Τ𝜀 2 cracks 
along all 12 edge

• 𝑥 cannot see any vertex of the polyhedron

• 𝑘 − 1 3 cameras are necessary

• 𝑘 − 1 3 ≈ ൗ𝑛 ൗ3 2
118 = Ω(𝑛 Τ3 2)



THE END


