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Chapter 1

Introduction

In this chapter we give a survey about the problem which we try to solve, namely the problem of robustness in
geometric algorithms in general, and in algorithms that manipulate polyhedral surfaces in particular. At the end
of this chapter we describe the outline of the entire thesis.

1.1 Robustness in Geometric Algorithms

There are two major causes for robustness problems in geometric algorithms: the use of floating point arithmetic
and degenerate input data. In this section we describe the problems that each of those subjects induces. Floating
point arithmetic problems are often caused by degenerate input data; hence, both problems are closely related.
For surveys on robustness in geometric algorithms see, e.g., [19],[25],[31, chapter 4],[40],[44].

1.1.1 Floating Point Arithmetic

Algorithms in the computational geometry literature are usually designed and proven to be correct in a compu-
tational model that assumes exact arithmetic over the real numbers, emphasizing asymptotic time complexity
rather than numerical issues. The assumption of exact real arithmetic leads to the assumption of reliable geo-
metric primitives, and this is a viable assumption only for a world with no numerical errors. In reality, most
implementations of geometric algorithms are using finite precision floating point arithmetic. The reason for using
floating point arithmetic is its speed and availability. The precision of floating point arithmetic is determined by
the hardware of the specific system and it varies from one system to the other.

A floating point number consists of an exponent and a mantissa. Both are fixed length integers, which implies
that they constitute a discrete set of representable rational numbers. Hoffman [31] enumerates three error types
that are caused by ‘squeezing’ the infinite set of real numbers into the finite set of floating point numbers:

Conversion errors Converting the binary representations of the computer into decimal numbers and vice versa.
Roundoff errors Omitting digits that exceed the fixed length of a floating point number.

Digit-cancellation errors The difference of two nearly equal numbers a and b has fewer significant digits than
does either a or b.

This ‘squeezing’ operation is not trivial and in many implementations it causes catastrophic errors in practice.
The situation worsens when rounding errors accumulate. As a result we get programs that crash, loop forever,
or simply compute wrong results.

The discussion above is true for any kind of algorithm, geometric or other. So why is it more complicated with
geometric algorithms? The answer is that geometric algorithms are unique in that they operate on a mixture of
numerical and combinatorial data. If we take a 3D polyhedral surface as an example, then we have numerical
data, which is the vertices coordinates or the facets equations, but we also have combinatorial data, which is the
incidence relations between facets, edges and vertices. In a floating point environment we might find out that
the consistency between the geometric and combinatorial data was lost, and this is often the reason for many
robustness problems.
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Whenever we apply a geometric algorithm to a polyhedral surface, even a small rounding error might lead to
major modeling problems: Areas of facets can come out negative, two facets that have a common edge (and thus
only ‘touch’ each other) can become intersecting, and so on.

The numerical computations of a geometric algorithm are basically of two types: predicates and constructions.
Predicates are associated with branching decisions and determine the flow of the algorithm, whereas construc-
tions are needed to produce the output data. Thus approximations in the execution of constructions usually give
acceptable results, as long as their maximum absolute error does not exceed the resolution required by the appli-
cation. On the other hand, approximations in the evaluation of predicates may produce an incorrect branching
of the algorithm, and lead to catastrophic consequences.

1.1.2 Degeneracies

The definition of a degenerate case varies from one algorithm to another. In general we may say that a degenerate
case is detected whenever our algorithm needs to supply a special treatment. For example, if our algorithms
defines a line according to two points, then three points which are collinear are a degenerate case. Not supplying
a special treatment for such a case leads to finding three lines, defined by different pairs of points, overlapping.

Burnikel et al. [11] view a geometric algorithm as a decision tree where the decision nodes test the sign (+,
—, or 0) of some function (usually a low degree polynomial) of the input variables. They define an instance x
as degenerate with respect to some algorithm A if the computation of A on input x contains a test with outcome
Zero.

When using floating point arithmetic, a degenerate case is induced not only by degenerate data, but also by
close-to-degenerate data. For example, three points do not have to be contained in the same line in order to be
considered collinear. It suffices that all of them are very close to the same line. In a floating point system, we may
get wrong answers to predicates. For example, if three 2D points are close to being collinear, then the question
“is point ¢ on the right side of the line induced by a and b” might lead to several different answers, depending on
the way of computation.

Most geometric algorithms assume that the input data are in general position (i.e., non degenerate) and
leave the treatment of degenerate cases to the implementor. Often, an application that handles degenerate input
is much more complicated than the original algorithm. Also, the treatment of degenerate cases may cause an
increase in the algorithm resources, lead to difficult and boring case analysis, and produce cluttered code.

1.2 Related Research

We next review some of the approaches that have been suggested by researchers to cope with robustness problems.

1.2.1 Exact Arithmetic

Since floating point arithmetic causes considerable problems, a seemingly straightforward solution is to use exact
arithmetic [4],[9],[10],[14],[55]. Exact arithmetic is the most general technique that can guarantee the numerical
reliability of an implementation of a geometric algorithm.

For exact arithmetic one may use rational numbers, represented by a numerator and a denominator. As a
result of accumulated arithmetic operations, the values of the numerator and the denominator might become very
big and lead to an integer overflow. This can be solved by using classes of unlimited length integers. Several
software packages that supply such type of integers are listed in [44].

Exact arithmetic has two major disadvantages:

1. It is often slower compared to floating point arithmetic. Unlike floating point arithmetic, one cannot assume
constant time for each arithmetic operation. The cost of an arithmetic operation depends on the context in
which it is carried out.

2. Many geometric algorithms require irrational values. Calculating the Euclidean distance between two points
requires a square root operation, rotating geometric entities requires trigonometric functions like sine and
cosine, and so on. There are some exact algorithms that stick to rational numbers and approximate only
the non-rational values, but then we cannot call them exact anymore.
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1.2.2 Floating Point Filters

In many cases a program does not crash and gives correct results even if floating point arithmetic is used. This
leads to floating point filters [21],[48], where we keep track of the accumulated errors, all computation steps that
give correct result are done by floating point arithmetic, and only those steps which are subject to precision
errors are reevaluated by exact arithmetic or tighter approximation. This way, we earn the speed of floating point
arithmetic and degrade to slow exact arithmetic only when it is essential.

The decision whether an arithmetic calculation may be numerically incorrect is done by running some sort of
test on the expression being evaluated concerning its input data. Passing the test means that the expression can
be computed in floating point arithmetic. Failing the test means that a more exact reevaluation is needed.

Shewchuk [48] calls this paradigm adaptive precision arithmetic.

Schirra [44] describes two kinds of filters:

Static filters Compute error bounds a priori and need specific information on the input data to be available.
For example, whether all input data are integers from a bounded range. This kind of filters require only
little additional effort at run time.

Dynamic filters Compute an error bound on the fly simultaneously with the evaluation of expressions in floating
point arithmetic. Their error estimation is much tighter than of a static filter, but more effort is required
(in run time) on computing this estimation.

Thus a static filter makes arithmetic operations more efficient while a dynamic filter lets more floating point
computations pass a test.

We mentioned earlier that the numerical computations of a geometric algorithm are basically of two types:
predicates and constructions. Floating point filters are used only for the determination of predicates, for the
purpose of ensuring that right decisions are taken during the flow of a program.

Notice the difference between heuristic epsilons (described shortly in Section 1.2.4) and floating point filters.
In case of doubt, the former assumes a value of zero, while the latter invokes a more expensive computation,
which finally leads to a correct decision.

1.2.3 Symbolic Perturbation

Symbolic perturbation was invented in order to remove degenerate cases [17],[18],[54]. Taking care of degenerate
cases complicates algorithms, produces cluttered code, and leads to difficult and boring case analysis. Eliminating
degeneracies would enable the use of algorithms that assume general position data, produce clear code, and ease
the programming task.

The idea is that perturbations are performed only symbolically by replacing each coordinate of every input
geometric object by a polynomial in e, while maintaining consistency of the input data. The polynomials are
chosen in such a way that the perturbed set goes towards the original set as € goes to zero. The exact value of ¢ is
not important and it is sufficient to assume that € is positive and sufficiently small. The sign of the expression is
given by the sign of the first nonzero polynomial coefficient, with coefficients taken in order of increasing powers
of e.

Edelsbrunner and Miicke call this paradigm SoS (Simulation of Simplicity) [17].

Fortune [19] mentions three disadvantages of this method:

1. It requires exact arithmetic.
2. A perturbation scheme exists only for a small number of problems.

3. Perturbing the input might sometimes lead to inaccurate results.

Burnikel et al. [11] assert that there is no reason for the panic induced by degenerate cases. They prefer dealing
with each degenerate case separately rather than using the SoS paradigm. Their reasons are:

1. The perturbation algorithm induces overhead in running time.
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2. The complexity of retrieving the perturbed answer to its original value is significant. They illustrate this
claim by an example: Assume a problem of intersecting line segments. We may have the endpoint of
some segment lying in the relative interior of some other segment. Perturbation may remove the point of
intersection. This intersection is hard to retrieve from the perturbed output.

3. For some geometric algorithms, handling degeneracies directly is only a little more complex than algorithms
assuming non-degenerate inputs. Moreover, in certain cases dealing directly with degeneracies can lead to
improved running time.

So far we described approaches that require exact geometric computation, keep the input data unchanged and
get the correct decisions out of predicates. Next we describe approaches that use geometric computation with
imprecision, which means slightly changing the input data or treating them as if they were changed. Justification
for such approaches are embedded in their description.

1.2.4 Heuristic Epsilons

In many implementations the method of dealing with the robustness problem is based on the rule of thumb,
phrased by Schirra [44] as

If something is close to zero it is zero.

In this heuristics, the programmer chooses an arbitrary small value . Often whenever the absolute difference
between two values is less than ¢, they are considered equal.

Schirra suggests thinking of an arithmetic expression as of a labeled binary tree. Each inner node is labeled
with a binary or unary operation. It has pointers to trees defining its operands. The pointers are ordered
corresponding to the order of the operands. The leaves are labeled with constants or variables which are place-
holders for numerical input values. Such a representation is called an expression tree. The depth of an expression
tree is the length of the longest root-to-leaf path in the tree.

€ is chosen irrespective of the size of operands in a concrete expression or of the depth of an expression tree,
and hence does not eliminate all kind of computation errors. Yap [55] calls this approach epsilon tweaking.

Scientific justification is seldom given for choosing any specific ¢ value, but for the pragmatic user, this
approach works in many cases. Since it is very easy to implement, the user is willing to absorb the small amount
of failures.

A major flaw in using heuristic epsilons is that the relation of equality is not transitive anymore. Guibas [25]
gives the following illustrative example:

Consider the problem of sorting n numbers. Suppose that our comparison routine uses heuristic epsilons, i.e.,
it can report a > b, even though a < b, as long as | a — b |< €. Now suppose we need to sort an array A[l...n]
and we use an algorithm that compares every consecutive pair of numbers. The array might be in reverse order
(A[1] > A[2] > ... > A[n]), but any consecutive pair is very close (| A[i] — A[i + 1] |< €). In such a case, the
algorithm reports A[1] < A[2] < ... < A[n], thus concluding that the array is reported as sorted, although it is
sorted backwards.

Guibas explains that a convex hull algorithm can get exactly into the same kind of difficulty depicted in
Figure 1.1. An algorithm can process the points in (true) z-order and verify that each consecutive triplet is
clockwise convex via an imprecise sign primitive, yet the resulting cycle can be arbitrarily far from being convex.

Figure 1.1: A wrong convex hull, illustrating that ‘approximately clockwise convex’ is not a transitive order
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1.2.5 Finite Precision Approximation

This class of algorithms uses slight perturbations of the input data. Unlike symbolic perturbation, these are
actual perturbations and not symbolic ones.

Actual perturbation of the input is justified by the fact that in many geometric problems the numerical input
data are real-world data that are either obtained by measuring or modeled in a way that disregards various
original properties (e.g., the hard sphere model in [29]), and hence possibly imprecise.

So far perturbations of the input were successful only for a small number of geometric algorithms. The success
was achieved after usage of perturbations that were specifically designed for a given problem. A general theory
showing how to implement geometric algorithms with perturbations is still a distant goal.

Milenkovic [38] suggests two perturbation methods:

Datanormalization The key idea is to alter the structure and parameters of the geometric objects slightly so
as to obtain an object for which all numerical tests are provably accurate. After this normalization process
there are no arbitrary choices because calculation always gives a definitive and correct answer. In this
method new degenerate cases are created, but their identification is definite. However, the algorithm that
uses the data still has to take care of them. One technique being used is called vertex shifting, in which a
vertex that lies within e of another vertex is shifted to coincide with the other vertex. Another technique
being used is edge cracking, where an edge e is replaced by a polygonal approximation of e. The edge e is
cracked whenever there is a vertex that lies within ¢ of the edge, unifying the edge segments endpoints with
those vertices. The data normalization method is probably the ancestor of snap rounding which is detailed
below.

Hidden variable method The key idea is to choose a topological structure so that there exist infinite precision
parameters for the object, close to the given finite precision parameter values, such that with the infinite
precision values, the problem has the chosen structure. The approach is called hidden variable method since
the topology of the infinite precision version is known but not its numerical values.

Sugihara[49] and Sugihara and Iri [50] use the name finite precision arithmetic or finite precision representation
to describe algorithms that slightly perturb the input data. In [50] they describe two perturbation approaches:

Construction of an error-free world Construct a closed world in which topological structures of geometric
objects are always determined precisely even in finite precision computation. The core of this approach
is based on representing every 3D point as the intersection of three planes. Each plane is represented as
the equation a;z + b;y + ¢;z + d; = 0, where all coefficients are integers satisfying —L < a;,b;,¢; < L and
—L2% < d; < L2. Four ways for computing such coefficients which are close enough to the infinite data are
detailed in [49]. In addition, basic operations are restricted to the form A < A x M (P), where A denotes
a solid to be generated, P is a primitive solid, M a motion, and * a set-theoretic operation such as union
and intersection.

Giving the highest priority to topological consistency Avoid topological inconsistency by placing higher pri-
ority on logical consequence than on numerical judgment. A data with no degenerate cases is obtained as
a result. In this approach they first define a set of rules that describe the topology of the data structure.
Then the data structure is constructively built, where in each stage the numerical results might be slightly
changed in order to keep the defined set of topology rules. The computation of each next step is done by
using floating point arithmetic, and the result which is closest to the true desired data structure is chosen.
They implement this approach in a new algorithm for constructing Voronoi diagrams for points given in
the plane. The new program is robust against numerical errors, its average time complexity is linear in the
number of input points (sites), and the structure of it is much simpler than the conventional, because it
need not take care of degenerate cases.

Green and Yao [24], Goodrich et al. [23] and Hobby [30] study a paradigm called snap rounding. The input data for
this paradigm is an arrangement of line segments, which is defined in [26],[28] as follows: Let L= {{1,{s,...,{,) be
a given collection of n line segments in the plane. We denote by A(L) the arrangement of L, i.e., the decomposition
of the plane into vertices, edges, and facets, induced by the line segments in £. A vertex of A(L) is an intersection
point of two line segments or an endpoint of a segment, an edge is a maximum connected relatively open portion
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of a line segment that does not meet any vertex, and a facet is a maximum connected open region of the plane
not meeting any edge or vertex.

In the snap rounding paradigm, the data of an arrangement of line segments is changed as follows. A pixel
containing a segment endpoint or an intersection point is called a hot pizel. All segments intersecting a hot pixel
are re-routed to pass through its center. Intersection points are defined as new vertices, thus in the output no
segment intersects the interior of another segment. However, each original input segment now possibly becomes
a polyline (a polygonal curve). Since no line intersects the interior of another line, then most intersection types
(like three lines intersecting in one point) are eliminated. One type of degeneracies is encouraged though, namely
coincidence of vertices. In many cases segment endpoints which were not overlapping, are snapped to the center
of the same pixel and thus are unified. Since vertex overlapping can happen only in a center of a pixel, the
identification of such a degeneracy is definite, as in the data normalization method. See Figure 1.2.

R e |

Figure 1.2: Snap rounding, before (left) and after

Goodrich et al. suggest an efficient plane sweep that performs the rounding and prevents additional crossings
from being generated.

Fortune [20] extends the snap rounding paradigm to three dimensions. There is no straightforward extension
for the snap rounding algorithm to 3D. Many difficulties have to be dealt with, and Fortune takes them into
consideration. Fortune handles the input P, which is a polyhedral subdivision in IR® with a total of n cells. He
shows that there is an embedding o of the vertices, edges, and facets of P into a subdivision @, where every
vertex coordinate of @ is an integral multiple of 211982 "+21 For each facet f of P, the Hausdorff distance in the
Lo metric between f and o(f) is at most 3/2. The embedding o preserves or collapses vertical order on facets
of P. The subdivision @ has O(n?) vertices in the worst-case, and can be computed in O(n*) time, where n, as
mentioned above, is the total number of vertices, edges and facets in a polyhedral subdivision. In the algorithm,
all edges of P are orthogonally projected onto the zy-plane. A planar arrangement is formed, snap rounded, and
a triangulation 7' is created. The image of an edge is a polygonal chain within the triangulation, and the image
of a facet is a sub-triangulation of 7. The rounding of each facet f is obtained by lifting the image of f in T to
three dimensions in such a way as to approximate f. By considering each cylinder over a vertex, edge, or triangle
of T separately, Fortune ensures that the lifting preserves (or collapses) the vertical order on facets of P.

Halperin and Shelton [29] propose a perturbation scheme based on finite precision arithmetic. Their scheme
completely eliminates degenerate cases in an arrangement of spheres, thus eases the programming task, and makes
the code more clear and more efficient. The scheme is relatively simple and balances between the efficiency of
computation and the magnitude of the perturbation. The potential degenerate cases are recognized, and each
sphere is perturbed randomly a distance of at most d from its original placement, to avoid degeneracies. The size
of § is determined according to the given resolution € and a few more parameters. Halperin and Shelton prove
that in the special type of arrangements they deal with (related to molecular models), ¢ is never too large. The
algorithm runs in O(n) time, where n is the number of spheres in the arrangement.

The paradigm presented by Halperin and Shelton is the basis for our research.

1.3 Thesis Outline

This thesis describes a perturbation scheme to overcome degeneracies and precision problems for algorithms that
manipulate polyhedral surfaces using floating point arithmetic. The perturbation algorithm is simple, easy to
program and completely removes all degeneracies. We describe a software package that implements it, and report
experimental results. The perturbation requires O(nlog® n +nDK? ) expected time and O(nlogn +nK?) working
storage, and has O(n) output size, where n is the total number of facets in the surfaces, K is a small constant in
the input instances that we have examined, D is a constant greater than K but still small in most inputs, and
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both might be as large as n in ‘pathological” inputs. A tradeoff exists between the magnitude of the perturbation
and the efficiency of the computation. Our perturbation package can be used by any application that manipulates
polyhedral surfaces and needs robust input, such as solid modeling, manufacturing and robotics. We describe an
application for the computation of swept volumes, which uses our perturbation package and is therefore robust
and does not need to handle degeneracies. Our work is based on [29] which handles the case of spheres, extending
the scheme to the more difficult case of polyhedral surfaces perturbation. A paper describing this thesis [42] has
been recently presented in the 1999 ACM Symposium on Computational Geometry'.

The rest of the paper is organized as follows. In the next chapter we describe the main ideas and results of our
work. In Chapter 3 we expose the controlled perturbation algorithm and describe technical details. We discuss
complexity and performance in Chapter 4. In Chapter 5 we define swept volumes and describe the way in which
they motivated the development of our scheme. We present experimental results in Chapter 6, and suggest an
improvement in Chapter 7. A summary and suggestions for future research on the topic are given in Chapter 8.
In Appendix A we complete details about the type of degeneracies which are removed by our scheme, and in
Appendices B and C we complete technical details concerning shapes and volumes that arise in the perturbation
scheme.

LA copy of the paper can be found in http://www.math.tau.ac.il/ “raab/SoCG99.ps



Chapter 2

Preliminaries and Key Ideas

In this chapter we describe the main ideas and results of this thesis. We start with the main theorem, which is
proved, slowly and thoroughly, throughout the entire thesis. Then we describe the key ideas, which are the core
of the thesis, and after that we give some preliminaries about polyhedral surfaces, and describe the way in which
we approach polyhedral surfaces.

2.1 The Main Theorem

Theorem 2.1 Given a collection P of polyhedral surfaces with a total number of n triangular facets, and a
resolution parameter ¢ > 0, a valid perturbation of the surfaces in P can be computed in O(n log3n +nDK?)
expected time and O(nlogn +nK?) working storage, and has O(n) output size, where K is the mazimum number
of facets intersecting any single facet in P, and D is closely related to the mazimum number of facets intersecting
a grid cube. A perturbation is considered valid if at the end of it every geometric entity is at least e-away from any
other geometric entity and topologic incidence relations are preserved, and it is obtained by moving each vertex by
Euclidean distance of at most § from its original placement. § is a parameter that depends on e, K, the mazimum
edge length in P, and the mazimum number of vertices in one polyhedral surface. In expected O(n?) time we can
also find a rotation of the coordinate system so that all the degeneracies which are unique to the swept volume
application are removed.

2.2 Key Ideas

Motivation The motivation for our scheme is the swept volume application. A swept volume is defined as
the geometric space occupied by an object moving along a trajectory in a given time interval. Our swept
volume application computes the boundary of a collection of three-dimensional polyhedra and employs vertical
decomposition [15] as its final step. The vertical decomposition algorithm is very sensitive to robustness problems,
and the implementation we use allows no degenerate cases. We apply our robustness package before performing
the vertical decomposition, and thus we allow for a successful completion of the program. See Figure 2.1 for an
example of a volume that has degeneracies, created by a triangle swept along a trajectory which intersects itself.

Many geometric applications that need degeneracy-free input (including our swept volume) are using floating
point arithmetic, thus our choice of using a finite precision paradigm has obvious advantages: Had we used an
exact arithmetic paradigm (e.g., symbolic perturbation), our perturbation scheme would not have been usable to
those applications.

Key Idea of the Perturbation Scheme Our target users are geometric applications that manipulate poly-
hedral surfaces; in particular, the swept volume application. Those applications need degeneracy-free input, for
instance, a vertex should not touch a non-incident facet. Since we are using floating point arithmetic, we are
unable to tell for sure whether a degeneracy exists; we can only tell that a potential degeneracy exists. For
example, we may say that a vertex is potentially touching a facet if it is very close to a facet.

In order to define such a potential degeneracy formally, we use a resolution parameter, € > 0. € is a small
positive real number. Two polyhedral features are assumed too close (and therefore potentially degenerate)

12
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Figure 2.1: A swept volume of a triangle with degeneracies that arise when its trajectory intersects itself. Our
perturbation scheme removes those degeneracies.

whenever they are not e-away from each other (i.e., the distance between two polyhedral features is less than ¢).
The list of potential degeneracies is given in Section 3.2.

We assume ¢ to be given as an input parameter according to the machine precision and to the maximum
length of an edge in a polyhedral surface. The value of € depends also on the depth of the expression tree [44].
In our algorithm this tree’s depth is a small constant, thus ¢ is a constant that can be determined and bounded
independent of the input size.

Next we define a perturbation radius 4, which depends on ¢ and on parameters of the input, and is proven to
be small enough. A potentially degenerate polyhedral surface is perturbed by at most d, namely, each vertex of
the surface is moved by Euclidean distance of at most 4.

We call our scheme “controlled perturbation”. It is controlled in two aspects. First, by determining the size
of & we control the running time of the perturbation scheme and set a tradeoff between the magnitude of the
perturbation and the efficiency of the computation. Second, unlike in e-tweaking, our perturbation guarantees
that the resulting collection of polyhedral surfaces is degeneracy free.

An obvious limitation of our approach is that we actually change the given placement of the input objects.
However, all those changes are small and bounded, and we believe that there are many applications that per-
mit such perturbation, since often their precision is limited to start with (due to measurement limitations, for
example).

Our scheme makes some simplifying assumptions which are relaxed later at Chapter 7. Those assumptions
concern certain ‘pathological’ input data and do not influence any of the real world data that has been examined
by us.

We extend our perturbation scheme to remove degeneracies which are induced by the vertical decomposition
algorithm, used by the swept volume application. In order to remove those degeneracies we perturb the coordinate
system and do not change the geometry or topology of the data.

Summary of Results The process completely removes degenerate cases, and requires O(n log3 n +nDK?)
time and O(nlogn + nK?) working storage, and has O(n) output size (see Chapter 4), where n is the number
of triangular input facets in all the surfaces together, K is a small constant in the input instances that we have
examined, D is a constant greater than K but still relatively small in most inputs, and both might be as large as n
in ‘pathological’ inputs (as explained in Section 2.3). The output size O(n) does not conceal any large constants,
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and does not depend on K or D.

2.3 Polyhedral Surfaces

Characteristics and Representation Our perturbation scheme manipulates polyhedral surfaces that are
manifold, have only triangular facets, and allow intersections (allowing intersections does not contradict the
manifold property since there are no incidence relations between the intersecting facets). A polyhedral surface
may be arbitrarily large.

We use boundary representation [33] for the polyhedral surfaces and maintain their geometric and topologic
information. The geometric information consists of all vertices, where each vertex is represented by three coordi-
nates with constant bit length. The topologic information consists of incidence relations between edges, vertices
and facets. E.g., each edge points to incident facets, vertices and edges. The output of our algorithm is the set
of perturbed surfaces, using the same data structure with the same bit length.

Arrangements Let P = {P;, P,,..., Py} be a collection of m (possibly intersecting) polyhedral surfaces in
IR?. Let A(P) denote the arrangement induced by P, namely, the subdivision of 3-space into cells of dimensions
0,1,2 and 3, induced by the surfaces in P. For a full definition of arrangements see [26],[46]. Notice that while most
works about 3D arrangements of geometric objects assume that each object has constant descriptive complexity
(e.g., triangles as in [15]), we deal with the more complicated form of arrangements of polyhedral surfaces.

Definitions of K and D In a collection of polyhedral surfaces, we assume that the number of facets that a
single facet intersects is bounded by a fairly small constant K. This assumption is based on a large number of
geometric models that we have examined, used by the automotive industry and mostly intended for undergoing the
swept, volume algorithm. Such data describe 3D real world items, which intersect each other only in a controlled
and limited manner. Other intersections can be a result of the sweep trajectory in the swept volume application,
and there again, the trajectory is planned for pragmatic uses, and thus it does not contain many self intersections.

Another constant that is further discussed in Section 4.1 is D. In order to achieve better performance we
discretize the three-dimensional space into grid cubes, and D is a bound that is closely related to the number of
facets intersecting such a cube. Geometric industrial models do not tend to condense in one zone, and indeed we
have found out that D is a constant (greater than K) in the models that we examined. The experimental results
supply some findings about K and D.

Notice that the values of K and D are determined during the running time: While perturbing some of the
entities, the number of intersections (related to K and D) might change. These values are checked throughout the
entire perturbation process and K and D are determined accordingly. In abuse of notation, in our experiments
we have examined the static values that have been obtained before the perturbation has been run. From our
experience, those values are good enough, since § is very small and therefore the number of intersections hardly
changes during running time.

It is possible to create ‘pathological’ input data, where K or D are much bigger than the static values obtained
before the perturbation is run, or even where K or D are not constants and might be as large as n. It is important
to emphasize that in such cases our perturbation scheme and the complexity analysis are still valid, and the only
changes are a bound on § which depends on n and a greater significance to complexity results that contain K or
D.

Improvement Let ¥ be the maximum number of facets influencing a single facet, meaning that for a given
facet f we look for the maximum number ¢ (f) of facets that could have any effect on the perturbation distance
of f at any stage of our algorithm, like intersecting f, being e close to f, etc. We define ¥ to be the maximum
Y(f) over all facets f in P.

At the first stage we assume that a certain facet can be influenced only by the facets that intersect it, i.e.,
that the number of facets influencing a certain facet is bounded by K. This assumption makes the exposition of
our ideas simpler and turns out to be good in practice (namely K is a good estimate for ¥). The main theorem
is correct only under this estimation. Later on, in Chapter 7, we relax this assumption and address the actual
quantity ¥, which indeed in certain ‘pathological’ cases can differ greatly from K.
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Taking the Spheres Scheme One Step Ahead We base our algorithm on the paradigm presented by
Halperin and Shelton [29]. While Halperin and Shelton deal with arrangements of spheres, we deal with arrange-
ments of polyhedral surfaces, which turn out to be more difficult to handle. The reason for the extra complication
is that unlike spheres, which can induce degeneracies only because of a relative position of two or more spheres,
for polyhedral surfaces we have to remove degeneracies internal to one surface, as well as remove degeneracies
induced by relative positions of two or more surfaces. In addition, the structure of a polyhedral surface is more
complicated (a polyhedral surface can have arbitrarily many degrees of freedom), thus more degeneracies have to
be taken care of.

Preservation of Topologic Characteristics It is most important to define what characteristics of the
polyhedral surface are preserved during the perturbation process. Three approaches are possible: (i) Treat the
input as a collection of triangles that have no relation to each other (as done in [29] for spheres). In such an
approach a perturbation might turn two incident facets into non-incident ones. (ii) Treat the input as a collection
of distinct (possibly intersecting) polyhedral surfaces, maintain incidence relations of facets, but do not keep
intersection data as a part of the data structure. (ii7) Treat the input as a polyhedral subdivision, which means
that even intersection segments (i.e., segments created by the intersection of two non-incident facets) are a part
of the data structure and must be maintained during the perturbation process.

We further clarify the difference between approaches (ii) and (iii) by distinguishing between edges and inter-
section segments. In approach (ii), every edge is a part of the data structure and its incidence relations must
be preserved, i.e. its incident facets are not disconnected from it even if undergoing perturbation. In contrast,
a segment is not a part of the data structure, and therefore a segment that might have originally existed in
the input data could disappear after perturbation (i.e., a perturbation might turn two intersecting facets into
non-intersecting ones). In approach (iii) there is no difference between segments and edges: they are both a part
of the data structure and incidence relations of both must be maintained.

We have chosen to design our algorithm for approach (i7). Approach (i) is unacceptable since we target our
perturbation scheme for applications that need to keep topologic incidence relations within each surface. Approach
(i) preserves more topologic features of the input data, but maintaining intersection relations of the input data
leads to a much more complicated algorithm (e.g., must support non-manifold data) and we believe that a large
number of geometric applications (such as motion planning and swept volumes) care about the incidence topology
of each surface locally, rather than the topology of the full subdivision.

Discussion: Our Scheme vs. Three Dimensional Snap Rounding The 3D snap rounding [20] has the
same goal as our perturbation scheme: Both algorithms maintain a robust and error free collection of 3D polyhe-
dral objects, and constitute a finite precision approximation of the input data.

The two algorithms are somewhat difficult for comparison, since we follow approach (i¢) described above,
while [20] follows approach (iii). However, since 3D snap rounding is the only previous work that solves a similar
problem in finite precision approximation, it is still worth a discussion.

Snap rounding handles subdivisions (i.e., approach (iii)) and therefore handles a topologic structure which
is more complicated than the one we handle. In particular, it handles non-manifold polyhedral objects, while
our scheme does not. On the other hand we believe that our scheme suggests a few solutions to problems that
have come up in [20]. While 3D snap rounding is very complicated and seem not to have been implemented,
our scheme suggests a fairly simple algorithm which is easy to program (we implement the scheme in a software
package and prove its validity in practice). The time and space complexity required by the algorithm in [20] is
O(n*), where our scheme requires only O(nlog® n +nDK?) expected time and O(nlog n+nK?) working storage,
and has O(n) output size (see Chapter 4). Last but not least, our perturbation scheme totally removes all kinds
of degeneracies, while snap rounding removes most degeneracies but encourages one type of degeneracy, namely
coincidence of vertices. Snap rounding clearly identifies such degeneracies and therefore the robustness of the
output is guaranteed, but the algorithm that uses the output still has to take care of those degeneracies.



Chapter 3

Controlled Perturbation

In this chapter we expose the perturbation algorithm, describe the degeneracy types which we remove and supply
the technical details of removing those degeneracies.

3.1 Notation

Segment denotes the intersection of two non-incident facets.

Intr2 denotes the intersection point of an edge and a non-incident facet.

Intr3 denotes the intersection point of three non-incident facets.

d(p1,p2) denotes the Euclidean distance between p; and p2, where py, p» are three-dimensional points.

d(G1,G2) denotes the Euclidean distance between G; and G5 , where G, G2 are three-dimensional geometric
entities like edges or facets, and d(G1,G2) = min{d(p1,p2) |p1 € G1,p2 € G=2}.

B(p, 1) denotes the ball of radius u centered at p, namely {z | d(p, z) < u}, where p and z are three-dimensional
points and p is a positive real number. B(0, 1) denotes B((0,0,0), u).

3.2 Inventory of Degeneracies

For a collection of polyhedral surfaces, we define two types of degeneracies. The first type consists of degeneracies
inherent to the polyhedral structure (see examples below). The second type consists of degeneracies induced by
the using application, and described here for the vertical decomposition algorithm (used by the swept volume
application).

Throughout the paper, whenever describing a degeneracy, we use square brackets for terms that would have
been used had we been using exact arithmetic.

Inherent degeneracies We will refer to five features of the arrangement: vertex, edge, facet, intersection of
two facets (segment), and intersection point of three facets (intr3). A degenerate case is incurred whenever
any of the above features is too close to [intersects] any of the other features. The only intersection that
is not considered degenerate is when an edge or a segment penetrates the interior of a facet, thus causing
an intersection of two or more facets. In Appendix A we show that many degeneracies can be considered
special cases of other degeneracies, and omitting the special cases we end up with four types of inherent
degeneracies:

vertex-facet A vertex is too close to [touches| a non-incident facet.
edge-edge An edge is too close to [intersects] a non-incident edge.
edge-segment An edge is too close to [intersects| a non-incident segment.

facet-intr3 A facet is too close to [contains] a non-incident intr3 [four facets intersect in a point].

16
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All the types of inherent degeneracies can be either local or global (see Figure 3.1):

Local inherent degeneracies Inherent degeneracies that occur within one polyhedral surface, e.g., a
vertex is too close to [touches] a non-incident facet, both in a single polyhedral surface.

Global inherent degeneracies Inherent degeneracies involving two or more polyhedral surfaces, e.g., a
vertex in one surface is too close to [touches] a facet in another surface.

N\ NS

@ (b)

Figure 3.1: (a) local vertex-facet degeneracy. (b) global vertez-facet degeneracy.

Decomposition-induced degeneracies The list of degeneracies is defined mainly by the plane sweep stage in
the vertical decomposition algorithm.

vertical-facet A facet is almost [exactly| vertical.

equal-z Two vertices have z values that are too close [equall.

concurrent-vertex-edge The zy-projection of a vertex and an edge are too close [intersect].
concurrent-intr2-edge The xy-projection of an intr2 and an edge are too close [intersect].

concurrent-three-edges The xy-projection of three edges intersect in three points which are too close
[overlap].

3.3 Algorithm Overview

Our perturbation process consists of the following steps:

Local step Remove a subset of the local inherent degeneracies, namely degeneracies not related to intersections.
Repeat for every surface in the given collection.

Global step Remove the rest of the local and all of the global inherent degeneracies.

Coordinate system step Remove decomposition-induced degeneracies. Do that by perturbing the coordinate
system orientation.

We would like the perturbation scheme to be as simple as possible. Simplicity is achieved when the topology and
the internal relative geometry of the polyhedral surfaces are not changed. Choosing big perturbation units (e.g.,
a whole polyhedral surface) will achieve the simplicity goal, but will not remove internal inherent degeneracies. In
order to solve this conflict we chose to remove inherent degeneracies in two steps. The local step perturbs vertices
inside a single polyhedral surface, and therefore does not keep the simplicity goal. Thus we try to minimize the
local step and use it to remove only degeneracies that cannot be removed by the global step. The global step uses
large perturbation units (later on we will see that those units are terrains) and keeps the simplicity goal. By the
end of the global step all the inherent degeneracies are removed.
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3.4 Local Step

In this step our perturbation unit is one vertex in a polyhedral surface. We remove only internal inherent
degeneracies that cannot be removed by the global step, namely vertezx-facet and edge-edge.

We remove the degeneracies in each polyhedral surface locally, by an incremental procedure where we add the
vertices of each surface one by one and if a degeneracy is detected we only perturb the last vertex that has been
added.

Let P = {P,,P,,...,P,} be a collection of m (possibly intersecting) polyhedral surfaces. Let s; be the
number of vertices in P;, 1 < i < m. Let vi,vs,...,vs; be an ordering of the vertices in P;. Let @), denote
the data structure that was generated while processing vertices vy,...,v,, 1 <r < 's;. @, contains the possibly
perturbed vertices vy, vs,...,v,, and all the edges and facets of the current polyhedral surface P;, whose incident
vertices are in {vy,v2,..., 0.}

Let 4; denote the maximum perturbation radius of the local step. After the completion of stage r for P;,
the following invariants are guaranteed by the incremental procedure: (i) Any vertex in @, has been moved by
Euclidean distance of at most d; from its original placement. (ii) d(v, f) > € for every pair of non-incident vertex
v and facet f in Q.. (ii1) d(e1,ex) > ¢ for every pair of distinct non-incident edges e, ez in Q.

A perturbation of a vertex v, is done by choosing its new location v). uniformly at random within the ball
B(v,,61). Invariants (i) and (i) define forbidden loci F; and F3 for v]. respectively. Let E, := B(vy, 61)\(F2UF3).
We keep choosing v!. inside B(v,., d;) until the chosen location is inside E,.. In Section 3.6 we describe how we fix §;
and explain why this choice leads to a valid location (i.e., inside E,.) with high probability. Suppose the procedure
has been completed successfully for the first r — 1 stages. Placing v). inside B(v,,d;) guarantees invariant (7).
Placing v, outside the forbidden loci F> and F3 guarantees invariants (i7) and (#i3). Notice that if v, already
keeps the invariants, no perturbation will take place. The region Fj is, for example, a union of sphere slices. A
detailed explanation of the shape of the objects contributing to F» and Fj is given in Appendix B, at Section B.2.

3.5 Global Step

In this step we remove global inherent degeneracies and local inherent degeneracies that have not been removed
in the local step. The global step proceeds in three sub-steps:

xy-mono partitioning Partition each polyhedral surface into terrains (i.e., zy-monotone surfaces). Define the
perturbation units to be terrains. A polyhedral terrain that has undergone the local step is free of any
local inherent degeneracies, thus each perturbation unit is now degeneracy free.

perturbation Perturb each terrain as a rigid object in order to remove global inherent degeneracies.
stitching Stitch formerly incident terrains by creating connectors between them. See Figure 3.2.

We next describe the three sub-steps in more detail.

Partitioning into xy-Monotone Surfaces A surface is zy-monotone if every line orthogonal to the zy-plane
intersects the surface in at most one point. It is guaranteed that no local inherent degeneracy exists in a terrain:
Degeneracies of type vertex-facet and edge-edge have been removed during the local step, and all other local
degeneracies can exist only when there are self intersections, which do not occur in an zy-monotone surface.
Hence, a local degeneracy of type edge-segment or facet-intr3 that has previously existed in a polyhedral surface,
is now becoming a global degeneracy after the surface has been partitioned into terrains.

Before performing the partitioning we choose a coordinate system so that no facet is vertical, using a technique
that is similar to the one in the coordinate system step (Section 3.7). In our software package we use a fairly
straightforward partitioning algorithm which will not be discussed here.

Perturbation In the global step we set the perturbation unit to be a whole polyhedral terrain. This ensures
that the topology and the internal relative geometry of each terrain is preserved. In addition we make sure that
the perturbation is done only by translation and not by rotation, which ensures that the orientation of each
terrain is preserved.

We remove the global degeneracies by an incremental procedure where we add the polyhedral terrains one
by one and if a degeneracy is detected we only perturb the last terrain that has been added. In addition to



eSS AL AL S A AR

€Y (b) ©

Figure 3.2: (a) Original polyhedral surface. (b) Partitioning into zy-monotone terrains and perturbing one of
them. (c) Creating connectors (in reality the connectors are much thinner; here they are widened for clarity).

testing the validity of the (possibly) perturbed terrain, we make sure that no degeneracies are induced by the
new connectors (see definition below) which stitch that terrain to incident terrains that were added previously.

Let T = {T\,...,T;} be an ordering of the polyhedral terrains that have been created out of all the input
polyhedral surfaces. Once a terrain T, 1 < j <, has been processed, let con(T};) denote the set of connectors
created when the possibly perturbed 7} is stitched to formerly incident terrains T}, k < j. Let A; denote the
data structure that was generated while processing terrains 1,...,5, 1 < j <[. Mj is a collection of polyhedral
surfaces comprised of the possibly perturbed T1,...,T; and the connectors con(T4),...,con(Tj).

Let d2 denote the maximum perturbation radius of the global step. Unlike the local step, here we do not choose
a new location for one vertex; instead we choose a translation vector for the whole terrain. Again we choose a
point uniformly at random, but this time inside the ball B(0,d2). The chosen point defines the translation vector
for the terrain.

After the completion of stage j the incremental procedure guarantees that any of the terrains T1,...,T; has
been moved by at most d2, and that there are no inherent degeneracies in M;. In detail, after the completion
of stage j, the following invariants are guaranteed: (i) Any terrain in M; has been moved by Euclidean distance
of at most o from its original placement. (ii) d(v, f) > € for every pair of non-incident vertex v and facet f in
M;. (iii) d(e1,e2) > € for every pair of distinct non-incident edges eq, es in M;. (iv) d(e,s) > € for every pair of
non-incident edge e and segment s in M;. (v) d(f,i) > ¢ for every pair of non-incident facet f and intr3 ¢ in M;.

The invariants (i¢), ..., (v) define forbidden loci F5, ..., F5 respectively. Let E; := B(0,62) \ (FxU...UF5). We
keep choosing random points inside B(0, d2) until the chosen translation vector is inside E;. Section 3.6 supplies
more details about d5 and explains why the choice of J» leads to a valid perturbation with high probability.
Suppose the incremental procedure has been carried out successfully for the first j — 1 stages. Choosing the
translation vector inside B(0,d2) guarantees invariant (7). Choosing the translation vector outside the forbidden
loci Fy,. .., Fs guarantees invariants (ii),..., (v). Notice that if T} already keeps the invariants, no perturbation
will take place. The region Fj is, for example, a union of Minkowski sums' of a 2D parallelogram and a ball
B(0,¢). A detailed explanation of the shape of the objects contributing to Fs, ..., F5 is given in Appendix B, at
Section B.3.

Stitching A connector is created in the following way, depicted in Figure 3.2(c): An edge is created between
each pair of partitioned vertices, inducing a parallelogram for every partitioned edge. The parallelogram is split

I The Minkowski sum of two sets of points S; and S2, denoted Sy ® Sa, is defined as S1 @ S2 := {p+q|p € S1,q € S2}.
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into two triangles by adding a diagonal.

Connectors are created after each stage of the incremental procedure, in order to stitch the terrain that
has been possibly perturbed in that stage to former incident terrains. If two originally incident terrains are not
perturbed, then no connector is created and their original adjacency relations are restored (the terrains are ‘glued’
back).

The creation of connectors restores the connectivity of polyhedral surfaces that were partitioned into terrains.
Since a perturbation is done in tiny distances (2 is very small), a connector is very narrow, and hardly noticed
compared to a regular facet. It is guaranteed that the connectors do not induce any new degeneracies, by additional
tests that we carry out when a terrain is being perturbed. In order to test the connectors validity, we treat them
as independent polyhedral surfaces, compute their intersection with other terrains and other connectors, and test
them for degeneracies as we do for terrains. The connectors contribute forbidden loci that affect the value of 2.
Analyzing those loci is very complicated and explained in detail in Appendix B, but the implementation remains
simple.

Notice that the stitching procedure works well as long as at most two terrains meet in one point. In a large
family of input data this is guaranteed. In cases where more than two terrains meet at a point, we run an
additional stitching procedure, which is straightforward and will not be described here. The additional procedure
works well in practice but we do not give a guaranteed bound on the running time as a function of the perturbation
size in this case; we leave the § bound proofs for future research.

It is evident that the addition of connectors changes the original structure of the input polyhedral surfaces.
However we see that as a minimum harmless change in the context of our application: the connectors are very
narrow strips within the input polyhedral surfaces, and the overall geometric shape of the surface is maintained.

3.6 Choosing ¢ for the Local and Global Steps

In both the local and global steps, we would like to choose a point inside a ball, avoiding forbidden regions of the
ball. Let B be the ball and let F' be the union of the forbidden volumes. See Figure 3.3. Let E := B\ F denote
the valid placements. We are interested in choosing a point inside E.

Figure 3.3: We would like to choose a point inside a ball, avoiding forbidden regions of the ball.

The way of selecting a point inside E is by choosing a point uniformly at random inside B. We would like
to have probability of more than % for choosing a valid placement for that point, and this is guaranteed once we
have Volume(B) > 2-Volume(F). Our calculations (see Appendix B) show that Volume(F) is always finite and
that we need to choose §; = 6.31'/SK/3LV1/3 and 6, = 2.15¢/SKLV'/3 where K is the maximum number
of facets in P intersecting any single facet, L is the maximum edge length, V' is the maximum number of vertices
in one surface, and assuming K > 10, V > 10, L > 10, §; < L, § < L and £ < 10~*. Notice that neither §; nor
02 depend on the value of D.

Let § := 6; + d2. Any vertex in P has been moved by Euclidean distance of at most 4. Our experimental
results show that the bound on § given above is very conservative. This is not surprising, since ¢ is a theoretical
worst-case bound, and even as such it shows that our approach does not conceal any very large constant.
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3.7 Coordinate System Step

In this step degeneracies induced by the vertical decomposition algorithm [15], as defined in Section 3.2, are
removed. The algorithm which we have chosen for vertical decomposition is the partial decomposition algorithm
[47], and the list of degeneracies has been defined accordingly.

We remove the degeneracies by a perturbation of the coordinate system orientation (i.e., no geometric or
topologic changes to the data are incurred). Notice that the techniques in this step have been chosen due to the
nature of the decomposition-induced degeneracies. Had we been using the perturbation scheme for a different
application (e.g., an application where three collinear points are considered degenerate), then we would have
possibly used a different perturbation technique.

The situation here is significantly different from the situation with the inherent degeneracies. Ensuring an
e-separation does not solve any of the decomposition-induced degeneracies, since even distant entities can have
close x values or close projections. We observe that all the degeneracies are derived out of the orientation of
one or more geometric entities relative to an axis. Since all the decomposition-induced degeneracies are related
with orientation, we choose a new coordinate system and thus instantly change the orientation of all entities
without changing their geometric or topologic data. Once we have chosen a coordinate system, we need a way to
measure the correctness of the new orientations. For example, we would like to make sure that according to our
new coordinate system no facet is vertical (or almost vertical), but the term ‘almost vertical’ has to be defined.
Looking over the list of decomposition-induced degeneracies, we see that they all deal with ‘almost’ being parallel
to one of the axes, namely ‘almost’ having an angle of zero with one of the axes. This leads us to choosing a
threshold value w, which measures this ‘almost’ term. If the discussed angle is less than w, then it is ‘almost’
zero. w ensures an angular separation, which is called here w-separation. We can now rephrase the degeneracies
listed in Section 3.2 in a more accurate way:

vertical-facet Let f be a facet. The angle between f and the z-direction is less than w.

equal-x Let vy,vy be vertices. Let II be a plane perpendicular to the vector v;1 — vo. The angle between II and
the z-direction is less than w.

concurrent-verter-edge Let v and e be a vertex and a non-incident edge respectively. Let II be a plane through
v and e. The angle between II and the z-direction is less than w.

concurrent-intr2-edge Let ¢ and e be an intr2 and a non-incident edge respectively. Let II be a plane through
1 and e. The angle between II and the z-direction is less than w.

concurrent-three-edges Let eq, ey, e3 be non-incident edges. Let [ be a line intersecting all three edges. The
angle between [ and the z-direction is less than w.

We wish to determine the biggest w that will allow us running the coordinate system step efficiently. If we choose
an w value that is greater than the floating point resolution, the above degeneracies can be safely and consistently
removed, and the vertical decomposition algorithm will run robustly.

Each of the first four degeneracies defines a collection of planes. The first one defines the collection of
supporting planes of each facet f, and the following three define planes for each pair of distinct vertices, vertex
and non-incident edge, or intr2 and non-incident edge respectively. Each plane defined by the first degeneracy
is the locus of coordinate system z-directions that will cause the related facet to be vertical, namely have zero
angular separation. In a similar way, each of the planes defined by the other three degeneracies is the locus of x
or z directions that will cause another decomposition-induced degeneracy. In order to obtain a valid orientation
of the coordinate system, the planes defined by equal-z must be w-separated from the z-direction and the planes
defined by the degeneracies vertical-facet, concurrent-vertex-edge and concurrent-intr2-edge must be w-separated
from the z-direction. The degeneracy of type concurrent-three-edges will be discussed later.

We next analyze the w-separation for a single plane II. The analysis is very similar to the one presented in
[29, degeneracy of type II], and we repeat it here for clarity and completeness. Let S be a unit sphere whose
center is located in II. Let II" and II" be two planes parallel to II, each on a different side of II, and such that any
plane Il passing through the center of S and tangent to the circle II' NS (or the circle II"” NS) makes an angle
w with TI. See Figure 3.4 for an illustration. We call the portion of S between II' NS and IT" N S the w-strip of
I1. The area of such a strip is 47 sin w.
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Figure 3.4: A cross section of S.

We choose the orientation of the coordinate system uniformly at random. The intersection of S with the x,y
and z chosen axes induces three points that will be denoted S;, Sy, S; respectively. Each w-strip defines forbidden
loci for either S, or S..

Recall that w-strips are induced by planes II, which are defined by the the first four degeneracies. The
degeneracy of type concurrent-three-edges also defines forbidden loci on the sphere S, but these loci are more
complicated and detailed in Appendix C. In short, each triple of edges defines forbidden loci for S,, with area of
25017 sin w.

Let F1, F5, F3, Fy, F5 be the forbidden loci defined by the degeneracies vertical-facet, equal-z, concurrent-vertez-
edge, concurrent-intr2-edge, concurrent-three-edges respectively. We next compute a bound for the area of each
forbidden loci. Notice that we bound the number of facets by n, and therefore the number of edges and vertices
is bounded by 3n each. The number of edges that might intersect a facet is bounded by 2K.

1. Area(F;

47 sin w.
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5. Area(Fys) < n® - 25017 sinw.

We would like to have probability of more than 1 for choosing a valid orientation. Let Prob(W) denote the
probability of occasion W. Let W, and W, denote the occasions of choosing invalid z and z directions respectively.
We wish to have Prob(W, or W,) < % The following inequality is obtained assuming n > 10.

Prob(W, or W,) < Prob(W;) + Prob(W,)
< Area(Fy)  Area(Fy) + Area(F3) + Area(Fy) + Area(Fs)
—  Area(S) Area(S)
(626.61 + 0.6K)n3sinw - 47
- 4n

The bound obtained for w is therefore:

1
(31331 + 0.3K)n?

sinw <



Chapter 4
Complexity Analysis

In the main theorem there is a part that summarizes the complexity of our scheme. In this chapter we prove it
and add more information concerning the performance of our algorithm.

4.1 Time Complexity

Recall that L is the maximum length of an edge in the input data, §; is the maximum perturbation distance
in the local step (where the perturbation unit is one vertex) and £ > 0 is the given resolution parameter. We
discretize the 3D space into grid cubes of edge length L + 2d; + 2¢ each. We use the term ezpanded entity for
the Minkowski sum of an entity and the ball B(0,e). See Figure 4.1(a). We choose the length of a grid cube
edge according to the maximum length of an expanded edge that has possibly been perturbed: We add 24; to L
because each endpoint of the edge have possibly been perturbed by at most d;, and then we add 2e because the
edge is expanded.

An expanded entity can intersect at most 8 grid cubes (i.e., a cube whose edge length is double the size of a
grid cube edge, see Figure 4.1(b)).

For each grid cube we maintain a list of the expanded entities intersecting that cube. We assume that the
number of expanded facets intersecting a single cube is bounded by a constant D, as explained in Section 2.3.
See Figure 4.1(c). By the definitions of K and D we get that the number of vertices and edges in one grid cube
is bounded by 3D, and that the number of segments, intr2 and intr3 in one grid cube is bounded by DK, 2DK,
and D(I; ) respectively.

s
s N A
R i 7% ﬁ

(a) (b) (c)

Figure 4.1: (a) A two-dimensional illustration of an expanded facet. (b) An expanded entity can intersect at most
8 grid cubes. (¢) We assume that the number of expanded facets intersecting a single grid cube is bounded by a
constant D.

Remark: Our algorithm has finite expected running time and it gives a correct answer when it stops. Therefore
it can be transformed into a Las Vegas algorithm with the same expected asymptotic running time.
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4.1.1 Local Step

Together with the choice of §; (as described in Section 3.6), the guaranteed expected time of this step is O(nD),
as detailed below.

For removing degeneracies of type vertez-facet, we look at all the cubes that an expanded facet intersects (at
most 8) and check for intersection with the vertices in those cubes (at most 3D per cube). Since there are n
facets, we get that at most 24nD combinations of a vertex and a facet need to be checked.

For removing degeneracies of type edge-edge, we look at all the cubes that an expanded edge intersects (at
most 8) and check for intersection with the edges in those cubes (at most 3D per cube). Since there are at most
3n edges, we get that at most 72nD combinations of two edges need to be checked.

In addition, the special cases vertez-vertex and vertez-edge are checked within each facet locally. There are
3 combinations of two vertices in a facet, and 3 combinations of a vertex and a non-incident edge in a facet.
Therefore we get that at most 6n combinations need to be checked for each of those degeneracies.

4.1.2 Global Step

Together with the choice of d» (as described in Section 3.6), the guaranteed expected time of this step is
O(nlog®n +nDK?), as detailed below.

Partitioning Sub-Step The complexity of the partitioning sub-step is O(n log® n):

The partitioning sub-step is done by an incremental procedure, where breadth first search is applied over the
facets that have not been assigned to terrains yet. Each facet f visited during the search can contribute two new
edges e, e2 and one new vertex v to the currently created terrain 7'. The facet fits the terrain if the following are
true (where 6 denotes the projection of an object o onto the zy-plane): (i) @ is not inside the incident facet in 7
(tested in O(1) time). (ii) The whole terrain T is not inside f (tested in O(1) time). (iii) &;,&> do not intersect
any of the edges of T (tested in O(log® n) time by [12] for ray shooting).

Perturbation Sub-Step For removing degeneracies of type vertez-facet and edge-edge, there are at most 24nD
and 72nD combinations (respectively) that need to be checked, as explained for the local step.

For removing degeneracies of type edge-segment, we look at all the cubes that an expanded edge intersects (at
most 8) and check for intersection with the segments in those cubes (at most DK per cube). Since there are at
most 3n edges, we get that at most 24n DK combinations of an edge and a segment need to be checked.

For removing degeneracies of type facet-intr3, we look at all the cubes that an expanded facet intersects (at

most 8) and check for intersection with the intr3 in those cubes (at most D(Ig ) per cube). Since there are at

most n facets, we get that at most 8nD(I2( ) combinations of a facet and an intr3 need to be checked.

In addition we have to detect all the segments, intr2 and intr3 in the data structure:

For detecting segment entities, we look at all the cubes that an expanded facet intersects (at most 8) and
check for intersection with the other facets in those cubes (at most D per cube). Since there are at most n facets,
we get that at most 8n.D combinations of two facets need to be checked.

For detecting intr2 entities, we look at all the cubes that an expanded facet intersects (at most 8) and check
for intersection with the edges in those cubes (at most 3D per cube). Since there are at most n facets, we get
that at most 24nD combinations of two facets need to be checked.

For detecting intr3 entities, we look at all the cubes that an expanded facet intersects (at most 8) and check
for intersection with the segments in those cubes (at most DK per cube). Since there are at most n facets, we
get that at most 8nDK combinations of two facets need to be checked.

In summary, the complexity of the perturbation sub-step is determined by the removal of the facet-intr3
degeneracy, which requires O(nDK?) time.

4.1.3 Coordinate System Step

The operation that has the highest complexity in this step is the removal of degeneracy of type concurrent-
three-edges, i.e, the detection of triples of edges whose xy-projections intersect in three points that are too close
[overlap]. Since every triple of edges need to be checked, we get a time complexity of O(n?).

For clarity and completeness we give here the complexity of the removal of the rest of the decomposition-
included degeneracies.
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vertical-facet Every facet needs to be checked, so we obtain a time complexity of O(n).
equal-z Every combination of two vertices needs to be checked, so we obtain a time complexity of O(n?).

concurrent-vertex-edge Every combination of a vertex and an edge needs to be checked, so we obtain a time
complexity of O(n?).

concurrent-intr2-edge Every combination of an intr2 and an edge needs to be checked, so we obtain a time
complexity of O(n’K).

It is important to emphasize that the coordinate system step removes degeneracies that are not inherent, thus
considered exterior to the perturbation scheme in two aspects: First, many geometric applications can use our
perturbation scheme, and most of them do not need vertical decomposition and hence do not need to remove
decomposition-induced degeneracies. Second, related research about robustness of three-dimensional polyhedral
surfaces focuses on inherent degeneracies only. Therefore, we do not consider this step as an integral part of our
scheme and we thus do not include its time requirements in our complexity summary.

4.2 Space Complexity

4.2.1 Output Size

The only increase in the space of the input data is while creating the connectors. Each connector adds 2 facets
to the polyhedral surface and there can be at most O(n) connectors. Therefore we have an output size of O(n).
Notice that this size is independent of K and D.

4.2.2 Working Storage

There are two types of working storage that are needed by our scheme. The first one is during the partitioning
sub-step, where we need O(nlogn) space for the ray shooting procedure as mentioned in Section 4.1; see [12]. The
second one is during the perturbation sub-step where we need to maintain lists of intersection entities: segment
and intr2 entities require O(nK) space, and intr3 entities require O(nK?) space.

Altogether we obtain a working storage of O(nlogn + nk?).



Chapter 5

Swept volume

The motivation for our work is the swept volume application. In this chapter we define swept volumes, explain
why they are important, and describe the reasons that made us develop our perturbation scheme. We also describe
the swept volume algorithm that we have implemented, and tell about the way in which it uses our perturbation
scheme.

5.1 Definitions

Figure 5.1: Swept volume of a cube

A swept volume is defined as the geometric space occupied by an object moving along a trajectory in a given
time interval. The motion can be translational and rotational. The moving object, which can be a surface or a
solid, is also called a generator. The motion of the generator is called a sweep. See Figure 5.1.

Let A denote a generator which is swept along some trajectory. Let A; represent an instance of A during the
sweep over a parametrized unit interval t€I = [0,1], where t=0 and t=1 represent the instances of A at the initial
and final locations along the trajectory, respectively. So the swept volume of A is the union of Ay, for all tel:

SV(A) =] 4

tel

Unfortunately, this definition does not give a direct way to generate swept volumes.

5.2 Practical Uses

Swept volumes play an important role in many CAD/CAM applications including geometric modeling, robot
motion planning, numerical control cutter path generation, and assembly planning.
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Geometric Modeling Translational and rotational swept surfaces are used in CAD systems. The best known
are surfaces of revolution [13]. More complex geometry can be generated by using higher order sweep trajectories
and generating surfaces.

Robot Motion Planning Swept volumes can be used to evaluate safe paths in robot motion planning. Motion
verification can be done by determining whether a robot moving along a prescribed path collides with obstacles.
Collision free path finding can be done in many ways [22],[34]. Two of them are:

Heuristic search A path is hypothesized and checked. If collision is incurred by that path, an alternative path
is suggested using some heuristic rules. Collision is checked again for the new path, and the procedure is
repeated until a collision free path is found. The collision checks can be carried out by first computing the
swept volume.

Explicit spatial planning approach The goal is to plan the motion of a robot say in a 2-dimensional work
space that has some obstacles in it. For translational movements, we compute the space that is free of
obstacles for the robot by shrinking the robot to a point and correspondingly growing the work space obsta-
cles to represent the configuration space obstacles. The resulting configuration space is still 2-dimensional.
When rotations of the robot are allowed, the configuration space is 3-dimensional IR? x [0 : 27). We take the
2-dimensional configuration space which has been computed for translational movements, and extend it to
a 3-dimensional one by continuously rotating the one copy of every translational configuration obstacle [16,
Chapter 13],[39, Chapter 8]. See Figure 5.2. The creation of these 3-dimensional configuration obstacles
can by done by using swept volumes.

Figure 5.2: An obstacle in the configuration space of a rotating and translating robot

Assembly Planning Swept volumes are applied to resolve maintainability issues that arise during the design
of complex mechanical systems. The designer needs to be able to create and visualize the accessibility and
removability of individual components of the system. While removing an object from the assembly, there is the
need for a safe and feasible trajectory. A safe trajectory is one that a component can follow without colliding with
other components of the assembly. A feasible trajectory is often defined to be a trajectory that can be performed
by a human [27],[34].

Numerical Control Path Planning Swept volumes are used to show the removal of material by a tool [51].
Collision with other obstacles can be detected, and one can find out whether a workpiece after being machined
has the same shape and dimensions as prescribed [8],[35].

5.3 Related Research

Research on swept volume generation has received considerable attention over the last decade.
Restricting the motion to translational only is dealt by Leu, Park and Wang [36].
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Wang and Wang [51] present a solution that uses a 3D z-buffer to compute a family of critical curves from
a moving solid. They restrict the generating object to a convex set. Their approach is driven by the need to
compute numerical control tool paths.

Weld and Leu [52] discuss the generation of a swept volume by a polyhedral object in the three-dimensional
case. They show that the representation of a swept volume in IR"™ generated from an n-dimensional object can
be reduced to developing a geometric representation from the swept volume of its (n — 1)-dimensional boundary.
In other words the volume swept by a moving polyhedral surface can be computed by sweeping the boundary
elements (polygonal facets) of the polyhedral surface together with the polyhedral surface itself at a finite set
of specific positions during the sweep. They analyze the volume swept by a polygon in three-dimensional space
and show that this volume is bounded by copies of the polygon at its initial and final positions, ruled surfaces
generated by sweeping of the polygon edges, and in special cases, volume swept by the interior points of the
polygon (called developable surfaces). They observe that those special cases occur when successive instances of
the polygon at times ¢ and ¢ + &’ intersect each other (for ¢’ > 0).

Martin and Stephenson [37] use envelope theory to generate the swept volumes of three-dimensional objects.
They provide a general solution, but for complicated sweeps this solution may take a prohibitive amount of
computer time.

In two-dimensional space, Sambandan, Kedem and Wang [43] develop a way for choosing the candidate vertices
and edges which eventually take part in the generated swept area. This technique has been used in later research
on 3D swept volume [32].

Blackmore and Leu and then Wang [5],[6],[7] present a differential equation method which produces exact
geometry of the swept volume.

An implicit modeling approach to swept volume generation is given by Schroeder, Lorensen, and Linthicum
[45]. They generate an implicit model by assigning a distance value from each voxel to the surface of the object.
Then the implicit model is swept through the workspace by sampling it as it is transformed along the sweep
trajectory. Finally the swept surface is generated using the iso-surface extraction algorithm marching cubes.

Abrams and Allen [2],[3] continue the topological approach of Weld and Leu. They use facet sweeping as well,
but they have added efficiency and robustness elements to it: They approximate both the ruled surfaces generated
by edge sweeping, and the developable surfaces. Yet, they encounter robustness problems with arrangement
computations.

Hu and Ling [32] use envelope theory for generating swept volumes of quadric surfaces. They describe motion
using the instantaneous screw-axis presentation. In their computations, they perform the sweep only on facets
which are candidates for contributing to the swept volume boundary.

Abel-Malek and Yeh [1] describe the boundary of swept geometric entities of multiple parameters. They define
a constraint function and impose a rank-deficiency condition on the constraint Jacobian of the sweep to determine
singular sets.

Xavier [53] presents a fast, implemented swept volume technique, aimed mostly for collision detection. Among
others, he uses polyhedral approximations of convex hulls.

5.4 Implementation

For our swept volume application we have chosen to implement the algorithm given by Abrams and Allen [3],
which matches our needs. Namely, it applies volume sweeping of a polyhedral body, moving along a general
trajectory in a motion that can be translational and rotational as well, and outputs a faceted approximation of
the result. The biggest drawback reported in [3] is the robustness problem, where the arrangement computation
fails due to floating point errors and degenerate cases. We have solved the problem by using our perturbation
package. We choose to perform the arrangement computation by the vertical decomposition algorithm described
in [15], extended to the case of polyhedral surfaces. This algorithm requires degeneracy-free input, hence before
using it we apply our perturbation package.

We present here a robust version of the swept volume algorithm, based on the algorithm given by Abrams
and Allen at [3]. The algorithm ignores voids, since they are of no interest to most of the practical uses of
swept volumes (some of the swept volume papers explicitly say that they ignore voids). The following algorithm
computes the swept volume S(P,T') of a polyhedral surface P and a trajectory T

1. For each of the n Polygons p; of P, do the following:
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(a) Step each edge of p through the trajectory T' using any step size At, connecting adjacent copies of each
edge by forming triangles. Call this set of triangles F.

(b) Add a copy of p at its initial and final positions to F.

(c) Run the Sliding Motion Test (as detailed in [3]) on p;, using the same step size At. Add all of the
facets generated by this algorithm to F.

(d) The set F is now a superset of the boundary of the actual volume swept. Apply the robustness
scheme on set F and then, using vertical decomposition, compute the set A = Arrangement(F).

(e) Traverse the boundary of the infinite cell, i.e., the outer-most boundary of A. This is V;, or S(p;, T).
2. Compute V =i, Vi.

We have implemented this algorithm, and indeed, we have not encountered robustness problems when using it.



Chapter 6

Experimental Results

We have implemented our scheme and proven it in practice. In this chapter we present our experimental results.

Three more variables besides n, K, D, L,V affect the results. In a given collection of polyhedral surfaces, let
k be the number of facets intersecting a given facet, d the number of expanded facets intersecting a given grid
cube, and [ the length of a given edge. Thus K, D and L are the maximum of k, d and [. Let k, d and [ denote
the average values of k, d and [ respectively. Timing results are affected more by the average values than by the
maximum values, and therefore we report them in some of the tables as well. All timings were done on a Pentium
IT 450MHz and 512MB RAM, under Linux. The objects tested in Tables 6.1, 6.2 and 6.4 can be found in [41].
Many of the software classes used in our implementation belong to the CGAL' library.

In Table 6.1 we give time results for several swept volumes, which differ in the number of input facets. In the
results we specify the time needed to remove inherent degeneracies. In order to supply a basis for comparison,
we use e=1e-8 and d=le-4 for all the experiments, and choose all examples to be the swept volume of the
same generator moving along the same trajectory. Our swept volume application enables a trajectory refining
mechanism, and by using different refinement levels we obtain a different number of facets for each object. Notice
that K,k,L,l, and V are also affected by the refinement level. This table also illustrates that d is affected by
the density of the facets rather than by their number: the refinement process increases the density of the facets
significantly, and indeed its effect on d is striking. The swept volume of 302 facets is depicted in Figure 2.1.

n K| k d L I \% time

62 6 | 0.8 11.8 | 1794 | 9254 | 33 1.01

302 9 | 04228 |909.9 | 625.5 | 153 9.35
1202 || 9 | 0.3 | 73.3 | 900.6 | 588.5 | 603 || 123.49

Table 6.1: Time (in seconds) to remove inherent degeneracies. The objects are swept volumes of the same
generator moving along the same trajectory, in different refinement levels. Changes in K, k, d, L, [, and V are
shown too.

In Table 6.2 we show the tradeoff between the magnitude of the perturbation and the efficiency of the com-
putation, introduced by varying values of § and €. The perturbation procedure is run on a swept volume of 842
facets, with ¢ that varies in the range [le — 3,1e — 8] and ¢ that varies in the range [le — 1,1e — 6]. This table
illustrates that the theoretical bounds obtained for ¢ in Section 3.6 are crude and that in practice these bounds
are much smaller.

A large portion of the research concerning 3D arrangements deals with triangles. In Table 6.3 we test ar-
rangements of random triangles, where each triangle has a random origin limited to a cube of a given size, and
a random orientation. The cube size affects the density of the triangles, and we compare running time and the
intersection parameter K for different density levels. We have chosen cube sizes of 10, 30 and 80 in order to
achieve dense, medium dense and sparse inputs respectively. For all inputs we use triangles with average edge
length of 5, and compare results for different groups of edge lengths, namely uniform length of 5, two different
lengths (2 and 8) and random lengths in the range [0-10).

LCGAL: Computational Geometry Algorithms Library, see http://www.cs.uu.nl/CGAL
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e | le-3 led le-5 le6 le-7  1le-8
le-1 | 48.03 45.48 4247 41.11 41.08 39.94
le-2 48.06 46.29 43.96 43.30 40.33
le-3 48.14 45.85 43.56 43.04
le-4 46.36 44.03 43.97
le-5 52.34 4442
le-6 48.41

Table 6.2: Time (in seconds) to remove inherent degeneracies, introducing the tradeoff between the magnitude
of the perturbation and the efficiency of the computation. The examined object is of size 842 with k of 0.4 and
d of 31.3.

dense: 10 medium: 30 || sparse: 80
K [ time || K| time K | time
uniform size: 5 50 | 401.5 || 5 14.7 1 3.9

2 sizes: 2,8 63 | 552.1 || 8 18.9 2 4.0

random size: [0-10) | 77 | 4054 || 9 17.8 2| 4.2

Table 6.3: Time (in seconds) to remove inherent degeneracies and K values, for a collection of 500 random
triangles. Triangles edge lengths are specified in the leftmost column. Cube edge lengths (bounding triangles
origing) are specified in the uppermost row.

In Table 6.4 we compare the time ratio for removal of inherent degeneracies out of swept volumes that have
some extreme characteristics. The examined ratios are the ratio of time spent during the local step, global step and
during connectors manipulation, out of the total time of inherent degeneracies removal. (Notice that connectors
manipulation is a part of the global step). The first volume has no degeneracies at all, the second one (depicted
in Figure 6.1) has a dense intersection area that lowers the chances of finding a valid perturbation, the third one
has only local degeneracies, and the fourth one has degeneracies that induce a large number of connectors. A
one dimensional illustration of the fourth volume is depicted in Figure 6.2. We use e=1e-8 and d=1e-3 for all the
experiments, and choose all of the examined volume sizes to be between 916 to 932 facets. Although the sizes of
the four models are almost the same, their d values are significantly different, as their densities are different.

file name | k [ d | total | 35 [ 9557 [ 5 |

no_deg 0 | 175 | 171 | 0.2 0.8 | 0.003
degenerate | 2.5 | 26.9 | 76.7 | 0.09 | 0.91 | 0.08
local deg | 0.3 | 581 | 73.6 | 0.23 | 0.77 | 0.002
many_ con | 1.7 | 6.5 | 393.4 | 0.01 | 0.99 | 0.26

Table 6.4: Time ratio for removal of inherent degeneracies out of swept volumes that have some extreme charac-
teristics. The total time is given in seconds. All tested objects have similar size of about 925 triangles.

K and D are defined as the maximum values during the perturbation running time. In order to simplify
certain coding and debugging procedures, the K, k, D and d values given here are the static values that have been
obtained before the perturbation has been run. As explain in Section 2.3, those values are good enough, since §
is very small and therefore the number of facets intersecting a single facet (for K, k) and the number of expanded

facets intersecting a single cube grid (for D,d) hardly change during running time.






Chapter 7

Improvement

In this chapter we suggest an improvement over the perturbation scheme that has been presented so far.

Why Do We Need an Improvement? We say that facet f; is influenced by facet fo if f, affects the
perturbation distance of f;. The obvious ways for influencing a facet are by intersecting it or being € close to it,
but there are also indirect ways, as described in the example below.

In our scheme we assume that a certain facet can be influenced only by the facets that intersect it, i.e., we
assume that the number of facets influencing a certain facet is bounded by K (recall that K bounds the number
of facets intersecting a single fact).

This assumption is good enough for practical cases, i.e., real world input data, and makes the exposition of
our ideas simpler. However, since we want our scheme to cover also theoretical cases, we now turn to relaxing
this assumption.

We do not make the improvement an integral part of the perturbation scheme, since it is needed only for non
realistic inputs, whereas this thesis is motivated by real world (and mostly industrial) inputs. We present the
improvement in order to show that we have a solution even for the most difficult theoretical inputs.

Example Here is an example in which the maximum number of facets influencing a single facet is greater than
K.

Suppose that every planar layer in Figure 7.1 is an arrangements of 100x100 planar triangles that are 1.5
away from each other. Suppose the input data consists of 100 such arrangements, ordered vertically one on top
of the other, with a space of 1.5¢ between every two layers. So far we described a perfectly robust arrangement
of 100 triangles. Once this arrangement is given as input to our scheme, there will not be a single change in
it. Now suppose the 100% + 1st triangle of the input data is a horizontal triangle that is located in the center of
the arrangement of 100% triangles that have already been processed. This last triangle induces a degeneracy of
type vertez-facet, and therefore needs to be perturbed. Its K value is at most 26, but the minimum perturbation
distance that assures a valid placement is outside the arrangement of 100% triangles. In other words, the number
of triangles influencing the last triangle is not bounded by K.

Solution Let ¥ be the maximum number of facets influencing a single facet. Namely, for a given facet f we
look for the maximum number 9 (f) of facets that could have any effect on the perturbation distance of f at any
stage of our algorithm. ¥ is the maximum v (f) over all facets f in the collection P of input polyhedral surfaces.

¥ replaces K in the formula of 4, so we get that §; = 6.31¢/6T/3LV1/3 and §, = 2.15e/5ULV'/3. Recall
that § = §; + da.

¥ is equal to K in most inputs but may be as large as n in pathological inputs, but ¥ is not known in advance.
Therefore we perform a binary search for ¥. We start by guessing ¥ = 1, and if a valid location is not found for
every degenerate input data (i.e., a constant number, say four, of guesses resulted in an invalid location), then
we multiply the guess by two. The algorithm is guaranteed to stop once our guess is greater than or equal to the
actual ¥.

The binary search increases the running time by a factor of log ¥, and the new expected time is O(n log® n log ¥+
nDK?log ¥). Notice that the working storage and the output size do not change.
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Figure 7 .1: An arrangement of triangles where the maximum number of facets influencing a single facet is greater



Chapter 8

Conclusion

We have presented a perturbation scheme for a collection of polyhedral surfaces in 3D space. The scheme
overcomes degeneracies and precision problems. It is useful for applications that use such polyhedral surfaces,
allowing them the usage of finite precision arithmetic and saving them the need of handling degenerate cases. Our
scheme takes [29] one step ahead, extending it from spheres into the more difficult case of polyhedral surfaces. We
have solved the difficulty of removing both local and global degeneracies by introducing the usage of terrains, and
have taken into consideration degeneracies derived out of the fact that polyhedral surfaces may have arbitrarily
many degrees of freedom.

The key idea of our scheme is that for a given resolution parameter £ > 0 we slightly perturb the input data
such that features of the three-dimensional arrangement of the polyhedral surfaces are at least £ apart. We have
presented a tradeoff between the magnitude of the perturbation and the expected running time of the scheme,
and have shown that using a smaller perturbation size (which is a favored option) may result in larger expected
running time.

We have presented experimental results obtained while using standard floating point arithmetic and introduced
fairly efficient running time. The algorithm that we have presented is simple and easy to program.

The initial motivation for developing the perturbation scheme is a swept volume application, which employs
vertical decomposition as its final step. The vertical decomposition algorithm allows no degenerate input, and we
have created our perturbation scheme in order to supply the vertical decomposition algorithm a degeneracy-free
input.

An obvious limitation of our approach, is that we actually move the input geometric objects from their given
placement, and that the connectors change the original structure of the input data. However, all those changes
are small and bounded, and we believe that there are many applications that permit such perturbation of the
input objects, since often their precision is limited to start with (due to measurement limitations, for example).

We propose several directions for future research:

1. Extend the perturbation scheme to non-manifold polyhedral objects, such as polyhedral subdivisions.

2. Optimize the partitioning sub-step, in the aspect of minimizing the number of terrain border edges (and
therefore minimizing the length of connectors). We conjecture that the optimization problem is NP-hard,
in which case we are interested in an approximation to the optimization.

3. Prove that § is bounded also for the case mentioned in Section 3.5, where more than two terrains meet at a
point. We remind the reader that such a case works well in practice, but has not been proven yet in theory.
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Appendix A

Inherent Degeneracies

In this appendix we give the full list of inherent degeneracies, and explain why most of the degeneracies are special
cases of others.

A.1 Full List of Inherent Degeneracies

Recall that we refer to five features of the arrangement: vertex, edge, facet, intersection of two facets (segment),
and intersection point of three facets (intr3). A degenerate case is incurred whenever any of the above features is
too close to [intersects] any of the other features. The only intersection that is not considered degenerate is when
an edge or a segment penetrates the interior of a facet, thus causing an intersection of two or more facets. Recall
that we use square brackets for terms that would have been used had we been using exact arithmetic.

vertex-verter A vertex is too close to [overlaps| another vertex.
vertex-edge A vertex is too close to [touches] a non-incident edge.
vertex-facet A vertex is too close to [touches| a non-incident facet.
vertex-segment A vertex is too close to [touches]| a non-incident segment.
vertez-intr3 A vertex is too close to [overlaps| a non-incident intr3.
edge-edge An edge is too close to [intersects] a non-incident edge.

edge-facet An edge is too close to overlapping a non-incident facet. [An edge and a facet are contained in the
same plane and intersect each other].

edge-segment An edge is too close to [intersects] a non-incident segment.
edge-intr3 An edge is too close to [contains| a non-incident intr3.

facet-facet A facet is too close to overlapping a non-incident facet. [Two facets are contained in the same plane
and intersect each other].

facet-segment A segment is too close to overlapping a non-incident facet. [A segment and a facet are contained
in the same plane and intersect each other]. Also: [Three facets intersect in a line].

facet-intr3 A facet is too close to [contains] a non-incident intr3. [Four facets intersect in a point].
segment-segment A segment is too close to [intersects] a non-incident segment.
segment-intr3 A segment is too close to [contains] a non-incident intr3.

intr3-intrd An intr3 is too close [overlaps] a non-incident intr3.
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A.2 Special Cases
Some of the above pairs are special cases of other pairs:

vertex-vertexr is a special case of degeneracy of type vertez-facet.
vertex-edge is a special case of degeneracy of type vertex-facet.
vertex-segment is a special case of degeneracy of type vertex-facet.
vertex-intr3d is a special case of degeneracy of type vertez-facet.

edge-facet is divided to the following cases:

is a special case of degeneracy of type vertez-facet.

[ Nisa special case of degeneracy of type edge-edge.

L isa special case of both degeneracy of type vertez-facet and edge-edge.
edge-intrd is a special case of degeneracy of type edge-segment.
facet-facet is divided to the following cases:

IASN

is a special case of degeneracy of type vertez-facet.

is a special case of degeneracy of type edge-edge.

L Nisa special case of both degeneracy of type vertez-facet and edge-edge.

facet-segment is divided to the following cases:

B is a special case of degeneracy of type edge-segment.

(Let s and f be a segment and a facet that induce degeneracy of type facet-segment. Let f; and fo be the
facets that created s. A segment endpoint is always contained in an edge. Assume the endpoint of s touches
edge e of facet fi. f and f, intersect, and create another segment, s;. Now if f and s induce degeneracy of
type facet-segment, then e and s; induce degeneracy of type edge-segment.)

[ Nisa special case of degeneracy of type edge-segment.

L Nisa special case of degeneracy of type edge-segment.

segment-segment is a special case of degeneracy of type facet-intrs3.



segment-intr3d is a special case of degeneracy of type facet-intrs3.

intr3-intrd is a special case of degeneracy of type facet-intrs3.



Appendix B

Bounding the Size of 0

In this appendix we give more details on the shape and volume of forbidden loci that induce degeneracies. The
size of ¢ is computed according to those volumes. Notice that although the analysis is complicated, it is being
used only for proving that our theory is correct; in practice the perturbation scheme remains simple and easy to
implement.

B.1 Preliminaries

In this section we describe our notation and certain preliminary calculations which are related to computing
forbidden loci.

B.1.1 A Brief Reminder
B.1.1.1 General

K denotes the maximum number of facets intersecting any single facet

L denotes the maximum edge length

V denotes the maximum number of vertices in one polyhedral surface

d1, 02 denote the maximum perturbation radi for the local and global steps respectively.

0 is defined as the sum of §; and 6.

B.1.1.2 Local Step

We remind the reader that we remove the local inherent degeneracies in each polyhedral surface locally, by an
incremental procedure where we add the vertices of each surface one by one and if a degeneracy is detected we
only perturb the last vertex that has been added.

Recall that P = {Py, P», ..., Py} is a collection of m (possibly intersecting) polyhedral surfaces and that s; is
the number of vertices in P;, 1 < i < m. Recall that v1,vs,...,vs, is an ordering of the vertices in F;. Recall that
@, denotes the data structure that was generated while processing vertices vy, vs,...,v,, 1 <r < s;. @, contains
the possibly perturbed vertices vy,vs,...,v,, and all the edges and facets of the current polyhedral surface P;,

whose incident vertices are in {vy,vs,...,v,}.

B.1.1.3 Global Step

We remove the global inherent degeneracies by an incremental procedure where we add the terrains one by one
and if a degeneracy is detected we only perturb the last terrain that has been added.

Recall that T = {T},...,T;} is an ordering of the polyhedral terrains that have been created out of all the
input polyhedral surfaces. Recall also that con(T;) denotes the set of connectors created when the possibly
perturbed T is stitched to formerly incident terrains 7%, k < j, and that M; denotes the data structure that was
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generated while processing terrains 1,...,7, 1 <j <[. M; is a collection of polyhedral surfaces comprised of the
possibly perturbed T, ...,T; and the connectors con(T1), ..., con(Ty).

B.1.2 Definitions of Symbols

L := L + 26; denotes the maximum edge length after perturbing both endpoints.

Eoo—typel—typeZ, Eoc—typel—typeZ—subcase, Fglob—typel—typeZ—O, Fglob—typel—typeZ—O—subcase denote the set of for-
bidden loci for a certain degeneracy. The initial loc/glob denotes whether a local/global degeneracy is being
dealt with. The loci is for the removal of degeneracy of type typel —type2 where v, e, f,s,¢ represent
vertex, edge, facet, segment, intr3 respectively. Then the case which is dealt is specified (0 in the example
here), and if there is a sub-case, then its number is also specified.

For local degeneracies, Fioetypei—type2 and Floctypei—itype2—subcase denote the volume which is forbidden for
placements of the currently added vertex v,.. For global degeneracies, Fyiop—typei—type2—0 and Fyioptypei—type2-o—subcase
denote the forbidden translation vector of the currently added terrain 77;.

S1 @ S2 denotes the Minkowski sum of sets S; and S». Similarly, S; © S5 denotes the Minkowski sum of S; and
—Ss, where —Ss := {—q | ¢ € S2}. Recall that the Minkowski sum of two sets of points S; and S, denoted
S1 & Sy, is defined as S; & Sy :={p+q|p € S1,q € S2}.

Set(type, object) denotes the set of geometric entities of type type which are contained in object. For example,
Set(vertex, M;_1) is the set of vertices in M;_1, and Set(intr3,T;) is the set if intr3 in T}.

Volume(entity) denotes the volume of a three-dimensional geometric entity.
Area(entity) denotes the area of a two-dimensional geometric entity.

MazxzInter(ent,,ents) denotes the maximum number of entities of type ent; that entities of type enty might
intersect. Since we are dealing with floating point arithmetic, MazInter(ent,,ents) can be interpreted
as the maximum number of entities of type ent; that might be too close to entities of type ents. The
possible values are shown in Table B.1. The empty squares in the table are for values which are not used
in volume computation. Notice that some of the values are influenced by the order of degeneracy removal.
For example, MazInter(edge, edge) could have been 3K for the case where an edge intersects a vertex and
an opposite edge of a triangle, but it is 2K because this check is being done after degeneracies where an
edge is close to a vertex are removed.

ents facet | edge | vertex

enty

facet K K
edge 2K 2K
vertex 3K 2K
segment (’2{)

intr2 2(%)

s | (%) | (%)

Table B.1: MaxInter(enty,ents) denotes the maximum number of ent; that ents might intersect.

N denotes the maximum number of vertices on the boundary of a polyhedral terrain. Then N is also the
maximum number of edges on the boundary of a polyhedral terrain.
B.1.2.1 Symbols and Lengths Related to Connectors

In the global step, polyhedral surfaces are being split into a number of terrains, and all edges and vertices that
belong to the boundary of terrains are duplicated.
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Let e be a boundary edge in M;_;. Let e’ be its instance in T;. Let v and u be the vertices of e. Let their
instances in T; be v’ and ', respectively. After the perturbation of T}, e and €', v and v', and u and «' no longer
overlap. Let H be the connector created between e and e’. H is composed out of two triangles. See Figure B.1.

The maximum length of the edges (v,v') and (u,u’) is d2, and therefore the maximum length of the diagonal
edge (u,v") is L + Js.

Figure B.1: A typical connector.

B.1.2.2 Expanded Shapes

Let the term p-expanded shape denote the Minkowski sum of a planar polygon/edge/vertex and a 3D ball B(0, i),
where p is a positive real number. For polygonal shapes, the maximum edge length of each is L.

Let Exp(u,S) denote the p-expansion around the shape S.

We compute here the volume of a variety of u-expanded shapes.

u-expanded edge ( or Exp(u,edge) )
4 4
Volume = Lmp? + §7T,U3 =mu? (L + §'u)

The first term in the sum is the volume of a cylinder. The second term in the sum is the volume of two half
balls, one at each endpoint of the edge.

u-expanded triangle ( or Exp(u, triangle) )

1, 1, , 14 .
Volume = 2u25 +3 2£7ru +22 3 TH
3 10
WL + Srlp+ —=mp’)

The first term in the sum is the maximum volume of a triangular prism. The second term in the sum is the
volume of three half cylinders. The third term in the sum is the volume of 2% balls in the corners. (There
are three balls, but the volume of half a ball should be subtracted since it is internal to the triangular
prism).

pu-expanded parallelogram ( or Exp(u, parallelogram) )

1 4
Volume = 2ul?+4- §£7ru2 +3- gmﬁ

= 2u(L? + 7Ly + 2mu?)
The first term in the sum is the maximum volume of a parallelogram prism. The second term in the sum

is the volume of four half cylinders. The third term in the sum is the volume 3 balls in the corners. (There
are 4 balls, but the equivalent of of a single ball is internal to the prism).
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B.1.3 Infrastructure Resolution Parameters: p and A

The invariants defined in Sections 3.4 and 3.5 require that every pair of geometric entities is at least e-away from
each other. In this section we tighten the requirements.

During our degeneracy removal procedure, we use more crude resolution parameters for specific pairs of
entities. The additional resolution parameters are named p and A. The situations where p and X\ distances are
ensured, are where we create an infrastructure for a safe removal of other degeneracies. The sections that deal
with ensuring infrastructure distance explicitly mention that in their headers.

Let p be a positive real number such that p > ¢. Both p and % should be very small.
Let A be a positive real number such that A > p. Both A and § should be very small.

Next we explain the situation that raises the need for p. In Figure B.3 there are two sectors of a circle. We
tell more about these sectors in Section B.1.4.2; and here we treat them as granted. For both sectors we need to
prove that the upper bound of their area is very small. An area is considered ‘very small’ if it is influenced by &
or some other small resolution parameter.

The upper bound for the area of the sectors in Figure B.3 is achieved when the angle a reaches its upper
bound. We show in Section B.1.4.2 that sina = m for the sector in Figure B.3(a) and that sina = m
for the sector in Figure B.3(b). This means a becomes larger as d(v,w) or d(v', w) become smaller. According to
our robustness requirements, d(v,w) > ¢ and d(v’,w) > €, and therefore in both cases sina < £, which means a
is bounded by 90°. Thus the sector is bounded by half a circle, the area of which is not influenced by e nor any

other resolution parameter, and we cannot claim that such an area is very small.

We solve this problem in the following way: Whenever two entities ent;,ents participate in the formula

m, we make sure that the distance between those entities is greater than p. Therefore we get

that sina < %, which causes the area of the sector to be influenced by % and therefore be very small.

sina =

The need for A\ arises because of similar reasons, where sina = m and thus we make sure that
d(ent1,ents) > X .
The actual values of p and A are determined only at the final stage of the computation.

Table B.2 shows which entities should be more than e-away from each other (namely p-away or A-away from
each other). In addition it points to the degeneracy removal procedures that require those extra terms.

Requirement Used
Term | Fulfilled in Section For removal of degeneracy | In Section
d(v,e) > p B.3.1.2 vertex-facet (global, special case) B.3.1.4
where v, e are in different terrains edge-edge (global, special case) B.3.2.2
and e is a boundary edge edge-segment (global, special case) B.3.3.2

edge-segment (global, special case) B.3.3.3

edge-segment (global, special case) B.3.3.5

facet-intr3 (global, special case) B.3.4.2

facet-intr3 (global, special case) B.3.4.3

dv,f)>p B.3.1.3 edge-segment (global, special case) B.3.3.6

where v, f are in different terrains
and v is a boundary vertex

d(v,e) > p B.2.2 vertez-facet (local) B.2.3

where v, e are in the same surface edge-edge (local) B.2.4
vertez-facet (global, special case) B.3.1.5

edge-edge (global, special case) B.3.2.3

edge-segment (global, special case) B.3.3.4

d(vi,v2) > A B.2.1 vertez-edge (local) B.2.2

where v, vs are in the same surface

Table B.2: The list of entities that should be more than p- or A-away from each other, and pointers to the
procedures where those extra terms are used. The symbols v, e, f denote vertex, edge and facet respectively.
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B.1.4 Basic Computations

The computations in this section are fundamental and used in several places later on.

B.1.4.1 Bounding the Number of Edges and Facets

According to Euler’s formula applied to the case of possibly no outer face, v + f — e > 1, and since every facet is
triangular, so e > % - f, we get:

e The maximum number of facets in a polyhedral surface is 2V — 2.
e The maximum number of edges in a polyhedral surface is 3V — 3.

Notice that these values are also bounds for polyhedral terrains.

B.1.4.2 Bounding the Volume of a Sphere Slice

Let vstatic be a vertex whose location has already been determined. Let vgynqic be a vertex that shares an edge
(Ustatics Vaynamic) With Ustaric, and whose location has not yet been determined.
The situation as described above can happen both in the local and the global steps:

Local step vaynaic is the vertex that is currently being added to the data structure Q,. (Vaynaic is denoted as v,
in Section 3.4). vgynaic induces an edge (Vstatic, Vdynamic) Where vsqric has already been located in a former
stage.

Global step vgynaqic is @ boundary vertex of a polyhedral terrain 7} that is currently being added to the data
structure M. Ustatic is the vertex from which vgynaic has been split, and belongs to a terrain that has
already been located in a former stage. vaynaic creates an edge (Ustatic, Vaynamic) i the connector con(Tj).
In the symbols defined in Section B.1.2.1, vsq44c is equivalent to v and vgynaeic is equivalent to v'.

Let len denote the maximum possible length of the edge (vsiqatics Vdynamic)- For the local step, it is the maximum
length of an edge, i.e., L. For the global step, it is d» for a connector edge that connects two vertices that were
formerly split (like (v,v') in Figure B.1) and £ + d- for a connector diagonal (like (u,v') in Figure B.1).

The full range for perturbing vaynaic is the sphere B(vstatic, len). In our computations, we try to identify the
sub volume of this sphere, in which locating vgynqic induces a degeneracy.

Usually we bound this ‘forbidden’ volume in a sphere slice. In Figure B.2 such a slice is shown for the
parameters Usigric = U, Udynamic = V', len = 02, and therefore fits the creation of a connector in the global step,
with symbols as defined in Section B.1.2.1. Notice that vgyneic can be located anywhere inside the sphere slice.

\

Figure B.2: A slice of a perturbation range sphere. vsiatic = v, Vaynamic = V', len = 0.

Let the term azis denote the sphere pole that connects the vertical facets of the slice.
Our goal is to compute the volume of the slice. Let 2« denote the angle of the sphere . (We use 2« for reasons
that will become clear later).
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The usual way of calculating a volume of a sphere slice is g—i - %w -len®. The way of obtaining « is by looking

at the center cross section of the sphere slice (drawn inside Figure B.2), which is a disc sector.

Let w be a point in the plane of this sector. w belongs to an entity whose location has already been set
(the type of that entity changes according to the degeneracy which is being dealt with), and we want w and
(Ustatics Vaynamic) to be at least € away from each other. The sector is the union of potential locations of vaynaic,
where d(w, (Ustatic, Vaynamic)) < €. In other words, the sector is the union of potential locations of vqynaic, where
B(w,¢) (in two dimensions) and (Vsiatics Vdynamic) intersect.

Let Slice(w, Ustatics Vaynamic, len) denote the sphere slice of forbidden loci for vgynamic , Where vgqtic is the
vertex that has already been located, w is a geometric entity that determines the slice angle, and len is the radius
of the sphere.

There are two cases when computing the angle of the sector:

1. The location of w is already set, i.e. it cannot be moved. In addition d(w,vstatic) > p-

2. The location of w has not yet been determined, and w is rigidly attached to vaynaic (i-¢. w moves whenever
Vdynaic moves and the distance and direction between them is constant). In addition d(w, vaynamic) > p-

Using the sector as it is induces a rather unwieldy formula, involving sin and arcsin operations. In order to
simplify the calculations we have bounded the sector by a triangle. Let the the length of the new created edge
be 2b. See Figure B.3, drawn such that vstatic = v, Vaynamic = V', len = 6.

Vv

@ (b)

Figure B.3: A cross section of Slice(w,v,v’,d2). (a) Smallest sector for case 1. (b) Smallest sector for case 2.

In both cases we get the smallest possible sector if the circle B(w,€) is tangent to the sector. The tangency
is from the inside in case 1 (Figure B.3(a)) and from the outside in case 2 (Figure B.3(b)).

Our worst-case for volume is when a reaches its maximum possible value.
In case 1 sina = ﬁ and in case 2 sina = ﬁ. This means that a becomes larger as

statics dynamic,
d(Vstatic, w) (in case 1) or d(Vaynamic, w) (in case 2) become smaller.

The minimum value for both d(vsiatic, w) and d(vVaynamic, w) is p, so we use p in order to find out what is the
worst-case.

2
sina = # <t = b’ < 57len2

Vien2 +b2 ~ p — p?—e?
Let A denote the bounding triangle of the sector.
b-len € 2
- < len
2 / p? — &2
Hence a bound on the ratio between the area of the sector and the area of a circle of the same radius is:

2a _ Area(sector) < Area(A) < 1 €

Area(A) =2

2m - len? — melen? T o /p2 —¢£2
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Using the ratio g—g, we can bound the sphere slice volume.

2a0 4 4
Volume(sphere slice) = % 37T len® < g\/ﬁlmﬁ
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B.2 Computing Forbidden Volumes for the Local Step

Suppose the incremental procedure of the local step has been carried out successfully for the first r — 1 stages.
The incremental procedure guarantees that there are no local inherent degeneracies of types wvertex-facet and
edge-edge in Q1. We would like to find a location for v, so that no local degeneracy of type wvertez-facet or
edge-edge is induced.

Notice that in some of the computations we need to use the maximum degree of a vertex, for example, when
considering all edges incident to the vertex v,. In such cases we choose a crude bound, and use the maximum
number of edges in a polyhedral surface (when considering edges which are incident to v,.) or the maximum
number of facets in a polyhedral surface (when considering facets which are incident to v,.).

Recall that sections which ensure p or A distances explicitly mention the word ‘infrastructure’ in their headers.
B.2.1 Removing Degeneracy of Type vertex-vertexr (Infrastructure)

Geometric Analysis For every vertex v in @,_1, we would like to have d(v,v,.) > A. Therefore

Floery = Set(vertex, Q,—1) ® B(0, \)

Volume Computation We are looking for the product of:

e The maximum number of vertices that a vertex might overlap within the same polyhedral surface, K.

e The volume of a A-expanded vertex.

4
Volume(Floepy) < §7TK)\3

B.2.2 Removing Degeneracy of Type vertez-edge (Infrastructure)
Geometric Analysis Such a degeneracy can be induced in two ways:

1. The vertex is in @),_1 while the edge is created by v,.

2. The vertex is v, while the edge is in Q,_1.
The analysis is as follows:

1. For every vertex v in @,_1, and for every edge e that v, creates, we would like to have d(v,e) > p.

Let vy be one vertex of @Q,_1, and let v; be a vertex with which v, is going to have a mutual edge. See
Figure B.4.

Figure B.4: Forbidden volume for the location of vertex V.
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The edge (v1,v,) induces a degeneracy if it intersects B(vg, p). Therefore forbidden placements of v, are in
the rays starting in v; and intersecting B(vg, p). Those rays length is bounded by £. The geometric shape
of forbidden placements is a cone-like shape, with a spherical base.

Let Cone(vg,v1,v,) denote the cone of forbidden loci for v, , where vg, vy, v, are as defined above. Then
Foey o1 = {Cone(vo,v1,v,)|vo,v1 € Set(vertex, Qr—1)}
2. For every edge e in @).—1, we would like to have d(e,v,) > p. Therefore
Flocw—en = Set(edge, Qr—1) ® B(0, p)

Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric

analysis.

1. We bound the shape in Figure B.4 in a cone, as in Figure B.5.

Figure B.5: Bounding the forbidden volume in a cone.

Let b be the radius at the base of the bounding cone, and let a be the angle at the apex of the cone as in
Figure B.5. We are looking for a worst-case volume, which is obtained by the largest possible b. We obtain
a bound for b by looking at the center cross section of the bounding cone. This cross section looks like a
sector and has the same characteristics as the sector in case 1 of Section B.1.4.2, where the only difference
is that p should be replaced by A and e should be replaced by p. Therefore we can use the bounds obtained
for b in Section B.1.4.2:
2
Rgvﬂﬁﬁ

2
The volume of such a cone is Volume( Cone(vy,v1,v,)) = %va—_ﬂEB.

Now we are looking for the product of:

e The maximum number of edges in a polyhedral surface, 3V — 3.
e The maximum number of vertices that an edge might intersect, 2K .

e Volume( Cone(vg,v1,v;) ).

2
Volume(Floe v 1) < 21KV AQ”_ L

2. We are looking for the product of:

e The maximum number of edges that a vertex might overlap within the same polyhedral surface, 2K.

e The volume of a p-expanded edge.

4
Volume(Floe v e2) < 2nKp*(L+ gp)
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B.2.3 Removing Degeneracy of Type vertex-facet
Geometric Analysis Such a degeneracy can be induced in two ways:
1. The vertex is in )1 while the facet is created by v,.
2. The vertex is v, while the facet is in @,_1.

The analysis is as follows:

Figure B.6: Intersection of two half circles.

D

V3/2L

(@ (b)

Figure B.7: (a) Forbidden loci for v,. (b) Bounding the forbidden loci in a cylinder slice.

1. For every vertex v in @,_1, and for every facet f that v, creates, we would like to have d(v, f) > €.

Let vg be one vertex of (.1, and let e be the edge with which v, shares a facet. In Figure B.6 we depict
two half circles of radius £. The lower and upper half circles (including their interiors) are the collection
of edge endpoints for an edge starting from the lower and upper vertices of e respectively. The intersection
of the half circles is the collection of all possible locations for v,, i.e., all the places for a vertex connecting
two edges that start in the endpoints of e. The distance from the furthermost point of the intersection to
e is @ﬁ. The intersection is shown in Figure B.7(a), where we can see the three-dimensional shape that
bounds the forbidden loci of v,: Locating v, inside the volume in Figure B.7(a) creates a facet which is too
close to v if it intersects vo ® B(0,¢). Hence the forbidden loci are inside a slice where the planar facets
are tangent to vg @ B(0,¢). To ease our computations, we bound the volume of Figure B.7(a) in a cylinder
slice shown in Figure B.7(b). Let CSlice(vo,e,v,) denote the forbidden loci for v, referring to edge e and
vertex vg.

Hence
Floca—ja = {CSlice(v,e,v,) | v € Set(vertex,Qr—1), e € Set(edge, Qr_1) }
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Figure B.8: A cross section of C'Slice(vo,e,v;).

where e is incident to v,.

2. For every facet f in @Q,—1, we would like to have d(f,v,) > e. Therefore
Frocwt—o = Set( facet, Qr—1) ® B(0,¢)

Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric
analysis.

1. We denote the angle of the slice by 2a. The way of obtaining « is by analyzing the cross section of
the cylinder slice, which is a disc sector. The sector itself is depicted in Figure B.8, and has the same
characteristics as the sector in case 1 of Section B.1.4.2. (Notice that the sector radius in this section is
not equal to the one in Section B.1.4.2, but it does not influence the ratio g—ﬁ) Therefore we can use the
bounds obtained for 22 in Section B.1.4.2:

27T
2a<1 €
2T T /p?—e?

Using the ratio g—i, we can bound the cylinder slice volume.

2
Volume( CSlice(e,v,vr,)) = 2_a -ﬁﬂ'(\/?gﬁ)Q < Z
7r

I3

£3

Now we are looking for the product of:

e The maximum number of facets in a polyhedral surface, 2V — 2.
e The maximum number of vertices that a facet might intersect, 3K.
e Volume(CSlice(e,v,v,))

Hence the volume of forbidden loci for v,., referring to degeneracy of type vertez-facet, is:

volume( Floevp1) < 4.5

2. We are looking for the product of:

e The maximum number of facets that a vertex might overlap within the same polyhedral surface, K.

e The volume of an e-expanded triangle.

Volume(Fioe o) <eK(L*+ %Wﬁs + %Wsz)
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(b)

Figure B.9: (a) Forbidden loci for v,.. (b) Cross section of (a).

B.2.4 Removing Degeneracy of Type edge-edge

Geometric Analysis For every edge e; in @), and for every edge es created by v,., we would like to have
d(er,ez) > €.

Let vg € Set(vertex, @-—1) denote the other end of es. The full range for creating an edge es = (vg, v;) is all
the possible locations of v, inside the sphere B(vg, £).

We aim to identify the sub-volume of this sphere, in which locating v, induces a degeneracy of type edge-edge.
In Figure B.9(a) we show the forbidden loci for v,. Depicted is a sphere slice of radius £, centered at vg. The
azis of the slice is parallel to e;. Locating v, inside the sphere slice creates an edge ez, which is too close to e;
if it intersects e; @ B(0,¢). Hence the forbidden loci are inside a sphere slice where the planar facets are tangent
to e; ® B(0,¢).

Hence

Frocee = {Slice(e,v,v,,L) | e € Set(edge, Qr_1), v € Set(vertex, Qr_1)}

where Slice is defined in B.1.4.2 and v is incident to v,.

Volume Computation The situation here is the same as in case 1 of Section B.1.4.2, and using the volume
computed there, we get:

Volume( Slice(e,v,v,, L)) < g

Now we are looking for the product of:

e The maximum number of edges in a polyhedral surface, 3V — 3.

e The maximum number of edges that an edge might intersect, 2K .
e Volume( Slice(e,v, v, L))

Hence the volume of forbidden loci for v,., referring to degeneracy of type edge-edge, is:

volume(Fjpeer) < EBLI(VE3

p2—82
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B.3 Computing Forbidden Volumes for the Global Step

Suppose the incremental procedure of the global step has been carried out successfully for the first j — 1 stages.
The incremental procedure guarantees that there are no global inherent degeneracies in M;_;. We would like to
find a location for T} so that no global degeneracy is induced.

Recall that S; & S5 denotes the Minkowski sum of sets S; and S,, and that S; © S5 denotes the Minkowski
sum of sets S; and —S>.

B.3.1 Removing Degeneracy of Type vertex-facet
B.3.1.1 Volumes Induced by the Location of Two Polyhedral Terrains Relative to Each Other

Geometric Analysis Such a degeneracy can be induced in two ways:

1. The vertex is in M;_; while the facet is in Tj.

2. The vertex is in 7} while the facet is in A;_;.
The analysis is as follows:
1. For every vertex v in M,_;, and for every facet f in T}, we would like d(v, f) > €. Therefore

Flopo—ja1 = Set(vertex, M;_1) & Set( facet, T;) & B(0, p)

2. For every vertex v in T}, and for every facet f in M;_;, we would like d(v, f) > e. Therefore

Fyiobvf1-2 = Set( facet, M;_1) & Set(vertex T;) & B(0, p)

Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric
analysis.

1. We are looking for the product of:

e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of vertices that a facet might intersect, 3K.

e The volume of an e-expanded triangle.

IN

(2V —2)-3K (L% + gﬁms + EmsZ’)

Volume(Fygioh—v—f-1-1) 3

IN

1
6V Ke(L? + gﬁwe - 307“52)

2. We are looking for the product of:

e The maximum number of vertices in a polyhedral terrain, V.
e The maximum number of facets that a vertex might intersect, K.

e The volume of an e-expanded triangle.

1
Volume(Fyiopvfa-2) < KVe(L* + ;EWE + 307“32)

B.3.1.2 Volumes Induced by the Location of a Vertex Relative to a Boundary Edge (in Different
Polyhedral Terrains ) (Infrastructure)

Although this section deals with degeneracies of type vertex-facet, we deal here with degeneracies of type vertex-
edge. The reason is that we see this section as dealing with facet boundaries, rather than edges.
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Geometric Analysis Such a degeneracy can be induced in two ways:
1. The vertex is in M;_; while the boundary edge is in T}.
2. The vertex is in T} while the boundary edge is in M;_.
The analysis is as follows:
1. For every vertex v in M;_;, and for every boundary edge e in T}, we would like d(v,e) > p. Therefore

Fyiobvpo1 = Set(vertex, M;_1) & Set(boundary _edge, T;) & B(0, p)

2. For every vertex v in T}, and for every boundary edge e in M;_;, we would like d(v,e) > p. Therefore

Fyiob—v—foo = Set(boundary _edge, M;_1) & Set(vertez, T;) & B(0, p)

Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric
analysis.

1. We are looking for the product of:

e The maximum number of boundary edges in a polyhedral terrain, N.
e The maximum number of vertices that an edge might intersect, 2K .

e The volume of a p-expanded edge.

4
Volume(Fyiopyptoi1) < N-2K-mp?(L+ gp)

4
< 2aNKp*(L + gp)
2. We are looking for the product of:

e The maximum number of vertices in a polyhedral terrain, V.
e The maximum number of edges that a vertex might intersect, 2K .

e The volume of a p-expanded edge.

4
Volume(Fyiopyto-2) < 2rVEKp*(L+ gp)

B.3.1.3 Volumes Induced by the Location of a Facet Relative to a Boundary Vertex (in Different
Polyhedral Terrains ) (Infrastructure)

Geometric Analysis Such a degeneracy can be induced in two ways:
1. The facet is in M;_; while the boundary vertex is in 77}.
2. The facet is in T} while the boundary vertex is in M;_;.
The analysis is as follows:
1. For every facet f in M;_q, and for every boundary vertex v in T;, we would like d(f,v) > p. Therefore

Folobo—f—3 = Set( facet, M;_1) & Set( boundary_vertex, T;) & B(0, p)

2. For every facet f in T}, and for every boundary vertex v in M;_1, we would like d(f,v) > p. Therefore

Fylobo—f—3—=2 = Set(boundary _vertex, M;_1) & Set( facet, T;) & B(0, p)
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Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric
analysis.

1. We are looking for the product of:

e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of vertices that a facet might intersect, 3K.

e The volume of a p-expanded triangle.

3 10
Volume(Fyopops31) < 2V -3K- p(L? + §£7rp + gwpz)
3 10
< 6KVp(L%+ §£7Tp + Eﬂpz)

2. We are looking for the product of:

e The maximum number of boundary vertices in a polyhedral terrain, V.
e The maximum number of facets that a vertex might intersect, K.

e The volume of a p-expanded triangle.

3 10
Volume(Fyopypys32) < N-K- p(L% + §E7Tp + ?ﬂ'pQ)

3 10
< KNp(L?+ §E7Tp + ?ﬂ'pQ)

B.3.1.4 Volumes Induced by the Location of a Vertex in M;_; Relative to a Facet in Con(Tj})

Geometric Analysis For every vertex w in M;_;, and for every connector H created by a perturbation of T},
we would like to have d(w, H) > e.

Let e, e’,v,v', H be as defined in Section B.1.2.1. Let w be a vertex in M;_;. A degeneracy occurs whenever
H intersects the ball B(w,e). In Figure B.10 we can see the collection of all connectors H which are created by
e and e’ and intersect the ball B(w,e). Notice that the location of v and w is static, while the location of v’ has
not yet been determined. It is immediate that the location of the vertex v’ can define the characteristics of the
whole connector (i.e., its orientation, the location of u’', etc.).

525
&)
e \
e
v €
: 53 ,
B P Y
62|
Vl

Figure B.10: Volume of forbidden connectors, where d(v,v') < d;. (¢ and d2 are magnified for clarity).
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The range in which v’ moves in order to create connectors such as in Figure B.10 is a slice of a sphere, whose
axis is defined to be the line containing e. See Figure B.11. Locating v' inside the sphere slice creates a facet
which is too close to w if it intersects w @ B(0,¢). Hence the forbidden loci are inside a slice where the planar
facets are tangent to w @ B(0,&). The sphere slice Slice(w,v,v’,d2) denotes the forbidden placements for v', in
the context of (almost) intersecting w, where Slice is defined in B.1.4.2.

.V

Figure B.11: Slice(w,v,v’,ds).
Therefore
Fyiop—ga = {Slice(w,v,v',62) ©v' |w € Set(vertex, M;_1),v" € Set(boundary _vertex, T;)}

(v is determined by v').

Volume Computation The sector fits case 1 of Section B.1.4.2:
e H passes through the straight line between v and v’, and we would like this line not to intersect B(w,¢).
e w’s location is fixed.
e d(v,w) > p.

Figure B.12 is given here as a reminder. (The circle in the drawing is the two dimensional cross section of B(w, €)).

\Y

om

92

P
V’

Figure B.12: A center cross section of Slice(w,v,v’,d2).

Using the volume computed in B.1.4.2, we get:
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Volume( Slice(w,v,v',d2)) <

W =~
()
¥

Now we are looking for the product of:

e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of vertices that a facet might intersect, 3K.

o Volume( Slice(w,v,v’,d2) ).
Volume(Fyiop-o_p1) < 4K N—— 63

B.3.1.5 Volumes Induced by the Location of a Vertex in T; Relative to a Facet in Con(T})

Geometric Analysis For every vertex w in 7}, and for every connector H created by a perturbation of T}, we
would like to have d(w, H) > €.

Let e, e’,v,v', H be as defined in Section B.1.2.1. Let w be a vertex in T;. A degeneracy occurs whenever H
intersects the ball B(w,¢). See Figure B.13. Notice that the location of v is static, while the location of v’ has
not yet been determined. Unlike in Section B.3.1.4, the location of w has not yet been determined and depends
on the location of v'.

Figure B.13: A degeneracy induced by a vertex in T} which is too close to a connector of T}.

Let us look at the sphere slice in Figure B.11. We choose the axis of the sphere slice to be the line containing
e. Locating v' inside the sphere slice creates a facet which is too close to w if it intersects w @ B(0,¢). Hence the
forbidden loci are inside a slice where the planar facets are tangent to w®B(0, ). The sphere slice Slice(w, v,v’, §2)
defines the forbidden placements for v', in the context of (almost) intersecting w, where Slice is defined in B.1.4.2.

We first analyze the center cross section of the sphere slice.

Let Z be the vector v/ — w.

Simple case: ¥ is perpendicular to e.
Due to the fact that Z is perpendicular to e, & is contained in the plane of the center cross section.
The sector fits case 2 of Section B.1.4.2:

e H passes through the straight line between v and v', and we would like this line not to intersect B(w,¢).
e w is rigidly attached to v'.

e d(v',w) > p, only for the simple case (for now).

Figure B.14 is given here as a reminder.
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Figure B.14: A cross section of the forbidden volume.

General case: 7 is not necessarily perpendicular to e.

Let us create a line passing through w and parallel to e. Let w' be the intersection point of this line with a
plane passing through v' and perpendicular to e. See Figure B.15. w' is at the same distance from the connector
H as w is, so it induces the same forbidden loci for v’ as w does. Thus we have reduced the general case to the
simple case with w' now playing the role of w in the simple case.

Figure B.15: Obtaining the simple case out of the general case.

Notice that also in the general case we have d(v’',w’) > p: We have d(e’,w) > p and since the line (w,w’)

is parallel to €', we have d(e/,w') = d(e',w) > p. v’ is on €' so we have d(v',w’) > p. Therefore case 2 of
Section B.1.4.2 still holds.

Therefore

Foiobovg5 = {Slice(w,v,v',82) ©v' |w € Set(vertex,T;), v' € Set(boundary_vertex,T;)}

(v is determined by v').

Volume Computation Using the volume computed in B.1.4.2, we get:

€ 3

Volume(Slice(w,v,v',85)) < 85

Wl

p2—62

Now we are looking for the product of:
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e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of vertices that a facet might intersect, 3K.

e Volume( Slice(w,v,v’,d2)).
€

Volume(Fyopof—s5) < 4KN 53

B.3.2 Removing Degeneracy of Type edge-edge
B.3.2.1 Volumes Induced by the Location of Two Polyhedral Terrains Relative to Each Other

Geometric Analysis For every edge e; in M;_1, and for every edge e, in T}, we would like to have d(e1, e2) > e.
Therefore
Fiob-e—e1 = Set(edge, M;_1) © Set(edge, T;) & B(0,¢)

Volume Computation The Minkowski sum of 2 edges, illustrated in the following drawing, is a parallelogram:

V248

We are looking for the product of:
e The maximum number of edges in a polyhedral terrain, 3V — 3.
e The maximum number of edges that an edge might intersect, 2K.

e The volume of an e-expanded parallelogram.

(3V — 3)2K - 22(L? + Lme + 2me?)
12KVe(L? + nLle + 2me?)

VOlume(Fglob—e—e—l) <
<

B.3.2.2 Volumes Induced by the Location of an Edge in Mj;_; Relative to an Edge in Con(Tj})

Geometric Analysis For every edge e; in M;_, and for every edge e in a connector H created by a pertur-
bation of T}, we would like to have d(eq,e2) > €.

Let e,e',v,v",u,u’', H be as defined in Section B.1.2.1. Two edges that end in v’ are internal to H: (v,v') and
(u,v"). Figure B.16 is given as a reminder.

Figure B.16: A typical connector.

Let e; be an edge in M;_;. A degeneracy occurs whenever (v,v’) or (u,v’) intersects the e-ezpanded edge
around e;. So e mentioned above can be either (v,v') or (v,u'). We do not consider (u,u') right now since we
try to bound the forbidden volume for v'; v’ will be taken into consideration in the final product.



AL AT ESE VY A AT RS A Yy vty gyt fsigse vV e arsids & e A A= AT e Al s A AR

Although the diagonal of H could be (v, u') instead of (u,v"), we don’t care since the volume of the forbidden
placement would be the same for symmetry reasons.

Notice that the locations of v and e; are static, while the location of v’ has not yet been determined.

Let us look at the sphere slice in Figure B.17. We choose the axis of the sphere slice to be a line parallel to
e1 passing through v. Locating v’ inside the sphere slice creates an edge, which is too close to e; if it intersects
e1 ® B(0,¢). Hence the forbidden loci are inside a sphere slice where the planar facets are tangent to e; @ B(0, €).
The sphere slice Slice(eq, z,v', len) denotes the volume of forbidden placements for v’, in the context of (almost)
intersecting ey, where Slice is defined in Section B.1.4.2, x is either v or u, and len is either §, or £L+0J- respectively.

~

el

(
|
|
|
|
|

-

Figure B.17: A degeneracy occurs as long as the the e-expanded edge around e; is inside the sphere slice.

Therefore
Fyioperes = { ((Slice(er,v,v", 62)USlice(er, u,v', L+082))ov") | v' € Set(boundary _vertex, Tj), ey € Set(edge, M;_1)}

(v and u are determined by v').

Volume Computation The sector fits case 1 of Section B.1.4.2:
e We would like (v,v") not to intersect the e-expanded edge around e;.
e ¢;’s location is fixed.
e d(v,e1) > p.

Figure B.18 is given here as a reminder. Notice that the little circle is a horizontal cross section of the e-ezpanded
edge around e;.
Using the volume computed in Section B.1.4.2, we get:

4
Volume(Slice(er,v,v',82)) < gﬁég
. i 4 € 3
Volume(Slice(er,u,v’, L + 02)) < = (L +62)
32 e

Now we are looking for the product of:

e The maximum number of vertices on the boundary of a polyhedral terrain, V.
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Figure B.18: Center cross section of forbidden volume.

e The maximum number of edges that an edge might intersect, 2K .

e Volume( Slice(er,v,v',02) U Slice(er,u,v’, L + d2)).

I3

4 € g 4 3
Volume(Fyopees) < N-2K- (§ méz + gm(/ﬁ#—&) )
< SEN— (@B (ctn)?

B.3.2.3 Volumes Induced by the Location of an Edge in T; Relative to an Edge in Con(T})

Geometric Analysis For every edge e; in T}, and for every edge e» in a connector H created by a perturbation
of T, we would like to have d(er, e2) > .

Let e,e’,v,v",u,u’, H be as defined in Section B.1.2.1. As explained in the previous section, we take care of
the edges which are internal to H ((v,v') and (u,v")) and ignore (v, u').

Let e; be an edge in T;. A degeneracy occurs whenever (v,v") or (u,v') intersects the e-expanded edge around
e1. So ez mentioned above can be either (v,v") or (v,u'). See Figure B.19.

Figure B.19: A degeneracy induced by an edge in T; which is too close to an edge in Con(T}).

Notice that the location of v is static, while the location of v’ has not yet been determined. Unlike in
Section B.3.2.2, the location of e; has not yet been determined and depends on the location of v'.

Let us look at the sphere slice in Figure B.20. We choose the axis of the sphere slice to be a line parallel to
e1. Locating v’ inside the sphere slice creates an edge, which is too close to e if it intersects e; @ B(0,¢). Hence
the forbidden loci are inside a sphere slice where the planar facets are tangent to e; @ B(0,¢).
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Figure B.20: A degeneracy occurs unless the e-ezpanded edge around e; is outside the sphere slice.

Let us look at the center cross section of the sphere slice.
The sector fits case 2 of Section B.1.4.2:

e We would like (v,v") not to intersect the e-expanded edge around e;.
e ¢ is rigidly attached to v'.
e d(v',er) > p.

Figure B.21 is given here as a reminder. Notice that the little circle is a horizontal cross section of the e-ezpanded
edge around e;.

Figure B.21: Center cross section of forbidden volume.

The same analysis holds for the edge (u,v’). The only difference is that for (u,v’) the radius of the sphere is
L+ .

The sphere slice Slice(eq,x,v’,len) denotes the volume of forbidden placements for «', in the context of
(almost) intersecting ey, where Slice is defined in Section B.1.4.2, z is either v or u, and len is either d2 or £ + &2
respectively.

Therefore

Fyiope—es = { ((Slice(er,v,v", 62)USlice(er, u,v', L+082))ov") |v' € Set(boundary _vertex, T;), e1 € Set(edge, Tj_1)}

(v and u are determined by v').



Volume Computation Using the volume computed in Section B.1.4.2, we get:

Volume(Slice(ey,v,v',82)) < =

Volume(Slice(ey,u,v', L + §3)) < g

Now we are looking for the product of:
e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of edges that an edge might intersect, 2K.

e Volume( Slice(ey,v,v',d2) U Slice(er, u,v', L + d2) ).

4 € g3 4 € 3
Volume(Fyopees3) < N-2K- (§ = ds + 3 = (L +982)°)
< SEN— (0 + (£ +5))
3 2 _ 22

B.3.3 Removing Degeneracy of Type edge-segment
B.3.3.1 Volumes Induced by the Location of Two Polyhedral Terrains Relative to Each Other

Geometric Analysis Such a degeneracy can be induced in two ways:
1. The edge is in Tj, while the segment is in M;_;.

2. The edge is in M;_;. The segment is created by an intersection of one facet from M;_; and one facet from
T;.

The analysis is as follows:

1. For every edge e in T}, and for every segment s in M;_,, we would like to have d(e, s) > . Therefore

Fyiobes1-1 = Set(segment, M;_1) & Set(edge, T;) & B(0,¢)

2. For every intr2 g in M;_4, and for every facet f in T}, we would like to have d(f,g) > p. (The analysis is
easier when seperating factors from M;_; and Tj. In this case, the factors from M;_; are a facet and an
edge, and their intersection is an intr2). Therefore

Fiopes1-2 = Set(intr2, M;_1) & Set( facet, T}) & B(0, p)

Volume Computation We consider all ways for inducing such a degeneracy, according to the geometric
analysis.

1. The Minkowski sum of 2 edges is a parallelogram.

We are looking for the product of:

e The maximum number of edges in a polyhedral terrain, 3V — 3.

e The maximum number of segments that an edge might intersect, (% ).
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e The volume of an e-expanded parallelogram.

VOlume(Fglob—e—s—l—l)

IN

(3V —3) (I; ) 2¢(L? + nLe + 27me?)

A

3VK?e(L? + nLle + 2me?)
2. We are looking for the product of:

e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of intr2 that a facet might intersect, 2(%).

e The volume of an e-expanded triangle.

K 1
Volume(Fygiop-es1-2) < (2V —-2)-2 ( 2) ~e(L? + ;EWE + 307“32)
1
< 2VKZe(L% + gﬁwe + 307“52)

B.3.3.2 Volumes Induced by the Location of a Segment in M;_; Relative to an Edge in Con(T})

For every segment s in M;_;, and for every edge es in a connector H created by a perturbation of T;, we would
like to have d(s,es) > €.

The analysis and computation are exactly as in B.3.2.2, when replacing e; by s.

Therefore the volume of Fyj,p—s— is the product of:

e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of segments that an edge might intersect, ().
e Volume( Slice(s,v,v',d2) U Slice(s,u,v’', L + d2)).

Volume(Fyiopes2) < - 03+

N@ G o 4m(

21{21\77(63 + (L + 62)?)

3 [p? — &2

B.3.3.3 Volumes Induced by the Location of an Edge in Mj;_; Relative to a Segment Created by
an Intersection of One Facet from M;_; and One Facet From Con(Tj)

L+ 65)*)

IN

For every intr2 g in M;_, and for every connector H created by a perturbation of T}, we would like to have
d(g,H) > €. (We are seperating the factors from M;_; and from Con(T}), and the intr2 is obtained from the
factors in M;_y).

The analysis and computation are exactly as in B.3.1.4, when replacing w by g¢.

Therefore the volume of Fyj,p—s—3 is the product of:

e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of intr2 that a facet might intersect, 2(12( )

e Volume( Slice(g,v,v',02) ).
€

4
Volume(Fyiopes3) < §K2N 63
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B.3.3.4 Volumes Induced by the Location of an Edge in T; Relative to a Segment Created by an
Intersection of One Facet from M;_; and One Facet from Con(T})

Geometric Analysis Let S be the set of intersection segments which are created by a facet in M;_; and a
facet in Con(Tj).

For every segment s in S4, and for every edge E in T}, we would like to have d(s, E) > e.

Let e,e',v,v', H be as defined in Section B.1.2.1. Let f be a facet in M;_;. Let E be an edge in T;. A
degeneracy occurs whenever the intersection of H and f intersects the e-expanded edge around E. See Figure B.22.

"

N

E

D

Figure B.22: The location of an edge E in Tj relative to a segment s created by a facet f in M;_; and a facet H
in Con(Tj}).

Fixed elements:

e The edge e
e The facet f

e The relative distance and direction from v' to E (i.e. the location of both v' and E has not yet been
determined, but the location of each one relative to the other is fixed: v’ and E are both in T}, which is
perturbed as a rigid object).

For convenience, we transform the coordinate system so that e is in the z axis, and F is in a plane parallel to the
zy plane. See Figure B.23.

X
Figure B.23: A transformation of the coordinate system placing e and E in convenient positions.
Let us look at the plane P Ly that passes through e and has an angle of # relative with the zy plane. Figure B.24

shows a cross section of the yz plane showing PLy.
Let sg be the intersection segment created by PLy and f.
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z PLo

y

Figure B.24: A cross section of the yz plane showing PLy.

We start by looking at connectors H which are in the plane PLgy. v' creates such connectors if it moves only
in two dimensions, inside PLy.

The movement of v’ moves E as well. Let ig be a point on E, with coordinates defined as an offset from v’.
ig is defined to be the intersection point of E and PLy. ig remains fixed (relative to v') as long as v’ moves in
the plane PLy.

We move v’ so that F intersects sqs. The geometric location of v’ that induces an intersection of F and sg is
the segment sp © {ig}. See Figure B.25.

Figure B.25: v’ induces an intersection of E and sy if it moves along the segment sg © {ig}.

Next we refer to the fact that our interest is not only in E, but in the e-expanded edge around E. An
intersection of an e-expanded edge with a plane is an intersection of a cylinder with a plane, which produces an
ellipse.

We change here the notation ip: It does not denote a point anymore; it denotes a cylinder cross section. The
geometric location of v’ that induces an intersection of Ezp(e, E) and s is therefore the planar Minkowski sum
sp © 1g. See Figure B.26.

Let the possible range for 8 be [«, 8]. (o and 8 are computed later).

For each 6 € [a, §] we get a different planar Minkowski difference sy ©ip. The range [«, (] is continuous, which
implies that the areas sy © iy are continuous and their union forms a three-dimensional volume. See Figure B.27.

Let Loci(E, f,v") denote the forbidden loci for v, as analyzed above, with E, f as defined above. Then

Fyiobesa = {Loci(E, f,v") | E € Set(edge,Tj), f € Set(facet, M;_y), v' € Set(boundary_vertex, M; 1)}
Volume Computation

Defining the Endpoints of E We use the terms ‘leftmost’ and ‘rightmost’ as seen when looking in the
negative z direction. Let (zo, o, 20) be the offset of the leftmost vertex of E from v'. Let (a,b,0) be a unit
direction vector of E. (The direction in the z axis is zero since E is in the zy plane). The worst case E is the
longest E. Therefore we choose an E of length £. See Figure B.28.
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Figure B.26: v' induces an intersection of Ezp(e, E) and sy if it moves along the planar Minkowski difference
Sp S ty-

Figure B.27: The volume where v’ induces intersections of Exp(e, E) and f. In this example f is perpendicular
to e.

Computing the Range [a, 3] Let us find the range [a, 5] for connectors H. We are interested only in
connectors that intersect the edge E.

The angle a is defined when the leftmost vertex of E touches the connector H (Figure B.29(a) ) and the angle
B is defined when the rightmost vertex of E touches the connector H (Figure B.29(b)). Recall that E is rigidly
attached to v', and that (xo,yo,20) are defined relative to v’ and not in absolute coordinates.

It is immediate that

tana = 22 sinq = — —2£2 Yo

Yo’ Vui+22’ Vui+22
. Lb
tan — %0 _ sin - % cos — ___ YotLb
B yo+Lb’ p /(yo+Lb)2+22’ g [(yo+Lb)2+22

CoOsSx = —

Considering the Location and Size of f We now know the range of the angle 8, but we do not know
where in this range Exp(e, E) intersects f. Since we are looking for a worst case, we can always find such a facet
f which intersects Exp(e, E) for every 6 € [a, 3]. Therefore we assume that the range for 6 is not smaller than

[, B].
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(xg+tLa yytLb, Zy)

(oY 1 Z0)

Figure B.28: Endpoints of E (as offset from v').

@ (b)

Figure B.29: A projection on the yz plane. (a) Defining the angle «, (b) defining the angle 5.

Computing the Intersection Ellipse of EFxp(e, E) and f It is immediate that the length of the minor

axis of the ellipse ig, which is the intersection of Ezp(e, E) and PLy, is 2¢.

Claim B.1 For each angle 0 € [a, (], the length of the major azis of the ellipse ig, is ﬁ

2¢

l

Proof:
A unit vector which is perpendicular to PLy is (0, —sin 8, cos #). It is shown in Figure B.30 where we have

+6) = —sinf and
+ 6) = cos¥.

Figure B.30: A unit perpendicular to PLy, shown in a cross section of the yz plane.

For convenience, we use the opposite direction vector, (0,sin#, — cos#).
Let ¢ be the angle between the perpendicular to PLy and E.
cos ¢ = (0,sinf, —cosh) - (a,b,0) =0-a+sinf -b+ (—cosf) -0 =sinb - b
Let I be the length of the major axis of the intersection ellipse. Using the angles in Figure B.31(b) we get
= cos ¢, and therefore
2e 2e

cos ¢ T sind b
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Figure B.31: A planar cross section created by E and the perpendicular to PLy. (a) Showing why the angle ¢ in
(b) is correct, (b) calculating the length of the ellipse.

Discussing the Area of s9 & 19 The Minkowski difference is illustrated in Figure B.32. The area sy © i

Figure B.32: The Minkowski difference sy © ig.

can be bounded in a parallelogram. The length of the horizontal edge of the parallelogram (‘horizontal’ is used
according to Figure B.32) is bounded by length(sy) + 2¢, where 2¢ bounds the length of the minor axis of the
ellipse ip. The maximum area (since we are looking for a worst case) is obtained when the ellipse is vertical, so
we get a maximum area of 25— - (length(sg) + 2¢).

Bounding length(sg) + 2¢ As a matter of fact, the length of sy is not interesting for us, because we are
dealing with movements of v', which are bounded by the length d(v, v"). According to the inequality p < d(v,v") <
2, we infer that the length of the movement of v’ is bounded by d» — p. Since p > 2 (see Section B.4.1), we can
use the bound d5.

Computing the Volume that Induces Degeneracies For each angle 0, iy is ‘dragged’ along the segment
sp. When dealing with the continuous region [«, 5], we need to compute an integral. Thinking of an integral as
the sum of very tiny volumes, we can realize that each volume is a surface of revolution for the angle df. The
formula used inside the following integral is the formula for surface of revolution.

Volume(Loci(E, f,v"))

IN

8 2
/ 2%
o sin@-b 2

2
= % In(cscf — cotf) |2

€03 V(o + L0 + 2 +yo + LD
b VY6 + 25 + o

We next look for an upper bound for the volume.
. 202, A/(wo+Lh)2+224yo+Lb 252 V(o+Lb)>+22 = /y2+22+Lb
Volume(Loci(E, f,v")) = 52 In \/ngngiyO =In(1+ \/ygfngryOO 0tLhy
Let us look at the triangle depicted in Figure B.33. According to triangle inequality, we get v/(yo + £b)? + 23—
2
VY2 + 25 < Lb. Therefore Volume(Loci(E, f,v")) < LZ‘;Z In(1+ ﬁﬁb) .
2 > 0 and according to the inequality In(14x) < z (for any z > 0) we get that Volume(Loci(E, f,v")) <

VyE+z2+yo
3. __ 2
b\ yE 224y

Eb - 2£6gm
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(0.0)

Yo.Zo) (Yo+Lb Z0)

Figure B.33: Values of triangle vertices, used for triangle inequality.

i 1 1
d(v', E) > p and therefore By < 4, 80 we get

Volume(Loci(E, f,v")) < 25655
p

We are looking for the product of:

e The maximum number of edges in a polyhedral terrain, 3V — 3.
e The maximum number of segments that an edge might intersect, (12( )

e Volume( Loci(E, f,v'))
Volume(Fyiop—esa) < ?;VKZ(SSEE
p

B.3.3.5 Volumes Induced by the Location of an Edge in Mj;_; relative to a Segment Created by
an Intersection of One Facet from T; and One Facet from Con(Tj)

The geometric analysis and the volume computation in this section are similar to the ones in Section B.3.3.4, but
not identical, and although it might seem as partially repeating Section B.3.3.4, there are significant differences
which should be noticed.

Geometric Analysis Let S5 be the set of intersection segments which are created by a facet in 7; and a facet
in Con(T}).

For every segment s in S5, and for every edge E in M;_;, we would like to have d(s, E) > e.

Let e,e',v,v', H be as defined in Section B.1.2.1. Let f be a facet in T;. Let E be an edge in M;_;. A
degeneracy occurs whenever the intersection of H and f intersects the e-ezpanded edge around E. See Figure B.34.

Fixed elements:

e The edge e
e The edge

e The relative distance and direction from v" to f (i.e. the location of both v' and f has not yet been
determined, but the location of each one relative to the other is fixed: v’ and f are both in T}, which is
perturbed as a rigid object).

For convenience, we transform the coordinate system so that e is in the z axis, and E is in a plane parallel to the
zy plane. See Figure B.23.

Let us look at the plane PLy that passes through e and has an angle of 6 relative to the xy plane. Figure B.24
shows a cross section of the yz plane showing PL and 6.

We start by looking at connectors H which are in the plane PLgy. v' creates such connectors if it moves only
in two dimensions, inside PLy.

Let s¢ be the intersection segment created by PLy and f, with coordinates relative to v’. The movement of
v’ moves f as well, and therefore moves sg. sy has the same length and orientation as long as v' moves in the
PLy plane.
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Figure B.34: The location of an edge E in M;_; relative to a segment s created by a facet f in 7} and a facet H
in Con(Tj}).

Let iy be a point on FE. iy is defined to be the intersection point of E and PLy.

We move v’ so that sy intersects E. The geometric location of v’ that induces an intersection of F and sg is
the segment {ig} © sg. See Figure B.35. Next we refer to the fact that our interest is not only in E, but in the

Figure B.35: v’ induces an intersection of E and sy if it moves along the segment {ip} © s.

e-expanded edge around E. An intersection of an e-expanded edge with a plane is an intersection of a cylinder
with a plane, which produces an ellipse.

We change here the notation ip: It does not denote a point anymore; it denotes a cylinder cross section. The
geometric location of v’ that induces an intersection of Exp(e, E) and sy is therefore the planar Minkowski sum
19 © sp. See Figure B.36.

Let the possible range for 8 be [«, 8]. (o and 8 are computed later).

For each 6 € [a, §] we get a different planar Minkowski difference igp © sp. The range [«, (] is continuous, which
implies that the areas g © sy are continuous and their union forms a three-dimensional volume. See Figure B.27.
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Figure B.36: v' induces an intersection of Ezp(e, E) and sy if it moves along the planar Minkowski difference
Sp S ty-

Let Loci(E, f,v") denote the forbidden loci for v, as analyzed above, with E, f as defined above. Then

Fyiobess5 = {Loci(E, f,v") | E € Set(edge, M;_1), f € Set(facet, T;), v' € Set(boundary_vertex, M;_1)}
Volume Computation

Defining the endpoints of E We use the terms ‘leftmost’ and ‘rightmost’ as seen when looking in the
negative z direction. Let (zo,yo,20) be the offset of the leftmost vertex of E from v. Let (a,b,0) be a unit
direction vector of E. (The direction in the z axis is zero since E is in the zy plane). The worst case E is the
longest E. Therefore we choose an E of length £. See Figure B.37.

(xgtLa yotlb, zy)

(o Yo - %)

Figure B.37: Endpoints of E (as offset from v)

Computing the Range [a, 3] Let us find the range [«, 8] for connectors H. We are interested only in
connectors that intersect the edge F.

The angle « is defined when the rightmost end of E touches the connector H (Figure B.38(a)) and the angle
B is defined when the leftmost end of E touches the connector H (Figure B.38(b)). It is immediate that

. b
tana = —20 sina = 20 yot
yo+Lb? /(y0+£b)2+z(2) )

v (Wo+Lb)2+22
— 20 i — 20 — Yo
tan = e, sin 8 gl cos 3 g

CoOSxx =

Considering the Location and Size of f We now know the range of the angle 8, but we do not know
where in this range Exp(e, E) intersects f. Since we are looking for a worst case, we can always find such a facet
f which intersects Exp(e, E) for every 6 € [a, 3]. Therefore we assume that the range for 6 is not smaller than

[, B].
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Figure B.38: A projection on the yz plane. (a) Defining the angle «. (b) Defining the angle £.

Computing the Intersection Ellipse of Exp(e, F) and f

Claim B.2 For every angle 6 € [a, (], the length of the major axis of the ellipse ig, which is the intersection of

Exp(e,E) and PLy, is Sif%_b

Proof:
Identical to the one in Claim B.1.
| ]

Discussing the Area 19 © sy The Minkowski difference is illustrated in Figure B.39. For the same reasons

as in Section B.3.3.4, we consider a maximum area of 25— - (length(sg) + 2¢).

Figure B.39: The Minkowski difference iy © s¢.

Bounding length(sg) + 2e For the same reasons as in Section B.3.3.4, we consider a length of ds.

Computing the Volume that Induces Degeneracies For each angle 6, sy is 'dragged’ along the point
ig. For the same reasons as in Section B.3.3.4, we use the following integral.

Volume( Loci(E, f,v')) < /B 2 ﬁdt9
Y = J, sinf-b 2

62
= ETQ In(csch — cot 6) |2

_ g% Yo + 26 — Yo
b (Yo + £b)? + 23 — (yo + Lb)
We next look for an upper bound for the volume.
Loci(E Ny — €93 V2 +22—yo — 3101 Vvi+22—+/(yo+Lb)2+22+Lb
Volume( Loci(E, f,v')) 7= In N ETE T e m— 72 In(1 + o T T (ot D) )
Let us look at the triangle depicted in Figure B.33. According to triangle inequality, we get \/y2 + 22 —
2
V/ (yo + £b)? + z5 < Lb. Therefore Volume < EZ(;Z In(1+ 2 Lb) .

V/ (yo+Lb)2+22 ~ (yo+Lb)
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2
V/(yo+Lb)2+22—(yo+Lb)
2
Loci(E, f,v')) < 2= 2 = 2063
Volume( Loci(E, f,v'") ) < = \/(y0+£b)2+zg_(yo+£b)ﬁb £62\/(y

1 1
d(v, E) > p and therefore T T (ot D) < 5, 80 we get

> 0 and according to the inequality In(1 + z) < z (for any =z > 0) we get that

£
o+Lb)2+22 —(yo+Lb)

Volume( Loci(E, f,v")) < 25635
p

We are looking for the product of:
e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of intr2 that a facet might intersect, 2(%).

e Volume( Loci(E, f,v'))

Volume(Fyiopess) < AVK203LE
p

B.3.3.6 Volumes Induced by a Segment Created by an Intersection of one Facet from Mj;_; and
One Facet from T; Relative to an Edge in Con(Tj;)

Geometric Analysis Let Sg be the set of intersection segments created by a facet in M;_; and a facet in T}.
For every segment s in Sg and for every edge ¢’ in Con(Tj), we would like to have d(s,e") > e.

Let e, e’,v,v', H be as defined in Section B.1.2.1. Let ¢” be the edge connecting v and v'. Let f be a facet
in M;_; and let F' be a facet in T;. A degeneracy occurs whenever the intersection of f and F' intersects the
g-expanded edge around e”. See Figure B.40.

Figure B.40: Intersection of an edge (v,v') in Con(T}), with a segment created by a facet f in M;_; and a facet
Fin Tj.

Fixed elements:
e The edge e
e The facet f

e The relative distance and direction from v' to F (i.e. the location of both v' and F has not yet been
determined, but the location of each one relative to the other is fixed: v’ and F' are both in Tj, which is
perturbed as a rigid object).

For convenience, we transform the coordinate system so that f is in the zy-plane, and F is parallel to the z-axis
(i-e., its normal is parallel to the yz-plane). See Figure B.41.

Whenever v' moves in a fixed height (i.e., it moves in a plane parallel to the zy-plane), the intersection segment
of F' and f is contained in a fixed segment s of F. Let s be the intersection segment in F' for a certain height of
v'. For the same reason the intersection of Exp(e, F') and f is fixed. See Figure B.42.

In a certain height of v', the collections of forbidden locations are those that induce an intersection of the edge
e with the intersection of Exp(e, F) and f (depicted in Figure B.43). The movements of v’ cause movements of
F too. The forbidden area for v' for that certain height is similar to the intersection area, only bigger.

The union of the planar forbidden areas for every possible height of v’ induces the forbidden volume for v'.

Let Loci(F, f,z,v") denote the forbidden loci for v', with E, f as defined above, where z is the other end of
edge e, i.e., v or u. Then

Fyiob—e—ss = {Loci(F, f,v') | F € Set(facet,T;), f € Set(facet, M;_1), v' € Set(boundary vertex, M;_1)}
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Figure B.41: A transformation of the coordinate system placing f and F' in convenient positions.

height

B I .

'
<

Figure B.42: A two-dimensional illustration of Exp(e, F), (b) the intersection of Ezp(e, F) and f, shown in a
cross section of the zy-plane, (¢) Ezp(e, F'), shown in a cross section of the yz-plane.

Volume Computation The illustrations in this paragraph are given for e’ = (v,v'). The same computations
hold for the edge (u,v’).

We define length and width to be the maximum length and width, respectively, of the intersection of Ezp(e, F')
and f. See Figure B.42(b). It is immediate that length = L.

The maximum width of the intersection of Exp(e, F) and f (i.e., width) is as follows. See also Figure B.42(c).
Let (0,b,c) be the normal of F. In a cross section of the yz-plane, let @ be the angle between F' and f. Since f
is in the zy-plane, a is also the angle between F and the zy-plane. According to Figure B.42(c) sinaw = —25—,
and according to Figure B.44, sin « = b. Therefore width = 275

We define height to be the maximum vertical height of facet F'. See also Figure B.42(c).

heigh . .
%t = sina = height = Lb

Bounding the Movement of v’ Suppose v’ is moving now horizontally in a certain height. By abuse of
notation, let D(entl,ent2) define the vertical distance between two entities (i.e., the difference between their z
coordinates). Let a = D(v',s) = D(v', f) and let k = D(v,s) = D(v, f). Let | be the length of the intersection
segment s of F' and f. Let r be the intersection point of e’ and s when e is vertical. Let I’ be the length of the
portion of s between its left endpoint (as seen when looking in the positive y direction) and r. See Figure B.45(a).
Our goal is to find w, the length of movement of v’ so that s is created. Let g be the intersection point of
a vertical line going through v and the virtual horizontal line on which v’ is moving. Let w; be the distance
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Figure B.43: In a certain height of v’, the collections of forbidden locations are those that induce an intersection
of the edge € = (v,v") with the intersection of Exp(e, F) and f .

Figure B.44: A cross section of the yz-plane, showing the angle a between F' and the zy-plane (which is also the
angle between F' and f). NF represents the normal of F'.

between the rightmost position of v’ and ¢. Let ws be the distance between the leftmost position of v' and ¢g. See
Figure B.45(b).
Due to triangles similarity, we get:
_r _ =l _ _
4 = o and 22 = == Therefore w = wy +wy =
the movement of F', we should fix the formula into an inequality: w < % -1

atk

a

-1. Since s does not keep its maximum length during

Figure B.45: (a) Defining vertical distances, (b) v’ drags F’ as it moves, and therefore drags s. The drawing shows
the domain where e” = (v, v") intersects s, considering F'.

The former computation gave us the terms for e” to intersect F'. Now we compute the terms for e” to intersect
f. The symbols a, k,[,l’,w;, w> and w remain as before. The movement of v’ does not change the position of f,

so the computation is different. See Figure B.46. Due to triangles similarity, we get: ;% = % and ;2 = %
Therefore w = wy + w2 = a:k -1. Since s does not keep its maximum length during the move of v’ (which induces

a movement of F'), we should fix the formula into an inequality: w < ajc'—k - 1.

We can now compute a bound for w. Recall that w is the length of movement of v' so that s is created. Notice
that min(%, 2) < 1.

length = w < min(%EE . otk 1) = [ min(1+ 2,1+ 9) =1 (1 + min(%,2)) <20 <2C

Next we compute a bound for the width of the movement of v'. We use the same inequality that was given



Figure B.46: (a) Same as Figure B.45(a), but this time f is drawn and F is not drawn. (b) The domain where

e" = (v,v') intersects s, considering f.

before, w < 2tk . [ and replace [ by 2.

- a+t+k . 2¢e 205¢
width < #= - & < 5

Altogether, we have:
Volume( Loci(F, f,v")) < width - length - height < 4(5252%
We are looking for the product of:

e The maximum number of facets in a polyhedral terrain, 2V — 2.

e The maximum number of intr2 that a facet might intersect, 2(%).

e Volume( Loci(F, f,v'))

Volume(Fyiop—es6) < 8VK262£2E
p

B.3.4 Removing Degeneracy of Type facet-intr3
B.3.4.1 Volumes Induced by the Location of Two Polyhedral Terrains Relative to Each Other

Geometric Analysis For every facet f in T}, and for every intr3 i in M;_;, we would like to have d(f,i) > e.
Therefore

Foiop—f—ia = Set(intr3, M;_1) © Set( facet, T;) & B(0,¢)

Volume Computation We are looking for the product of:
e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of intr3 that a facet might intersect, (%).

e The volume of an e-expanded triangle.

K 1
Volume(Fyiop——i1) < (2V —2) <3>6(£2 + gﬁms + 307“32)
1 3 10
< = 3 2 hd - 2
< 3VK e(L*+ 2£7r5+ T )
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B.3.4.2 Volumes Induced by the Location of an Intr3 in M,;_; Relative to a Facet in Con(Tj;)

For every intr3 ¢ in M;_,, and for every connector H created by a perturbation of T}, we would like to have
d(i,H) > e.

The analysis and computation are exactly as in Section B.3.1.4, when replacing w by i.

Therefore the volume of Fyjop—p» is the product of:

e The maximum number of vertices on the boundary of a polyhedral terrain, V.
e The maximum number of intr3 that a facet might intersect, (13( )

e Volume( Slice(i,v,v',02)).
€

2
Volume(Fyiop—f—i—2) < ZK3N 63

9 0?2 — g2

B.3.4.3 Volumes Induced by an Intr3 Created by an Intersection of Two Facets from Mj;_; and
One Facet From T; Relative to a Facet in Con(T})

For every intr3 i created by two facets from A;_; and one facet from T}, and for every connector H created by
a perturbation of T}, we would like to have d(i, H) > €.

The analysis and computation are exactly as in Section B.3.3.5. The only change is that instead of E in
Section B.3.3.5, we have here a segment s created by two facets from M;_;.

According to Section B.3.3.5, Volume( Loci(s, f,v")) < 256%%.

Fyiob—f—i3 = {Loci(s, f,v") | s € Set(segment, M;_1), f € Set(facet,T;))
We are looking for the product of:

e The maximum number of facets in a polyhedral terrain, 2V — 2.
e The maximum number of intr3 that a facet might intersect, (13()

e Volume( Loci(s, f,v')).

2
Volume(Fyop—f—i—3) < §VK36§£%
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B.4 Computing a Bound on ¢

B.4.1 General

Outline After computing all forbidden loci, we obtain a list of volumes, where each volume is a function of
e, p,\, K,L,N,V,6; and 6. We bound every volume by a term of the form ¢; 7% K L3V for the local step, and
027r50 5K3L3V for the global step, where ¢y, ¢y are constants. Solving the inequality ¢;me®* KLV < & - 2767, we

e

get 6 > (2 ¢1)3es K3 LV%, and in a similar way we get 8, > (2 c2)3es KLV3.

Bounding Rules We assume K > 10, V > 10, L > 10, N <V, é; < L, 8 < L and € < 107*, and assign

p=2¢%% and A\ = p%>

Then we bound every item in a computed volume according to the rules in Table B.3.

| Origin | Bound by Notes/Justification
1 3T Only if m does not appear in the formula (1 < 37)
g, 62,83 10_260'5, 10_660'5, 10_1080'5 e < 10—4
0. 0%, 205 10-2295, 101207 P
3 10T 05 X = 00
,—pZE—EZ v/1.0001£%° T;_Ez = \/;é‘ 2% < 1/1.0001£%°
s 1.011%5 = ™ = 1_;)_5 5 < 1.011e°°
K, K? 1072K3, 10 'K Ouly for the computation of dy (K > 10)
N \% N<V
1 1071V Only if V does not appear in the formula (V > 10)
L, 17 10 2.7, 10 'L° L<10
1 107313 Only if L does not appear in the formula (L < 10)
51,62 L 515-[/7 5ZSL
L 3L L:=1L+ 20

Table B.3: Bounding rules

B.4.2 Computing a Bound on 4,

In Table B.4 we compute the bound for every volume computed for the local step. The total sum is bounded by
167.227e%3 K L3V and therefore we conclude that

5, > 6.31e/SKYV/3Lyt/3

| Volume | Bounded by

FTKN? 3m(0.1e"7)K (103 L) (10~ 1V) <2-10° 7" KLV
2KV s L 27 (1.011e°°) K (27L°)V < 54.6- 1" KLV
21K p? (£+ 30) 27r(1o 205K (3 - 10 2L3) (10~ 1V)+

+2m (310 *e"?) K (10 3L%)(10~1V) <(6-107°+3-1078) - me® KLV
45— KVv? 4.5(%m)v/1.0001e™° K (27L*)V < 40.51 - 1" KLV
eK (L + 3nle + Dre?) | Em) (10 9P K (9-10 L) (10 V) +

+37(1075%%) K (3 - 107 2L3) (10 1V)+

(

+13—°7r(10*1050-5)1(

(1073L3)(10-1V)

8 Kv,?

8(%

<
m)V1.0001=°3 K (27L%)V <

72.1- eV K L3V

Table B.4: Bounding the volumes induced by the local step, in order to reach a uniform formula.

(31074 +5-10°+4-10"1) - ¢
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B.4.3 Computing a Bound on 0,

In Table B.5 we compute the bound for every volume computed for the global step. The total sum is bounded
by 6.547c?* K3 L3V and therefore we conclude that

8y > 215K LV/3
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Volume

Bounded by

Related to vertez-facet degeneracy

6VKe(L? + 3Lme + Pme?) 6(3m) (10 2e"?)(10 ?K*)(9-10 ' L) V+ < (2-10 '+
+6- 2w(1076 05)(10*2K3)(3~10*2L3)V+ +3-107°+
+6 - L7 (10710e%%)(1072K3) (10 *L*)V +2-10714) - 7" K313V
KVe(L? + 3Lme + Pre?) (3m)(1072 05)(10*2K3)(9-10*1L3)V+ <(3-10°+
+§7r(1 “6205)(1072K3)(3- 10 2L3)V + +5-10"104+
+ 30 ( 0 10 05)(1072K3)(1073L3)V _+_4_ 10715) -7T60'5K3L3V
2rNKp*(L + 3p) 2m(10~2 05)(10 2K (3-107 2%V + <(6-107%+
+2- 47(10~1e%%)(10—2K3) (103 L3V +3-1077) - me® P K3 L3V
2rVEKp* (L + 3p) 2m(10—2 05)(10 2K (3-10 2LV + <(6-107%+
+2- %w(lo 4e0-5) (102 K3) (103 L)V +3-107°) - e K3 L3V
6KV p(L? + $Lmp + Lmp?) 6(3m)(e™ )(10 K3 (9-107 L)V + < (1.8-10 2+
+6 - 2m(1072e%%)(1072K?)(3- 10 2L%)V+  +3-107°+
+6- i r(10 10%) (10 2K65) (10 SL)Y 42108 - meO S KLY
KNp(L? + 3Lmp + Z27p?) (im) (e )(10 ZKH(9-107 L3V + <(3-1073+
+§7r( 0-5)(1072K3)(3 - 1072L%)V + +5-1076+
+ 3071'(10 4 0 5)(10—2K3)(10—3L3)V +4. 10—9) . 7TEO'5K3L3V
4KN\/25— 4(3m)v/1.0001e°* (10 K*) L3V <14-1072 7" K303V
\/5_ 4(37m)v/1.0001e%° (1072 K3) L3V <1.4-1072 .79 K313V
| Related to edge-edge degeneracy |
12KVe(L? + nle + 27e?) 12(3m)(1072e%°)(102K3)(9- 101 L)V + < (4-107*+
+127r(10 6£9-5) (1072 K3)(3 - 1072 L3V + +4-107%+
+12 - 27 (107 1905) (102 K3) (10 2 L3)V +3-10" 1) . 7% K3 L3V

§KN\/§_(6§+(£+52)3) 8 (L) (V1.0001e%) (1072 K3) (65L%)V <5.78-107" - 1S K3 LAV
SKN\/E—( S+ (L+02)°) 5 (47)(V1.0001"°) (102 K?*)(65L%)V <5.78- 1071 - e K3L3V
Related to edge-segment degeneracy
3VK?e(L? + nle + 2me?) 3(3m) (10 2%%) (10 TK7)(9-10 1LV+ < (9-10 1+

+37(107692) (1071 K3)(3 - 1072L3)V + +9-107%+

+3-27(10710£05) (10~ K3) (10=3L3)V +6-10714) . 7" K313V
2VKZe(L? + 3Lme + Fme?) 2(3m) (10 2e"P) (10 TK%)(9- 10 L) V+ < (6-10 '+

42 gw(10*650~5)(10*1K3)(3 10720 V+ 491077+

42 207(10710£99) (101 K3) (103 L)V +7-1071) . 7e®S K313V

\/pjj(53+(£+62)3) 2(3m )(\/1.0001505)(10 TK3)(65L%)V + < 1.446 - "5 K3 L2V
KN p;_625§ 2(37)(V1.0001e°) (101 K3) L3V <4.45-1072 - 7" K3 L3V
3VK>05L2 3(3m)eP (101 K®)(3L%)V <310 T 7" K3L3V
8VK?3,L72 8(:m)e®?(10 1K) (9L*)V <24 71" K33V
VK8 L2 4(3m)e®P (10T K3)(BL%)V <4101 7% K303V
| Related to facet-intr3 degeneracy |

sVK3e(L? + S Lme + Pre?) 3(3m)(1072%5)K3(9 - 1071 L3V + < (1073 +

+% 3m(107595)K3(3- 107 2L%)V + +1.5-1078%+

+3 - 2r(1071%0%) K3 (103 L3)V +1.2-10713) . 7O K3 L3V
2K3N —=— =63 2(ix )(\/1 0001e%5) K3 L3V <7.41-1072 - 7" K3 L2V
2VK352£; 2(Im)eP S K33L3)V <6.67-107 T 7S KLV

Table B.5: Bounding the volumes induced by the global step, in order to reach a uniform formula.




Appendix C

Forbidden Loci for Degeneracy of Type
concurrent-three-edges (Coordinate
System Step)

In this appendix we describe and bound the forbidden loci for degeneracy of type concurrent-three-edges, as
defined in Section 3.7.

Recall that degeneracy of type concurrent-three-edges is defined as follows: Let e, es,e3 be non-incident
distinct edges. Let [ be a line intersecting all three edges. The angle between [ and the z-direction is less than w.

Overview of Computation The direction of any line intersecting all three edges ej,es,es should be w-
separated from the z-direction. In this Appendix we show that the endpoints of the direction vectors of all
lines intersecting eq, ez, e3 determine a 3D curve. We then normalize that 3D curve into a parametric curve on
the unit sphere, denoted by f(¢), t € [0, 1].

Let S be the unit sphere. Let o be the center of S and let p = f(¢y) be a point on the unit sphere for an
arbitrary value of ¢y € [0, 1]. Let C be a circle on S such that every line through o and C' makes an angle w with
the line through o and p. See Figure C.1(a). We call such a circle the w-circle of p. The interior of C' is the loci of
forbidden z-directions with respect to p. In the same way, the Minkowski sum of f(t) and C is the collection of
forbidden z-directions with respect to f(t). See Figure C.1(b). We call this Minkowski sum the w-strip of f(¢).

p
N ] S

@ (b)
Figure C.1: (a) The w-circle of p. (b) The w-strip of f(t).

Computing f(t) Let Ly, Ly, L3 be the underlying lines of e;, e2, e3 respectively. Let us create a parameteriza-
tion of those lines as following:

Ll(t) = a +1t- b1

LQ(t) = as +t- b2
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Lg(t) = as +1t- b3

Where a;, b; are three-dimensional points, and therefore a; = (aiz, @iy, aiz) and b; = (bia, biy, bs2) fori =1,2,3.
Using a translation and rotation we can obtain a; = (0,0,0) and b; = (1,0,0), thus Ly (¢) = (¢,0,0). Using
rotation around the z axis we can make sure that L, is parallel to the zy-plane and obtain by = (bag, bay, 0) thus
Ly(t) = (a2g +t-bag, azy +1t-bay, as,). For every edge the parameterization can be normalized such that L;(0) is
the beginning point of edge e; and L;(1) is the ending point of edge e; (i = 1,2,3). Therefore L;(t) for ¢t € [0, 1]
is a point in edge e;.

We next show that for every value ¢t € [0, 1], there exists a line Ly and values t5,t3 such that L4 intersects
Ly(t), and La(t2), L3(ts) or their extensions. (t2,t3 are not necessarily in [0, 1]). L4 passes through the points
Ly(t) and L3(t3) and therefore can be defined by those two points: Ls(u) = L1 (t) +w - (L3(ts) — L1 (t)). On the
other hand, there exists a value ¢4 such that L4(t4) is equal to L2(t2), and the following equation is obtained:

Li(t) +ta - (La(ts) — L1(t)) = La(t2)

For every t € [0,1], the above is a set of three equations (for z,y, z) with three variables (t2, ts,t4), which is
always solvable.

Py | P. _ Pmax(atdbto P,  P. _ Paic
P, + Py Pyiq and P, P; = Pyjya’

(We assume the worst-case, where there is no common divisor for the numerator and the denominator).
After solving the three equations', we obtain that t3 is of the form %. For every t € [0, 1], the direction of

Ly is L3(t3) — L1 (t) = (asg +t3 - bsy —t, asy + t3 - b3y, ass +t3 - bs;). Such a vector is of the degrees (%, %, %) .
We next normalize the direction vector, in order to find its intersection with the unit sphere. In order to

normalize the direction vector, we need to divide it by its norm:

2 2 2
P P, P, P, P P P
\/(F)JF(F)JF(F) “VEtR TR TVE -

Then the division is:

Py P Py Py Py P2
Py Py Py — Py Py Py | — Pig Py Py
’ ’ - Pg Pg Ps - Pio?’ Pio? P :
Pg Pg Pg Pe P B 10 10 10
Pg Pg Pg

By a parameterization of ¢ we obtain a curve on the unit sphere. Let this curve be denoted by f(t) =

(z(t),y(t),2(t)). The coordinates of f(t) are of the form (, / i—ig, \/ Pifo, \/ P%SO).

Let a monotone portion be a portion of a curve which is monotone both in the z, y, and z axes. Let a
monotone break point be the point where two consecutive monotone portions meet.

Let us find a bound for the number of monotone portions in f(¢). A monotone break point must have at least
one of the following characteristics:

Let P denote a polynom of order k in t. It is immediate that

e The curve derivative is zero (in at least one axis)
e The curve derivative is undefined (in at least one axis)

e The curve is undefined (in at least one axis)

Derivative of the  coordinate:

’
!
PlOtop _ 1 . (Plotop) i PlObottom - (Plobottom)l i Ploiop vV Plobotiom . Py
PlObOttom 2. 1/ p—PlOt"P (Plobotiom)2 2- \% PlOtOP (Plobotiom)2
10bottom

e The z derivative is zero in the roots of Py,,,,,,, and Pg .

e The z derivative is undefined in the roots of Pyy,,,,..,., and Pio,,, -

e The z coordinate is undefined in the roots of P,,,,... -

IWe solved the equations and found the degrees of t3 using the software Mathematica. The Mathematica notebook file can be
found in http://www.math.tau.ac.il/ "raab/concurrent-three-edges.nb



All together, the maximum number of monotone break points which are derived out of the = coordinate is 39.
Derivative of the y coordinate:

/By _ 1 (Ps)" - Pio = (Pro)' - Py _ VP P
Py 2.,/ (Pro)® 2-VPs (Py)”

e The y derivative is zero in the roots of P;g and Py7 .

e The y derivative is undefined in the roots of P;y and Pg.

e The y coordinate is undefined in the roots of Pj.

All together, the maximum number of monotone break points which are derived out of the y coordinate is 35.
Since the z coordinate has the same degrees as the y coordinate, we obtain that the maximum number of
monotone break points which are derived out of the z coordinates is also 35.

Bounding the Length of f(t) Let len(curve) denote the length of a curve. Let curvezy, curve,.,curve,.
denote the projections of the curve on the zy, zz,yz planes respectively.

1

len(f(t)) = V(@' ()2 + (y'(1)? + ((1))%dt

= % 01 V(@' ()2 + (y'(0)% + (@' (1) + (/1) + (v (1) + (+'(2))?dt

1 ! ! 2 ! 2 ! ! 2 ! 2 ! ! 2 ! 2
ﬁ( O+ o+ / V@ OP T @ 0)dt + / JEOP @ 0) dt)
- %(len(f(t)xy) T len(f(8)es) + len(F(£)ye)

It is obvious that the number of monotone portions of a curve is the number of monotone break points plus
one. The number of monotone break points of f(t),, is bounded by the sum of monotone break points derived out
of the « and y directions, which is 39+35=74. The number of monotone portions in f(t),, is therefore bounded by
75. In the same way, The number of monotone portions in f(t),. is bounded by 75 and the number of monotone
portions in f(t),. is bounded by 71.

Every projection on one of the trivial planes is bounded in the square [-1, 1] x [-1, 1] and therefore the length
of a projected monotone portion is bounded by 2+2=4. After multiplying by the number of monotone portions,
we conclude that

len(f(t)) < % (754 75+ 7T1) -4 < 625.1

Bounding the area of the w-strip around f(t) Let py = f(to) be a point on the unit sphere where ¢ty = 0.
We build a collection of circles on the unit sphere by construction: Let C; be the w-circle of p; and let C} be the
2w-circle of p;. Let p;y1 be the point f(ti11) = f(¢) (C; for tiy1 > t;. For every j such that i < j < i+ 1, the
w-circle of f(t;) is inside C}. The procedure goes on until f(¢) is completely covered by w-circles, i.e., there is no
tiy1 > t; such that f(t;41) = f(t) () Ci- See Figure C.2.

The area |J C} bounds the w-strip of f(t).

The area of one 2w-circle is (see Figure C.3):

1—h = cos(2w)

Area(2w —circle) = 2rh = 2n(1 — cos(2w)) = 4msin® w The minimum length of a curve starting from the

center of an w-circle and ending at its perimeter is 5= - 2m = w. Therefore the number of points p; is bounded by
len(f(1)  len(f(?))
w — sinw °

The area of the w-strip around f(¢) is therefore bounded by W -4 sin® w < 25017 sin w.

sin




(a) (b)

Figure C.2: (a) The first steps of the constructive build, (b) the w-strip of f(#).

"

Figure C.3: Computing the area of a 2w-circle
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