
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler

Faculty of Exact Sciences

School of Computer Science

The Integration of

Exact Arrangements with

Effective Motion Planning

Thesis submitted for the degree of “Doctor of Philosophy”

by

Ron Wein

This work has been carried out under the supervision of
Prof. Dan Halperin

Submitted to the Senate of Tel-Aviv University
March 2007

i

Acknowledgements

I wish to thank Prof. Dan Halperin for his guidance and his help during the work on this
thesis. I consider myself very lucky to have a supervisor like Danny.

I would like to thank Efi Fogel and Baruch Zukerman from Tel-Aviv University; Gershon
Elber, Iddo Hanniel and Oleg Ilushin for the Technion; Jur van den Berg from Utrecht
University; and Eric Berberich from Max-Planck-Insitut für Informatik, for ongoing and
fruitful collaboration.

In the design of the software packages described in this thesis I got many useful remarks
and advises from members of the Cgal Editorial Board. I would especially like to mention
Andreas Fabri, Lutz Kettner and Sylvain Pion. I would also like to thank all the members
of the Cgal developers’ community, and the members of the Tel-Aviv group in particular.
I also thank Chee Yap’s group for providing support for the Core library.

During the years I participated in the EU-funded projects Ecg (Effective Computational
Geometry for Curves and Surfaces; contract No. IST-2000-26473), Movie (Motion Planning
in Virtual Environments, contract No. IST-2001-39250) and Acs (Algorithms for Complex
Shapes; contract No. IST-006413) projects. I wish to thank all the other participants in
these projects, with whom I enjoyed working.

Finally, I would like to express my gratitude to my wife Hélène for all the love and support
she has given me, to my parents Nili and Hezi for their encouragement, and to my daughters
Nogah and Shir for the joy they brought into my life.

ii

iii

Abstract

The field of computational geometry has greatly evolved over the last three decades, yielding
a multitude of algorithms to solve real-life problems emerging from diverse application fields,
such as robotics, solid modeling and geographical information systems. Yet implementing a
geometric algorithm from a textbook is far from being a trivial task. Common assumptions
in the design of computational-geometry algorithms are that all calculations can be carried
out using exact arithmetic, and that the input objects are in general position. Unfortunately,
these assumptions usually do not hold in practice.

This thesis describes a robust infrastructure for geometric computing with two-dimensional
arrangements, and the integration of software solutions based on robust geometric algorithms
into various applications, especially in the areas of motion planning and computer-aided de-
sign. Our software combines state-of-the-art techniques and achieves unprecedented running
times when constructing and manipulating arrangements in an exact manner, thus it serves
as a solid infrastructure for developing efficient software solutions to many real-life problems.
Most of the work described in the thesis has been integrated into Cgal, the Computational
Geometry Algorithms Library.

The main results presented in this thesis are as follows.

The Cgal Arrangement Package. Given a set of planar curves, their arrangement is
the subdivision they induce on the plane into maximally connected cells. Arrange-
ments are ubiquitous in computational geometry and have many applications. The
2D arrangement package of Cgal allows the construction and maintenance of pla-
nar arrangements of arbitrary families of curves, such as line segments, conic arcs,
Bézier curves, etc. It assumes that the curves can be handled in a certified manner,
and employs enhanced methods for certified geometric and algebraic computation to
achieve this task. The package is robust, namely it can seamlessly handle all kinds of
degenerate inputs.

The arrangement package has undergone a complete re-design. By employing ad-
vanced software-design techniques, the package is made more flexible and extendible.
At the same time, a lot of effort was spent on exploiting all combinatorial informa-
tion available in the various arrangement-related algorithms in order to minimize the
number of geometric operations they perform. In conjunction with the development
in certified computation techniques, the new arrangement package now offers highly
efficient construction times of exact arrangements. The modular and extendible design
of the package, as well as its efficient operation, made it a convenient basis for the
development of several peripheral Cgal packages, most notably computing Boolean
operations on polygons, and constructing lower envelopes of 3D surfaces. Chapter 2 re-
views the guidelines that led the design of the package and highlights its main features
and capabilities.

Chapter 2 also describes another aspect of the package evolvement, namely the de-
velopment of traits classes that enable the package to work with various families of
curves. Computing with curved objects is a real challenge: we wish to carry out the
computations in an exact manner, while at the same time the computation should

iv

be efficient, so the running times are acceptable for practical applications. Special
attention is given to the central issue of using exact number types.

Computing Minkowski sums and offset polygons. Computing the Minkowski sum
(namely the pointwise sum) of two sets is a fundamental operation for solving problems
in motion planning and computer-aided design. Chapter 3 overviews a new Cgal pack-
age that supports the Minkowski-sum computation of two straight-edge polygons, or
of a polygon and a disc (an operation known as offsetting the polygon). This package,
also based on the arrangement infrastructure, is the first to provide a robust imple-
mentation of the convolution method, achieving faster running times in comparison to
software packages that use convex polygon decomposition for the same task.

The package also addresses the problem of offsetting a polygon. The main difficulty
in performing this operation in an exact manner is algebraic, as it requires the exact
manipulation of algebraic numbers of degree up to four. Our package therefore includes
an offset approximation algorithm with guaranteed precision bounds, which employs
only exact rational arithmetic. This algorithm may expedite the offset computation
by a factor of 6–15.

Using the Minkowski-sum package in conjunction with the operations on general poly-
gons provided by the Boolean set-operations package, it is now possible to provide
complete and exact solutions to many practical large-scale problems in real time, a
task that was regarded impossible a few years back.

Planning collision-free paths for NC-machining. A typical industrial NC-machine
comprises a table that can move along three axes and is also able to rotate, and a
milling cutter with another degree of rotational-motion freedom. The cutter rotates
about its axis of symmetry and sculpts a workpiece placed on the table. The machine
is controlled by a sequence of commands that allow the cutter (also known as a tool)
five degrees of motion freedom. The goal is to devise motion paths for the cutter that
allow it to carve the workpiece. Namely, the tool tip is allowed to make contact with
the workpiece, but the rest of the cutter should not touch it, or any other part of the
machine.

Chapter 4 describes the design and implementation of algorithms that verify that a
given motion path of the tool is collision-free, and are based on our robust software
infrastructure. The verification can be done by sampling the path at several discrete
positions and verifying that each position is collision free, or by considering the con-
tinuous motion of the tool along short path segments. In both cases it is possible to
exploit the axial symmetry of the tool and reduce the problem to the computation of
the lower envelope of a set of line segments and hyperbolic arcs, which our software
can robustly handle, and to compare this envelope to the tools profile.

The verification algorithms we suggest offer superior accuracy in comparison to other
algorithms that have appeared in the Cad literature. In particular, the dynamic
version for the algorithm allows for collision detection at a very fine precision level.

Planning high-quality paths and corridors. Since many motion-planning variants are
hard to solve, most algorithms focus on just planning some collision-free motion path

v

for the moving entity, regardless of its quality. Applications that require high-quality
paths often employ a postprocessing step that enhance the quality of the path by
smoothing it, eliminating unnecessary loops or detours, etc. Such path-enhancement
techniques are often heuristic and give no guarantee on the quality of their output.

As complete solutions to some motion-planning variants are now available, we turn to
the problem of planning high-quality paths. In Chapter 5 we devise a data structure
called the visibility–Voronoi diagram. Given a set of obstacles and a preferred clearance
value c, our diagram interpolates between the visibility graph of the obstacles and their
Voronoi diagram, including paths that offer a natural balance between two optimization
criteria: minimizing the path length and maximizing its clearance, up to the preferred
value c. We also propose an algorithm that is capable of preprocessing a scene of polyg-
onal obstacles and constructs a data structure called the visibility–Voronoi Complex.
The visibility–Voronoi Complex can be used to efficiently plan motion paths for any
start and goal configuration and any clearance value c, without having to explicitly
construct the visibility–Voronoi diagram for that c-value. The preprocessing time is
O(n2 log n), the same as the time needed for constructing a single visibility–Voronoi
diagram, where n is the total number of obstacle vertices. The complex can be queried
directly for any c-value by merely performing a Dijkstra search.

In Chapter 6 we address the problem of planning high-quality corridors. Planning
corridors among obstacles has arisen as a central problem in application fields like
robotics and game design: instead of devising a one-dimensional motion path for a
moving entity, it is possible to let it move in a corridor, where the exact motion path is
determined by a local planner. We introduce a measure for the quality of such corridors.
We analyze the structure of optimal corridors amidst point obstacles and polygonal
obstacles in the plane, and propose an algorithm to compute tight approximations for
optimal corridors.

We conclude the thesis with some future prospects, presented in Chapter 7 and in the
two appendices to the thesis. First, we describe prospective traits-classes which will support
additional families on curves. In particular, we show how a traits class that handles algebraic
curves with rational coefficients can be used for solving the motion-planning problem of a
polygonal robot translating and rotating amidst polygonal obstacles. We also describe an
extension of the arrangement package to support two-dimensional arrangements of curves
embedded on general surfaces, such as spheres, cylinders, etc. We devise a framework for
handling various surfaces in a unified manner, thus maximizing code reuse and reducing
development efforts. The extended arrangement package will pave the way to develop new
applications in fields like molecular modeling and solid modeling.

vi

Contents

1 Introduction 1

1.1 Exact Arrangements and Their Applications for Motion Planning 3

1.1.1 Translational Motion in the Plane . 4

1.1.2 Translation and Rotation in the Plane 6

1.1.3 Hybrid Motion-Planning Algorithms 6

1.2 Computing High-Quality Motion Paths . 8

1.2.1 The Visibility–Voronoi Diagram . 9

1.2.2 Planning Corridors . 10

1.3 Thesis Outline . 12

2 Exact Manipulation of Curves using Cgal Arrangements 13

2.1 Introduction: The Cgal Library . 13

2.1.1 Generic Programming . 14

2.1.2 Chapter Overview . 15

2.2 The Main Component . 15

2.3 Arrangement-Traits Classes . 18

2.3.1 The Arrangement-Traits Concepts . 18

2.3.2 Traits Classes for Linear Curves . 19

2.3.3 Traits Classes for Non-Linear Curves 22

2.3.4 The Traits-Class Decorators . 27

2.4 Major Algorithmic Frameworks . 28

2.4.1 The Generic Sweep-Line Algorithm 29

2.4.2 Overlaying Arrangements . 31

2.4.3 Zone-Computation Visitors . 32

2.5 Adapting Arrangements to Boost Graphs 33

2.6 Related Cgal Packages . 33

2.6.1 Operations on Polygonal Sets . 33

2.6.2 Envelopes of Planar Curves . 34

vii

viii CONTENTS

3 2D Minkowski Sums and Offsets 37

3.1 Introduction and Related Work . 37

3.1.1 Decomposition vs. Convolution . 37

3.1.2 Exact vs. Approximate Offsetting . 39

3.2 The Convolution Method . 39

3.2.1 Computing the Convolution Cycles 42

3.2.2 Computing the Winding Numbers . 43

3.3 Experimental Results for Polygonal Minkowski Sums 45

3.4 Exact and Approximate Offset Polygons . 51

3.4.1 The Offset Convolution Cycle . 52

3.4.2 The Approximation Scheme . 53

3.4.3 The Approximation Quality . 55

3.5 Experimental Results for Offsetting Polygons 56

4 Continuous Path Verification in Multi-Axis NC-Machining 61

4.1 Introduction: 5-Axis Machining . 61

4.1.1 Related work . 62

4.1.2 Chapter Overview . 63

4.2 The Discrete Case . 64

4.3 The Continuous Case . 68

4.3.1 Decomposition of the Tool-Path . 68

4.3.2 Trace surface patches . 71

4.3.3 Silhouettes of surfaces . 73

4.3.4 The overall algorithm . 77

4.4 Implementation Details . 78

4.5 Experimental Results . 80

5 The Visibility–Voronoi Complex 85

5.1 Preliminaries . 87

5.1.1 Visibility Graphs . 87

5.1.2 Voronoi Diagrams of Polygons . 88

5.2 The VV(c)-Diagram . 89

5.3 The VV-Complex . 92

5.3.1 The Preprocessing Stage . 95

5.3.2 Querying the VV-Complex . 99

5.3.3 Proof of Correctness . 100

5.3.4 Complexity Analysis . 105

CONTENTS ix

5.3.5 Handling Non-Convex Obstacles . 106

5.4 Implementation Details . 107

5.5 Experimental Results . 109

6 Planning Near-Optimal Corridors amidst Planar Obstacles 113

6.1 Measuring Corridors . 113

6.1.1 The Weighted Length Measure . 114

6.1.2 Properties of an Optimal Corridor . 114

6.2 Optimal Corridors amidst Point Obstacles 117

6.2.1 A Single Point Obstacle . 117

6.2.2 Multiple Well-Separated Point Obstacles 119

6.2.3 Corridors amidst Point Obstacles: The General Case 119

6.3 Optimal Corridors amidst Polygonal Obstacles 125

6.3.1 Moving Near a Single Polygon . 125

6.3.2 Moving amidst Multiple Polygons . 127

6.4 Accounting for the Corridor Curvature . 130

6.4.1 Augmenting the Weighted-Length Measure 131

6.4.2 Moving Amidst Well-Separated Obstacles 132

7 Conclusions and Future Work 135

7.1 Handling Curves of a Higher Degree . 135

7.1.1 A Filtered Traits-Class for Bézier Curves 135

7.1.2 An Emerging Curved Kernel . 137

7.2 Arrangements on Surfaces in 3D . 137

A Revisiting the Critical Curves in the Piano Movers’ Algorithm 141

A.1 Motion Planning for a Ladder . 142

A.1.1 Critical Curves of Type V . 145

A.2 Motion Planning for a General Polygon . 146

A.2.1 Critical Curves of Type IV . 150

A.2.2 Critical Curves of Type V . 155

A.2.3 Critical Curves of Type VII . 159

B Sweeping Curves and Maintaining 2D Arrangements on Surfaces 163

B.1 The Augmented Sweep-Line Algorithm . 163

B.1.1 Sweeping Unbounded Curves . 165

B.1.2 Sweeping on General Surfaces . 167

B.2 Constructing Arrangements on Surfaces . 170

x CONTENTS

B.2.1 The Topology-Traits Concept . 170

B.2.2 Implementation Details . 172

Chapter 1

Introduction

Given a set C of planar curves, we refer to the planar subdivision they induce as their
arrangement. Arrangements are ubiquitous in the computational-geometry literature and
have numerous applications in many fields (see, e.g., [AS00a, Hal04]). In this thesis we mainly
consider applications in motion planning, computer-aided design (Cad) and computer-aided
manufacturing (Cam).

While some computational geometry problems, such as computing the convex hull of a set
of points or constructing a Delaunay triangulation for a set of points (see, e.g., [dBvKOS00]),
can be solved using predicates that involve the geometric entities given as an input (the points
in this case), computing the arrangements of a set of curves requires the construction of new
geometric objects based on the input, as one obviously needs to compute all intersections
between pairs of curves in the set. The assumption often made in the theoretical study of
geometric algorithms (which constitutes the vast majority of the computational-geometry
literature), that one can carry out infinite-precision computations on real numbers, often
breaks down in practice, especially when we encounter degenerate situations (e.g., three
curves intersecting at a common point), or nearly-degenerate situations that are indistin-
guishable from degenerate ones due to the usage of inexact machine-precision arithmetic.

The study of motion-planning problems was at first motivated by the design of au-
tonomous robots that should — among their other capabilities — be able to navigate their
way without having a prescribed path. We therefore refer to the entity in motion as a “robot”,
keeping in mind that motion planning has many other applications in other fields, such as
assembly planning, computer animation and structural bio-informatics [Lat99], where the
moving entities can be parts of machines, virtual characters in a computer game, or even
molecules. The motion-planning problem has many variants, defined by the shape of the
moving entities, their possible motions and by the shape of the obstacles [HKL04, Lat91].

Motion-planning problems have drawn much attention over the last three decades and
many algorithms were suggested to tackle the more common motion-planning variants or to
supply unified frameworks for handling families of motion-planning variants. While some
methods offer a complete theoretical solution (see [Sha04] for a comprehensive survey), they
tend to be rather complicated and almost impossible to implement — and indeed, there
hardly exist exact implementations of such complete algorithms. On the other hand, sev-
eral heuristic approaches were designed to tackle complicated motion-planning problems,

1

2 Chapter 1. Introduction

the most popular being the probabilistic roadmap (Prm) approach [KŠLO96]. While this
method is very intuitive and easy to implement, it is known to have a major drawback —
it usually fails to find a motion path when the obstacles are cluttered and the robot has
to go through narrow passages amidst these obstacles. Moreover, the running time of a
Prm-based algorithm is often unpredictable, and even when a program runs for hours on a
given motion-planning query and has not found a solution yet, one cannot be certain that
there is no solution (namely, a collision-free path) to that query.

In this thesis we provide some tools that can help bridging the gap between the theo-
retically complete methods and the heuristic approaches, yielding robust motion-planning
algorithms and providing efficient software solutions to related problems. Almost all exact
motion-planning algorithms consider a set of critical contact curves (or surfaces), which cor-
responds to the locus of robot positions that bring some robot feature to be in contact with
one of the obstacles without penetrating it, and study the subdivision these critical curves
(or surfaces) induce. Even in low dimensions, the critical curves tend to be quite complicated
and computing the subdivision they induce cannot be implemented with machine-precision
arithmetic without causing runtime failures. It is therefore clear that a reliable software
tool for constructing and maintaining arrangements is a prerequisite for providing a robust
implementation of a motion-planning algorithm. We describe a robust software package for
planar arrangements, along with several peripheral packages implemented on top of it that
offer fundamental operations such as Boolean set-operations and Minkowski-sum computa-
tion. Most packages are included in the latest public release of Cgal, the Computational
Geometry Algorithms’ Library (Version 3.2), and others will soon become publicly available
under the forthcoming release (Version 3.3). We show how the exact solution of some variants
of the motion-planning problems can be obtained in a robust manner while not incurring a
prohibitive running-time penalty.

Since many motion-planning variants are hard to solve, most algorithms focus on just
planning some motion path for the moving entity, regardless of its quality. Applications that
require a high-quality path often employ a post-processing step that enhance the quality
of the path by smoothing it, eliminating unnecessary loops or detours, etc. Such path-
enhancement techniques are often heuristic and give no guarantee on the quality of their
output.

As complete solutions to some motion-planning variants are now available, we turn to
the problem of planning high-quality paths. We devise data structures that can be efficiently
queried and output a high-quality path, without the need for any post-processing phase. We
also develop a quality measure for motion paths and show that our data structures yield
nearly-optimal paths with respect to this measure.

The rest of this chapter is organized as follows. In Section 1.1 we survey the principles
of exact motion-planning algorithms, discuss their complexity and describe some motion-
planning variants that can be solved in an exact manner. Section 1.2 focuses on techniques
for computing high-quality motion paths. In Section 1.3 we outline the rest of the thesis and
give references to the related publications.

1.1. Exact Arrangements and Their Applications for Motion Planning 3

1.1 Exact Arrangements and Their Applications for

Motion Planning

Early works on motion-planning problems were conducted by Lozano-Pérez [LP83, LPW79].
In his work, Lozano-Pérez defined the terms that are used in almost all following works:
The robot moves in an environment that is usually 2-dimensional or 3-dimensional, called
the workspace, amidst a set of obstacles it should avoid colliding with. We say that the
configuration space of the robot is d-dimensional if it is possible to uniquely characterize the
position of the moving entity by a d-tuple, which we refer to as a configuration. In this case
we say that the motion-planning problem has d degrees of freedom.

For instance, for a disc robot moving in the plane it is sufficient to specify the location
of the center of the robot 〈x, y〉. In case the robot is polygonal and can also rotate, we can
fix one of its vertices as a reference point and specify the location of this point (x, y), as well
as the angle θ that the edge between this vertex and one of its neighboring vertices forms
with the x-axis. The position of the robot is thus characterized by 〈x, y, θ〉. A “free flyer”
entity in space has six degrees of motion freedom: the location of some reference point on the
entity and three angles that determine its orientation. In case there exist m moving entities,
each with d degrees of freedom, the motion-planning problem gets more complicated, as the
robots have to coordinate their motions such that they do not collide with one another.
Indeed, the dimension of the configuration space in this case is md.

Using the notion of configuration space, it is possible to convert each obstacle O in
the workspace into a C-obstacle C(O) in the configuration space, such that the robot does
not collide with the original workspace obstacle O when its location is specified by the
configuration q if and only if q /∈ C(O) in the configuration space (see Figure 1.1 for an
illustration). The union of all C-obstacles defines the forbidden configuration space, a subset
of the configuration space that contains all the forbidden robot configurations, denoted Cforb.
The complement of this set is the free configuration space, denoted Cfree . It is also possible
to define semi-free configurations, where the moving entity is in contact with one (or more)
of the obstacles, but does not penetrate it. A maximal connected component within Cfree

or Cforb is called a cell. The decomposition of the configuration space to free and forbidden
cells is therefore a convenient basic framework for solving motion-planning queries: Given a
start and a goal configurations of the robot, we check whether they are in the same free cell,
and if so — we find a path that connects the two configurations within this cell.

In his work, Lozano-Pérez used an approximate representation of the configuration-space
regions. Schwartz and Sharir [SS83b] used more careful algebraic topological analysis, based
on Collins’ decomposition method [Col75], to obtain a description of the free configuration

space. Their algorithm takes n2O(d)
time, where n is the number of C-obstacle features and d

is the degree of the configuration space. Canny [Can87] suggested the “roadmap” algorithm,
which runs in O(ndmO(d4) log n) time, where m is the maximal degree of the polynomial
constraints that define the motion-planning problem. This algorithm is singly-exponential
in d and polynomial in n. Basu et al. [BPR96] used careful algebraic analysis to improve
the decomposition scheme and achieve an algorithm that takes O(nd+1)bO(d) time, where
b is the complexity of the robot. Chazelle et al. [CEGS91] suggested an improved general

4 Chapter 1. Introduction

P1

P2

P3

P4

C(P1)

C(P3)

C(P4)

C(P2)

(a) (b)

Figure 1.1: (a) The workspace of a disc robot moving among three polygonal obstacles. (b) The

corresponding C-obstacles. Both the workspace and the configuration space are 2-dimensional in this

case, but notice that the robot becomes a single point in the configuration space.

decomposition method called vertical decomposition, whose complexity is singly-exponential
in d. Currently the best bound on the size of the vertical decomposition is O(n2d−4+ε) and
is due to Koltun [Kol04].

The general motion-planning problem is therefore extremely difficult to solve in an exact
manner. In fact, if the dimension of the configuration space (namely, the number of degrees of
freedom of the moving entities) is part of the input, it is possible to show that even restricted
variants of the motion-planning problem are Pspace-hard; see, e.g., [Rei87, RS94, SM88].
Canny [Can88] showed that the motion-planning problem is also Pspace-complete. However,
for the simpler variants of the problem, where the dimension of the configuration space is
low, there exist theoretically efficient algorithms.

1.1.1 Translational Motion in the Plane

An efficient algorithm for the case of a convex polygonal robot Q that translates in the plane
among obstacles P1, . . . , Pk was given by Kedem et al. [KLPS86]. The C-obstacles in this
case are given by the Minkowski sum of each polygon with −Q, a copy of the robot reflected
about the origin (that is, Q rotated by π), namely C(Pk) = Pk ⊕ (−Q), and are polygonal
as well. It is possible to compute Cforb =

⋃k

i=1C(Pi) by considering the arrangement of the
C-obstacle boundaries. The free cells of this arrangement are then decomposed into pseudo-
trapezoids by introducing artificial “vertical walls” (see Figure 1.2), and it is possible to
construct a graph that captures the connectivity of the free configuration space. In this
connectivity graph we assign a vertex for each free pseudo-trapezoid and connect each pair
of free pseudo-trapezoids that share a common vertical wall by an edge. This graph is
used for answering motion-planning queries: given a start and a goal configurations of the
robot s, g ∈ R2 (as mentioned before, the configuration in this case is the position of some
fixed reference point on Q), we can efficiently locate the two pseudo-trapezoids that contain
the two points (see, e.g., [Mul90]) and then check if there exists a path between them in
the connectivity graph. This variant of motion-planning can thus be solved in O(n log2 n)

1.1. Exact Arrangements and Their Applications for Motion Planning 5

P1

P2

P3
Q

Figure 1.2: The vertical decomposition of the free configuration space for a triangular robot (lightly

shaded; the reference point is the bottom-right vertex of the robot). The original workspace obstacles

are darkly shaded. Note that in this example there exist several tight passages, and thus some pseudo-

trapezoids have a degenerate form of a line segment or even of a single point (marked by the dotted

circle on the right).

time, by using a divide-and-conquer approach to compute the union of the C-obstacles. It
is also possible to solve this variant in O(n logn) time (see, e.g, [BZ88]). See also Leven
and Sharir [LS87], who suggest an O(n logn) solution to this motion-planning variant by
considering generalized Voronoi diagrams.

Our software packages include all the ingredients for implementing this motion-planning
algorithm: namely it can efficiently construct Minkowski sums of polygons and compute the
arrangement of their boundary edges. The vertical decomposition scheme is also provided by
our arrangement package. For the construction of the connectivity graph and the reachability
algorithms we can use the Boost graph library [SLL02], which is becoming a generic-
programming standard. The data structures in our arrangement package can be treated
as Boost graphs, allowing users to conveniently interface with the graph algorithms this
library provides.

The problem of a disc moving amidst polygonal obstacles can be solved in a similar
fashion. The type of C-obstacles in this case is interesting in its own right and is often called
the offset polygon. These offset polygons are computed by “inflating” each polygon by the
radius of the robot, obtaining forbidden regions bounded by line segments and circular arcs.
As our arrangement package is generic and is able to handle various families of curves, this
variant of the motion-planning problem is also conveniently solved.

We mention that due to a large number of improvements in the latest releases of the
arrangement package and its peripheral algorithms, we obtain software that is two orders
of magnitude faster than previous implementations of motion planners, implemented using
previous Cgal versions (Flato [Fla00] for a translating polygonal robot, and Hirsch and
Leiserowitz [HL02] for a disc robot). In addition, we present an approximation scheme
for computing the Minkowski sum of a polygon and a disc, which helps achieving ever
faster running times, especially when it is necessary to perform union operations on the

6 Chapter 1. Introduction

C-obstacles. Our approximation scheme is conservative, namely it computes a super-set of
the true forbidden configuration space. The approximation error can be made arbitrarily
small without incurring prohibitive running-time penalties.

1.1.2 Translation and Rotation in the Plane

Schwartz and Sharir [SS83a] were the first to suggest an exact algorithm for planning the
motion of a robot that can translate and rotate in the plane. This algorithm is commonly
known as the piano-movers’ algorithm. They first solved the problem for the case of a line
segment (also called a “ladder”) translating and rotating amidst polygonal obstacles. Instead
of constructing a 3-dimensional representation of the free configuration space, it is possible
to project the configuration space onto the plane. We thus obtain a set of critical curves
that define the boundaries of planar cells, where all positions within each cell share the same
characteristics of free orientations. Namely, if we place the reference point of the robot in any
point in one of these cells and rotate it, it will hit the same set of obstacles in the same order
(clockwise or counterclockwise order). By assigning a suitable combinatorial label to each
cell, it is possible to construct a connectivity graph and to reduce every motion-planning
query to a simple graph-reachability query. A similar approach can be applied when the
robot is a polygon, where in both cases the critical curves are algebraic arcs of degree 4 at
most. The complexity of the process is O(n5) in case of a ladder, where n is the total number
of vertices in all obstacles, and O(n5m5) in case the robot is a polygon with m vertices.

While not being the most efficient motion-planning algorithm for a translating and ro-
tating polygon (see Halperin and Sharir [HS96] for an algorithm with near-quadratic run-
ning time — i.e., a worst-case near-optimal algorithm), the nice property of piano-movers’
algorithm is that it solves the problem in the plane, without having to consider the three-
dimensional configuration space directly. Moreover, it can be shown that if the obstacles
are “fat”, namely they contain no skinny features, then the worst-case complexity of the
algorithm drastically improves [vdS94].

We do not present a software implementation to the piano-movers’ algorithm, but show
that the critical algebraic curves we have to consider all have rational coefficients. As com-
putation with rational algebraic curves is becoming a reality, and future version of Cgal

will include components that can handle algebraic curves of arbitrary degree, implementing
the exact solution of the piano-movers’ algorithms will soon be possible.

1.1.3 Hybrid Motion-Planning Algorithms

A natural extension of the basic motion-planning problem of a single robot is having several
robots moving around in the scene. In this case, the motion of the robots should be coor-
dinated so they do not collide with one another while trying to avoid the static obstacles.
Complete solutions to coordination problems are very complicated because of the relatively
large number of degrees of freedom, causing the running time to be exponential in the num-
ber of robots (for example, when we have to coordinate k disc robots in space, the dimension
of the configuration space is 2k). Sharir and Sifrony [SS91] described a complete O(n2)
solution for two independent robots moving among polygonal obstacles in the plane, thus

1.1. Exact Arrangements and Their Applications for Motion Planning 7

constituting a system with four degrees of freedom, which is a special case of the complete
algorithm to the general motion planning problem described in [SS83c].

The evolvement of the Cgal arrangement package opened the door for hybrid solutions
to more complicated motion-planning variants, such as the coordination problem. Hirsch
and Halperin [HH03] give a solution for the problem of two disc robots moving in the plane
among polygonal obstacles, introducing a method they named hybrid motion planning. They
first construct the free configuration space for each robot separately using exact methods,
discovering a relatively large portion of Cforb. Now it is necessary to coordinate the motions
of the two robots so that they do not collide with one another. This is done in part by
examining the cells in R4 obtained by the Cartesian product of each pair of two free planar
cells, taken respectively from the two free configuration spaces of the individual robots. If the
two planar cells are sufficiently distant from one another, the 4-dimensional cell is completely
free. Otherwise, a local Prm is computed within this cell. These local roadmaps are then
stitched together to capture the connectivity of the 4-dimensional configuration space.

In this thesis we apply a hybrid approach to plan
collision-free motion paths in 5-axis NC-machining. A
typical industrial numerically-controlled machine, or NC-
machine for short, is sketched on the right. It comprises
a table that can move along three axes and is also able
to rotate, and a milling cutter with another degree of
rotational-motion freedom. The cutter rotates about its
axis of symmetry and sculpts a workpiece that is placed
on the table (not shown in the illustration). The machine
is controlled by a sequence of commands that allow to
slide the table or to rotate it, to change the angle of the cutter, etc. It is possible to
view the table and the workpiece as stationary, such that the cutter (also known as a tool)
has five degrees of motion freedom. The goal is to devise motion-paths for the tool that
allow it to carve the workpiece. Namely, the tool tip is allowed to make contact with the
workpiece, but the rest of the cutter should not touch the workpiece (or any other part
of the machine). This problem, having five degrees of motion freedom, is very difficult to
handle using exact methods, but we can devise methods that can exactly solve some related
fundamental primitives that can serve as building blocks for a probabilistic solution.

We first consider the static collision-detection problem, namely determining whether a
given configuration of the tool is collision-free. We show that it is possible to answer such
queries by considering the lower envelope of a set of planar curves, obtained by the radial
projection of the workpiece about the symmetry axis of the tool, and comparing it to the
profile of the cutter. We then extend this approach to verify that simple motions of the
tool, the most important one being translation of the tool while keeping a fixed orientation.
In this case we consider the lower envelope of the so-called “silhouettes” of the triangles
constituting the workpiece. We show that these silhouette curves are rather simple planar
curves, so the problem is once again reduced to the lower-envelope computation. Lower
envelopes are special sub-structures of planar arrangements, and we can efficiently compute
envelopes of arbitrary planar relevant curves using our software.

8 Chapter 1. Introduction

We use these collision-detection primitives to verify more complicated motion paths.
When we encounter collision, we use these primitives as oracles for a Prm used to plan a
local correction for the path that resolves the collision.

1.2 Computing High-Quality Motion Paths

Since the motion-planning problem in general is very difficult, most algorithms that were
suggested for solving variants of the motion-planning problem focus on computing some
collision-free motion-path for the moving entity (or entities), regardless of its quality. In
the second part of this thesis we devise data structures that can efficiently answer motion-
planning queries and output high-quality motion-paths. We utilize our robust software tools
to implement one of these data structures, that can compute nearly-optimal paths amidst
polygonal obstacles in the plane, according to natural quality measures we propose.

The exact definition of a high-quality path is somewhat elusive, as it depends on the
type of application that utilizes such a path. For many applications, such as planning the
motions of virtual characters in game design, it is important that the motion paths look
natural. By “natural-looking” we mean that the moving entity should select a path that
mimics as closely as possible the path a human would take in the same scene to reach the
goal configuration from a given start configuration. This essentially means the following:

1. The path should be short — that is, it should not contain long detours when signifi-
cantly shorter routes are possible.

2. It should have a guaranteed amount of clearance. Namely, the distance of any point
of the moving entity along the path to the closest obstacle should not be below some
prescribed value.

3. The path should be smooth, not containing any sharp turns.

The same principles are adequate for applications in other fields. For instance, it is important
that the motion-path for an automated vehicle is as short as possible in order to minimize
its fuel consumption — but at the same time, we want it to keep away from obstacles
and to avoid sharp turns, which are impossible due to the stirring mechanism. However,
requirements 2 and 3 may conflict with requirement 1 in case it is possible to considerably
shorten the path by taking a shortcut through a narrow passage. In such cases we may prefer
a path with less clearance, allowing the moving entity to arrive at the goal configuration more
quickly.

Let us consider the motion-planning problem for a robot with two degrees of freedom
presented in Section 1.1.1. The connectivity graph indeed captures the connectivity of the
free configuration space and in this sense the algorithm is complete. However, paths extracted
from this graph are piecewise linear (hence not smooth) and are often not the shortest
paths. Indeed, it is possible to perform path smoothing as a post-processing stage and
produce a more natural-looking path (see [GO03] for a summary of applicable post-processing
techniques), but as there is no guarantee that the initial path is in the same homotopy class
as the best path possible, the smoothed path may still be different from the most natural-
looking path, as smoothing techniques typically do not change the homotopy class of the

1.2. Computing High-Quality Motion Paths 9

path they process. Another drawback of the post-processing approach is that it usually
employs expensive procedures, which may incur running-time penalties that are prohibitive
in a real-time application (e.g., planning the motion of virtual characters in a computer
game). Having a data structure that can be queried at real-time and provide a high-quality
motion path, without any need for expensive post-processing, is therefore essential for such
applications. We mention that in many cases the construction of such a data structure can
be done as a preprocessing stage.

Similar artifacts occur if we apply a Prm-based approach for planning a collision-free
path: since the edges of the Prm graph usually correspond to straight line segments in
the configuration space, the resulting path is piecewise linear and may be much longer
than the shortest possible path. Nieuwenhuisen and Overmars [NO04b] suggest using a
Prm with cycles rather than a minimally-connected Prm (which is actually a forest and
contains no cycles) in order to obtain shorter paths from the Prm. Another idea is to
incorporate circular arcs into the Prm, thus eliminating the sharp turns and replacing them
by smooth ones [NKMO04]. While these methods considerably improve the quality of the
paths generated by Prm techniques, they still suffer from the general drawbacks of the
probabilistic nature of the Prm method. Namely, due to poor sampling we may plan a path
that is considerably longer than the best path possible, on even worse — fail to detect a
collision-free motion path when one actually exists. Moreover, even when a path is generated
it can be in a different homotopy class than that of the optimal path, so the two paths are
substantially different.

The visibility graph is a well-known data structure for computing the shortest collision-
free path between a start and a goal configuration (see, e.g., [dBvKOS00, Chapter 15]
and [Mit04]). However, shortest paths are in general tangent to obstacles, so a path com-
puted from a visibility graph usually contains semi-free configurations and therefore does
not have any clearance. This not only looks unnatural, it is also unacceptable for many
motion-planning applications. Moreover, having no clearance makes it impossible to apply
smoothing techniques on the paths extracted from a visibility graph.

On the other hand, planning motion paths using the Voronoi diagram of the obsta-
cles [ÓY85] yields a path with maximal clearance. The drawback of this method (known
as the retraction method), is that the path it outputs may be significantly longer than
the shortest path possible and may also contain sharp turns. It is worth mentioning that
post-processing techniques that try to “push” the path away from the obstacles and to ap-
proximately retract it to the Voronoi diagram of the obstacles (see, e.g., [GO04]), suffer from
the same problem.

1.2.1 The Visibility–Voronoi Diagram

We introduce a new type of diagram called the VV(c)-diagram (the Visibility–Voronoi dia-
gram for clearance c), which is a hybrid between the visibility graph and the Voronoi diagram
of polygons in the plane. It evolves from the visibility graph to the Voronoi diagram as the
parameter c grows from 0 to ∞. This diagram can be used for planning natural-looking
paths for a robot translating amidst polygonal obstacles in the plane.

10 Chapter 1. Introduction

s

g

Figure 1.3: A small disc robot moving within a corridor (lightly shaded) amidst polygonal obstacles

(darkly shaded). The backbone of the corridor is drawn with a dashed line, while the path actually taken

by the robot is drawn as a solid curve.

We also propose an algorithm that is capable of preprocessing a scene of configuration-
space polygonal obstacles and constructs a data structure called the visibility–Voronoi com-
plex, or VV-complex for short. The VV-complex can be used to efficiently plan motion paths
for any start and goal configuration and any clearance value c, without having to explicitly
construct the VV(c)-diagram for that c-value. The preprocessing time of the VV-complex is
O(n2 log n), where n is the total number of obstacle vertices, and the data structure can be
queried directly for any c-value by merely performing a Dijkstra search.

It is important to mention that intensive geometric computation is needed only when
constructing the VV(c)-diagram (or the VV-complex), and can thus be performed at a pre-
processing stage. The resulting structures can be queried efficiently using machine-precision
arithmetic, without causing any computational instabilities.

1.2.2 Planning Corridors

A common drawback of most traditional motion-planning methods (the complete ones and
the heuristic ones) is that they output a fixed path in response to a query. This path is often
not the ideal solution for motion planning, as it lacks flexibility to avoid local hazards (such
as small obstacles, other moving entities, etc.) that are encountered during the motion.
It also leads to predictable, and possibly unrealistic motions, which are not suitable for
some applications, such as computer games. One approach for tackling these problems is a
potential-field planner, in which the moving entity is attracted to its goal configuration, and
repelled by obstacles, or other moving entities (see, e.g., [Kha86]). However, this approach
is prone to get stuck in local minima of the potential field; while there are methods that help
in resolving such situations (see, e.g., [Lat91]), they may still not yield valid motions at all.

1.2. Computing High-Quality Motion Paths 11

We would therefore like to indicate the global direction of movement for the moving
entity, while leaving enough flexibility for some local planner to avoid local hazards. An
ideal solution for this is to use corridors, which have recently been introduced in the game-
design field [Ove05]. In contrast to one-dimensional motion-paths, corridors are defined as
a union of balls whose center points lie along a backbone path, and therefore have a volume
(see Figure 1.3). Once we compute a collision-free corridor, the more restricted task of locally
planning the motion around the backbone path can be successfully performed by applying
potential-field methods. In order to guarantee that the local planner operates on a restricted
environment, the width of the corridor should be upper bounded by some predetermined
value. Corridors thus give a strict global direction of movement, yet allow for the local
flexibility of motion that is essential in many cases.

Let us consider the following interesting application of planning the motion of a group
of small entities in a two-dimensional workspace cluttered with polygonal obstacles, where
it is desirable that the entities move together as a coherent group. Kamphuis and Over-
mars [KO04a] solve this problem by planning a collision-free path for a single entity, then
“inflating” this backbone path up to a diameter of a preferred group width w, wherever
possible, and governing the motions of the individual entities inside this inflated path using
a social potential field [RW95], where the robots are attracted to the backbone path and are
repelled from the corridor boundaries and from one another. As we mentioned before, the
local nature of the potential field within the corridor avoids the problem of local minima.

Planning within corridors has many other interesting applications. For example, it is
possible to use a corridor to plan the motion of a camera that follows a moving character
(a guide) [NO04a]. The motion-path of the guide constitutes the backbone of the corridor,
which is wide enough to allow the camera the flexibility to swerve if necessary. Another
advantage of corridors is that they allow for non-holonomic and kinodynamic planning, if
the motion of a single entity (or multiple entities) is planned using a potential-field method
within the corridor [KPOL05]. This is very difficult to achieve and incorporate into a fixed
path. As a rule of thumb, corridors are very successful in solving motion-planning variants
where small entities move amidst some relatively large static obstacles. Corridors are thus
suitable for applications in many fields, such as open field robotic navigation and game
design, that consider motions of robots, cars or virtual characters amidst buildings, rocks,
etc.

In previous works that consider motions in corridors (see, e.g., [But06, KO04b]), heuristic
methods are used to construct the corridors, without any guarantee of their quality (for
example, [KO04b] use a Prm with cycles [NO04b] to compute the initial path, then post-
process it to obtain a smooth path). We introduce a quality measure for corridors, which
captures the desirable properties given in the beginning of this section. We show that the
backbone path of an optimal corridor is essentially smooth and offers a balance between
its length and its clearance. We analyze the structure of optimal corridors amidst point
obstacles and amidst polygonal obstacles in the plane. We show that optimal corridors are
hard to compute, yet we devise an approximation algorithm that can compute near-optimal
corridors.

We also show that the path computed by the VV(c)-diagram can be conveniently used
as approximation to an optimal backbone path amidst polygonal obstacles, where c is the

12 Chapter 1. Introduction

preferred corridor width. We have implemented a Cgal-based software package for com-
puting the VV(c)-diagram in an exact manner for a given clearance value and used it to plan
high-quality corridors in various applications.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we give an overview of the
Cgal arrangement package, which serves as a common infrastructure for almost all soft-
ware solutions described in this thesis. This package has undergone a major redesign and
re-implementation, which enhanced its efficiency, genericity, extendibility and ease-of-use.
This chapter is an extract of a paper (joint work with Efi Fogel and with Baruch Zukerman)
that gives the details of the new design and compares the performance of the new arrange-
ment package (in Cgal Version 3.2) to the previous version (Cgal Version 3.1), which has
recently appeared in Computational Geometry — Theory and Applications (special issue on
Cgal) [WFZH07]. A preliminary version of the paper appeared in the proceedings of the
1st Workshop on Library-Centric Software Design [WFZH05].

In Chapter 3 we consider the computation of Minkowski sums and describe a robust,
yet efficient, implementation of algorithms for computing planar Minkowski sums of two
polygons and of a polygon and a disc. The first part of this chapter has appeared in the
Proceedings of the 14th European Symposium on Algorithms [Wei06c]. The second part,
which describes an efficient offset-approximation algorithm has recently been published in
Computer-Aided Design [Wei07].

In Chapter 4 we consider the collision-detection problem for a rotating milling-cutter, give
an exact solution for some basic primitives, and use them to verify more involved motion
paths. This work has appeared in the International Journal on Computational Geometry and
Applications [WIEH05]. A preliminary version appeared in the proceedings of the 20th An-
nual Symposium on Computational Geometry [WIEH04]. The work presented in Chapter 4
is joint work with Oleg Ilushin and Gershon Elber from the Technion.

The next two chapters consider the problem of planning high-quality motion paths amidst
polygonal obstacles in the plane. In Chapter 5 we present the VV-complex that is capable of
answering motion-planning queries and provide natural-looking paths with some preferred
amount of clearance. This paper has recently been published in Computational Geometry:
Theory and Applications [WvdBH07]; a preliminary appeared in the proceedings of the 21st
Annual Symposium on Computational Geometry [WvdBH05].

In Chapter 6 we develop a quality measure for corridors and show that the Visibility–
Voronoi diagram for some preferred corridor width produces very close approximations of op-
timal backbone paths under this quality measure. This work has appeared in the proceedings
of the 7th International Workshop on the Algorithmic Foundations of Robotics [WvdBH06].
This, as well as the paper on the VV-complex, are joint work with Jur van den Berg from
Utrecht University.

We conclude the thesis by mentioning some ongoing research and describing future
prospects in Chapter 7.

Chapter 2

Exact Manipulation of Curves using
Cgal Arrangements

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane induced
by the curves in C into maximally connected cells of dimensions 0 (vertices), 1 (edges), or 2
(faces). The planar map of A(C) is the embedding of the arrangement as a planar graph, such
that each arrangement vertex corresponds to a planar point, and each edge corresponds to a
planar subcurve of one of the curves in C, whose interior is disjoint from all other subcurves.

In this chapter we describe a software package that constructs and maintains arrange-
ments of planar curves in an exact and robust manner. While the package had already
existed before the research described in this thesis was conducted, the problems tackled in
the thesis motivated significant further development of the software, which finally led to its
complete re-design. We give an overview of this new design of the arrangement package and
highlight its flexibility and extendibility. By flexibility we mean the ability to work with
various families of curves, while extendibility refers to the various ways in which users can
extend the package and use it for diverse applications. We also mention two related packages,
for computing set-operations among polygons and for computing envelopes of curves, that
will be used in the next chapters.

This is the only chapter of the thesis that focuses on implementation issues (rather
than algorithms). It assumes the reader has some familiarity with modern programming
techniques and paradigms. The rest of the chapters in this thesis barely require such back-
ground.

2.1 Introduction: The Cgal Library

Cgal, the Computational Geometry Algorithms Library,1 is the product of a collaborative
effort of several sites in Europe and Israel, aiming to provide a generic and robust, yet
efficient, implementation of widely used geometric data structures and algorithms. The basic
layer of the library comprises geometric kernels [FGK+00, HHK+01]. Each kernel defines
types of constant-size primitive objects (such as points, line segments, triangles, etc.) and
implements predicates and operations on objects of these types. The library also consists

1See the Cgal project homepage: 〈http://www.cgal.org/〉.

13

14 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

of a collection of modules built on top of the kernel layer, which provide implementation of
many fundamental geometric data structures and algorithms. The arrangement package is
a part of this layer.

In the classic computational geometry literature two assumptions are usually made to
simplify the design and analysis of geometric algorithms: First, inputs are in “general po-
sition”. That is, degenerate input (e.g., three curves intersecting at a common point) is
precluded. Secondly, operations on real numbers yield accurate results — that is, the “real
Ram” model [PS85] is used. The model also assumes that each basic geometric operation
(e.g., comparing the distances of two points from a third point) takes constant time. Unfor-
tunately, these assumptions do not hold in practice. Thus, an algorithm implemented from
a textbook may yield incorrect results, get into an infinite loop, or just crash, while running
on a degenerate, or nearly degenerate, input (see [KMP+04, Sch00, Yap04] for examples).
This is one of the problems addressed successfully by Cgal in general and by the Cgal

arrangement package in particular, which adapts the exact computation paradigm [YD95].
The various algorithms used in the arrangement package therefore make no general-position
assumptions on their input and are designed to robustly handle all possible degenerate situ-
ations (e.g., several curves intersecting at a common point, curves that tangentially intersect
but do not cross one another, etc.). At the same time, these algorithms assume that the
geometric primitives they use are implemented in an exact manner. To guarantee correct
results, we have to use computations whose exactness is certified.

2.1.1 Generic Programming

The software described in this chapter rigorously adapts, as does Cgal in general, the
generic programming paradigm [Aus98], making extensive use of C++ class-templates and
function-templates. The generic-programming paradigm uses a formal hierarchy of abstract
requirements on data types referred to as concepts, and a set of components that conform pre-
cisely to the specified requirements, referred to as models. Concepts correspond to template
parameters, and models correspond to classes used to instantiate them.

In software engineering, design patterns are frequently used to supply standard solutions
to common problems recurring in software design. Design patterns supply a systematic
high-level approach that focuses on the relations between classes and objects, rather than
designing individual components tailored for a specific programming task. See the book by
Gamma et al. [GHJV95] for a catalog of the most common design patterns.

While relations between objects in a design pattern are usually realized in terms of ab-
stract data types and polymorphism, design patterns can successfully be applied in generic
programming as well, as done in the context of the arrangement package. The implemen-
tations of the point-location algorithms bundled with the package provide a good example.
One of the most frequently used operations on arrangements is answering point-location
queries: Given a query point q, find the arrangement cell that contains q. The arrangement
package provides several point-location algorithms, and enables users to select the algorithm
best suited for their application. To this end, we use the strategy design-pattern, which
defines a family of algorithms, each implemented by a separate class, and we make them
interchangeable, letting the algorithm in use vary according to the client choice.

2.2. The Main Component 15

In traditional object-oriented programming, the point-location process could be realized
with an abstract base class that provides a pure virtual function, locate(q), which accepts
a point q, and results with the arrangement cell containing it. All concrete point-location
classes would inherit from the base class, and all arrangement algorithms that issue point-
location queries would use a pointer to an abstract base object, which would actually point
to one of the concrete point-location classes. When using generic programming, we rely less
on inheritance or virtual functions. Instead, we define a concept named ArrangementPoint-

Location, such that all models of this concept must supply a locate() function. All the
various point-location classes model this concept. Note that the concept definition has no
trace in the actual C++ code, so from a syntactical point of view, these classes are com-
pletely unrelated. Any generic algorithm that issues point-location queries is implemented
as a template parameterized by a point-location type, which must be instantiated with a
model of the ArrangementPointLocation concept.

2.1.2 Chapter Overview

We next describe the main components of the arrangement package with an emphasis on
some of the design patterns we use to allow better flexibility and extendibility for the package
users. In Section 2.2 we present the main arrangement class and explain it functionality.
Section 2.3 describes how the arrangement package can handle various families of curves
in an exact and robust manner, reviewing methods for exact geometric computation and
putting special emphasis on techniques for minimizing the trade-off between the exactness
of the computation and the efficiency of the package.

Section 2.4 presents two important algorithmic frameworks — the sweep-line framework
and the zone framework — used as a basis for many of the arrangement functionalities. In
Section 2.5 we explain how to adapt Cgal arrangements to graphs and apply generic graph
algorithms on them.

Section 2.6, which concludes this chapter, describes two additional Cgal packages that
are closely related to the arrangement package: the Boolean set-operation package and the
envelope package.

2.2 The Main Component

The Arrangement 2 class-template2 represents the planar embedding of a set of weakly
x-monotone3 planar curves that are pairwise disjoint in their interiors. It provides the nec-
essary capabilities for maintaining the planar graph induced by the curves, while associating
geometric data with the vertices, edges, and faces of the graph. The arrangement is rep-
resented using a doubly-connected edge list (Dcel), a data structure that enables efficient
maintenance of two-dimensional subdivisions.

2Cgal prescribes the suffix 2 for all data structures of planar objects as a convention.
3A continuous planar curve C is x-monotone, if every vertical line intersects it at most once. Vertical

segments are defined to be weakly x-monotone and can also be handled by the arrangement class. In what
follows, the term x-monotone refers to weakly x-monotone as well.

16 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

e

v1

v2

e′

f2

f̃
f1

f3

Figure 2.1: A portion of an arrangement of circles with some of the Dcel records that represent it.

f̃ is the unbounded face. The halfedge e (and its twin e′) correspond to a circular arc that connects

the vertices v1 and v2 and separates the face f1 from f2. The predecessors and successors of e and e′

are also shown. Note that e, together with its predecessor and successor halfedges, form a closed chain

representing the outer boundary of f1 (f1 is lightly shaded). Also note that the face f3 (darkly shaded)

has a more complicated structure, as it contains a hole.

In a common Dcel data-structure each curve is represented using a pair of directed
halfedges, one directed from the xy-lexicographically smaller endpoint of the curve to its
larger endpoint, and the other — its twin halfedge — going in the opposite direction. The
Dcel structure consists of containers of vertices (associated with planar points), halfedges,
and faces, where halfedges are used to separate faces and to connect vertices. We store a
pointer from each halfedge to the face lying to its left. Moreover, halfedges are connected
in circular lists and form chains, such that all edges of a chain are incident to the same
face and wind in a counterclockwise direction along its outer boundary (see Figure 2.1 for
an illustration). A face may be simply connected, or it may store a non-empty container
of holes, where each hole is represented by an arbitrary halfedge on the clockwise-oriented
chain that forms its boundary. The full details concerning the Dcel structure are omitted
here; see [dBvKOS00, Section 2.2] for further details and examples. We also extend the
Dcel data-structure, allowing isolated vertices to be located in the interior of a face, such
that each face stores a container of the isolated vertices contained in its interior.

The Arrangement 2<Traits,Dcel> class-template must be instantiated with two classes
as follows:

• A traits class, which provides the geometric functionality, and is tailored to handle a
specific family of curves. It encapsulates implementation details, such as the number-
types used, the coordinate representation, and the geometric or algebraic computation
methods; see Section 2.3 for more details.

• A Dcel class, which represents the underlying topological data structure. It defaults
to Arr default dcel<Traits>, which simply associates a point with each Dcel vertex
and an x-monotone curve with each halfedge pair, where the geometric types of the
point and the x-monotone curve are defined by the traits class given as the Traits

parameter. Users may extend the default Dcel implementation, in order to attach

2.2. The Main Component 17

v2

f

v1

u

v h2

f

h1

f ′

u2

u1

(a) (b) (c)

Figure 2.2: The basic insertion procedures. The inserted x-monotone curve is drawn with a light

dashed line, surrounded by two solid arrows that represent the twin halfedges added to the Dcel.

Existing vertices are shown as dark dots while new vertices are shown as light dots. Existing halfedges

that are affected by the insertion operations are drawn as dashed arrows. (a) Inserting a subcurve into

the interior of face f , which becomes a hole of this face. (b) Inserting a subcurve, one endpoint of which

corresponds to the existing vertex u. (c) Inserting a subcurve, both endpoints of which correspond to

the existing vertices u1 and u2. In this case, the new pair of halfedges close a new face f ′, where the

hole h1, which used to belong to f , now becomes an enclave in this new face.

additional data to the Dcel records, or even supply their own Dcel class written
from scratch.

The two template parameters enable the separation between the topological and geomet-
ric aspects of the planar subdivision. This separation is advantageous, as it allows users with
limited expertise in computational geometry to employ the package with their own repre-
sentation of any special family of curves. They must however supply the relevant traits-class
types and methods, which mainly involve algebraic computation. The separation is en-
abled by the modular design and conveniently implemented within the generic-programming
paradigm.

The interface of Arrangement 2 consists of various methods that enable the traversal
of arrangement features. Namely, the class supplies iterators over its vertices, halfedges, or
faces. In addition, the classes Vertex, Halfedge, and Face, nested in the Arrangement 2

class, supply in turn methods for local traversal. For example, it is possible to visit all
halfedges incident to a specific vertex, or to go over all the halfedges along the outer boundary
of a given face.

In addition to the traversal methods, the arrangement class also supports several methods
that locally modify the arrangement, such as inserting an isolated point, inserting an x-
monotone curve, splitting an edge, or removing an edge. In case of insertion, the interior of
the inserted curve must be disjoint from all other arrangement vertices and edges, but its
endpoints may coincide with existing vertices (see Figure 2.2, which illustrates the various
insertion cases). This interface seems rather limited; in Section 2.4 we explain how we use
these basic insertion procedures to insert new curves that intersect the arrangement.

18 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

2.3 Arrangement-Traits Classes

As mentioned in the previous section, the Arrangement 2 class-template is parameterized
by a geometric traits class that defines the abstract interface between the arrangement data-
structure and the geometric primitives it uses. The name “traits” was given by Myers [Mye97]
for a concept, a model of which supports certain predefined methods that have a common
denominator. In our case, a geometric traits class defines the family of curves that induce
the arrangement. Moreover, details such as the number type used to represent coordinates,
the type of coordinate system used (i.e., Cartesian or homogeneous), the algebraic methods
used, and auxiliary data stored with the geometric objects, if present, are all determined by
the traits class and are encapsulated within it.

2.3.1 The Arrangement-Traits Concepts

The traits concept is factored into a hierarchy of refined concepts. The refinement hierarchy
is defined according to the identified minimal requirements imposed by different algorithms
that operate on arrangements. This fact makes the production of new traits classes an easier
task, as implementers can choose to write a model to the tightest concept that fits their
needs. The concept hierarchy also increases the usability of the arrangement class and its
related algorithms.

Every model of the geometry-traits concept must define two types of objects, namely
Point 2 and X monotone curve 2. The latter represents a planar x-monotone curve, and
the former is the type of the endpoints of the curves, representing a point in the plane. The
basic concept ArrangementBasicTraits 2 lists the minimal set of predicates on objects of these
two types sufficient to enable the operations provided by the Arrangement 2 class-template
itself, namely the insertion of x-monotone curves that are interior disjoint from any vertex
and edge in the arrangement.

Compare x: Compare the x-coordinates of two given points.

Compare xy: Compare two points lexicographically, by their x-coordinates, and in case of
equality by their y-coordinates.

Min/max endpoint: Return the lexicographically smaller (left), or the lexicographically
larger (right), endpoint of a given x-monotone curve.

Is vertical: Determine whether a weakly x-monotone curve is a vertical segment.

Compare y at x: Given an x-monotone curve C and a point p = (x0, y0) such that x0

is in the x-range of C (namely x0 lies between the x-coordinates of C’s endpoints),
determine whether p is above, below, or lies on C.

Compare y to right: Given two x-monotone curves C1 and C2 that share a common left
endpoint p, determine the relative position of the two curves immediately to the right
of p.

2.3. Arrangement-Traits Classes 19

The set of predicates listed above is also sufficient for answering point-location queries by
the various point-location strategies.

If users wish to construct arrangements of x-monotone curves that may intersect in their
interior, they must instantiate the arrangement class-template with a traits class that models
the concept ArrangementXMonotoneTraits 2. This concept refines the basic arrangement-
traits concept described above, as it adds methods for computing intersections between
x-monotone curves. An intersection point between two curves is also represented by the
Point 2 type. The refined traits concept also lists a method for splitting curves at these
intersection points to obtain a set of interior disjoint subcurves. A model of the refined
concept must therefore provide the following additional operations:

Intersect: Compute the intersections between two given x-monotone curves C1 and C2,
returning them in increasing lexicographical order. Each intersection is represented by
an intersection point and its geometric multiplicity,4 if the multiplicity is defined and
known, or by an x-monotone curve representing an overlapping portion of C1 and C2.

The introduction of multiplicity of intersection points enables the arrangement con-
struction algorithms to exploit the geometric knowledge they may have, in order to
avoid costly calls to other traits-class functions, since in many cases the order of in-
cident curves to the right of a common intersection point can be deduced from their
order to the left of the point and the intersection multiplicity.5

Split: Split a given x-monotone curve C at a given point p, which lies in C’s interior, into
two subcurves.

Merge: The reverse of the split operation, namely merging two contiguous subcurves to
form a single x-monotone curve, is optional. If provided, it can be used for eliminating
redundant vertices from the arrangement.

The construction of an arrangement of general curves requires a model of the further
refined concept ArrangementTraits 2. In addition to the point and x-monotone curve types,
a model of the refined concept must define a third type that represents a general (not neces-
sarily x-monotone) curve in the plane, named Curve 2. It also has to supply a method that
subdivides a given curve into simple x-monotone subcurves, and possibly isolated points.6

2.3.2 Traits Classes for Linear Curves

Line segments probably form the simplest family of curves that induce planar arrangements,
and have some properties that makes the implementation of a traits class for segments
a relatively easy task: for example, a pair of line segments have at most one transversal

4See, e.g., 〈http://en.wikipedia.org/wiki/Intersection number〉 for an exact definition.
5This is quite clear when we have two curves intersecting at a point, as they swap their relative order if

and only if the multiplicity of intersection is odd. See [FHK+06] for a generalization to the case of multiple
curves intersecting at a common point.

6For example, the curve (x2 +y2)(x2 +y2−1) = 0 comprises two x-monotone circular arcs, which together
form the unit circle, and a singular isolated point at the origin.

20 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

intersection point (of multiplicity 1). It is also possible to consider continuous chains of line
segment known as polylines. Polylines are slightly more difficult to handle, as they are not
necessarily x-monotone and may form complex intersection patterns. However, both these
families of (piecewise) linear curves share an important property: if the points that define
the curves all have rational coordinates, then all intersection points they induce also have
rational coordinates. As a consequence, to ensure the reliability of the various geometric
operations required by the arrangement-traits concept, it is sufficient that the traits class
uses exact rational arithmetic. We note that even if the input is given as floating-point
numbers, we can easily convert them to a rational representation as they have a bounded
mantissa.

Implementing a C++ class that represents an exact rational number-type is not too diffi-
cult for an experienced programmer. There are also several implementations that are publicly
available, the most efficient one given by the number-types defined in Gmp, the Gnu Multi-
Precision library.7 However, exact computation with rational numbers is far more expensive
compared with the machine-precision floating-point arithmetic. To overcome this problem,
it is possible to use floating-point filters. In geometric computing, when we compute some
expression we are usually not interested in its exact value, and instead just have to consider
the sign of the expression. It is thus possible to first perform the computation using fast
floating-point arithmetic, and only in the relatively rare cases when inexactness results in an
ambiguous result (namely, when the absolute value of the expression is too small), resort to
exact computation and obtain the correct answer. Such a mechanism is provided in Cgal as
a number-type that uses interval arithmetic to filter exact computations with rational num-
bers [BBP01]. The idea is to isolate the true value of the expression in an interval defined
by two floating-point numbers, and in addition to store an expression tree that records the
basic arithmetic operations that form the expression at hand. The expression tree allows
for the re-computation of the expression using exact arithmetic when necessary — namely,
when the interval contains 0 and its sign cannot be determined.

To minimize the computation efforts even further, it is possible to apply filtering at
a geometric level. For example, instead of storing two expression trees for the x and y-
coordinates of an intersection point p, it is sufficient to record that p is the intersection point
of two line objects `1 and `2. This principle of geometric filtering is implemented by Cgal’s
“lazy” kernel [FP06].

Segment-Traits Classes

The arrangement package provides two traits classes that handle line segments. The
Arr segment traits 2<Kernel> class-template is parameterized by a geometric kernel, that
conforms to the Cgal-kernel concept [FGK+00]. We note that the Segment 2 type defined
by most Cgal kernels is represented only by its two endpoints. When a segment is split
several times, the bit-length needed to represent the coordinates of its endpoints may grow
exponentially (see [FWH04] for a discussion), which may significantly slow down the compu-
tation. Therefore, instead of using the Kernel::Segment 2 type, our traits class represents

7See Gmp’s homepage at 〈http://www.swox.com/gmp/〉.

2.3. Arrangement-Traits Classes 21

a segment by its supporting line and two endpoints. When it computes an intersection point
of two line segments, it uses the coefficients of their supporting lines. When a segment is
split at an intersection point, the supporting line of the two resulting sub-segments remains
the same, and only their endpoints are updated. The Arr segment traits 2<Kernel> thus
overcomes the undesired effect of the cascading of intersection-point representation.

The Arr non caching segment basic traits 2<Kernel> class-template is a model of
the ArrangementBasicTraits 2 concept. It declares Kernel::Segment 2 as its x-monotone-
curve type, and it uses the kernel functions to operate on such segments. As the segments
it handles are non-intersecting, the undesired effect of cascaded representation of intersec-
tion points does not occur. The traits class Arr non caching segment traits 2<Kernel>

models the concept ArrangementTraits 2. It extends the basic-traits class with the capabil-
ity to handle intersections of segments. Naturally, it uses less space than the traits class
Arr segment traits 2 uses. However, it achieves (slightly) faster running times only in
case of very sparse arrangements of line segments. In most cases the Arr segment traits 2

class is more efficient than the “non-caching” traits class.

As mentioned in the introduction to this section, optimal performance is achieved when
instantiating the segment-traits class with the “lazy” kernel. While guaranteeing the correct-
ness of the result, our experiments show that using the lazy kernel is typically only 10–20%
slower than employing a kernel that uses inexact machine-precision arithmetic.

Polyline-Traits Classes

Continuous piecewise linear curves, referred to as polylines, are of particular interest, as they
can be used to approximate more complex curves. At the same time they are easier to deal
with in comparison to higher-degree algebraic curves, as rational arithmetic is sufficient to
carry out exact computations on polylines.

Previous releases of Cgal included a stand-alone polyline-traits class, which represented
a polyline as a list of points, and performed all geometric operations on this list [Han00]. The
current version (Cgal 3.2) introduces the Arr polyline traits 2<SegmentTraits> class-
template, which must be instantiated with a geometric traits class that is able to handle line
segments. A polyline curve is represented as a vector of SegmentTraits::X monotone curve 2

objects (namely segments). Unlike the earlier version, the new polyline-traits class does not
perform any geometric operations directly. Instead, it solely relies on the functionality of the
instantiated segment-traits class. For example, when we need to determine the position of
a point with respect to an x-monotone polyline, we use binary search to locate the relevant
segment that contains the point in its x-range, then we compute the position of the point
with respect to this segment. Thus, operations on x-monotone polylines of size m typically
take O(logm) time.

Users are free to choose the underlying segment-traits class based on the number of
expected intersection points (see the discussion in the previous subsection). Moreover, it
is possible to instantiate the polyline-traits class-template with a traits class that handles
segments with some additional data attached to them (see Section 2.3.4). This makes it
possible to associate different data objects with the different segments that form a single

22 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

polyline. This can come in handy if we have polyline curves that represent roads, and we
would like to mark the speed limit (which can of course change along the road) for every
segment of the road.

2.3.3 Traits Classes for Non-Linear Curves

Handling non-linear curves and surfaces in an exact manner has attracted a lot of attention
from several research groups during the recent few years; see, e.g., [DLLP03, EK06], in
addition to the other references given in this section.

The most important type of curves we consider are algebraic curves, or segments of such
curves. An algebraic curve of degree d is defined by the locus of all points (x, y) in the plane
satisfying the equation:

d∑

i=0

d−i∑

j=0

cijx
iyj = 0 .

That is, an algebraic curve of degree d is defined by a bivariate polynomial of degree d. If
all curve coefficients cij are rational, we call it a rational algebraic curve.

The main difficulty is that in the general case, the coordinates of intersection point
between two rational curves of degrees d1 and d2, respectively, are irrational — they are
algebraic number of degree d1d2.

8

At first glance, exact computation with algebraic expressions seems impossible — after
all, in contrast with rational numbers, we need infinitely many bits to represent an algebraic
number. Indeed, it is impossible to obtain an exact binary representation of the value of an
algebraic expression E, but it is possible to determine its sign in a certified way. Certified
computation with algebraic numbers relies on the theory of separation bounds [Mig82]. For
each algebraic expression E, there exists a separation bound sep(E) > 0, which can be easily
evaluated from the structure of E, such that either |val(E)| > sep(E) or val(E) = 0. In
other words, the value of a non-zero algebraic expression cannot be arbitrarily small. See,
for example, [BFM+01, LY01] for constructive proofs of the existence of separation bounds.
It is therefore possible to exploit this fact and compute an approximation app(E) of the
value of E with a finite number of bits, such that |val(E) − app(E)| < δ. If |app(E)| > δ,
then sign(val(E)) = sign(app(E)) and we are done. Otherwise, we have to check whether
δ < 1

2
sep(E). If so, |val(E)| < sep(E) and we conclude the expression equals zero. Otherwise,

we repeat the process, this time with more bits of precision, such that the value of the error
bound δ is halved. Note that the first iteration of the evaluation of E, which is usually done
using machine-precision floating-point arithmetic, suffices in most cases to correctly compute
sign(E). It thus serves as a floating-point filter for the expensive computation process.

We mention that it is not known how to compute the maximal separation bound for a
given expression E. The value of sep(E) we use is usually some easily computable under-
estimation of this bound. A main challenge in this area is to find a good estimation of the

8A real number α ∈ R is called algebraic if there exists a non-trivial univariate polynomial P (x) with
integer coefficients such that P (α) = 0. We say that α is of degree d if deg(P) = d, and if P divides any
other polynomial with integer coefficients P̂ (x) such that P̂ (α) = 0.

2.3. Arrangement-Traits Classes 23

separation bound, namely make sep(E) as large as possible; see, e.g., [BFM+01, LY01] for
some recent results.

The Core library9 [KLPY99] and the numerical facilities of Leda10 [MN00, Chapter 4])
include number-type classes that can perform certified calculations with algebraic numbers.
Yet computing with algebraic numbers is far more difficult and computationally demanding
than operating on rational numbers. Moreover, Core is currently capable of performing sim-
ple arithmetic operations on algebraic numbers but cannot perform cascaded root operations
(namely one cannot compute a root of a polynomial whose coefficients are themselves irra-
tional algebraic numbers). This operation is possible in Leda, but may incur a prohibitive
running-time penalty. In the rest of this subsection we overview some of the traits classes
for curved objects and describe the algebraic foundations of their implementation. We also
explain how we avoid the more computationally demanding operations to keep reasonable
running times.

In this context we should also mention the Synaps library,11 which provides efficient
solvers for polynomial equations and handles exact comparisons of algebraic numbers us-
ing the Sturm sequences of the originating polynomials. Synaps contains optimized com-
parison procedures for algebraic numbers of small degree, based on the work of Emiris
and Tsigaridas [ET04], that are very convenient for computing with low-degree algebraic
curves. However, the algebraic computations of Synaps are not numerically filtered, thus
the running-time penalty they incur is relatively high.

The Circle/Segment Traits Class

The development of this traits class, which can handle circular arcs and line segments, was
primarily motivated by the task of computing the union of large sets of generalized polygons
(having also circular edges) that comprise a Vlsi model. The success in operating on very
large data sets also led to the development of the algorithm for approximating offset polygons
(see Section 3.4.2) which is based on this circle/segment traits-class.

Given rational numbers α, β, γ ∈ Q with γ > 0, the real number α + β
√
γ is called a

one-root number. The term “one-root number” was given by Berberich et al. [BEH+02].
In their work, they used the fact that one-root numbers can be handled by Leda rather
efficiently; this gave them the ability to compare two such numbers in an exact manner. In
our context, one-root numbers play an important role, since the solution of any quadratic
equation with rational coefficients (namely ax2 + bx+ c = 0, where a, b, c ∈ Q) is a one-root
number, as it equals −b

2a
± 1

2a

√
b2 − 4ac.

Observe that if x = α+ β
√
γ is a one-root number and q ∈ Q, then x± q, x · q and x

q
are

obviously one-root numbers. In addition,

q

x
=

q

α+ β
√
γ

=
q · (α− β√γ)
α2 − β2γ

,

9See Core’s homepage at 〈http://www.cs.nyu.edu/exact/core/〉.
10See 〈http://www.algorithmic-solutions.com/enleda.htm〉.
11See Synaps’ homepage at 〈http://www-sop.inria.fr/galaad/logiciels/synaps/〉.

24 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

and

x2 = (α + β
√
γ)2 = (α2 + β2γ) + 2αβ

√
γ ,

are also one-root numbers.

Lemma 2.1 It is possible to determine the sign of a one-root number x = α + β
√
γ using

only rational arithmetic.

Proof: In case that sign(α) = sign(β), then this is also the sign of the entire expression x
and we are done. Otherwise, we have to compare |α| and |β|√γ, such that the sign of x is
the sign of the term whose absolute value is larger. But this is easily done be comparing α2

and β2γ, both are rational numbers. 2

Lemma 2.2 It is possible to compare two one-root numbers x1 = α1 + β1
√
γ1 and x2 =

α2 + β2
√
γ2 using only rational arithmetic.

Proof: We first note that if β2 = 0 then x2 ∈ Q, and we can perform the comparison by
evaluating the sign of the one-root number x1 − α2. (Similarly, if β1 = 0 we check the sign
of x2 − α1.)

If both x1 = α1 + β1
√
γ1 and x2 = α2 + β2

√
γ2 are non-trivial one-root numbers, then

comparing them is equivalent to comparing α1 − α2 and β2
√
γ2 − β1

√
γ1. We therefore

compute the sign of β2
√
γ2 − β1

√
γ1 (this is easily done be comparing β2

1γ1 and β2
2γ2, if

sign(β1) 6= sign(β2)) and check whether it is equal to the sign of α1 − α2. If the two
terms have different signs we can deduce the comparison result at this stage. Otherwise, we
continue by squaring both terms, such that the comparison result is equivalent to evaluating
the sign of the one-root number ((α1 − α2)

2 − (β2
1γ1 + β2

2γ2)) + 2β1β2
√
γ1γ2 (if both terms

are negative, we have to negate the sign). As we showed in Lemma 2.1, this can be done
using only rational arithmetic. 2

We finally note that in the general case, given two non-trivial one-root numbers x1 =
α1 + β1

√
γ1 and x2 = α2 + β2

√
γ2 (with β1, β2 6= 0), the numbers x1 ± x2, x1 · x2 and x1

x2
are

not one-root numbers, unless of course γ1 = q2γ2, where q ∈ Q. We next explain how we
design a traits class for handling circular arcs and line segments, while taking special care
so that the traits-class methods do not invoke that kind of operations.

The class-template Arr circle segment traits 2<Kernel> (known as the circle/segment
traits class) can handle curves that are either:

• Arcs of rational circles, namely circles of the form (x−x0)
2 +(y− y0)

2 = R, where the
circle center (x0, y0) has rational coordinates and the squared radius R is also rational.
Note that the radius itself may not be rational.

A general circular arc is given by its supporting circle, two endpoints s and t that
satisfy the equation of the circle (these endpoints may be rational, or have one-root
coordinates), and the orientation of the arc between the endpoints (clockwise or coun-
terclockwise). An arc may also represent a whole circle.

2.3. Arrangement-Traits Classes 25

• Segments of rational lines, namely lines whose equation is ax+ by + c = 0, where a, b
and c are rational. The segment is given by its supporting line and its two endpoints
s and t, whose coordinates can either be rational or one-root numbers.

Note that the coordinates of the intersection points of two rational circles, or of a rational
circle and a rational line, are one-root numbers, as they are the roots of quadratic equations
with rational coefficients. Therefore, when we split a circular arc at its intersection point
with another arc or with a line segment, the two resulting arcs are representable by the
curve type defined by the traits class. Also note that a non x-monotone circular arc can
be subdivided into three x-monotone arcs at most, depending on whether it contains the
two points with one-root coordinates (x0 ±

√
R, y0). A whole circle is subdivided into two

x-monotone arcs. Moreover, we can label each x-monotone as a “lower” arc, if it lies below
the horizontal line y = y0, or as an “upper” arc, if it lies above this line.

We next describe how the traits class implements the set of predicates and constructions
involving circular arcs and points with one-root coordinates, as listed by the Arrangement-

Traits 2 concept (see Section 2.3.1). The treatment of line segments is simple and straight-
forward, so we omit its details here.

Compare xy: As all coordinates are one-root numbers, these operations can be easily per-
formed using rational arithmetic, as shown in Lemma 2.2.

Point position: Given an x-monotone arc C of the rational circle (x−x0)
2 +(y−y0)

2 = R
and a point p = (x̂, ŷ), we need to determine whether p is above, below, or lies on C.
If C is a lower arc, it lies below the horizontal line y = y0, so if ŷ > y0, p obviously lies
above C. Otherwise, we have to substitute p into the equation of the supporting circle,
but as x̂ and ŷ are one-root numbers (and not just rational numbers), we have to be a
bit careful: we compare the one-root numbers z1 = (ŷ − y0)

2 and z2 = r2 − (x̂− x0)
2.

The point p lies above C if z1 < z2, below C if z1 > z2, and on C in case of equality.
Evaluating the predicate for an upper arc is symmetric.

Compare to right: Given two x-monotone arcs C1 and C2 that share a common left end-
point p = (x̂, ŷ), we can determine their relative vertical position immediately to the
right of p by comparing the slopes of the two circles there. As the slope of Cj at p is

given by
x̂−xj

yj−ŷ , where (xj , yj) is Cj’s center, it is easy to show that comparing these two

slopes is equivalent to comparing the two one-root numbers y2(x̂ − x1) − y1(x̂ − x2)
and ŷ(x2 − x1). In case of equality, the two supporting circles are tangent at p, and
we can simply compare their radii in order to determine their relative order near the
tangency point.

Intersect: Given two x-monotone arcs C1 and C2, We first compute the intersection points
between their supporting circles by solving two quadratic equations whose solutions are
the x and y-coordinates of the intersection point. For each intersection point p = (x̂, ŷ),
we have to make sure it really lies on both C1 and C2: for this, we simply check whether
ŷ is above or below the y-coordinate of Cj’s supporting circle (depending on whether
Cj is an upper or a lower arc), and if so we just need to check whether it is in the
x-range of the arc.

26 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

The circle/segment traits class is therefore capable of constructing and maintaining ar-
rangements of arcs of rational circles and segments of rational lines. It does so using only
exact rational arithmetic and avoids computations with algebraic numbers of degree 2 that
involve square roots. This fact makes it very efficient. It usually performs about an order
of magnitude faster than a straightforward implementation that relies on the exact squared-
root operation provides by Leda or by Core (see, for example, the experimental results
reported in [WZ06] and in [WFZH07]).

The Conic-Traits Class

Conic curves are algebraic curves of degree 2, namely the locus of all points (x, y) in the
plane satisfying the equation:

c2,0x
2 + c0,2y

2 + c1,1xy + c1,0x+ c0,1y + c0,0 = 0 .

The type of the conic curve is in general determined by considering the sign of the so-called
conic discriminant ∆c = 4c2,0 · c0,2 − c21,1:

• If ∆c > 0, then the curve is an ellipse, which is a bounded and connected curve.

• If ∆c < 0, then the conic curve is a hyperbola, which is an unbounded curve with two
connected branches.

• If ∆c = 0, then the curve is a parabola, which is an unbounded and connected curve.

In addition, degenerate forms of conic curves, such as a line (where c2,0 = c0,2 = c1,1 = 0) or
a line-pair (e.g. (x + y − 3)(4x − 5y + 2) = 0), also exist. Conic arcs are defined as finite
segments of conic curves, and are characterized by their supporting conic and two endpoints.

Conic arcs are important as they occur in many useful geometric constructs, such as
offset polygons (see Section 3.4 for the exact details) and Voronoi diagrams of circles and of
line segments [EK06, Kar04].

Intersection points between two general conic curves with rational coefficients have al-
gebraic coordinates of degree 4. The Arr conic traits 2 class included in the arrange-
ment package utilizes the algebraic number-type provided by the Core library, known as
CORE::Expr, and relies on its ability to carry out certified algebraic computations. Some
precautions have to be taken, however. For example, given two conic curves, we can compute
the x-coordinates of the intersection points, then obtain the y-coordinates by substituting
these x-coordinates into the equation of one of the conics and solving a quadratic equa-
tion. This would however result in a very complicated representation of the y-coordinates.
The approach the conic-traits class uses is to compute the x and the y-coordinates of the
intersection points separately, using resultant calculus, then pair them together and form
the intersections points; see more details in [Wei02a]. The traits class also utilizes caching
mechanisms and some of the high-level filtering techniques presented in [Wei02b] to avoid
redundant (and computationally expensive) geometric and algebraic operations, replacing
them by simpler combinatorial tests.

2.3. Arrangement-Traits Classes 27

Other Traits Classes

The arrangement package also includes a traits class for arcs of graphs of rational functions.
A rational function is given by y = P (x)

Q(x)
, where P (x) and Q(x) are polynomials with rational

coefficients. Rational functions are widely used to interpolate or simplify more complicated
curves (recall that the polynomial function y = P (x) is a special case of a rational func-
tion). At the same time, compared to general algebraic curves that are given in implicit
representation, rational functions are relatively easy to handle: it is easy to intersect two
rational functions, to compute the derivatives of a rational function, or to locate a point on
a rational curve given its x-coordinate. The class Arr rational arc traits 2 can handle
arcs of rational functions of arbitrary degree. It is also based on the algebraic number-type
provided by the Core library.

Additional traits classes that are also compatible with the arrangement-traits concepts
have been developed by other groups of researchers. Among these we can list traits classes
for circular arcs and for conic arcs developed by Emiris et al. [EKP+04], extending the
predicates described by Devillers et al. [DFMT02]. The work of [EKP+04] is available in
Cgal Version 3.2, under the circular kernel package.

Traits classes for conic curves [BEH+02], cubic curves [EKSW04], and special types of
quartic curves [BHK+05] were developed as part of the Exacus project [BEH+05]. These
Exacus-based traits classes are planned to be integrated into future versions of Cgal, as
the basis for a curved kernel that handles algebraic curves of arbitrary degree.

2.3.4 The Traits-Class Decorators

The decorator design-pattern is used to dynamically attach additional responsibilities to an
object [GHJV95]. In the context of the arrangement package, we use traits-class decorators
to extend the geometric entities defined by the traits class with additional, possibly non-
geometric, data. For example, we may wish to construct an arrangement of line segments
that are either red or blue and examine the vertices induced by red–blue intersections.

The Arr curve data traits 2<BaseTraits,XData,Merge,CData,Convert> template
enables the extension of the curve types defined by a geometric base-traits class, which
must be a model of the ArrangementTraits 2 concept. It inherits its Curve 2 from the curve
type defined in the base-traits class and extends it with an additional data field of type
CData. The X monotone curve 2 type is also inherited from the corresponding type in the
base-traits class and is extended with a data field of type XData. The class also supplies
constructors and methods to access the data fields of its extended curve types.

The curve-data traits-decorator derives itself from the base-traits class and relies on the
geometric operations defined by this class. It extends these operations by maintaining the
data fields associated with the curves as follows:

• When a curve is subdivided into x-monotone subcurves, its CData field is converted
using the Convert functor and propagated to all subcurves. By default, the CData

and XData types are the same, and the data field is simply copied to the x-monotone
subcurves.

28 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

• When we split an x-monotone curve into two, its data field is duplicated and stored
with both resulting subcurves.

• When two x-monotone curves overlap, their data fields are merged using the Merge

functor and the result is stored with the resulting subcurve that represents the overlap.

• We allow the merger of two x-monotone curves, only if they are geometrically mergeable
(as determined by the base-traits class) and their data fields are equivalent.

The Arr consolidated curve data traits 2<BaseTraits,Data> decorator specializes
the Arr curve data traits 2 template by associating each curve with a single Data object
and by attaching a set of Data objects to each x-monotone curve. This set usually contains a
single data object, unless the x-monotone curve corresponds to an overlapping section of two
curves or more. When a curve with a data field d is split into x-monotone subcurves, each
subcurve is associated with a singleton set {d}. When two x-monotone curves overlap, the
decorator takes the union of their data sets, and associates it with the resulting overlapping
subcurve.

The traits-class decorators make it easy to attach external data fields to curves. Typically,
all the user has to do is to assign the extra fields to the input curves upon construction and to
pass the extended curves to the arrangement class. The decorator takes care of maintaining
the extra data fields when the input curves are split into subcurves that are eventually
associated with the arrangement edges. In the next chapters of the thesis we will come
across several situations where curves need to be extended — and this is trivially done, as
we have just explained.

2.4 Major Algorithmic Frameworks

While sweep-line is a well-known algorithmic framework in computational geometry and
serves as the basis of many algorithms, we have also identified a second algorithmic frame-
work that serves as the foundation of a family of concrete arrangement-related algorithms:
the zone-computation framework. For instance, the implementation of operations like ag-
gregated insertion of a set of curves into an arrangement and the overlay computation of
two arrangements is based on the sweep-line framework, while the incremental insertion of
a single curve into an arrangement involves the computation of the zone of this curve.

We provide two class-templates, namely Sweep line 2 and Arrangement zone 2, that
implement these two fundamental algorithms common to the two families of concrete algo-
rithms, respectively. Among their other template parameters, both these classes are parame-
terized by a visitor, which should be a model of the appropriate visitor concept. The concrete
algorithms are thus realized through sweep-line visitors or through zone-computation visi-
tors. The visitor classes receive notifications on the events handled by the basic procedure
and can construct their output structures accordingly. We gain a centralized, reusable, and
easy to maintain code.12 For example, we use sweep-line visitors to obtain a variety of dif-

12It is worth mentioning that the Boost Graph Library, for example, uses visitors to support user-defined
extensions to its fundamental graph algorithms; see [SLL02, Section 12.3] for details.

2.4. Major Algorithmic Frameworks 29

ferent results: computing all intersection points induced by a set of curves, constructing the
arrangements of these curves, inserting the curves into an existing arrangement, etc. More-
over, users may introduce their own sweep-based or zone-based algorithms, as implementing
such an algorithm reduces to implementing an appropriate visitor class.

2.4.1 The Generic Sweep-Line Algorithm

Sweeping the plane with a line is one of the most fundamental algorithmic frameworks in
computational geometry. The famous sweep-line algorithm of Bentley and Ottmann [BO79]
was originally formulated for sets of non-vertical line segments, with the “general position”
assumptions that no three segments intersect at a common point and no two segments
overlap. An imaginary vertical line is swept over the plane from left to right, transforming
the static two-dimensional problem into a dynamic one-dimensional one. At each time during
the sweep a subset of the input segments intersect this vertical line in a certain order. The
subset of segments and their order along the sweep line may change, as the line moves
along the x-axis, only at a finite number of event points, namely intersection points of two
segments and left endpoints or right endpoints of segments. The known event points, namely
segment endpoints and all intersection points that have already been discovered, are stored
in an xy-lexicographic order in a dynamic event queue. The ordered sequence of segments
intersecting the imaginary vertical line is stored in a dynamic structure called the status line.
Both structures are maintained as balanced binary trees, such as red-black trees, that enable
their efficient maintenance. In particular, we use an advanced implementation of red-black
trees [Wei05] that offers extended functionality over other alternatives such as Stl maps.

The Sweep line 2<Traits,Event,Subcurve,Visitor> class-template implements a
generic sweep-line algorithm that can handle any set of arbitrary x-monotone curves [SH89],
containing all possible kinds of degeneracies (see [dBvKOS00, Section 2.1] and [MN00, Sec-
tion 10.7] for the treatment of degeneracies induced by line segments), using a small set of
geometric predicates and constructions involving the curves. The Traits parameter must be
instantiated with a model of the ArrangementXMonotoneTraits 2 concept (see Section 2.3.1).
The Visitor parameter must be a model of the SweepLineVisitor 2 concept, whose function-
ality is explained in details next.

The Sweep line 2 class-template uses two auxiliary classes: Event base, which stores
a Point 2 object that represents the coordinates of an event point, and Subcurve base,
associated with a portion of an x-monotone curve (represented as an X monotone curve 2

object), whose interior is disjoint from all other subcurves at the current location of the
sweep line (it may intersect yet undiscovered subcurves as the sweep line advances). These
two auxiliary classes also store additional data members needed internally by the sweep-line
algorithm, which are not exposed to external users. The Sweep line 2 parameters Event

and Subcurve are instantiated with these two types by default. Users may however extend
these types with data required by their visitor class by inheriting an event class and a
subcurve class from the respective base classes, and using these extended classes to initialize
the sweep-line template.

30 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

first

last

Ca

p

Cb

During the sweep-line process the event objects in the event
queue are sorted lexicographically, and the subcurve objects are
stored in the status line in the same order as the lexicographic
order of their intersection with the imaginary sweep-line. The
Sweep line 2 class performs only the operations required to
maintain the event queue and the status line, while the visitor
class is responsible for producing the actual output of the algo-
rithm. Whenever the sweep-line class handles an event point p,
it sends a notification to its visitor, with the relevant Event object and the Subcurve ob-
jects incident to it. The latter is specified by a pair of iterators that define the relevant
subcurve range in the status line. Using this information, the visitor can access not only the
subcurves incident to p, but also the neighboring subcurves from above and below. In the
example depicted on the right, the event point p is sent to the visitor with the iterator range
[first, last], which defines the three subcurves that share p as a common left endpoint;
the subcurves Ca and Cb lying above and below p can be accessed by dereferencing the ex-
pressions --first and ++last, respectively. The sweep-line visitor is capable of attaching
auxiliary data members and adding functionality to the event and subcurve objects. It can
also construct its output accordingly.

It should be mentioned that Bartuschka et al. [BMS97, BNS00] designed and implemented
a generic sweep-line algorithm in the Leda library. They offer a class that couples a sweep-
traits class with a visitor. However, in their implementation the traits class is responsible
for performing almost the entire sweep-line algorithm, whereas our class performs the bare
sweep-line procedure, and only requires a traits class that supplies a small set of geometric
primitives. Hence, our approach provides a more modular framework that is easier to extend.

A simple sweep-line visitor class is used for reporting all intersection points induced by a
set of input curves.13 This visitor does not require storing any auxiliary data structures with
events or with subcurves. The default Event base and Subcurve base types are sufficient
and used to instantiate the sweep-line class-template. The visitor simply reports an event
point p, if it has more than a single incident subcurve.

As mentioned above, a key operation implemented with the aid of a sweep-line visitor is
the construction of a Dcel that corresponds to the arrangement induced by a set of input
curves. The visitor class in this case is more complicated, as it needs to store extra data
with the subcurves and the events as follows. The event class is extended by a handle for a
Dcel vertex that corresponds to the event point. As long as the vertex has not been created
yet, the handle is invalid. The subcurve class is extended with a pointer to an event point
that corresponds to the left endpoint of the subcurve. When processing an event point p, it
is possible to go over all subcurves such that p is their right endpoint (they lie to the left of
p) and use this auxiliary data to insert the subcurves into the arrangement using one of the
basic insertion methods for a non-intersecting x-monotone curve (see Section 2.2). In fact,
additional information stored with each subcurve helps performing the insertion in the most
efficient manner, utilizing all available geometric and topological information. We omit the
related technical details here.

13Indeed, this operation is not directly related to arrangements. However, it is implemented using the
sweep-line framework.

2.4. Major Algorithmic Frameworks 31

Another operation closely related to the construction of a Dcel structure from scratch is
the aggregated insertion of new curves into an existing arrangement and efficiently updating
an existing Dcel structure. In this case we have to sweep over the plane and account for
the set C of new curves as well as the consolidated set of all subcurves associated with the
existing Dcel halfedges. Our goal is to discover the intersections involving the new curves,
and to update the existing Dcel accordingly. We first extend the x-monotone curve type
defined by the traits class with a handle for one of its corresponding halfedge twins (this
handle is invalid for the newly inserted curves). We do this using a traits-class decorator, as
explained in Section 2.3.4. It is also possible to extend the Subcurve type of the visitor, but
attaching the auxiliary data at the traits-class level enables a more efficient implementation
of the traits-class methods. For example, it is possible for the decorator to override the
function that computes intersections between curves, such that it avoids the computation of
intersections between two curves that already correspond to valid halfedges. This way we
can filter the unnecessary geometric operations and perform only the ones in which newly
inserted curves are involved.

2.4.2 Overlaying Arrangements

A fundamental operation on arrangements that is straightforwardly implemented using a
sweep-line visitor is the overlay of two given arrangements. We refer to the two input
arrangements as the blue and the red arrangements. We compute their overlay by sweeping
a vertical line over the plane, processing a consolidated set of the blue and red curves. As
explained in the previous subsection, it is convenient to use an extended traits class that
extends the x-monotone curves with a color attribute (whose value is either BLUE or RED in
our case) and a halfedge handle. The extended traits class helps us to filter out unnecessary
computations. For example, we can ignore “monochromatic” intersections, and compute
only red–blue intersection points (or overlaps). This way the arrangement of a consolidated
set of blue and red curves is computed efficiently.

The major added difficulty over the previously mentioned visitors is the need to construct
a Dcel that properly represents the overlay of two potentially extended input arrangements.
That is, the features of each one of the two Dcel data-structures that represent the two
respective input arrangements could have been extended with additional data. If we put
our arrangements one on top of the other, we get an arrangement whose faces correspond to
overlapping regions of the blue and red faces. An edge in the overlaid arrangement may be a
blue edge, a red edge, or an overlap of two differently colored edges. An overlay vertex may
be a blue vertex, a red vertex, a coincidence of two differently colored vertices, or it may
correspond to a blue–red intersection. In each case, the data associated with the overlaid
Dcel feature should be computed from the data associated with the red and blue Dcel

features that induce it. To this end, the overlay visitor is parameterized by an overlay-
traits type, which defines the merger operations between various Dcel features, achieving
maximum genericity and flexibility for the users; see [FWZH06] for the technical details.

32 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

2.4.3 Zone-Computation Visitors

Many applications can make use of the following operation: Given an arrangement A and
an x-monotone curve C, compute the zone of C in A. That is, identify all arrangement
cells that the curve crosses. The zone can be computed by locating the left endpoint of C in
the arrangement, and then “walking” along the curve towards the right endpoint, keeping
track of the vertices, edges, and faces crossed on the way (see, for example, [dBvKOS00,
Section 8.3] for the computation of the zone of a line in an arrangement of lines).

The primary usage of the zone-computation algorithm is the incremental insertion of an
x-monotone curve into the arrangement. However, it is sometimes necessary to compute the
zone of a curve in an arrangement without actually inserting the curve. In other situations,
the entire zone is not required, as in the case of a process that only checks whether a query
curve passes through an existing arrangement vertex. If the answer is positive, the process
can terminate as soon as the vertex is located.

While the sweep-line algorithm operates on a set of input x-monotone curves and its
visitors can just use the notifications they receive to construct their output structures, the
zone-computation algorithm operates on an arrangement object and its visitors may modify
the same arrangement object as the computation progresses. This makes the interaction of
the main class with its visitors slightly more intricate.

v

e

Ĉ

f

The template Arrangement zone 2<Arrangement,Visitor>

implements a generic zone-computation algorithm. It is param-
eterized by an arrangement type and by a visitor type. Given
a curve C, the zone visitor is notified whenever a maximal sub-
curve Ĉ of C is found, and Ĉ is reported. The interior of every
reported subcurve does not coincide with any arrangement vertex
or halfedge and lies within a face f . The arrangement features
that define the subcurve endpoints are also reported, as well as the face f . In the example
depicted to the right, the interior of Ĉ, a maximal subcurve of the line segment whose zone
we compute (drawn in a thick light line) is contained in the face f whose outer boundary
is also shown; the vertex v corresponds to Ĉ’s left endpoint, while the right endpoint lies
on the halfedge e. Thus, if the visitor inserts this subcurve into the arrangement, it first
has to split e at this point. A similar notification is issued whenever a subcurve Ĉ that
overlaps with an arrangement edge is detected. In both cases, the visitor returns a pair that
consists of a halfedge handle and a Boolean flag as a result. In case the visitor inserts the
subcurve Ĉ into the arrangement, it returns a handle to one of the newly created halfedge
twins. Otherwise, it returns an invalid handle. The Boolean value indicates whether the
zone-computation process could terminate. This is conveniently used by the zone procedure
to gain efficiency in those applications that do not require the computation to proceed.

The most important zone-visitor is a class that performs the incremental insertion of an
x-monotone curve. It uses the notifications its receives from the zone algorithm to obtain
maximal subcurves of the inserted curve. The zone visitor then inserts these subcurves
into the arrangement using the basic insertion functions (Section 2.2). Other zone visitors,
such as a visitor that determines whether a query curve intersects with the curves of an
arrangement, are even easier to implement.

2.5. Adapting Arrangements to Boost Graphs 33

2.5 Adapting Arrangements to Boost Graphs

The Boost graph library (Bgl) [SLL02] is a generic library of graph algorithms and data
structures designed in the same spirit as Stl, the Standard Template Library [Aus98]. It
supports graph algorithms, and as our arrangements are embedded as planar graphs, it is only
natural to augment the Dcel with the interface that the Bgl expects, and gain the ability
to perform the operations that the Bgl supports, such as shortest-path computations. We
adapt Arrangement 2 instances to Boost graphs by specializing the boost::graph traits

template for the Arrangement 2 class and providing a set of free functions for traversing the
arrangement features that conform with the interface prescribed by the Bgl.

In addition to the straightforward adaptation, which associates a vertex with each Dcel

vertex and an edge with each Dcel halfedge, we also offer a dual adapter, which associates
a graph vertex with each Dcel face, such that two vertices are connected if and only if there
is a Dcel halfedge that separates the two corresponding faces. Using this dual adapter it is
possible, for example, to perform breadth-first or depth-first traversals on the arrangement
faces. The dual representation is very useful for many applications, such as answering motion-
planning queries (see, e.g., [HH03]). Assume that we have an arrangement of line segments
and circular arcs that represents the configuration space of a disc robot moving amidst
polygonal obstacles in the plane. We extend the Dcel by attaching a Boolean flag to
each arrangement face, indicating whether it is free or forbidden. As the Bgl enables the
applications of filters on graph vertices, we can perform a breadth-first traversal starting at
a given free face and filter out faces that are marked as forbidden, considering only the free
arrangement faces. This way we can efficiently answer motion-planning queries.

2.6 Related Cgal Packages

2.6.1 Operations on Polygonal Sets

Computing Boolean set operations on polygonal regions is a fundamental operation in fields
like motion planning and computer-aided design. We may consider straight-edge polygons or
general polygons, namely regions bounded by a closed simple chain of arbitrary x-monotone
curves. Given two polygons P and Q, we may wish to compute their union, their intersection,
their difference, or their symmetric difference. It is also possible that P and Q are not simple,
but contain polygonal holes in their interior.

Operations on polygonal sets is one of the most important applications of the overlay
procedure (see Section 2.4.2). In this section we describe a Cgal package that performs
such operations and is based on the functionality of the arrangement package and the traits
classes it contains.

Given two simple polygons P and Q, we construct the arrangements AP and AQ of the
boundary segments of P and of Q, respectively. Both these arrangements comprise one
bounded face, which represents the interior of the respective polygon and is marked by a
true flag, and an unbounded face marked by a false flag. We can now perform any of the
basic Boolean set-operations on P and Q by overlaying AP and AQ and using a properly

34 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

defined overlay-traits class. For example, for computing P ∩Q we use an overlay-traits class
that performs a Boolean and operation on the face marks, and for computing P ∪Q we use
a different traits class that performs a Boolean or operation. The result of the set-operation
consists of the overlay faces marked as true. It is also not difficult to generalize this scheme
to perform Boolean operations on sets with polygonal outer boundaries that contain a set
of disjoint polygonal holes in their interior, or even on sets that comprise a collection of
pairwise disjoint polygonal regions of this nature.

If we are given a set P1, . . . Pn of polygonal regions (possibly with holes) and wish to
compute their multi-way union

⋃n
k=1 Pk, it is convenient to employ a divide-and-conquer

approach and recursively compute
⋃h
k=1 Pk and

⋃n
k=h+1 Pk, where h = bn

2
c. We can then

compute the overall union by a simple overlay of the two resulting sets. This principle
can also be used of the other associative set-operations, namely intersection and symmetric
difference.

Cgal’s Boolean set-operations package [FWZH06] uses the principles described above to
perform regularized operations on sets of general polygons. A regularized operation op∗ can
be obtained by first taking the interior of the resultant point set of an ordinary set-operation
(P op Q) and then by taking the closure of the result; see, e.g., [Hof04]. That is:

P op∗ Q = closure(interior(P op Q)) .

Regularized Boolean set-operations appear in areas like Constructive Solid Geometry, as
regular sets are closed under regularized Boolean set-operations. This is desirable since
regularization eliminates lower dimensional features, namely isolated vertices and antennas,
thus simplifying and restricting the representation to physically meaningful solids.

The package contains some specializations for straight-edge polygons (implemented using
the segment-traits class) and for polygons with circular edges (whose edges are realized by
the circle/segment traits-class), but in principle a general polygon can comprise edges of any
type of an x-monotone curve defined by one of the arrangement-traits classes.

2.6.2 Envelopes of Planar Curves

Given a set C of bounded planar curves it is sometimes not necessary to consider the entire
planar subdivision they induce, and it is more convenient to study just a sub-structure of their
arrangement. Let us assume, without loss of generality, that C only contains x-monotone
curves {C1, C2, . . . , Cn} — if this is not the case, we can always subdivide the curves in C
to x-monotone subcurves. Any x-monotone curve Ck ∈ C can therefore be represented as
a univariate function y = Ck(x), defined over some continuous range Rk ⊆ R. The lower
envelope of C is defined as the point-wise minimum of all curves — namely, it is given by the
following function:

LC(x) = min
1≤k≤n

Ck(x) , (2.1)

where we define Ck(x) = Ck(x) for x ∈ Rk, and Ck(x) =∞ otherwise.

Similarly, the upper envelope of C is the point-wise maximum of the x-monotone curves
in the set:

UC(x) = max
1≤k≤n

Ck(x) , (2.2)

2.6. Related Cgal Packages 35

A

B

D

E

F

G

H

A A,B B C CD F G G

C

∅ ∅ ∅∅

Figure 2.3: The lower envelope of eight line segments, labeled A, . . . ,H. The minimization diagram is

shown at the bottom, where each diagram vertex points to the point associated with it, and the labels

of the segment that induce a diagram edge are displayed below this edge. Note that there exists one

edge that represents an overlap (i.e., more than a single curve induces it), and there are also a few edges

that represent empty intervals.

where in this case Ck(x) = −∞ for x 6∈ Rk.

Given a set of x-monotone curves C, the minimization diagram of C is a subdivision of the
x-axis into maximal cells, such that the lower envelope over a specific cell of the subdivision
(an edge or a vertex) is attained by the same subset of the curves in C. In non-degenerate
situation, an edge — which represents a continuous interval on the x-axis — is induced by
a single curve (or by no curves at all, if there are no x-monotone curves defined over the
interval), and a vertex is either induced by a single curve and corresponds to one of its
endpoints, or by two curves and corresponds to their intersection point. The maximization
diagram is symmetrically defined for upper envelopes. In the rest of this section, we refer to
both these diagrams as envelope diagrams.

Let us assume that each pair of curves in C may intersect at s points at most, where s is
a constant. The complexity of their envelope diagram is therefore O(λs+2(n)), where λσ(n)
denotes the maximal length of a Davenport–Schinzel sequence of n elements with order σ.
For small values of σ, this function is almost linear in n. See [SA95] for an analysis of
Davenport–Schinzel sequences and the complexity of lower envelopes.

While it is possible to construct the entire arrangement of C and extract the lower and
upper envelope from the resulting Dcel, this process takes O(n2 log n), as the arrange-
ment may contain O(n2) vertices. It is more efficient to compute the envelopes directly

36 Chapter 2. Exact Manipulation of Curves using Cgal Arrangements

in O(λs+2(n) logn) time, using a divide-and-conquer approach; see [Ata85, HS86, WH04].14

First, note that the envelope diagram for a single x-monotone curve Ck is trivial to compute:
we project the boundary of its range of definition Rk onto the x-axis and label the features
it induces accordingly. Given a set that contains more than two curves, we split the set into
two disjoint subsets C1 and C2, and compute their envelope diagrams recursively. Finally,
we merge the diagrams, and we do this in linear time in the complexity of the envelopes by
traversing both diagrams in parallel.

The 2D envelope package of Cgal [Wei06a] contains functions for computing the lower
and the upper envelopes of a given range of planar curves. The package contains a robust
implementation of the divide-and-conquer algorithm described above, but relies on the traits
classes included in the arrangement package (see Section 2.3) that provide the primitive
geometric operations on the curves it handles. The output of these functions is given in the
form of an envelope diagram, which comprises a sequence of interleaved vertices and edges,
each associated with a set of curves that induce the envelope over it; see Figure 2.3 for an
illustration. Note that each vertex is associated with at least one curve. An edge may, on
the other hand, have an empty set of curves, or be associated with multiple curves in case
of an overlap.

More details on the construction and representation of envelope diagrams of planar curves
can be found in [WH04]. In this context, we also mention the work of Meyerovitch [Mey06],
who implemented a generic Cgal package for computing envelopes of surfaces in 3D, based
on the infrastructure provided by the arrangement package.

♦ ♦
♦

In this chapter we reviewed the arrangement package of Cgal in depth and explained how
the arrangement primitives can be used in applications developed on top of the package.
We also described the algebraic principles used in state-of-the-art certified computation,
and explained how it is possible to use exact computation while avoiding the prohibitive
running-time penalty such computations may incur.

We concluded with an overview of two related packages that will also be used in appli-
cations that we present in the rest of this thesis.

14A slightly faster but more involved algorithm, and more difficult to implement, is proposed by Hersh-
berger [Her89]. Its running time is O(λs+1(n) logn).

Chapter 3

2D Minkowski Sums and Offsets

Given two sets A,B ∈ Rd, their Minkowski sum, denoted by A ⊕ B, is defined to be their
point-wise sum:

A⊕B = {a+ b | a ∈ A, b ∈ B} .

Planar Minkowski sums are used in many applications, such as motion planning and computer-
aided design and manufacturing. In this chapter we focus on two important sub-classes of
the planar Minkowski-sum computation problem: computing the sum of two simple poly-
gons with straight edges, and computing the Minkowski sum of a simple polygon with a
disc, an operation widely known as offsetting a polygon. We describe a Cgal package that
can compute Minkowski sums and offsets in an exact and efficient manner [Wei06b]. This
package will be included in the forthcoming release of Cgal (Version 3.3).

3.1 Introduction and Related Work

If P and Q are simple planar polygons having m and n vertices respectively, then P ⊕Q is a
subset of the arrangement of O(mn) line segments, where each segment is the Minkowski sum
of an edge of P with a vertex of Q, or vice-versa. The size of the sum is therefore bounded
by O(m2n2), and this bound is tight [KOS91]. However, if both P and Q are convex, then
P ⊕Q is a convex polygon with m+ n vertices at most, and can be computed in O(m+ n)
time (see, e.g., [dBvKOS00, Chapter 13]). If only P is convex, the Minkowski sum of P and
Q is bounded by O(mn) [KLPS86], and this bound is tight as well.

3.1.1 Decomposition vs. Convolution

As mentioned above, computing the Minkowski sum of two convex polygons can be performed
in linear time in the total number of their edges using a simple procedure that is easily
implemented in software. The prevailing method for computing the sum of two non-convex
polygons P and Q, is therefore based on convex decomposition: we decompose P into convex
sub-polygons P1, . . . , Pk , and Q into convex sub-polygons Q1, . . . , Q` , obtain the Minkowski

37

38 Chapter 3. 2D Minkowski Sums and Offsets

sum of each pair of sub-polygons, and compute the union of the k` pairwise sub-sums.
Namely, we compute P ⊕Q =

⋃

i,j (Pi ⊕Qj).

Flato [Fla00] (see also [AFH02]) developed an exact and robust implementation of the
decomposition method for computing the Minkowski sum of two simple polygons. He imple-
mented about a dozen different polygon-decomposition strategies and programmed several
methods for the union computation based on the arrangement package of Cgal Version 2.0
(at the time, Cgal did not include a generic implementation of the sweep-line algorithm,
and a package for set-operations, as the one described in Section 2.4.2, did not exist). He
also conducted thorough experiments to determine the optimal decomposition and union
strategies. Flato’s code employs exact rational arithmetic to guarantee robustness and pro-
duces exact results even on degenerate inputs. This was the first implementation capable
of handling degenerate inputs, and the only one that correctly identifies low-dimensional
elements of the Minkowski sum, such as antennas or isolated vertices (see more details in
Section 3.2.2).

The Leda library [MN00] also contains functions for robust Minkowski-sum computa-
tion based on convex polygon decomposition that use exact rational arithmetic.1 However,
these functions are limited to performing regularized Minkowski-sum computations, which
eliminate low-dimensional features of the output (see also Section 2.6.1).

Another approach to computing the Minkowski sum of two polygons is to calculate the
convolution of the boundaries of P and Q [GRS83, GS87], which comprises a set of closed
polygonal curves called the convolution cycles. By examining the planar arrangement of the
convolution cycles one can deduce the structure of the Minkowski sum of P and Q. The exact
definition of polygon convolution and an algorithm for computing it are given in Section 3.2.
To the best of our knowledge, our code is the first implementation of software for robust and
exact computation of Minkowski sums that is based on the convolution method.

Ramkumar [Ram96] used the convolution approach to devise an efficient algorithm for
computing the outer boundary of the Minkowski sum of two polygons. The complexity of
this boundary is O(mn · α(n)), where α(·) is the functional inverse of Ackermann’s func-
tion [HPCA+95], hence it is possible to compute it in o(m2n2) time. Ramkumar’s algorithm
traverses each cycle of the convolution, detecting self-intersections, and snipping off the
loops created by these self-intersections. The algorithm constructs the outer face of the
Minkowski sum in O((K+(m+n)

√
Nc) log2(m+n)) time, where K is the size of the convo-

lution (which may be O(mn) in the worst case) and Nc is the number of convolution cycles.
However, Ramkumar’s algorithm uses very complicated data structures, and it is therefore
not practical to implement.

In his work, Flato demonstrated that the efficiency of the Minkowski-sum computation
is closely related to the number and length of the segments that constitute the boundaries of
the pairwise sums of the convex sub-polygons produced in the decomposition step, and given
as input to the union-computation procedure. Our experiments show that using the convo-
lution method we construct intermediate geometric entities that are more compact than the
ones constructed using the decomposition method. Subsequently, we obtain faster running

1For more details and a detailed online documentation, see:
〈http://www.algorithmic-solutions.info/leda guide/geo algs/minkowski.html〉.

3.2. The Convolution Method 39

times. The experimental results presented in Section 3.3 demonstrate the effectiveness of
the convolution method.

3.1.2 Exact vs. Approximate Offsetting

While the Minkowski sum of two polygons with m and n vertices, respectively, can be as
combinatorially complex as Ω(m2n2), the complexity of the Minkowski sum of a polygon
with n vertices with a disc is always O(n). We refer to the result of such an offset operation
as a dilated polygon. However, the difficulty in offsetting a polygon in a robust manner is
numerical and not combinatorial. Let us assume that all polygons we handle are rational —
namely, all the polygon vertices have rational coordinates. The Minkowski sum of two such
polygons is also a rational polygon, and we need only exact rational arithmetic to compute
it in a precise manner. On the other hand, rational arithmetic is insufficient for offsetting
a rational polygon by a rational radius. As we show in Section 3.4, the resulting dilated
polygon comprises line segments and circular arcs, and the coordinates of its vertices are
typically algebraic numbers of degree up to four. Handling algebraic numbers in a precise
manner is a difficult and a highly time-consuming task (see the discussion in Section 2.3.3),
so using the algebraic number-types provided by Core or by Leda often yields running
times unacceptable for industrial applications.

We present a simple yet powerful approximation algorithm for offsetting a simple poly-
gon, which overcomes the algebraic difficulties by using only exact rational arithmetic. Our
algorithm is conservative, namely if Pr = P ⊕ Br is the exact Minkowski sum of a polygon
P with a disc Br of radius r, we compute a generalized polygon P̃r, bounded by line seg-
ments and circular arcs with rational coefficients, such that Pr ⊆ P̃r. We can also control
the approximation error and make it arbitrarily small. The experimental results we bring
in Section 3.5 show the considerable speedup our approximation algorithm achieves over
the exact algorithm. However, if users must obtain an exact representation of the dilated
polygons they compute, our software package also provides the functionality of performing
the offset computation in an exact manner.

3.2 The Convolution Method

The Minkowski sum of two sets A and B in Rd is sometimes referred to as their convolution.
The reason is that the characteristic function2 of A⊕B can be expressed as the convolution
of the characteristic functions of A and B, namely:

χA⊕B(x) =

∫

Rd

χA(y)χB(x− y) dy ,

where the integration should be interpreted as a cumulative logical or operation. In this
chapter we stick to the term Minkowski sum, and use the term convolution for the operation
we apply on the boundary curves of two planar sets, as we describe next.

2The characteristic function of a set S ∈ Rd is defined as χS(x) = 0 for x 6∈ S, and χS(x) = 1 for x ∈ S.

40 Chapter 3. 2D Minkowski Sums and Offsets

[0]

[0]

[1]

[2] [2]

[2]

Figure 3.1: Computing the convolution of a convex polygon and a non-convex polygon (left). The

convolution consists of a single self-intersecting cycle, drawn as a sequence of arrows (right). The

winding number associated with each face of the arrangement induced by the segments forming the

cycle appears in brackets. The Minkowski sum of the two polygons is shaded.

Guibas et al. [GRS83] prove the connection between the convolution of planar tracings,
which correspond to the boundary curves of two planar sets, and the Minkowski sum of these
sets. Let α and β be the boundary curves of two planar sets A and B, respectively. For now,
let us assume that both curves are smooth, so the tangent to every point x ∈ α (similarly for
β) is well-defined; we will denote it by ~x. Moreover, let us assume without loss of generality
that both boundary curves are counterclockwise oriented, so ~x has the same orientation as
the curve at x. The convolution α ∗ β is a curve that contains all points of the form x + y,
where x ∈ α, y ∈ β and ~x = ~y; the orientation of the convolution curve at x+y equals ~x = ~y.
The Minkowski sum of A and B can be expressed as:

A⊕ B = {x | Wα∗β(x) > 0} ,

where Wγ(x) is the winding number of the curve γ with respect to x. If we view γ as a curve
in the complex plane, the winding number of z0 ∈ C with respect to this curve is defined by
(see, e.g., [Kra99, Section 4.4.4]):

Wγ(z0) =
1

2πi
·
∮

γ

dz

z − z0
.

Note that the value of Wγ(z0) is integral for any z0 ∈ C. Informally, Wγ(x) is the number
of times γ winds in counterclockwise orientation around the point x, minus the number of
times it winds in clockwise orientation around this point (see also [Nee97, Chapter 7] for
some examples).

In their work, Guibas et al. give special attention to polygonal tracings, which are com-
posed of a series of interleaved moves (translations in a fixed direction) and turns (rotations
at a fixed location), and form boundaries of polygons. In the following we use the notation
∂P to designate the boundary curve of the polygon P .

Given two polygons, P with vertices (p0, . . . , pm−1) and Q with vertices (q0, . . . , qn−1), we
make a move by traversing a polygon edge −−−→pipi+1, and make a turn be rotating on a polygon
vertex pi from the direction of −−−→pi−1pi to the direction of −−−→pipi+1.

3 Without loss of generality,

3Throughout this chapter, when we increment or decrement an index of a vertex, we do so modulo the
size of the polygon. Indeed, −−−−−→pm−1p0 is also a valid polygon edge.

3.2. The Convolution Method 41

Figure 3.2: Computing the convolution of two non-convex octagons (left). The convolution consists

of two cycles (right). The Minkowski sum of the polygons is shaded. One cycle (solid arrows) comprises

32 line segments, while the other consists of 48 line segments, non of which lies on the boundary of the

Minkowski sum. The latter cycle is drawn using dashed arrows.

we can assume that both polygons are counterclockwise oriented — that is, if we traverse the
polygon boundary in the given order, the interior of the polygon is always to our left. The
direction of any point x in the interior of a polygonal edge pipi+1 is therefore −−−→pipi+1, while the
direction of a polygon vertex pi is defined as the range [−−−→pi−1pi,

−−−→pipi+1]. The convolution of the
boundaries of these two polygons, namely ∂P ∗∂Q, is in this case a collection of line segments

of the form
−−−−−−−−−−−−−→
(pi + qj)(pi+1 + qj), where the vector −−−→pipi+1 lies between −−−→qj−1qj and −−−→qjqj+1,

4 and

— symmetrically — of segments of the form
−−−−−−−−−−−−−→
(pi + qj)(pi + qj+1), where the vector −−−→qjqj+1

lies between −−−→pi−1pi and −−−→pipi+1. We can label the convolution segment as 〈(i, i+ 1), j〉 in the
former case or 〈i, (j, j + 1)〉 in the latter case. From the definition, it is clear that ∂P ∗ ∂Q
contains at most O(mn) line segments.

The segments of the convolution form a number of closed (not necessarily simple) polyg-
onal curves called convolution cycles. The Minkowski sum P ⊕Q is the set of points having
a positive winding number with respect to these cycles. Figure 3.1 illustrates the winding
number of the various regions in the plane induced by a single convolution cycle.

In case both input polygons P and Q are convex, their convolution is a convex polygonal
tracing. If only one polygon (say P) is convex, then ∂P ∗ ∂Q still contains a single cycle;
see [Ram96] for a proof. This cycle may not be simple, as illustrated in Figure 3.1. If both
P and Q are non-convex, their convolution may comprise several cycles, and in order to
compute the Minkowski sum of the polygons one has to consider the set of points having a
non-zero winding number with respect to any of these cycles; see Figure 3.2 for an illustration.

Given two simple polygons P and Q having m and n vertices respectively, we compute
their Minkowski sum in three steps: first we compute the cycles of the convolution ∂P ∗ ∂Q,
then we construct the planar arrangement induced by the segments that form the convolution
cycles, and finally we extract the Minkowski sum from this arrangement. We next explain
each of these steps in detail.

4We say that a vector ~v lies between two vectors ~u and ~w, if we reach ~v strictly before reaching ~w when we
move all three vectors to the origin and rotate ~u counterclockwise. Note that this also covers the degenerate
case where ~u has the same direction as ~v.

42 Chapter 3. 2D Minkowski Sums and Offsets

Table 3.1: A pseudo-code listing of the procedure ComputeConvolutionCycle.

ComputeConvolutionCycle (P, i0; Q, j0)
let C ←− ∅.
let i←− i0. let j ←− j0.
let s←− (pi + qj).
do:

let inc P ←− IsBetweenCounterclockwise (−−−−→pi, pi+1;
−−−→qj−1qj,

−−−→qjqj+1).
let inc Q←− IsBetweenCounterclockwise (−−−−→qj , qj+1;

−−−→pi−1pi,
−−−→pipi+1).

if inc P = True, then:
let t←− (pi+1 + qj).

Push the segment ~st into C, and mark the label 〈(i, i+ 1), j〉 as used.
let s←− t.
let i←− i+ 1 (modulo the size of P).

if inc Q = True, then:
let t←− (pi + qj+1).

Push the segment ~st into C, and mark the label 〈i, (j, j + 1)〉 as used.
let s←− t.
let j ←− j + 1 (modulo the size of Q).

while i 6= i0 or j 6= j0.
return C.

3.2.1 Computing the Convolution Cycles

Guibas and Seidel [GS87] show how to compute the convolution cycles of two polygons in
optimal O(m+ n +K) time, where K = |∂P ∗ ∂Q|. However, their method cannot handle
degenerate inputs, as it makes some general-position assumptions on the polygons (e.g., an
edge of P cannot have the same direction as an edge of Q). In this section we present a
simple and robust algorithm, whose asymptotic running time is O(m+n+min {mrn, nrm}+
K), where mr and nr are the number of reflex vertices in P and Q, respectively. As our
experiments show, the running time of the construction of the convolution cycles is in practice
negligible with respect to the overall Minkowski-sum computation.

The procedure ComputeConvolutionCycle, listed in pseudo-code in Table 3.1, de-
scribes a simple algorithm that constructs a single convolution cycle C of two polygons
P = (p0, . . . , pm−1) and Q = (q0, . . . , qn−1). It starts from two given vertices pi0 and qj0 ,
such that pi0 + qj0 is a vertex on the cycle C, and proceeds iteratively, adding at least one
convolution segment in each iteration (in a degenerate situation, when −−−−→pi, pi+1 and −−−−→qj, qj+1

have the same direction, two segments are added to the cycle in a single iteration; these
two segment have the same supporting line and share a common endpoint), until the cycle
closes. Note that we also maintain a set of used labels representing all convolution segments
that have already been computed. This set is represented using a hash table, such that each
access to the set takes O(1) time on average (see, e.g. [CLRS01, Chapter 12]).

We next describe how to locate the pairs of indices i0 and j0 needed for the procedure
above. We start by locating the bottommost vertex of P (the minimal vertex with respect

3.2. The Convolution Method 43

to a yx-lexicographical order) and the bottommost vertex of Q. Assume, without loss of
generality, that these are the vertices p0 and q0. These vertices are not reflex, and it is
clear that either −−→p0p1 lies between the edges incident to q0, or vice-versa. We can therefore
compute a convolution cycle starting from this pair of vertices.

If either of the polygons is convex (that is, mr = 0 or nr = 0), then the convolution
consists of a single cycle, and we are done with the convolution step. This is due the fact
that multiple convolution cycles can only be induced by pair of reflex vertices in P and in Q,
as stated by Ramkumar [Ram96]. Otherwise, we traverse the reflex vertices of Q (we assume,
without loss of generality that nrm < mrn), and for each such vertex qj0 we go over all vertices
of P and try to locate a vertex pi0 , such that −−−−→pi0pi0+1 lies between −−−−→qj0−1qj0 and −−−−→qj0qj0+1. When
we locate such a vertex pair and such that the label 〈(i0, i0 + 1), j0〉 has not been used (we
query the used labels set to check that), we call ComputeConvolutionCycle to compute
an additional convolution cycle.

3.2.2 Computing the Winding Numbers

Flato [Fla00, Appendix A.1] describes a simple algorithm for computing the union of a set
of simple polygons with a counterclockwise orientation. In the context of his work, these
polygons correspond to the pairwise Minkowski sums of convex sub-polygons. The first step
is to construct the arrangement of the directed segments that correspond to the polygon
edges, referred to as the boundary segments. In a non-degenerate scenario, each arrangement
edge is associated with a portion of a single polygon edge. As the arrangement edge is
represented by a pair of twin halfedges (see Section 2.2), one halfedge has the same direction
as the associated segment and the other has an opposite direction. In an arrangement of
simple polygons, no antennas can exist, so each of the those two halfedges is incident to a
different arrangement face.

The arrangement of the boundary segments has the property that all points in a single
arrangement face are covered by the same subset of polygons. As all points inside a polygon
have a winding number 1 with respect to this polygon boundary and all points outside it have
a winding number 0 with respect to the polygon, we say that all points in an arrangement
face have the same winding number with respect to the input polygons. It is thus possible
to associate a winding number W (f) with each arrangement face f .5 The unbounded face
of the arrangement obviously has a winding number 0, and the winding numbers of all
other (bounded) faces are computed using a breadth-first traversal of the arrangement faces.
Suppose that the faces f1 and f2 are separated by a pair of twin halfedges e1 and e2, where fi
is the incident face of ei. In case the segment associated with the edge has the same direction
as e1, we set W (f2)←−W (f1)− 1, otherwise we set W (f2)←− W (f1) + 1. We continue in
this manner until all arrangement faces have been visited.

This simple scheme does not work in case of overlaps between the boundary segments.
We mention that such overlaps not only occur in degenerate scenarios, but they are inherent
to pairwise Minkowski sums obtained by the decomposition method. We therefore need to

5As we mentioned in Section 2.2, the Dcel structure can be easily extended so auxiliary data fields may
be stored with the various Dcel records.

44 Chapter 3. 2D Minkowski Sums and Offsets

Figure 3.3: A house plan and a star-shaped furniture (left). The Minkowski sum of the two polygons

(right) consists of low-dimensional features. For clarity, two copies of the star are drawn using a dashed

line with their center positioned on these features. The left copy is located on an antenna on the

Minkowski-sum boundary, such that the star can move along this antenna while touching the walls of

the house without penetrating into the walls. The right copy is located such that the star center is on

an isolated vertex, which designates a location where the star does not penetrate into the walls but it

is immobilized.

slightly augment the winding-number algorithm. The idea is to associate a number B(e)
with each halfedge e, counting the number of overlapping boundary segments incident and
equal in direction to this half-edge. We can automatically compute this number if we use
the traits-class decorator (see Section 2.3.4) to extend each segment with two counters Cright

and Cleft. As each sub-segment in the arrangement may be induced by several overlapping
boundary segments, Cright counts the number of boundary segments directed from left to
right, while Cleft is the number of overlapping boundary segments directed to the left. The
traits-class decorator automatically maintains the counter values, so given a halfedge e we
consider the counters stored with its associated sub-segment, and simply set B(e)←− Cright

if the halfedge is directed from left to right, and B(e)←− Cleft otherwise.

Using this generalized scheme, we can still traverse the arrangement faces in a breadth-
first order, yet this time we set W (f2)←− W (f1)−B(e1)+B(e2). Having visited all faces, we
can output the boundary of the single hole in the unbounded face as the outer boundary of
the union, and add the outer boundary of each bounded arrangement face f̂ with W (f̂) = 0
as a hole in the union.

When employing the convolution method we need to compute the winding numbers
with respect to counterclockwise-oriented convolution cycles. Luckily, the same arguments
used for proving the correctness of the polygon-union algorithm also hold for the case of
convolution cycles. We therefore have to compute the arrangement of all directed segments
constituting the convolution cycles and compute W (f) of each face in a breadth-first manner.
Consider for example Figure 3.1, where we correctly identify the hole in the Minkowski sum,
as it is represented by a face whose winding number is 0. We mention that in this case
overlapping segments only occur in case of degenerate inputs (namely, two polygon edges
that have the same direction), which is one of the advantages the convolution method has
over the decomposition method.

3.3. Experimental Results for Polygonal Minkowski Sums 45

So far we have described an algorithm that computes the regularized Minkowski sum
P ⊕̂Q, namely the closure of the interior of P ⊕ Q, as all 1-dimensional or 0-dimensional
features of the sum (antennas and isolated vertices, respectively) are discarded. In this
case, the output is given as a polygon that represents the outer boundary of the sum and an
additional, possibly empty, set of polygons that represents the holes inside this polygon. This
representation is sufficient for many applications, but for other applications, such as motion
planning and especially assembly planning, low-dimensional features play an important role
as they represent tight passages.

Consider the example depicted in Figure 3.3, where we wish to move a star-shaped
furniture in a house, allowing translations only. The interior of the Minkowski sum in this
case consists of all forbidden placements for the star center, and each point on the boundary
of the sum corresponds to a semi-free placement of the star, where it touches the walls but
does not penetrate them. It is possible to tightly move the furniture from the outside to the
bottom-left room through the doorway, while its center is moved on an antenna on the sum
boundary. It is also possible to exactly fit the furniture, in its current orientation, inside the
bottom-right room, but without any possible way to move it in any direction. In this case,
its center is positioned on an isolated vertex of the Minkowski-sum boundary.

It is easy to extend the algorithm for computing winding numbers to locate the antennas.
Having computed the winding numbers of all faces, we go over all arrangement edges. Let
the current edge be realized by the twin halfedges e1 and e2, whose incident faces are f1

and f2, respectively. Then the edge forms an antenna if and only if W (f1),W (f2) 6= 0
and W (f1) − B(e1) = W (f2) − B(e2) = 0. Locating the isolated vertices is slightly more
complicated, and involves computing an additional attribute for each halfedge; the reader is
referred to [Fla00] for the full details including a proof of correctness. We just mention that
locating the low-dimensional features incurs no asymptotic run-time penalty.

Beside its ability to compute a polygon with holes that represents a regularized Minkowski
sum, our software is also capable of outputting a planar arrangement that captures all
features of the Minkowski sum of two input polygons. Such an arrangement consists of
properly marked faces that compose the interior of the sum, and marked edges and vertices
that represent the sum boundary. Recall that the arrangement package supports isolated
vertices, so it is possible to report 0-dimensional features in the output as well.

3.3 Experimental Results for Polygonal Minkowski Sums

We have adapted parts of Flato’s software [Fla00] to comply with the interface of Cgal

Version 3.2. As the original software consists of several thousands of lines of code, we did not
convert all polygon-decomposition strategies; instead, we use the three convex-decomposition
algorithms bundled with the Polygon Partitioning package of Cgal [Her06]. In addition, we
added the small-side angle-bisector decomposition strategy (see below). In his experiments,
Flato reports this strategy as the one that yields the fastest running times for the overall
Minkowski-sum computation process (see also [AFH02]). We ran our experiments with all
four strategies listed below.

46 Chapter 3. 2D Minkowski Sums and Offsets

(a)

(b)

(c)

(d)

(e)

Figure 3.4: Samples of input polygons (left) and their Minkowski sums (right): (a) chain; (b) wheels;

(c) comb; (d) fork; (e) spiked.

3.3. Experimental Results for Polygonal Minkowski Sums 47

(a)

(b)

Figure 3.5: Samples of input polygons (left) and their Minkowski sums (right): (a) cavity; (b) random.

Optimal (Opt.): The dynamic-programming algorithm of Greene [Gre83] for computing
an optimal decomposition of a polygon into a minimal number of convex sub-polygons.
The main drawback of this strategy is that it runs in O(n4) time and requires O(n3)
space in the worst case, where n is the number of vertices in the input polygon.6

Hertel–Mehlhorn (HM): The approximation algorithm suggested by Hertel and
Mehlhorn [HM83], which triangulates the input polygon and proceeds by throwing
away unnecessary triangulation edges. This algorithm requires O(n) time and space
and guarantees that the number of sub-polygons it generates is not more than four
times the optimum. The Cgal implementation runs in O(n logn) time.

Greene (Gre.): Greene’s approximation algorithm [Gre83] which computes a convex de-
composition of the polygon based on its partitioning into y-monotone polygons. This
algorithm runs in O(n logn) time and O(n) space, and has the same approximation
guarantee as Hertel and Mehlhorn’s algorithm.

Small-side angle-bisector (SSAB): A heuristic improvement to the angle-bisector de-
composition method suggested by Chazelle and Dobkin [CD85]. It starts by exam-
ining each pair of reflex vertices in the input polygon such that the entire interior of
the diagonal connecting these vertices is contained in the polygon. Out of all available
pairs, it selects pi and pj, such that the number of reflex vertices along the polygon
boundary from pi to pj (or from pj to pi) is minimal. The polygon is split by the
diagonal pipj , and the process continues recursively on both resulting sub-polygons.

6A more efficient algorithm for the optimal convex decomposition was given by Keil and Snoeyink [KS02],
but is not implemented in Cgal.

48 Chapter 3. 2D Minkowski Sums and Offsets

In case it is not possible to eliminate two reflex vertices at once any more, each reflex
vertex is eliminated by an angle bisector emanating from it. The entire process takes
O(n2) time.

In the original implementation, the intersections between the angle bisectors and the
polygon edges induce Steiner points in the decomposed sub-polygons, namely inter-
section points between original polygon edges and angle bisectors. We have slightly
modified the algorithm, such that instead of eliminating a reflex vertex pi using an
angle bisector, we look for another vertex pj∗ , such that pipj∗ is contained in the poly-
gon, and such that the ratio between the two angles](pi−1, pi, pj∗) and](pj∗, pi, pi+1)
that pipj∗ induces is as close to 1 as possible among all candidates. Our experiments
show that this modified approach yields very good decompositions, while avoiding the
introduction of Steiner points, which may lead to more complex computations.

The original Minkowski-sum software was based on the arrangement package of Cgal

Version 2.0, which supported only the incremental construction of arrangements, inserting
curves one at a time. In the current Cgal version, it is possible to construct arrangements
aggregately, so all boundary segments are inserted together using a sweep-line algorithm.
Constructing an arrangement aggregately is asymptotically more efficient for κ line seg-

ments that sparsely intersect (namely the total number of intersection points is o
(

κ2

log κ

)

),

and this is almost always the case in Minkowski-sum computations (see Tables 3.2 and 3.3,
where the combinatorial complexity of the arrangement depends on the number of segment
intersections). This argument is also backed up by experiments [WFZH07] that show that
constructing a Cgal arrangement of line segments in an aggregated manner is usually 5–10
times faster than constructing it incrementally. We have therefore implemented an aggre-
gated version of the union algorithm, as described in Section 3.2.2, and did not try the
incremental union algorithm, as described in [Fla00, Chapter 3].

We have conducted a large number of tests with various input sets. Here we report on
eight representative input sets containing polygon pairs, most of them taken from [AFH02]
(see Figures 3.4 and 3.5 for illustrations):

Chain: A chain-shaped polygon with 82 vertices (37 of them are reflex), and a star-shaped
polygon with 30 vertices (6 reflex).

Wheels: Two star-shaped polygons, each containing 40 vertices (14 reflex in each).

Comb: A comb-shaped polygon containing 53 vertices (24 reflex) and a convex polygon
with 22 vertices. This input set introduces the worst-case complexity for the sum of a
convex and a non-convex polygon.

Fork: The well-known example for a Minkowski sum of size O(m2n2) [KOS91]. The large
“fork” consists of 34 vertices (19 reflex) and the smaller one has 31 vertices (18 reflex).

Cavity: A random-looking polygon with 22 vertices (10 reflex) and a small convex octagon,
chosen to fit some of the cavities in the larger polygon.

3.3. Experimental Results for Polygonal Minkowski Sums 49

Random: Two random-looking polygons, with 40 and 20 vertices (19 and 8 reflex vertices,
respectively).

Spiked: A large polygon with 64 vertices (40 reflex) and a small polygon with 12 vertices
(5 reflex), that can fit into the cavities on the larger polygon.

Country: The map of Israel, represented as a polygon with 50 vertices (24 reflex), and
a smaller polygon with 30 vertices (8 reflex). (These polygons are not shown in the
figures.)

Table 3.2 summarizes the performance of the Minkowski-sum computations for the se-
lected input sets, using the polygon-decomposition method. We give the running times, as
obtained on a Pentium IV 3 GHz machine with 2 Gb of Ram, and averaged over 100 exe-
cutions for each decomposition strategy. We also indicate — for the strategy that achieved
the fastest running time on each input set — the numbers of sub-polygons k and ` in the de-
compositions of the two input polygons, the total number S of segments in all k` Minkowski
sums, the time required to perform the decomposition and compute these S segments, and
the complexity of the arrangement (number of vertices, edges and faces) induced by the
boundary segments.

It should be mentioned that the running times stated in Table 3.2 are sometimes about a
hundred times faster than the ones reported in [AFH02]. This can be partly attributed to the
fact that we used a faster machine in our experiments,7 and mostly due to the improvements
in the new version of Cgal’s arrangement package. The new package handles intersections
of line segments more efficiently [FWH04] due to numerous improvements, such as the re-
duction of the number of geometric operations and predicates the arrangement-construction
algorithms invoke [WFZH07]. Moreover, we use the predefined Cgal kernel [FP06], which
uses interval arithmetic to filter exact computations with rational numbers, as provided by
Version 4.1 of Gnu’s Multi-Precision library (Gmp), and helps reducing the running times
even further (see also Section 2.3.2).

Table 3.3 summarizes the performance of the Minkowski-sum computations for the se-
lected input sets using the convolution method. We indicate the numbers of convolution
cycles Nc, the total number K of convolution segments, the time it took to compute the con-
volution, and the complexity of the induced arrangement. We also applied the Minkowski-
sum function provided by Leda (Version 4.4) on our input sets, using the exact rational
kernel of Leda, which — similarly to Cgal’s predefined kernel — also employs arithmetic
filtering to speed up the computations with an exact rational number-type. The running
times of Leda are also given in the table; unfortunately, here we do not have access to the
code and we are therefore unable to provide more detailed construction statistics.

In almost all cases, the convolution method yields faster running times than the best
decomposition scheme (recall that Leda also employs the polygon-decomposition method).
This is due to the fact that the convolution method usually induces a smaller arrange-
ment as its intermediate structure. As the total running-time is clearly dominated by the
arrangement-construction time, the convolution method may achieve a speed-up of up to a

7Flato reports using a 500 MHz Pentium III machine.

50 Chapter 3. 2D Minkowski Sums and Offsets

Table 3.2: Running times (measured in milliseconds) for the Minkowski-sum computation using various

decomposition strategies. The running time of the fastest strategy in each case is shown in bold, and

its construction statistics are also given.

Total running The fastest method
Input time Decomp. Arrangement size
set Opt. HM Gre. SSAB k ` S time |V | |E| |F |
chain 390 424 578 444 35 7 2520 123 7239 13627 6390
wheels 488 744 867 477 17 17 2446 13 12955 25624 12671
comb 32 58 17 37 26 1 650 4 671 769 100
fork 287 524 1220 260 12 11 1048 6 6827 13377 6552
cavity 8 7 6 8 14 1 160 1 167 244 79
random 234 349 376 320 20 10 1540 15 8209 16310 8103
spiked 249 370 1630 232 22 6 1108 9 7721 15150 7431
country 338 798 410 188 16 8 1344 8 5126 9772 4648

Table 3.3: Running times (measured in milliseconds) and construction statistics for the Minkowski-sum

computation using the convolution method.

Total running time
Conv. Arrangement size Best Using

Input set Nc K time |V | |E| |F | Conv. decomp. Leda

chain 1 1452 7 2077 2868 793 69 390 463
wheels 2 1200 7 3225 5482 2259 92 477 332
comb 1 603 7 627 651 26 17 17 97
fork 1 1266 5 11203 22063 10862 521 260 266
cavity 1 110 1 135 161 28 4 6 21
random 1 580 3 2589 4698 2111 62 234 229
spiked 1 876 5 5075 9749 4676 184 232 175
country 2 1050 5 1940 3064 1126 61 188 275

factor of 5 in some cases. Moreover, the memory requirements for storing the intermediate
arrangement are also considerably smaller.

The convolution method has another important advantage. As we learn from Table 3.2,
the choice of a decomposition strategy may have drastic effects on the running time of the
Minkowski-sum computation. However, the best strategy that yields the fastest running
time for a specific input can be found only by experimenting. When using the convolution
method, no such tuning experiments are needed.

The fork input set is the only example that exhibits slower running times when using
the convolution method. This is due to the fact that the input polygons are decomposed
very nicely by the SSAB decomposition-strategy. Each of the fork prongs is separated into a
single thin rectangle, such that the Minkowski sums of the sub-polygons are nearly pairwise
disjoint. On the other hand, as we have many pairs of parallel edges in the input polygons
(note that all edges of the two “forks” are axis-parallel), the convolution cycle in this case

3.4. Exact and Approximate Offset Polygons 51

contains many redundant loops that incur the greater run-time consumption.

We note that it is possible to use a hybrid approach: given two polygons, use the small-
side angle-bisector decomposition scheme and compute the set of S line segments in all
pairwise Minkowski sums; in addition, compute the K line segments that form the convolu-
tion cycles of the input polygons. If K < S (which is almost always the case), compute the
arrangement of the convolution cycles and extract the Minkowski sum from this arrange-
ment. Otherwise, go on computing the union of all pairwise sums of convex sub-polygons.
Since the time needed for computing the SSAB decomposition and obtaining the pairwise
sums is just a few milliseconds (see Table 3.2), this hybrid approach can successfully han-
dle degenerate input polygons such as the fork input set, while incurring only a negligible
computational overhead in comparison to the straightforward convolution method.

3.4 Exact and Approximate Offset Polygons

Having described our efficient implementations of Minkowski-sum algorithms for two poly-
gons, we now turn to the closely related problem of offsetting a polygon, namely computing
the boundary of the Minkowski sum of the polygon with a disc of a given radius. Offsetting
is a fundamental task in Cad/Cam. The main body of Cad literature on this subject con-
centrates on computing offsets of curves and surfaces (see, e.g., [KF95, LKE98, Mae99] and
the references therein). In the general case, the offset curves of rational planar curves are not
rational, so it is possible to compute them only using approximate techniques. As we focus
here on the special case of offsetting a polygon, we are able to provide exact construction of
the resulting dilated polygon, or alternatively an approximate construction with guaranteed
quality.

At first glance offsetting may seem an easier task compared to computing the Minkowski
sum of two polygons. However, when we aim for a robust implementation, offsetting effi-
ciently is much more demanding. Let us assume that we are given a polygon P with n vertices
(p0, . . . , pn−1) that are ordered counterclockwise around P ’s interior. All vertices have ratio-
nal coordinates. We wish to compute the dilated polygon Pr, namely the Minkowski sum
of P with a disc of radius r, where r is rational. We show that even this relatively simple
task involves exact computation with algebraic numbers, if we wish our computations to be
exact.

If P is a convex polygon, the offset is easily computed by shifting each polygon edge by
r away from the polygon, namely to the right-hand side of the edge. As a result we obtain
a collection of n disconnected dilated edges. Each pair of adjacent dilated edges, induced by
pi−1pi and pipi+1 (recall that incrementing or decrementing an index is always done modulo
n), are connected by a circular arc of radius r, whose supporting circle is centered at pi.
The angle that defines such a circular arc equals π −](pi−1, pi, pi+1); see Figure 3.6(a) for
an illustration. Naturally, the running time of this simple process is linear in the size of the
polygon.

If P is not convex, its offset can be obtained by decomposing it into convex sub-polygons
P1, . . . , Pm such that

⋃m
i=1 Pi = P , computing the offset of each sub-polygon and finally

computing the union of these dilated sub-polygons (see Figure 3.6(b)). However, we already

52 Chapter 3. 2D Minkowski Sums and Offsets

p0 p1

p2

p3

p4

v

p̂

[0]

[1]

[2]

v

p̂

(a) (b) (c)

Figure 3.6: (a) Offsetting a convex polygon. (b) Computing the offset of a non-convex polygon by

decomposing it into convex sub-polygons; p̂ is a reflex vertex. (c) Offsetting a non-convex polygon by

computing its convolution with a disc. The convolution cycle induces an arrangement with three faces,

whose winding numbers are shown in brackets.

know that it is more efficient to compute the convolution cycle of the polygon with a disc,
which in our case is a smooth curve comprising line segments and circular arcs. The sub-
segments of the convolution cycle can be constructed by applying the process described in
the previous paragraph. The only difference is that a circular arc induced by a reflex vertex
pi is defined by an angle 3π−](pi−1, pi, pi+1); see Figure 3.6(c) for an illustration. Once we
obtain the convolution cycle (in this case there is only one convolution cycle since the disc is
convex), we construct the arrangement of the line segments and circular arcs that constitute
this cycle, compute the winding numbers of the arrangement faces, and output the union of
the faces having a positive winding number.

3.4.1 The Offset Convolution Cycle

Let us now take a closer look at the algebraic characterization of the convolution cycle con-
structed in the course of the offset computation. If the offset radius r is rational, the circular
arcs of the convolution cycle, representing dilated polygon vertices, are clearly supported by
rational circles, as they are centered at the vertices of the input polygon, which have rational
coordinates.

Let us examine how the dilated edges look like. We consider the polygon edge p1p2 to
be directed from p1 = (x1, y1) to p2 = (x2, y2). We denote by θ the angle it forms with the
x axis. Let ` =

√

(x2 − x1)2 + (y2 − y1)2 be the edge length, so we have cos θ = 1
`
(x2 − x1)

and sin θ = 1
`
(y2 − y1). As we traverse the polygon edges in a counterclockwise orientation,

we construct the dilated edge v1v2 that corresponds to p1p2 by shifting either polygon vertex
by a vector whose length is r and which forms an angle of φ = θ − π

2
with the x-axis. It is

easy to see that:

sinφ = sin θ · cos
π

2
− cos θ · sin π

2
= − cos θ =

1

`
(x1 − x2) , (3.1)

cosφ = cos θ · cos
π

2
+ sin θ · sin π

2
= sin θ =

1

`
(y2 − y1) . (3.2)

3.4. Exact and Approximate Offset Polygons 53

Thus, the endpoints of the dilated edge are given by (j = 1, 2):

vj =
(

xj +
r

`
(y2 − y1), yj +

r

`
(x1 − x2)

)

. (3.3)

Indeed, the coordinates of these points are solutions of quadratic equations with rational
coefficients (one-root numbers, or algebraic numbers of degree two), but the segment v1v2 is
supported by a line with irrational coefficients: it is easy to show that if the supporting line of
p1p2 is ax+by+c = 0 (where a, b, c ∈ Q), then the line supporting v1v2 is ax+by+(c+`r) = 0,
where ` is usually an irrational number. The intersection points between two segments
representing dilated edges (see for example the point v in Figure 3.6(b) and (c)), or between
a dilated edge and a circular arc that represents a dilated vertex, are algebraic numbers of
degree four, namely roots of polynomials with integer coefficients of degree 4.

A simpler representation of the dilated edges is based on the fact that the locus of all
points lying at distance r from the line ax+ by + c = 0 is given by:

(ax+ by + c)2

a2 + b2
= r2 ,

which is a degenerate conic curve (a pair of parallel lines) with rational coefficients. The
line segments and the circular arcs that constitute the convolution cycle can be therefore
represented as arcs of conic arcs with rational coefficients, and it is possible to compute their
arrangement and obtain the offset polygon using the conic-traits class of the arrangement
package (see Section 2.3.3). However, the computational overhead incurred by the exact
computation with algebraic numbers makes this process relatively slow (see more in Sec-
tion 3.5). If we could work with segments of rational lines, it would be possible to construct
the intermediate arrangement using the circle/segment traits-class (see Section 2.3.3), which
employs only exact rational arithmetic, and achieve faster running times. We next describe a
conservative and tight approximation scheme that enables us to accelerate the computation
in this fashion.

3.4.2 The Approximation Scheme

We next describe our approximation algorithm that avoids using expensive computations
with algebraic numbers. First, we note that in case of a horizontal edge (where y1 = y2) or
a vertical edge (where x1 = x2), the edge length ` is a rational number. In these cases we
can trivially construct the dilated edge v1v2 in an exact manner using rational arithmetic,
so in the following we assume that x1 6= x2 and y1 6= y2.

We approximate the dilated edge by two line segments with rational coefficients, as
shown in Figure 3.7: in a manner we describe next, we find two points v′1 and v′2 with
rational coefficients, such that v′j lies on the circle (x − xj)2 + (y − yj)2 = r2 (for j = 1, 2).

Moreover, v′1 and v′2 are selected such that the angle φ′
1 that

−−→
p1v

′
1 forms with the x-axis is

slightly smaller than φ, and the angle φ′
2 that

−−→
p2v

′
2 forms with the x-axis is slightly larger

than φ. We let ∆φ1 = φ − φ′
1 and ∆φ2 = φ′

2 − φ. Observe that the lines tangent to the
two circles at v′1 and v′2 have rational coefficients and their intersection point w′ has rational

54 Chapter 3. 2D Minkowski Sums and Offsets

r

`

ε∆φ2

∆φ1p2

p1

v1

v′1

v′2
v2

w′

Figure 3.7: Approximating the dilated edge v1v2, which is induced by the polygon edge p1p2, by the

polyline v′1w′v′2. The approximation error is defined as the maximal distance of this polyline from the

original dilated edge.

coordinates. We use the two line segments v′1w
′ and w′v′2 to approximate the dilated edge

v1v2.

We now explain how to compute the rational points v′1 and v′2 with the properties men-
tioned above. Note that if τ = tan φ

2
were a rational number, then sinφ = 2τ

1+τ2 and

cosφ = 1−τ2

1+τ2 would be rational as well, and v1 and v2 would both have rational coordinates.
We therefore aim for a rational approximation of τ . Using the half-angle formulae8 we can
write:

τ = tan
φ

2
=

1− cos φ

sinφ
=

1− 1
`
(y2 − y1)

1
`
(x1 − x2)

=
`+ (y1 − y2)

x1 − x2

, (3.4)

τ = tan
φ

2
=

sinφ

1 + cosφ
=

1
`
(x1 − x2)

1 + 1
`
(y2 − y1)

=
x1 − x2

`+ (y2 − y1)
. (3.5)

As ` > |y2−y1| (recall that the edge is not vertical), the sign of τ is determined by sign(x1−
x2). If x1 > x2 (as is the case in the example depicted in Figure 3.7), we have π

2
< θ < 3π

2
,

hence 0 < φ < π and τ > 0. Let ` ∈ Q be a rational approximation of ` from below (that
is, 0 < ` − ` < η for some small η > 0). We now define the angles φ′

1 and φ′
2, based on

Equations (3.4) and (3.5), respectively:

τ ′1 = tan
φ′

1

2
=
`+ (y1 − y2)

x1 − x2

<
`+ (y1 − y2)

x1 − x2

= τ , (3.6)

τ ′2 = tan
φ′

2

2
=

x1 − x2

`+ (y2 − y1)
>

x1 − x2

`+ (y2 − y1)
= τ . (3.7)

It is clear that φ′
1 < φ < φ′

2. The two tangency points of the approximating segments are
therefore given by (j = 1,2):

v′j =

(

xj +
1− τ ′j2

1 + τ ′j
2 · r , yj +

2τ ′j

1 + τ ′j
2 · r

)

.

8See, e.g., 〈http://mathworld.wolfram.com/Half-AngleFormulas.html〉.

3.4. Exact and Approximate Offset Polygons 55

In case x1 < x2 we have τ < 0. In this case we compute a rational approximation of ` from
above, denoted ¯̀ (thus 0 < ¯̀− ` < η for some small η > 0), and define τ ′1 < τ and τ ′2 > τ in
an analogous manner to the definitions in Equations (3.6) and (3.7).

Obtaining a rational approximation for ` is easy. Recall that `2 = (x2− x1)
2 + (y2− y1)

2

is a rational number; for any rational l0 > 0, the recursively defined series li+1 = 1
2

(

li +
`2

li

)

converges to `.9 If we need to approximate ` from below, we simply look for the minimal

index k such that 0 < `2 − l2k < δ, or such that 0 < `2 −
(
`2

lk

)2

< δ; we take ` ←− lk in

the former case and ` ←− `2

lk
in the latter case. Computing an approximation from above

is symmetric. Observe that if we fix a rational δ > 0 value, all calculations are carried out
using rational arithmetic.

We next show how tight should the approximation of the edge length ` be, in order to
guarantee that the polyline v′1w

′v′2 we use for approximating the dilated edge does not lie
too far from the exact offset v1v2.

3.4.3 The Approximation Quality

Theorem 3.1 For any polygon edge connecting p1 = (x1, y1) and p2 = (x2, y2), where x1 6=
x2 and y1 6= y2, and any given ε > 0, let ˆ̀ be a rational approximation of the edge length

` = ‖p2 − p1‖ such that |`2 − ˆ̀2| < `
∣
∣
∣
`+(y1−y2)
2(x1−x2)

∣
∣
∣ · ε. If we compute a polyline approximation

v′1w
′v′2 of the dilated edge as described above, then the distance of the point w′ from the

supporting line of the true dilated edge v1v2 is upper bounded by ε.

Proof: Let us assume that x1 > x2 and that ˆ̀ is an approximation of the edge length from
below, so that we have `2− ˆ̀2 < δ for some δ > 0 (the proof for x1 < x2 is symmetric). Note
that:

`2 − ˆ̀2 = (`+ ˆ̀)(`− ˆ̀) > 2ˆ̀(`− ˆ̀) ,

so `− ˆ̀< δ

2ˆ̀. We now use the fact that tan(α− β) = tanα−tan β
1+tanα tanβ

and using Equations (3.4)

and (3.6) we obtain:

tan

(
φ− φ′

1

2

)

=
τ − τ ′1
1 + ττ ′1

=

=

`+(y1−y2)
x1−x2

− ˆ̀+(y1−y2)
x1−x2

1 + `+(y1−y2)
x1−x2

· ˆ̀+(y1−y2)
x1−x2

=
(x1 − x2)(`− ˆ̀)

(x1 − x2)2 + `ˆ̀+ (`+ ˆ̀)(y1 − y2) + (y1 − y2)2

<
(x1 − x2)

δ

2ˆ̀

`2 + `ˆ̀+ (`+ ˆ̀)(y1 − y2)
<

x1 − x2

4ˆ̀2(ˆ̀+ (y1 − y2))
· δ .

The approximated angle φ′
1 is always very close to φ, namely ∆φ1 = φ− φ′

1 is small, and

we can safely bound tan(∆φ1) by 4 · tan
(
φ−φ′1

2

)

. Note that ∆φ1 =](v1, p1, v
′
1) is equal to

9This method is named the Babylonian method, and is known to converge quadratically to the square-root;
see, e.g., 〈http://en.wikipedia/wiki/Methods of computing square roots〉.

56 Chapter 3. 2D Minkowski Sums and Offsets

the angle between the supporting lines of v1v2 and v′1w
′ (see Figure 3.7 for an illustration),

so as 1 < `
ˆ̀� 2, the distance of w′ from v1v2 is upper bounded by:

` tan(∆φ1) <
` · (x1 − x2)

ˆ̀2(ˆ̀+ (y1 − y2))
· δ < 2(x1 − x2)

ˆ̀(ˆ̀+ (y1 − y2))
· δ .

We conclude that if δ < `
∣
∣
∣
`+(y1−y2)
2(x1−x2)

∣
∣
∣ · ε, then this distance is smaller than ε. 2

An important property of our approximation algorithm is that it is conservative. That
is, given a polygon P and an offset radius r it always computes a super-set P̃r of the exact
dilated polygon Pr. This property is crucial for many applications. For example, if we use
our algorithm to approximate the forbidden configuration space of a round tool-tip moving
amidst polygonal obstacles, we will never have “false positives” — namely, we will never
declare a location of the tool center as collision-free when in fact it collides with an obstacle.
We can have “false negatives”, namely regarding a collision-free location as forbidden, but
these errors are usually not crucial to the successful performance of the algorithm. Moreover,
the probability of having “false negatives” can be made arbitrarily small by selecting a small
enough approximation error ε, as proved above in Theorem 3.1.

In other applications, where one wishes the approximate dilated polygon P̃r to be con-
tained in the exact dilated polygon Pr, we proceed as follows. Given a rational ε > 0, we let
r = r − ε and apply the approximation algorithm with the offset radius r. As the polylines
that approximate the dilated edges can lie at most r+ ε = r away from the original polygon
edges, the result is guaranteed to be a subset of the exact dilated polygon.

3.5 Experimental Results for Offsetting Polygons

As explained in the previous section, using the various traits classes available in the ar-
rangement package of Cgal we can compute the offset of a polygon in an exact manner by
representing its boundary using conic arcs, or provide a conservative approximation using
rational line segments and circular arcs. Here we compare the performance of the exact con-
struction using the conic-traits class with our approximate construction scheme based on the
circle/segment traits-class. Table 3.4 summarizes the running times of the two approaches;
the various input polygons and their offset boundaries are shown in Figure 3.8 (the country
polygon is a map of Israel).

The offset radius chosen for each polygon is typically two orders of magnitude smaller
than the size of the bounding box of the polygon. For the approximation scheme we selected
the error bound accordingly. Table 3.4 includes the running time for error bounds of 10−7 and
10−10 times the offset radius. Our approximation scheme yields a significant speedup in the
offset computations over the exact computation, especially for polygons that contain many
small-size features (e.g., chain), spikes (e.g., spiked), or cavities (e.g., random). In such
cases, the intermediate arrangement induced by the convolution cycle contains relatively
many intersections; as computing and manipulating the intersection points of two arcs in

3.5. Experimental Results for Offsetting Polygons 57

(a) (b) (c)

(d) (e)

Figure 3.8: Selected polygons used in the polygon-offset benchmarks: (a) wheel, (b) spiked, (c) ran-

dom, (d) comb, (e) chain. The boundary of each dilated polygon is drawn in a thick black line.

the circle/segment traits-class is more efficient than in the conic-traits class, we can gain
considerable speed-ups in these cases.

1 2 3 4 5 6 7 8 9 10 11 12

wheel

spiked

chain

20

40

60

80

160

140

120

100

T
im

e
(m

ill
is

ec
on

ds
)

Error bound (− log ε

r
)

Note that as we decrease the error bound ε, we
have to use rational numbers with longer bit-lengths
(namely the sizes of the numerators and denominators
increase), which incurs some running-time penalty.
The graph to the right shows the running time of the
approximate offset-computation process for three se-
lected polygons as a function of the error bound (for
ε = 10−kr, where k = 3, 4, . . . , 12). It shows that the
running time is linear, or moderately super-linear, in
log ε

r
. This is due to the fact that the number of bits

used to represent the coordinates of the approximated dilated edges are proportional to
the logarithm of the relative error ε

r
. The times needed to add or to subtract two ratio-

nal numbers is proportional to their bit-lengths, while the time needed to multiply them is
super-linear in their bit-lengths.

As we have already mentioned, the Minkowski-sum package integrates well with other
Cgal packages. In particular, it is possible to perform Boolean operations on dilated poly-
gons using the Boolean set-operations package [FWZH06] (see also Section 2.6.1). The last
set of experiments demonstrates the application of the union operation on a set of dilated
polygons, which has many important applications in many fields, such as computer-aided
design and robotic motion planning.

58 Chapter 3. 2D Minkowski Sums and Offsets

Table 3.4: The running times (measured in milliseconds) of exact and approximate offset computations.

The Size column lists the number of polygon vertices and the number of reflex vertices (in parentheses).

Running times
Input Bounding Offset Exact Approx. Offset
Polygon Size Box Radius (r) Offset (ε = 10−7r) (ε = 10−10r)
wheel 40 (14) 108 × 108 5 · 106 88 35 54
spiked 64 (40) 600× 510 5 1378 60 71
random 40 (19) 775× 788 15 95 56 68
comb 53 (24) 1250× 200 25 138 45 50
chain 82 (37) 1.2 · 108 × 4 · 107 2 · 106 1210 109 134
country 50 (24) 1.7 · 106 × 4 · 106 105 451 66 82

(a) (b)

Figure 3.9: Inputs of polygon sets: (a) house, (b) VLSI. The dashed disc that appear in each figure

illustrate the offset radius we use in each case.

Given a set of straight-edge polygons we compute the Minkowski sum of each polygon
with a disc of radius r, either in an exact manner or using the approximation algorithm,
and finally compute the union of all dilated polygons using the multi-way union procedure
provided by the set-operations package. In the former case we have to use the conic-traits
class to carry out the union computation in an exact manner, while in the latter case it is
possible to use the circle/segment traits-class, as we operate on segments of rational lines and
arcs of rational circles. Note that the results of the exact and the approximate computations
are not equal in the geometric sense. Yet, we choose an approximation error-bound such
that the two results are topologically equivalent (namely they contain the same number of
polygons and the same number of holes in each polygon).

The house data set (Figure 3.9(a)) consists of 55 polygons bounded by the box [0, 5000]×
[0, 4000]. We use an offset radius r = 200. It takes 0.376 seconds to compute the union of
the approximate dilated polygons (with an error bound of ε = 10−6r), while the exact
construction takes 3.176 seconds. The VLSI data set (Figure 3.9(b)) is much larger and
contains 22, 400 polygons and straight line segments bounded in [0, 80]×[0, 50]; here we use an
offset radius of r = 1. The approximate computation (with ε = 10−6r) takes 51.81 seconds,
while constructing the union of the exact dilated polygons takes 30.87 minutes.

3.5. Experimental Results for Offsetting Polygons 59

♦ ♦
♦

In this chapter we introduced the new Cgal package for computing planar Minkowski sums,
with robust implementations that can handle all inputs, including highly degenerate ones,
yielding topologically correct results. The two main contributions of our package are:

• An efficient implementation for computing Minkowski sums of two simple polygons us-
ing the convolution method. To the best of our knowledge, this is the first software im-
plementation of a robust algorithm based on the polygon-convolution method. As our
experiments show, the convolution method is superior to the polygon-decomposition
method on almost all input sets, and improves the running times by a factor of 2–5.

• An algorithm that yields a conservative (and tight) approximation of the Minkowski
sum of a polygon with rational vertices with a disc with a rational radius. This approx-
imation scheme allows the robust handling of dilated polygons in an efficient manner,
using only exact rational arithmetic. It significantly reduces the processing time com-
pare to handling exact offset polygons, which our software can also compute.

60 Chapter 3. 2D Minkowski Sums and Offsets

Chapter 4

Continuous Path Verification in
Multi-Axis NC-Machining

In a multi-axis NC-machining collision-avoidance problem, we are given a rotating milling-
cutter, also called a tool, whose profile — with respect to its axis of symmetry — is typically
piecewise linear or circular, moving in space among polyhedral solids bounded by triangular
facets. These triangles model the workpiece sculptured by the tool as well as other static
parts of the NC-machine. Our goal is to verify that the motion path of the tool between two
given configurations1 is collision-free, so it can move near the workpiece without damaging
it (or any of the other static parts of the machine). See Held’s book [Hel91] on the geometric
foundations of NC-machining for practical algorithms for tool-path generation.

4.1 Introduction: 5-Axis Machining

In recent years, evermore complex surfaces have been evolving in various engineering pro-
cesses and designs, thus creating the demand for more efficient and accurate machining of
such surfaces. 5-axis machining, where the tool can be translated and rotated, offers many
advantages over traditional 3-axis machining (where only translations are allowed), such as
faster machining times, better tool accessibility and improved surface finish. Yet, there are
still difficult geometric problems to solve in order to fully benefit from 5-axis machining.

Most of the research in the context of collision detection in multi-axis NC-machining
has focused on the discrete tool-workpiece interference checks. That is, the verification is
performed only at several discrete points along the tool-path, without any guarantee that
the motion of the tool between these points is indeed collision-free.

In this chapter, we consider the problem of continuous collision detection between two
given configurations of the tool. The cutter, the chucks and other rotating parts are all
considered in the verification process. Although the tool configuration has five degrees of
freedom (because of the axial symmetry of the tool, it is sufficient to specify its position with
its tilt and yaw angles), we reduce the dimensionality of the problem in two steps: First,

1In the NC-machining literature, a configuration is often referred to as a contact location (CL) point.

61

62 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

we radially project the model around the symmetry axis of the tool to a three-dimensional
space, obtaining a set of surface patches. We then examine the projected surfaces and reduce
the dimensionality even further, computing the planar silhouette curves of these surface
patches and constructing their lower envelope. Finally, we compare this lower envelope
against the profile of the tool and check whether the two entities intersect. The general
guideline followed in this thesis, namely using exact computational techniques in order to
obtain improved results, is also applied here. Our approach yields accurate results for purely
translational motion, and provides guaranteed (and good) approximation bounds when the
motion includes rotation.

4.1.1 Related work

Research in the area of 5-axis machining has focused mostly on generating proper cutter
tool-paths, optimizing tool orientation (for maximal material removal rates, for example),
and solving local interference problems (gouging); see, e.g., [Elb95, Ver94]. While some
algorithms were developed to avoid global collisions between the tool and the machined part
in 5-axis machining (see, e.g., [LDK03, LC95]), these methods do not allow for a general
form of a tool and assume a cylindrical approximation for it. The earlier method [LC95]
utilizes convex hulls in order to quickly find the feasible set of tool orientations at a given
location, and in the case of a collision, a correction vector is calculated in the direction
of the surface normal-vector at the interference point. Lauwers et al. [LDK03] integrate
the collision detection into the tool-path generation stage. Once collision is detected, the
collision vector is computed and is later used to calculate the correction vector.

Ho et al. [HSA01] and Balasubramaniam et al. [BSM03] allow a more general represen-
tation of tool geometry for the purpose of collision detection in 5-axis machining. They use
a point-cloud representation for the workpiece, along with an efficient bounding volumes
hierarchy, thereby reducing the interference problem to a series of simple point-inclusion
queries. However, this representation tends to lose efficiency as the number of sampled
points is increased in order to obtain a good approximation for the machined part. Further-
more, interference between the tool and other static parts of the NC-machine is not handled
by these methods. Bohez et al. [BMK+03] use planar slices of the workpiece and of the tool,
sampled at constant intervals, and perform intersection tests between these slices. While
this method allows for general tool geometry and enables detecting collisions with the fixed
parts of the NC-machine, its precision is limited, as it depends on the distance between slices
and on the behavior of the surfaces involved.

All previous methods mentioned above are able to perform only static collision checks
— that is, to detect tool-model interference when the tool has a fixed location. The contin-
uous tool-path is therefore verified at a finite number of discrete configurations, assuming
a dense enough sampling of intermediate configurations. The obvious drawback of these
discrete approaches is that they do not guarantee that the motion between two consecutive
configurations is indeed collision-free.

Continuous tool-path verification method was proposed by Jerard et al., [JHDS89] where
the surface is approximated by a set of points with direction vector associated with each
point. Tool-path envelope is constructed for a translational movement of a flat-end or a

4.1. Introduction: 5-Axis Machining 63

ball-end cutter, and interference with the surface is verified by intersecting the associated
direction vectors with the envelope. This method, however, does not support arbitrary tool
geometry and cannot detect interference with the tool holder. Moreover, as the surface is
represented by a discrete number of direction vectors, interference in between the direction
vectors could be missed.

The problem of interference detection was intensively studied in the fields of robotics
and computer animation, where we usually have to check whether a robot (i.e., a moving
body), which is typically modeled as a polyhedron in R3, collides with an obstacle, which can
be static or dynamic. A common approach is to construct a hierarchy of simple bounding
volumes of the robot and of the obstacles, which helps filtering away unnecessary collision
checks and focusing on the regions where potential interference may occur; see [LM04] for
a recent survey of collision-detection techniques. Continuous collision-detection queries are
usually answered by reducing the problem to a set of static collision-detection queries along
the motion path (see, e.g., [Can86]). For example, probabilistic motion planners (Prms —
see, e.g., [KŠLO96]) typically sample a random set of configurations (sometimes referred
to as milestones) and try to connect pairs of configurations that lie close to one another,
according to some distance metric. Most planners connect two milestones by sampling
a discrete sequence of intermediate configurations along the straight line connecting the
milestones and checking whether the robot collides with the obstacles when placed at each
intermediate configuration. The robot is “inflated” in such a way that guarantees that if
there is a collision along the line we do not miss it, but it is possible to have “false alarms”
due to this inflation. As a result, a path computed using a Prm is usually guaranteed to be
collision-free. However, the Prm is not guaranteed to find a collision-free path, even if one
exists.

Significant progress has been achieved during the last few years in developing efficient
software for detecting collisions between complex models. Kim et al. [KVLM03] solve the
continuous collision-detection problem between a general polyhedral body, having six degrees
of motion freedom, and a set of polyhedral obstacles by approximating the swept volume
of the moving polyhedron along the given trajectory. Redon et al. [RKLM04] use a similar
approach for continuous collision detection between articulated models. The work by Kim
and Rossignac [KR03] approximates the relative motion between two objects by a sequence
of screw motion segments, thereby reducing the collision check to the numeric extraction of
the roots of simple univariate analytic functions. We note that the general collision-detection
problem in R3 is very difficult to solve in an exact manner. In the special case of a rotating
cutter of an NC-machine it is possible, however, to use axial symmetry and obtain exact
results, as we show in this chapter.

4.1.2 Chapter Overview

The work presented in this chapter extends the framework described in [IEH+04], which
introduces an efficient and precise algorithm for discrete collision detection in the context
of 5-axis machining. The algorithm combines the usage of efficient data structures, which
help one focus on the relevant parts of the model for any given tool position and orientation,
with the exact computation of the lower envelope of a set of planar curves that describe the

64 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

(a) (b)

Figure 4.1: A complex milling-cutter (a) and its profile (b).

distance between the relevant model triangles and the tool’s symmetry axis. The discrete
case of detecting a tool-model collision at a given position is thus solved efficiently and
robustly, even for complex tool geometry. In Section 4.2, we give an overview of the exact
solution used for the discrete case and develop notation that will be used throughout the
chapter.

Section 4.3 presents the extension of the approach used for static collision checks to the
detection of collisions along a continuous motion path of the tool. The geometry of the
curves we have to handle here is more complicated than in the discrete case, but we show
how to reduce the problem such that the curves we obtain can be practically handled in an
efficient manner. We elaborate on the software implementation in Section 4.4 and report on
experimental results in Section 4.5.

4.2 The Discrete Case

Due to the radial symmetry of the milling-cutter, we can represent it using a planar curve,
which we call the tool’s profile, such that the boundary of the tool is the surface of revolution
created when rotating the profile around the tool’s axis of symmetry. In many cases the tool
looks like a narrow cylinder with a ball-end, but it can also have a more complex shape,
as the milling-cutter shown in Figure 4.1. In our work, we assume that the tool’s profile is
given as an arbitrary polyline (namely, a polygonal curve), which is weakly monotone with
respect to the symmetry axis.

In the discrete case we sample several configurations along the tool-path and verify that
each intermediate configuration is indeed collision-free. Namely, given a description of the
profile of a rotating milling cutter along with its position and its orientation, we wish to
determine whether the tool collides with the machined workpiece, or with other static parts
of the NC-machine, all modeled using triangular surfaces.

Given a tool position and orientation, we use a line-distance query (Ldq) data struc-
ture [IEH+04] that efficiently identifies all triangles in the model the tool can potentially
intersect with (the relevant triangles) and filters out triangles in distant parts of the model.

4.2. The Discrete Case 65

x

y

z

a = (ax, ay , az)

b = (bx, by, bz)

Figure 4.2: The radial projection of the line segment ab around the z-axis onto the yz-plane. We

consider only the half-plane y > 0, thus the left hyperbolic arc (dotted) is ignored.

Toward this end, the tool is bounded by a cylinder and its central axis is used as the query
line in the Ldq data structure, which returns all the triangles that are in the vicinity of
the cylinder. If the radius of the bounding cylinder is r, this can be done by offsetting each
triangle by r (that is, computing the Minkowski sum of the triangle with a ball of radius r
— the resulting shape is referred to in [AS00b] as krepl) and then use ray-tracing techniques
in order to identify the dilated triangles hit by a ray emanating from the given position
and coinciding with the symmetry axis. This operation is clearly equivalent to detecting all
triangles that intersects with the cylinder. The Ldq data structure stores a hierarchy of uni-
form grids with decreasing cell size (thus with increasing granularity) that enables efficient
ray tracing. This hierarchy can also be dynamically updated in an efficient manner as the
workpiece is sculptured and its shape is modified. More details on the implementation of
the Ldq structure can be found in [IEH+04].

Having considerably reduced the number of triangular facets we have to consider, it is
now possible to perform a collision check in R3 between the tool and the set of triangles we
obtained from the Ldq structure. However, we can take advantage of the symmetry of the
rotating tool and project the problem onto the plane. We first apply a rigid transformation
on the entire scene that brings the tool tip to be positioned at the origin, with the z-axis
being its axis of symmetry (see Figure 4.1(b)). We proceed by radially projecting the relevant
model triangles around the z-axis onto the yz-plane. This radial projection is the trace that
the triangle etches on the yz-plane (more precisely, on the half-plane y > 0) when rotated
around the z-axis.

Consider the line segment ab, where a = (ax, ay, az) and b = (bx, by, bz), rotated around
the z-axis. The trace of ab in the yz-plane is given by the explicit quadratic equation, derived
by looking at the distance between a point on the segment and the z-axis (see Figure 4.2 for

66 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

~NQ

c
b

a

e

f

R
Q

z

~NR

Figure 4.3: The plane R, whose normal is defined as ~NR = ~NQ×~z, where ~NQ is normal to the triangle

4abc, intersects the interior of the triangle. The lower envelope of the trace of 4abc in this case is

formed by the radial projection of the line segments ae, ef , fb and bc around the z-axis.

an illustration):

d2(z) =

(
1

bz − az
(
(bz − z)ax + (z − az)bx

)
)2

+

(
1

bz − az
(
(bz − z)ay + (z − az)by

)
)2

, (4.1)

where z changes continuously between az and bz.

For our convenience, we shall transform the original coordinate system (x, y, z) to the
x̂ŷ-plane, where x̂←− z and ŷ ←−

√

x2 + y2, thus the above expression becomes a canonical
hyperbola, with x̂ = 0 being its major axis. The representation of the curve as a canonical
hyperbola is advantageous for exact computation; see details in Section 4.4. If we let:

Dx = ax − bx , Dy = ay − by , Dz = az − bz ,
Ex = axbz − azbx , Ey = aybz − azby , (4.2)

the equation of this hyperbola becomes:

ŷ2 =
D2
x +D2

y

D2
z

x̂2 − 2
DxEx +DyEy

D2
z

x̂+
E2
x + E2

y

D2
z

. (4.3)

Note that the entire hyperbola is the radial projection of the line containing ab, when rotated
around the z-axis. We are only interested in the hyperbolic arc that lies in the half-plane
ŷ > 0 and whose two endpoints are given by (az, ŷ(az)) and (bz, ŷ(bz)).

Given a triangle 4abc, we should radially project it around the z-axis and examine its
trace on the x̂ŷ-plane. We observe that it is sufficient to consider the lower envelope of this
trace, induced by the points of 4abc that are closest to the z-axis at each value of z: If the
milling-cutter intersects 4abc at some point (x0, y0, z0) , then the triangle point closest to

4.2. The Discrete Case 67

Figure 4.4: The lower envelope of a set of about 800 hyperbolic arcs and line segments is marked with

a light dashed line. A complex tool (shaded), with a profile containing 5000 line segments, interferes

with the lower envelope in two places, and the lower-envelope arcs it intersects are drawn with darker

dotted lines.

the z-axis for z = z0 must be contained in the interior of the cutter, as the z-axis is the
symmetry axis of the tool. Without loss of generality we assume that the triangle vertices
a, b and c, are given in descending z-order. Let Q be the plane containing 4abc and ~NQ be

its normal. Let R be the plane whose normal ~NR is given by the cross-product of ~NQ and
the z-axis, and which contains the z-axis. It is not difficult to show that the closest points
of Q to the z-axis are the points that lie closest to R:

• In case R does not intersect the triangle, the closest points lie on one or on two of the
triangle edges.

• If the plane R intersects the interior of 4abc such that their intersection forms a
segment ef , the closest points to the z-axis in 4abc lie on the segments ae, ef, fb and
bc (see Figure 4.3 for an illustration).

(This technical issue becomes more difficult to handle in the continuous case — see the next
section.)

We can therefore go over all relevant triangles, and for each triangle identify the segments
of interest and radially project them onto the x̂ŷ-plane. As a result, we obtain a set of
canonical hyperbolic arcs and of line segments: Notice that the segment ef in Figure 4.3 is
coplanar with the z-axis, hence it remains a straight line segment after the projection (and
in some degenerate cases, a triangle edge may remain a line segment after the projection —
that is, when it is coplanar with the original z-axis). We compute the lower envelope of this
set in the x̂ŷ-plane and identify the closest points to the symmetry axis. Recall that each
x̂-value represents a z-value in the original coordinate system while the ŷ-value represents
squared distances to this axis, thus the lower envelope identifies the closest point to the
z-axis (the tool symmetry-axis) at any z-value.

68 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

Recall that all hyperbolic arcs we consider are supported by curves of the form:

ŷ2 = αx̂2 + βx̂+ γ .

Two such curves may have four distinct intersection points, given by (x̂1,±ŷ1) and (x̂2,±ŷ2).
As we consider only curve portions lying in the halfplane ŷ > 0, it is obvious that two such
arcs may intersect at most twice. In addition, every line segment can intersect at most twice
with any parabolic arc. We conclude that the complexity of the lower envelope is O(λ4(n)),
and we can compute it in O(λ4(n) log n) time, using a divide-and-conquer approach; see
Section 2.6.2 for the details. Sharir and Agarwal [SA95] show that λ4(n) = O(n2α(n)), where
α(·) is the functional inverse of Ackermann’s function.

Having computed the lower envelope of the projected triangles, we now perform a simul-
taneous traversal over the lower envelope and the tool’s profile along the z-axis, and compare
the two entities. If at some point the profile lies above the lower envelope, we conclude that
there is a collision between the tool and the model (see Figure 4.4 for an illustration). The
last step is clearly linear in the complexity of the envelope and of the tool, thus the entire
process takes O

(
λ4(n) logn +m

)
, where m is the number of segments in the tool’s profile.

4.3 The Continuous Case

In the discrete case we computed the lower envelope of the traces of the relevant triangles and
compared it to the tool’s profile in order to detect collisions. We now show how to extend
this approach to detect collisions with the model while the tool is in continuous motion.

We are given a continuous 5-axis tool-path, defined by (c(t), ~w(t)), where c : [0, tmax] −→ R3

defines the position of the bottom-end of the tool’s symmetry axis, while the orientation of
the tool at any 0 ≤ t ≤ tmax is given by the direction of ~w(t)

‖~w(t)‖ , where ~w : [0, tmax] −→ R3.

Both c(t) and ~w(t) are piecewise rational functions and can be represented as B-splines. Our
goal is to determine whether this path is collision-free. We shall first show how we approx-
imate the given path by a sequence of purely translational and purely rotational motions,
and then we describe how to detect collision for each sub-path in this sequence.

4.3.1 Decomposition of the Tool-Path

Definition 4.1 Given a tool-path T = (c(t), ~w(t)), with t ∈ [0, tmax], we call the finite con-
figuration sequence D =

{
(p0, ~o0), (p1, ~o1), . . . , (p2k, ~o2k)

}
a rotational–translational decom-

position (or Rt-decomposition for short) of T , if there exist 0 = t0 < t1 < . . . < tk = tmax,
such that p0 = c(0) and p2i−1 = p2i = c(ti) for each 1 ≤ i ≤ k, and such that ~o2k = ~w(tmax)
and ~o2i = ~o2i+1 = ~w(ti) for each 0 ≤ i ≤ k − 1.

It is clear from the definition that if we examine two neighboring configurations (pi, ~oi)
and (pi+1, ~oi+1) in a given Rt-decomposition D, then either pi = pi+1 or ~oi = ~oi+1. Thus, a
linear interpolation between each pair of consecutive configurations (we shall refer to it as
the RT-path induced by D) gives rise to a purely translational or a purely rotational motion.

4.3. The Continuous Case 69

r∗ − ε
f(si)

f(s)r∗r∗

ε f(si+1)

`i

Figure 4.5: Bounding the maximal deviation ε when approximating a rational function f(s) using a

polyline.

Definition 4.2 Let Γ be the bounding cylinder of our tool. Given a tool-path T and an Rt-
decomposition D, let V be the volume defined by sweeping Γ along the original path T and
let V′ be the volume defined by sweeping it along the RT-path induced by D. We define the
approximation error of the Rt-decomposition as the Hausdorff distance, H(V, V′),2 between
these two volumes.

Lemma 4.3 Given a rational arc-length parameterized function f : [0, L] −→ R2 (thus L is
the arc length) and ε > 0, it is possible to select 0 = s0 < s1 < . . . < sk = L such that the
polyline (f(s0), f(s1), . . . , f(sk)) is an ε-approximation of f(s) and k = O(1√

ε
).

Proof: Since f(s) is a rational function, its curvature on the interval [0, L] is bounded.
Let us denote the maximal curvature of f by κ∗ and let r∗ = 1

κ∗
be the minimal radius of

curvature. It is possible to select the values 0 = s0 < s1 < . . . < sk = L, equally spaced
in the interval [0, L], such that si+1 − si ≤ 2r∗. Since f(s) is arc-length parameterized, the
length `i of the line segment (f(si), f(si+1)) satisfies: `i = ‖f(si+1)− f(si)‖ ≤ 2r∗. For each
interval i, we can fit a unique circle of radius r∗ supported by the chord (f(si), f(si+1)),
such that the original function f(s), si < s < si+1, lies between the circular arc and the line
segment (f(si), f(si+1)) (as in Figure 4.5). In order to bound the deviation of the polyline
(f(s0), f(s1), . . . , f(sk)) from f(s), we bound the length `i of the chord in each circular
domain by `∗, where:

`∗ = 2
√

r∗2 − (r∗ − ε)2 = 2
√

2r∗ε− ε2 = O(
√
ε) (4.4)

It is now clear that if we select k = L
`∗

= O(1√
ε
), the resulting piecewise linear approximation

is at most ε away from the original curve. 2

2Given two sets X and Y in a metric space, their Hausdorff distance, denoted H(X,Y), is defined as:

H(X,Y) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

,

where d(·) is the distance function of the metric space.

70 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

h

c(ti)
c(ti+1)

~w(ti) ~w(ti+1)

ψ(ti+1)

Figure 4.6: Bounding the deviation of the top-end of the symmetry axis of the tool’s bounding cylinder.

The lower and the upper dashed curves describe the positions of the bottom-end and the top-end of

the symmetry axis during the original motion path, respectively.

Corollary 4.4 Since arc-length parametrization exists for all bounded regular curves,3

Lemma 4.3 holds for all bounded regular rational curves.

Theorem 4.5 Given a tool-path T = (c(t), ~w(t)), where both c(t) and ~w(t) are rational
functions and can be represented as B-splines in R3, and ε > 0, it is possible to construct an
Rt-decomposition D of size O(ε−

3
2) whose distance from the original path is less than ε.

Proof: For two congruent cylinders, if both the distance between their axial top-ends
and the distance between their axial bottom-ends is less than ε, then the Hausdorff distance
between the two cylinders is also less than ε. As Γ is the bounding cylinder of the tool, it
is therefore sufficient to bound the deviation of the two ends of Γ’s axis of symmetry while
moving along the RT-path D that we construct.

We begin by selecting 0 = t0 < t1 < . . . < tk0 = tmax such that the polyline
(c(t0), c(t1), . . . , c(tk0)) is an ε

2
-approximation of the curve c(t). By Lemma 4.3, k0 is O(1√

ε
).

We define our initial decomposition D(0) by using the selected t values. It is clear that the
maximal deviation of the bottom-end of the cylinder’s symmetry axis while moving along
D(0) is ε

2
since c(t) specifies the position of the bottom-end of the symmetry axis during the

motion, so we just have to bound the deviation of its top-end.

Let us assume we have constructed D(j). We proceed by examining, for each 0 ≤ i < kj,
the two motions between (c(ti), ~w(ti)) and (c(ti+1), ~w(ti+1)). We begin by analyzing the
purely translational sub-path. It is clear that the distance between the location of the
top-end while it moves on T and while it translates on the interpolated Rt-decomposition
between ti and ti+1 is bounded by (we denote the length of the tool, which is also the height
of the bounding cylinder, by h):

ε

2
+ h · sup

ti<t<ti+1

sinψ(t) ,

3A parametric curve f(τ) is called regular if its derivative, f ′(τ), never vanishes.

4.3. The Continuous Case 71

where ψ(t) is the angle between ~w(ti), which is the constant orientation of the tool along
the purely translational motion, and the vector ~w(t) (for ti < t < ti+1). See Figure 4.6 for
an illustration.

The function ~w(t) is a B-spline in R3, with its control polyline defined by the points
q1, . . . , qm ∈ R3. Since the B-spline is contained in the convex hull of its control points [CER01],
the maximal angle between ~w(ti) and ~w(t) is bounded by one of the vectors ~gl = ql − ~w(ti)
(for each 1 ≤ l ≤ m), denoted ~g∗. We can therefore bound the deviation of the top-end of
the symmetry axis from T by:

ε

2
+ h ·

∥
∥
∥
∥

~w(ti)

‖~w(ti)‖
− ~g∗

‖~g∗‖

∥
∥
∥
∥

.

If the overall error is greater than ε, we construct D(j+1) with kj+1 = kj + 1 by adding the
midpoint 1

2
(ti + ti+1) to our decomposition, thus introducing two additional sub-paths. It

is important to notice that the translational error also accounts for the error introduced by
the rotation of the cylinder from ~w(ti) to ~w(ti+1), as ~w(ti+1) is also contained in the convex
hull of the control polygon.

We proceed in this manner until obtaining the desired approximation between each
two consecutive configurations. Since ~w(t) is a B-spline, it is a Lipschitz function (see,
e.g., [CER01] for more details) — thus, by bisecting the interval [ti, ti+1] the approxima-
tion error is also halved. If we view this splitting process as growing an imaginary binary
tree from each of the initial k0 sub-paths, such that the tree leaves represent the final Rt-
decomposition, it is clear that the depth of each tree is O(log 1

ε
). Since k0 = O(1√

ε
) the total

number of leaves in the forest, and therefore the size of the final Rt-decomposition D, is
O(ε−

3
2), while the distance of D from the original tool-path T is bounded by ε. 2

4.3.2 Trace surface patches

Let us assume that we are given a continuous tool-path (c(t), ~w(t)). This path is collision-free
if for each t ∈ [0, tmax] the tool profile does not lie above the trace of any model triangle. In
other words, we can imagine that the tool remains fixed at the origin with the z-axis being its
symmetry axis, while the model triangles continuously move. Thus, for each t ∈ [0, tmax] and
for each triangle 4abc we can apply a rigid transformation on each vertex, so the triangle
becomes 4a(t)b(t)c(t). We can project each triangle edge onto the x̂ŷ plane, as we did in the
discrete case, and obtain a hyperbolic arc. Note however that this hyperbolic arc changes
continuously as t changes, and as a result we obtain a surface patch, defined on the x̂t-plane.

Purely translational surface patches

We start with the case where the tool’s orientation remains fixed along the sub-path. Given
the initial tool position p0 and the goal position p1, we first apply a rigid transformation
on the entire scene such that p0 is the origin, with the z-axis being the symmetry axis, and
p1 = (x1, 0, z1). Thus, our motion is along the line z = sx in the xz-plane, where s = z1

x1
.

72 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

We do not consider translation along the z-axis, as this case can be reduced to the discrete
case of collision detection by “stretching” the tool’s profile.4

We wish to view the scene as if the tool is static and the model is moving. Thus, if the
tool moves by ξ along the x-axis, we can change the coordinates of every point p = (px, py, pz)
in the model to p(ξ) = (px − ξ, py, pz − sξ). If we consider the line segment a(ξ)b(ξ), we can
view the coefficients defined in Equation (4.2) as functions of ξ:

Dx(ξ) = ax(ξ)− bx(ξ) = ax − bx = Dx ,

Dy(ξ) = ay(ξ)− by(ξ) = Dy ,

Dz(ξ) = az(ξ)− bz(ξ) = Dz ,

Ex(ξ) = ax(ξ)bz(ξ)− az(ξ)bx(ξ) = Ex + (Dz − sDx)ξ ,

Ey(ξ) = ay(ξ)bz(ξ)− az(ξ)by(ξ) = Ey − sDyξ . (4.5)

We can therefore express the hyperbola we obtain in this case using the coefficients of the
hyperbola (4.3) we obtained for ξ = 0 (by substituting Dx by Dx(ξ), Dy by Dy(ξ), etc.):

ŷ2 =
D2
x +D2

y

D2
z

x̂2

− 2
Dx(Ex + (Dz − sDx)ξ) +Dy(Ey − sDyξ)

D2
z

x̂

+
(Ex + (Dz − sDx)ξ)

2 + (Ey − sDyξ)
2

D2
z

. (4.6)

Thus, while the tool moves from the origin by ξ, the radial projection of the segment
ab sweeps a quadric surface patch in the x̂ŷξ-space, defined over the parallelogram (az, 0),
(bz, 0), (az − sξ, ξ), (bz − sξ, ξ) in the x̂ξ-plane.

Purely rotational surface patches

Here we shall assume that the position of the tool remains fixed and only its orientation
changes. We further assume, without loss of generality, that at first the tool tip is positioned
at the origin, with the z-axis being its symmetry axis, and then it is continuously rotated
counterclockwise on the xz-plane.

Once again, instead of rotating the tool by θ, we can imagine that the tool is fixed and
that the model is rotated by −θ. Thus, each model point p = (px, py, pz) is transformed into
p(θ) = (px cos θ+pz sin θ, py, pz cos θ−px sin θ). Looking at the coefficients in Equation (4.2),
it is clear that Dy(θ) = Dy, and it is easy to show that Ex(θ) = Ex using elementary
trigonometric equalities. The other coefficients can be expressed as follows (we let F =
axby − aybx):

4If the tool is translated from the origin to p1 = (0, 0, z1), we can examine the area swept by the tool
during this translation and compute its envelope, so we only have to verify that this envelope (which is a
polyline, like the original profile) does not interfere with any of the projected triangles.

4.3. The Continuous Case 73

Dx(θ) = ax(θ)− bx(θ) = Dx cos θ +Dz sin θ ,

Dz(θ) = az(θ)− bz(θ) = Dz cos θ −Dx sin θ ,

Ey(θ) = ay(θ)bz(θ)− az(θ)by(θ) = Ey cos θ + F sin θ , (4.7)

so we can substitute these expressions into Equation (4.3) and express ŷ2 as a function of
x̂ and θ. Moreover, if we parameterize the rotation by τ = tan θ

2
(thus sin θ = 2τ

1+τ2 and

cos θ = 1−τ2

1+τ2), we obtain that during the rotation the radial projection of a segment sweeps
a patch of an algebraic surface of degree 6.

4.3.3 Silhouettes of surfaces

We saw that in case of a purely translational or a purely rotational motion, the hyperbolic
segment obtained by radially projecting a triangle edge ab with respect to the z-axis onto the
x̂ŷ-plane forms an algebraic surface patch in the x̂ŷt-space, where t ∈ [0, tmax] parameterizes
the motion of the tool. The surfaces we obtain are graphs of bivariate functions (which we
refer to as terrains) of the form ŷ =

√

Sab(x̂, t), where S is a polynomial in case of translation
and a rational function in case of rotation.

A straightforward way to proceed is to compute the lower envelope of the set of sur-
face patches we obtain from all relevant segments in the scene, and compare it with the
surface obtained by sweeping the tool’s profile along the t-axis. This operation, however,
involves the maintenance of the two-dimensional lower envelopes of rather complicated sur-
faces. Meyerovitch [Mey06] has recently implemented a Cgal package that is capable of
constructing lower envelopes of arbitrary surfaces, yet this construction may incur prohibitive
running times for the kind of surfaces we have to consider. Instead, we reduce the collision-
detection problem to a problem on lower envelopes of planar curves.

Definition 4.6 Given a terrain Sab(x̂, t), its silhouette5 curve is given by the following
function:

silab(x̂) = inf
t

√

Sab(x̂, t) . (4.8)

The silhouette function can be computed for each value of x̂ using the following algorithm:
First, we fix x̂←− x0, so Sab,x0(t) = Sab(x0, t) is a function of one variable t, defined over some
interval [tlow(x0), thigh(x0)]. We derive this function and find all the solutions for S ′

ab,x0
(t) = 0

in order to locate the minima of this function. Let t1, . . . , tm be the zeroes of S ′
ab,x0

. We can
then locate t∗(x0) = arg mini Sab,x0(ti). As we also have to account for the endpoints of our
interval, the desired value of the silhouette function at x0 is therefore:

silab(x0) =
√

min {Sab(x0, t∗(x0)), Sab(x0, tlow(x0)), Sab(x0, thigh(x0))} .

5The silhouette is often referred to as the envelope. To avoid confusion with lower envelopes of finite sets
of curves, we stick with the term silhouette.

74 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

Corollary 4.7 Given a motion path of the tool which is parameterized by t, the tool does
not collide with the segment ab if and only if the silhouette of this segment lies above the tool
in the x̂ŷ-plane.

The continuous collision-detection problem is thus reduced to computing the lower en-
velope of a collection of planar silhouette curves. A collision during the motion occurs if
and only if this envelope does not lie strictly above the profile of the tool. We continue by
stating two lemmas regarding the nature of the silhouette curves. We give the proofs of these
lemmas in the following two subsections.

Lemma 4.8 The silhouette of the surface patch swept by the radial projection of a line
segment as it continuously translates in the xz-plane is a continuous curve comprising at
most four hyperbolic arcs.

Lemma 4.9 The silhouette of the surface patch swept by the radial projection of a line
segment as it continuously rotates in the xz-plane can be approximated, for any given η > 0,
using O(1√

η
) algebraic arcs of a low degree, such that the relative approximation error is

bounded by η.

As we can robustly compute the lower envelope of a set of line segments and hyperbolic
arcs, and of a set of low-degree algebraic arcs, we can conclude that:

Corollary 4.10 Let P (x̂) be a piecewise linear function that describes the profile of the tool
over [x̂min, x̂max] and let Lπ(x̂) be the lower envelope of the set of silhouette curves defined
by the radial projection of the relevant triangles onto the x̂ŷ-plane, as the tool moves along
a sub-path π of the Rt-decomposition:

• If π is a translational sub-path and P (x̂) < Lπ(x̂) for all x̂ ∈ [x̂min, x̂max] (if the lower
envelope contains “gaps”, we set the value of Lπ(x̂) to ∞ over these gaps), then the
translational motion of the tool along π is collision-free.

• If π is a rotational sub-path and P (x̂) + η < Lπ(x̂) for all x̂ ∈ [x̂min, x̂max] then the
rotational motion of the tool along π is collision-free.

Translational silhouettes

If we fix x̂←− x0 in Equation (4.6), we can re-arrange it so it becomes:

ŷ2 = Sab,x0(ξ) =
(Dz − sDx)

2 + s2D2
y

D2
z

ξ2

+ 2
Ex(Dz − sDx)− sDyEy +

(
s(D2

x +D2
y)−DxDz

)
x0

D2
z

ξ

+
(D2

x +D2
y)x

2
0 − 2(DxEx +DyEy)x0 + E2

x + E2
y

D2
z

. (4.9)

4.3. The Continuous Case 75

(3,0)(0,0)

(2.4,6)(−0.6,6)

x̂

ξ

ξ
∗

=
−

4
.2

3
x̂

+
2
0
.7

6

(0,0)

(−2.4,6)

(−3,0)

(0.6,6)

(0.296,2.96)

(−0.93,6)

ξ

x̂
ξ
∗

=
−

2
.4

7
x̂

+
3
.6

9

(a) - i (a) - ii (b) - i (b) - ii

Figure 4.7: The computation of translational silhouettes: The figures marked by ‘i’ show the parallelo-

grams over which the surface patch is defined in the x̂ξ-plane, along with a light dotted line showing ξ∗

as a function of x̂. The silhouette is formed by selecting, for each x̂ value, a ξ value in the parallelogram

which is closest to this line (the thick dashed polyline). The figures marked by ‘ii’ show the hyperbolic

arcs on the x̂ŷ-plane as they continuously change from ξ = 0 (the black end) to ξ = ξmax (the light gray

end). The silhouette curves are also drawn. We examine here two cases: (a) The segment endpoints

are (40,−20, 0) and (20,−30, 3) with ξmax = 6 and s = 0.1. The line ξ∗ = −4.23x̂ + 20.76 does not

intersect the parallelogram, and the silhouette therefore contains two hyperbolic arcs. (b) The segment

endpoints are (9, 2,−3) and (3, 1, 0) with ξmax = 6 and s = −0.1. The line ξ∗ = −2.47x̂+3.69 crosses

the parallelogram, so the silhouette comprises four hyperbolic arcs.

The expression on the right-hand side is a parabola of the general form f(ξ) = αξ2 +
2βξ + γ, with α > 0. This parabola has a single minimum, obtained at ξ∗ = −β

α
where

f(ξ∗) = γ − β2

α
.

If we use the parabola coefficients from Equation (4.9) we obtain the minimum at:

ξ∗(x0) =

(
s(D2

x +D2
y)−DxDz

)
x0 + (Dz − sDx)Ex − sDyEy

(Dz − sDx)2 + s2D2
y

. (4.10)

Since ξ∗ is a linear function of x̂, it is clear that when we substitute ξ∗(x0) into Equation (4.9),
we obtain that ŷ2 is a quadratic expression of x0. The silhouette curve is therefore a hyper-
bolic arc.

One should notice, however, that Sab(x̂, ξ) is defined over the parallelogram (az, 0), (bz, 0),
(az − sξmax, ξmax), (bz − sξmax, ξmax) in the x̂ξ-plane, where ξmax equals the x-coordinate of
the target position of the translation. If we assume that s > 0, it is clear that the range
[ξlow(x0), ξhigh(x0)] of valid ξ values for a fixed x0 is defined as follows:

ξlow(x0) = max

{

0,
az − x0

s

}

,

ξhigh(x0) = min

{

ξmax,
bz − x0

s

}

.

76 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

The analysis for s < 0 is similar, and if s = 0 we simply take ξlow = 0 and ξhigh = ξmax.
Since ξ∗(x0) as given in Equation (4.10) is a linear expression in x0, it can intersect at most
two edges of the parallelogram. Thus, the relevant x̂-range of the silhouette curve should be
subdivided into at most four intervals. In at most one of the intervals we use Sab,x0(ξ

∗(x0)),
while for the other intervals the silhouette is Sab(x̂, 0), or Sab(x̂,

az−x̂
s

), or Sab(x̂, ξmax), or
Sab(x̂,

bz−x̂
s

), depending on the identity of the relevant parallelogram edge. In any case, the
silhouette is a hyperbolic arc over each interval. See Figure 4.7 for an illustration of two
typical cases.

Computing the silhouette of the line segment that contains the closest triangle points
to the z-axis (we shall call it the z-segment for short), when such a segment exists (see
Section 4.2), is a lot easier. Since the normal to the triangle 4abc does not change as the
triangle translates, the equation of the supporting line of the z-segment does not depend on
ξ. To find the silhouette of the z-segment we only need to determine the endpoints of this
silhouette segment.

Rotational silhouettes

As mentioned in Section 4.3.2, working with an exact parametrization of the rotation yields
an algebraic surface patch of degree 6, and it is therefore impossible to obtain a closed-form
representation of the silhouette curve, as we did in the case of purely translational motions.
To make our analysis simpler, we use instead the first-order Taylor approximations sin θ ' θ
and cos θ ' 1 in our calculations, assuming the rotation angle is small.6 In case of larger
rotation angles, we can break the rotational motion into several contiguous rotations with
sufficiently small rotation angles: If the rotation angle is θmax and we wish our relative error
to be smaller that η, we can divide the motion into dhθmax√

η
e = O(1√

η
) continuous rotations,

where h is the height of the tool profile. As the error introduced by the first-order Taylor
approximation of the sine and cosine functions for an angle θ is bounded by O(θ2).

Using the first-order Taylor approximation, we obtain from Equation (4.7):

Dx(θ) ' Dx +Dzθ ,

Dz(θ) ' Dz −Dxθ ,

Ey(θ) ' Ey + Fθ .

Fixing x̂ ←− x0, we can express ŷ2 = Sab,x0(θ) as a rational function of the form f(θ) =
αθ2+2βθ+γ
(Dz−Dxθ)2

, where:

α = D2
zx

2
0 + F 2 > 0 ,

β = DxDzx
2
0 − (DzEx +DyF)x0 + EyF ,

γ = (D2
x +D2

y)x
2
0 − 2(DxEx +DyEy)x0 + E2

x + E2
y .

6For example, the relative error for a unit-length tool introduced by the first-order Taylor approximation
is less than 1

1000 for angles smaller than 3◦ and less than 4
1000 for angles smaller than 5◦.

4.3. The Continuous Case 77

This function is defined everywhere except for θ = Dz

Dx
. When we derive f(θ) we get:

f ′(θ) =
(2αθ + 2β)(Dz −Dxθ)

2 + 2Dx(Dz −Dxθ)(αθ
2 + 2βθ + γ)

(Dz −Dxθ)4
=

=
(2αθ + 2β)(Dz −Dxθ) + 2Dx(αθ

2 + 2βθ + γ)

(Dz −Dxθ)3
=

=
2

(Dz −Dxθ)3

(

(αDz + βDx)θ + βDz + γDx

)

.

Solving f ′(θ) = 0 we get that our rational function has a single extremum, obtained at
θ∗(x0) = −βDz+γDx

αDz+βDx
. It is easy to show that this is a minimum, since both coefficients of θ2,

in the numerator and in the denominator of f(θ), (α and D2
x, respectively) are positive and

thus f ′′(θ∗) > 0. By substituting θ∗(x0) into Sab,x0(θ), we get a rational function in x0, whose
numerator is a polynomial of degree four and whose denominator is a quadratic polynomial:

Sab(x̂, θ
∗(x̂)) =

∑4
i=0 νix̂

i

∑2
i=0 δix̂

i
, (4.11)

where:

ν4 = D2
xD

2
y ,

ν3 = 2DyDz(DxF −DzEy) ,

ν2 = D2
zE

2
y +D2

xF
2 + 2DyDz(Ex + Ey)F ,

ν1 = 2ExF (DzEy −DxF) ,

ν0 = E2
xF

2 ,

δ2 = (D2
x +D2

z)
2 +D2

xD
2
y ,

δ1 = −2Dx

(
Dz(DzEx +DyF) +Dx(DxEx +DyEy)

)
,

δ0 = D2
xE

2
x + (DxEy +DzF)2 .

Notice that the surface patch given by Sab(x̂, θ) is defined over the trapezoid (az, 0),
(bz, 0), (az, az cos θmax − ax sin θmax), (bz, bz cos θmax − bx sin θmax) in the x̂θ-plane, but as we
assume that the rotation angle is small, we can approximate this trapezoid as a rectangle
such that θlow(x0) = 0, θhigh(x0) = θmax for each x0 ∈ [az, bz]. As we did in the translational
case, for each x̂ value we choose a 0 ≤ θ ≤ θmax value which is closest to θ∗(x0). Our
silhouette may therefore contain a constant number of segments, some are rational arcs (as
described in the previous paragraph), while for the others we use the value of either Sab(x̂, 0)
or Sab(x̂, θmax) and obtain hyperbolic arcs.

4.3.4 The overall algorithm

We are now ready to describe an algorithm for detecting collisions between a moving tool and
a 3-D model formed by triangles. We first break the motion path into sub-paths, such that
the motion in each sub-path is either purely translational or purely rotational, as described

78 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

in Section 4.3.1. We now construct the Ldq data structure (see Section 4.2), where each
triangle in the Ldq structure is offset by ρ = r + ∆ where r is the radius of the bounding
cylinder of the tool and ∆ is the maximum distance traveled by any point in this cylinder
during the execution of a sub-path. For each sub-path, we obtain from our Ldq structure
the set of all relevant model triangles and detect potential collisions with them using the
following process (where t ∈ I ⊆ [0, tmax] parameterizes the motion in this sub-path):

1. For each relevant model triangle 4abc:

(a) Determine if for any continuous set Is ⊆ I of t values the plane R intersects the
triangle and forms a line segment, as in the example depicted in Figure 4.3. If so,
compute the silhouette of this segment in Is. This silhouette describes the closest
points on the triangle to the z-axis during the motion.

(b) Compute the silhouette of each triangle edge over the entire interval I.

2. Compute the lower envelope of all silhouette curves obtained from the previous stage.

3. Compare the profile of the tool to the lower envelope. The motion in the sub-path we
examine is collision-free if and only if the profile of the tool lies strictly below the lower
envelope we have computed in Step (2).

We have showed that if we have n relevant triangles, the number of curves that form the
silhouettes is O(n), so that the entire process for a single sub-path takes O(λσ+2(n) logn+m)
time, where σ is the maximal number of intersections between any two silhouette curves and
m is the complexity of the tool.

4.4 Implementation Details

The collision-detection algorithm presented in the previous sections was implemented in the
Irit modeling environment.7 The lower envelope calculations and the comparison of the
envelope with the tool profile are carried out using the 2D envelope package of Cgal; see
Section 2.6.2 for the details.

In the envelope computations we have to support operations on line segments and hy-
perbolic arcs, both types of curves are special cases of conic arcs, which can be handled
in an exact manner by Cgal’s arrangement package (see Section 2.3.3). However, as the
hyperbolic arcs we handle in the discrete case are supported by canonical hyperbolas whose
major axis is the x-axis, the intersections between such curves can actually be computed
only by solving quadratic equations (see more details in [IEH+04, WH04]). This fact not
only simplifies the code that handles the geometric constructions and predicates for our pla-
nar curves, but also helps in significantly reducing the running times of the program when
performing an exact computation of the lower envelope.

7Irit modeling environment, c© G. Elber, Department of Computer Science, Technion:
〈http://www.cs.technion.ac.il/∼irit/〉.

4.4. Implementation Details 79

(a) (b)

Figure 4.8: (a) The lower envelope of two hyperbolic arcs, with their intersection point lying very close

to the right endpoint of one of the arcs. (b) The intersection point is missed, due to floating-point

errors, and the lower envelope is erroneously computed as a result.

In order to benefit from the special properties of our arcs, we have implemented a
special traits class that handles only line segments and hyperbolic arcs, and used it in-
stead of the generic traits class for conic arcs distributed with Cgal. Our traits class
is named Arr hyperbolic arc traits 2<Kernel>, and can represent arcs of curves of the
form y2 = Ax2 +Bx+C, where A,B,C ∈ Q. Like the circle/segment traits class presented
in Section 2.3.3, this traits class is parameterized by a kernel that supports exact rational
arithmetic, while the coordinates of the Point 2 type it defines are one-root numbers (note
that the x-coordinates of the intersection points between two arcs are solutions of a quadratic
equation with rational coefficients, and the squared y-coordinates are rational expressions in-
volving these solutions). Indeed, rather than storing the y-coordinates of the points, we store
their squared values, in order to avoid unnecessary square-root operations. The hyperbolic-
traits class, which contains all the necessary geometric predicates and constructions needed
for the computation of lower envelopes in our case, is more compact and more efficient than
the generic conic-traits class, and has the advantage of using only exact rational arithmetic.

We mention that in order to expedite the computation even further, it is possible to in-
stantiate the hyperbolic-traits class with a kernel that uses floating-point arithmetic. Indeed,
the lower-envelope construction is prone to errors when relying floating-point arithmetic, but
it is possible to show that these errors can be bounded. For example, assume we merge two
lower envelopes and have to compute the intersection points of two hyperbolic arcs. We
start by computing the intersection points of the supporting hyperbolas that have positive
ŷ-coordinates, and for each point check if it lies in the x̂-range of both arcs. Let us assume
that the two arcs have one intersection point lying very close to the right endpoint of one of
the arcs, and because of floating-point errors we mistakenly decided that this point is not in
the x̂-range of this arc and missed the fact that the two arcs switch their position. This will
lead to a wrong representation of the output lower envelope, but as we are very close to an
endpoint of one of the arcs, the error will actually be very small, as illustrated in Figure 4.8.
Moreover, the error is local and does not affect other regions of the envelope.

The continuous case gives rise to more difficult computations. Given a tool-path, we use
the algorithm presented in Section 4.3.1 to approximate it using an Rt-decomposition path
D, while guaranteeing that the error introduced by this approximation is bounded by a given
ε > 0. We proceed by computing the lower envelope of all relevant silhouette curves along

80 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

Figure 4.9: The endpoints of the Rt-decomposition of a tool-path over the body of the Utah teapot

model. Green (lightly shaded) points designate collision-free tool motions, red (darker) points indicate

gouging.

each sub-path of purely translational motion in D and verifying that the profile of the tool
lies strictly below this envelope. We actually compare the lower envelope to the profile of
the tool inflated by ε, to account for the approximation error and guarantee that we never
accept a path that causes a collision between the tool and the model (but we allow “false
alarms” – that is, we may reject paths that do not cause any collisions).

As we showed in the proof of Theorem 4.5, we examine each translational sub-path and
guarantee that the deviation of the translation from c(ti) to c(ti+1) with a fixed orientation
of ~w(ti) is bounded by ε. From the construction of the Rt-decomposition (see Lemma 4.3),
it is clear that if we rotate the tool to the goal orientation ~w(ti+1) without changing its
position we only decrease this deviation. As a consequence, the deviations caused by the
rotational motions from the original tool-path we wish to verify are already accounted for by
the purely translational sub-paths, hence we do not have to verify the sub-paths of purely
rotational motions. This allows us to work just with lower envelopes of hyperbolic arcs and
line segments, allowing exact computations and yielding a running time of O(λ4(n) log n+m)
for each sub-path we examine, where n is the number of relevant model triangles and m is
the complexity of the tool, asymptotically the same as in the discrete case.

It should be noted that even computing translational silhouettes is far from being trivial,
and it is necessary to examine several cases in order to obtain correct results (see Figure 4.7).
Among the steps, one has to form a vertical decomposition of the parallelogram over which
the surface patch is defined to (at most three) pseudo-trapezoids, compute the silhouette
over each such pseudo-trapezoid and finally stitch the silhouettes together.

4.5 Experimental Results

We begin with a simple experiment that demonstrates the strength of our continuous collision
checker. In this experiment, we use the Utah teapot model, which consists of 12600 triangles
(see Figure 4.9), as our workpiece. We wish to verify a circular tool-path, where the milling

4.5. Experimental Results 81

(a) (b)

Figure 4.10: A single circular tool-path around the body of the Utah teapot: Discrete collision tests

at the intermediate configurations miss the interference with the teapot’s spout (a), where two relevant

free positions of the cylindrical tool are shown in green (lighter color). The continuous collision detector,

in contrast, discovers the gouging with the teapot’s spout in-between these configurations (b), where

the colliding configuration is shown in red (the darker cylinder in the middle).

cutter slides around the teapot without touching its surface and with its symmetry axis
perpendicular to the teapot. We select a value for ε and generate an Rt-decomposition that
approximates the original tool-path. The endpoints of the sub-paths we obtain are shown
in Figure 4.10. If we perform a discrete collision check at each of these configurations, we
may reach the (wrong) conclusion that the path is collision-free. On the other hand, if we
use our continuous collision detector, we detect a collision between the tool and the teapot’s
spout. It is possible of course to use a denser sample of intermediate configurations and use
the discrete collision detector, but this will considerably increase the number of Ldq queries
and lower-envelope computations.

Table 4.1 shows some statistics for the path verification using several models. In the
Utah teapot model we use circular paths covering the teapot body, while in the wineglass
model (Figure 4.11(a)) we use a ball-end cutter with the tool-path given by an offset surface,
such that only its tip touches the interior of the glass. The tool-path we verify in the turbine
model (Figure 4.11(b)) goes over each of the 30 turbine blades. We examine different values
of ε, and show the size k of the Rt-decomposition, which dominates the total time needed
for the path verification.

For each translational sub-path generated by the Rt-decomposition, we have calculated
the number of relevant triangles N4, the number of silhouette arcs NC we consider (recall
that the silhouette of each of the three triangle edges may contains up to four arcs) and the
number Nenv of arcs in the lower envelope. Note that these values tend to decrease with ε,
as the average length of each sub-path becomes shorter while k grows, hence the number of
triangles it can potentially intersect with is smaller. We summarize the average values in
Table 4.2.

On a Pentium IV 2.4 GHz machine with 512 MB of RAM, the time needed to compute the
exact representation of the lower envelope of a set of 800 hyperbolic arcs and line segments,
as in Figure 4.4, is 4.3 seconds when using the conic-traits class with the algebraic number

82 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

Table 4.1: Verifying tool-paths with varying ε values. Times are given in seconds and were obtained

on a Pentium IV 2.4 GHz machine with 512 MB of RAM. The model size is the number of triangles

that comprise the model.

Model Name Model ε k Total Average
Size Time Query Time

0.5 911 32 0.0351
wineglass 2700 0.1 4902 73 0.0149

0.05 9837 141 0.0143
0.5 1288 122 0.0945

teapot 12600 0.1 6872 245 0.0357
0.05 13760 456 0.0331

turbine 40046 0.05 2430 255 0.1048
0.04 10900 733 0.0672

Table 4.2: Average query complexity for different models and varying ε values.

Model Name ε Average Average Average
N4 NC Nenv

0.5 234 1751 61
wineglass 0.1 164 1127 86

0.05 156 1051 91
0.5 378 3137 53

teapot 0.1 211 1488 43
0.05 192 1310 48

turbine 0.05 555 3877 152
0.04 526 3639 154

(a) (b) (c)

Figure 4.11: Path verification for other models: (a) The wineglass model. (b) The turbine model,

comprised of more than 40000 triangles, (c) zooming in on several collision-free (lightly shaded points)

and interfering (darker points) tool positions on one of the turbine blades.

4.5. Experimental Results 83

types provided by the Leda library, and 3.7 seconds using the Core number-types (see
Section 2.3.3). However, as we explained in Section 4.4, we can employ the specialized
hyperbolic-traits class that uses only rational arithmetic to robustly compute the envelope.
The running time in this case drops to 0.6 seconds. When using this traits class with the
machine double-precision floating-point arithmetic, the envelope is computed in 0.04 seconds.
Indeed, the lower envelope we compute in this latter case may slightly deviate from the real
lower envelope, but as was mentioned in Section 4.4 we can bound the approximation error.
Our experiments also show that these deviations are negligible and that the overall accuracy
of the collision checker is not damaged. In fact, we performed all our large-scale experiments
using floating-point arithmetic and obtained satisfactory results. The running times reported
in Table 4.1 are based on floating-point arithmetic alone. We emphasize however that the
computations can also be performed using exact arithmetic — this may be feasible in some
cases, as the tool-path verification process can be performed offline.

We do not show the times needed for the construction Ldq data structure and for the
Rt-decomposition of the input path, both being negligible in comparison to the sequence
of lower-envelope computations. For example, it takes about 0.5 seconds to construct the
Ldq data structure for the teapot and the wineglass models and 1.5 seconds for the turbine
model.

It should be noted that the complexity of the tool has almost no effect on the running
times, as the time needed for the comparison between the lower envelope and the tool’s
profile is negligible with respect to the lower-envelope construction time.

♦ ♦
♦

In this chapter we introduced a novel approach for detecting collisions between a moving
milling-cutter and a solid workpiece. Unlike traditional approaches, which sample the tool-
path at a finite number of configurations and verify each one separately, we are able to verify
the entire continuous motion path of the tool. In order to allow exact computations we limit
ourselves to verify only purely translational or purely rotational motions, but show that any
tool-path can be approximated by such motion to any desired precision.

It is possible to use the discrete and the continuous collision checkers we developed as
oracles for the construction of a probabilistic roadmap. Namely, the static collision check
can be used to determine whether a random configuration is free or not, while the contin-
uous collision check can be utilized for checking whether two nearby configurations can be
connected using a simple path. We mention that while composing a valid tool-path from
scratch remains a difficult problem, we can use such a roadmap for planning correction paths
for the tool whenever we detect that the original path, given to us for verification, incurs
collisions.

84 Chapter 4. Continuous Path Verification in Multi-Axis NC-Machining

Chapter 5

The Visibility–Voronoi Complex

Having developed the software tools that enable us to solve simple variants of the motion-
planning problem in a robust manner, we now study the problem of planning a natural-
looking collision-free path for a robot with two degrees of motion freedom moving in the
plane among polygonal obstacles. By “natural-looking” we mean the following: (a) the path
should be short and avoid long detours when significantly shorter routes are possible; (b) it
should have a guaranteed amount of clearance — that is, the distance of any point on the
path to the closest obstacle should not be lower than some prescribed value; and (c) it should
be smooth, not containing any sharp turns.

Requirements (b) and (c) may conflict with requirement (a): The visibility graph is a
well-known data structure for computing the shortest collision-free path between a start and
a goal configuration (see, e.g., [dBvKOS00, Chapter 15]). However, along some portions of
such a shortest path the robot is in contact with the obstacles. This not only looks unnatural,
it is also unacceptable for many applications. On the other hand, planning motion paths
using the Voronoi diagram of the obstacles [ÓY85] yields a path with maximal clearance, but
this path may be significantly longer than the shortest path possible and may also contain
sharp turns.

We suggest a hybrid of these two latter approaches, called the VV(c)-diagram (the
Visibility–Voronoi diagram for clearance c), yielding natural-looking motion paths, meet-
ing all three criteria mentioned above (with some reservations in narrow passages, as we
note in Section 5.2). It evolves from the visibility graph to the Voronoi diagram as c grows
from 0 to ∞, where c is the preferred amount of clearance. The VV(c)-diagram contains the
visibility graph of the obstacles dilated with a disc of radius c. The dilated obstacle vertices
become circular arcs in this case, and the visibility edges are bitangent to these arcs. This
guarantees that the paths in the diagram are not only short but also smooth. However,
due to this obstacle inflation, narrow passages in the scene may disappear, which implies
that it is not possible to pass through these narrow passages keeping a distance of at least c
from the obstacles. As we still want to keep the option of traversing these narrow passages
(for example when a path going through a narrow passage is significantly shorter than any
alternative path), we integrate into the diagram paths with the maximal possible clearance
in regions where the preferred clearance c cannot be obtained. It is easy to see that these
additional paths are portions of the Voronoi diagram of the original obstacles.

85

86 Chapter 5. The Visibility–Voronoi Complex

Besides the straightforward algorithm for constructing the VV(c)-diagram for a given
clearance value c, we also propose an algorithm for preprocessing a scene of configuration-
space polygonal obstacles and constructing a data structure called the visibility–Voronoi
complex, or VV-complex for short.1 The VV-complex can be used to efficiently plan motion
paths for any start and goal configuration and any given clearance value c, without having
to explicitly construct the VV(c)-diagram for that c-value. We achieve this by performing
a Dijkstra search on an implicitly constructed graph encoded by the VV-complex. The
preprocessing time is O(n2 log n), where n is the total number of obstacle vertices, and the
query takes O(n logn + `) time, where ` is the number of edges encountered during the
search and is bounded by the number of diagram edges. Furthermore, we reduce the number
of costly geometric operations in the query stage and perform the most time-consuming
computations in the preprocessing stage.

A direct application of our construct is planning natural translational motion paths for
a polygonal robot among polygonal obstacles. We can compute the Minkowski sum of
each obstacle with the robot rotated by π to obtain a set of configuration-space obstacles,
which are also polygonal. After this initial step we may assume that the robot is a point.
Constructing the VV(c)-diagram of these configuration-space obstacles and giving adequate
weights to the diagram edges (see the discussion in Section 5.2) yield more natural motion
paths, compared, for example, to the implementation of [AFH02].

The principles of our construction may also be applied to sensor-based coverage using
a robot with a limited sensor radius. Acar et al. [ACA01] devised an algorithm for a disc
robot of radius r, carrying a detector with a range R > r, to detect all points in an unknown
environment. They decompose the free space into vast cells, where the robot traverses the
boundary of the obstacles dilated by radius R, and narrow cells, where the obstacles are
within the detector range and the robot has to follow the Voronoi diagram of the obstacles.
It is possible to use the VV(c)-diagram in this case for traversing the narrow cells, as it
naturally connects the relevant portions of the Voronoi diagram to the vast cells.

Finally, the visibility–Voronoi diagram can be used to compute high-quality corridors
for entities moving amidst polygonal obstacles, as we show in the next chapter. See the
discussion in Section 1.2.2 about the importance of corridors for various applications.

We have implemented our algorithm for constructing the VV(c)-diagram for a given clear-
ance value and applied it to the problem of motion planning for coherent groups of enti-
ties [KO04a]. The paths contained in the VV(c)-diagram yield convincing group motions,
and the approach we propose has several advantages over methods used so far to generate
group paths. We note that the robust construction of the VV(c)-diagram involves many
non-trivial geometric procedures and requires careful algebraic computations, which we also
discuss in this chapter.

1Despite the similarity in names, our structure is different from the visibility complex introduced by
Pocchiola and Vegter [PV96] for efficiently computing the visibility among disjoint convex objects in the
plane.

5.1. Preliminaries 87

Figure 5.1: The (partial) visibility graph of a set of four convex polygons. The valid visibility edges

are drawn with solid lines, while some invalid edges are also shown, drawn with dashed lines. Notice

that all obstacle edges are also valid visibility edges.

Chapter Outline

The rest of this chapter is organized as follows: In Section 5.1 we give a short review of
the geometric data structures we use for constructing the VV(c)-diagram. In Section 5.2 we
present the VV(c)-diagram in more detail and explain how to construct it, given a scene with
obstacles and a preferred clearance value c. In Section 5.3 we introduce the VV-complex,
show how to efficiently construct it and explain how to query it. In Section 5.4 we review
the software we have developed to robustly compute the VV(c)-diagram of a set of obstacles
and a given c-value. We conclude with some experimental results in Section 5.5.

5.1 Preliminaries

5.1.1 Visibility Graphs

Let P = {P1, . . . , Pm} be a set of simple pairwise interior-disjoint polygons having n vertices
in total. The visibility graph of P is an undirected graph defined on the set of polygon
vertices, whose set of edges consists of those pairs of vertices that are mutually visible. Two
vertices are mutually visible if the straight line segment connecting them does not intersect
the interior of any of the polygons in P — in this case, we call this segment a visibility edge.

The visibility graph can be used to compute shortest paths amidst configuration-space
polygonal obstacles, where the polygons are considered as open sets. Each edge is given
a weight equal to the Euclidean distance between its two end-vertices. To find a shortest
path between a start and a goal configuration, one simply needs to connect them to the
visibility graph and execute Dijkstra’s algorithm starting from the vertex representing the
start configuration. In fact, it is sufficient to consider only the edges that are bitangent
to the polygons they connect, namely edges that can be infinitesimally extended in both
directions without penetrating any polygon. Such bitangent edges are called valid visibility
edges (see Figure 5.1 for an illustration).

88 Chapter 5. The Visibility–Voronoi Complex

Figure 5.2: The Voronoi diagram of four convex polygons contained inside a rectangle. Small dots

mark the endpoints of each Voronoi arc, while the Voronoi vertices are marked by larger dots. The point

of minimum clearance along each chain is marked by ×. Notice that the chain marked by an arrow is a

monotone chain and attains its minimal clearance on its left Voronoi vertex — so when we traverse it

in the arrow’s direction, the clearance only increases.

The visibility graph can be computed in O(n2 logn) time, performing a straightforward
radial sweep around each of the polygon vertices (see, e.g., [dBvKOS00, Chapter 15]). Ghosh
and Mount [GM91] were the first to give an output-sensitive algorithm for computing the
visibility graph in optimal O(n logn + k) time, where k is the number of visibility edges in
the output visibility graph. For more information on shortest paths, see [Mit04].

5.1.2 Voronoi Diagrams of Polygons

Given a set S of geometric entities in Rd and a distance metric ‖ · ‖, the Voronoi diagram
of S, denoted Vor(S), is the subdivision of Rd into maximal connected cells, such that the
points in each Voronoi cell are closer to a specific entity of S than to all other entities of S.

There are many variants of Voronoi diagrams (see [AK00, For04] for extensive reviews).
Here we focus on the Voronoi diagram of a set of pairwise interior-disjoint polygons in R2

under the Euclidean distance metric, which can be regarded as a special case of a Voronoi
diagram of line segments [LD81]. For each point p ∈ R2 we consider the polygon feature
(a polygon feature is either a vertex or an edge) closest to p. The Voronoi vertices in this
case are points equidistant to closest features of three (or more) different polygons. The
vertices are connected by continuous chains of Voronoi arcs. An arc may be equidistant
to two closest vertices or to two closest polygon edges — in which case it is a straight line
segment, or to a polygon vertex and a (non-incident) polygon edge — in which case it is a
segment of a parabola (parabolic arc). Each arc has two endpoints, which either connect it
to the next arc in the chain or to a Voronoi vertex.

For any point p in the plane, let the clearance value of p be the distance from the point
to the closest polygon. If we examine the clearance value along a Voronoi chain, we notice

5.2. The VV(c)-Diagram 89

that in most cases the minimum clearance value is attained in the interior of a vertex–vertex
or a vertex–edge arc inside the chain (note that the interior of an edge–edge arc will never
contain a clearance minimum). In such cases, the clearance value increases as we move from
this minimum point toward either of the chain’s end-vertices. However, for some chains
the minimum clearance value is attained at one of their end-vertices and grows as we move
along the chain toward its other end. We call such a chain a monotone Voronoi chain (see
Figure 5.2 for an illustration).

The Voronoi diagram can be used to compute paths with maximal amounts of clearance
from the obstacles. It can be shown that the total complexity of the Voronoi diagram is O(n),
where n is the total number of polygon vertices, and that it can be constructed in O(n logn)
time (see, e.g, [AK00, LD81]). For more details on the connection between Voronoi diagrams
and motion planning see [ÓSY83, ÓY85, Roh91].

5.2 The VV(c)-Diagram

Let P = {P1, . . . , Pm} be a set of simple pairwise interior-disjoint polygons in the plane,
having n vertices in total, representing two-dimensional configuration-space obstacles. Let
c > 0 be the preferred distance we wish to keep from these obstacles. Our goal is to preprocess
P, so that given a start configuration s and a goal configuration g, we can efficiently compute
a shortest path between s and g, keeping a clearance of at least c from the obstacles where
possible, but allowing to get closer to the obstacles in narrow passages when it is possible to
make considerable shortcuts.

We begin by dilating each obstacle by c — that is, computing the Minkowski sum of each
polygon with a disc of radius c (see Section 3.4 for more details). The visibility graph of the
dilated obstacles contains all shortest paths with a clearance of at least c from the obstacles.
Note that the dilated polygon edges are also valid visibility edges. Moreover, as each convex
polygon vertex becomes a circular arc of radius c, the valid visibility edges are bitangents
to two circular arcs. This guarantees that a shortest path extracted from such a visibility
graph is C1-smooth and contains no sharp turns. The only disadvantage in this approach
is that narrow, yet collision-free, passages can be blocked when we dilate the obstacles (for
example, in Figure 5.3 there exists such a narrow passage between P1 and P3). It is clearly
not possible to pass through such passages with a clearance of at least c, but we still wish to
allow a path with the maximal clearance possible in this region. To do this, we compute the
portions of the free configuration space that are contained in at least two dilated obstacles
and add their intersection with the Voronoi diagram of the original polygons to our diagram.
The resulting structure is called the VV(c)-diagram.

Formally, given a collection of disjoint convex obstacles P1, . . . , Pm (we will later discuss
non-convex obstacles as well) and a preferred clearance value c, we perform the following
steps:

1. We construct the Minkowski sum M
(c)
i = Pi ⊕ Bc for every obstacle Pi, where Bc is a

disc with radius c. Note that the inflated obstacles M
(c)
i may no longer be disjoint.

90 Chapter 5. The Visibility–Voronoi Complex

P1

P2

P3 P4

Figure 5.3: The VV(c)-diagram for four convex obstacles located in a rectangular room. The boundary

of the union of the dilated obstacles is drawn in a solid line, the relevant portion of the Voronoi diagram

is dotted. The visibility edges are drawn using a dashed line. Notice that an endpoint of a visibility edge

may either lie on a circular arc or on the intersection of two dilated obstacle boundaries (a chain point).

2. We compute the union M(c) of all M
(c)
i . The boundary of M(c) consists of circular

arcs and straight line segments. Reflex vertices may appear on the boundary ofM(c),
which are the intersection of the boundary arcs of two dilated obstacles. We refer to
them as chain points, as they lie on Voronoi chains, since their distance from both
relevant polygons is exactly c.

3. We compute the modified visibility graph G(c) of M(c). This graph consists of every
free2 bitangent of two circular arcs of the boundary of M(c) (the edges that form the
boundary ofM(c) are also regarded as bitangents to two neighboring dilated vertices),
every free line segment between two chain points, and every free line segment from a
chain point tangent to a circular arc.

4. We construct V, the Voronoi diagram of the original set of polygons and compute the
intersection V ∩ M(c), namely the portion of the Voronoi diagram that is contained
within the union of the dilated obstacles. We combine the corresponding Voronoi arcs
(and sub-arcs) with G(c) to connect the chain points via narrow passages and form the
final VV(c)-diagram.

As mentioned in Section 3.4, step 1 can be carried out in linear time. Step 2 takes
O(n log2 n) time, or O(n logn) expected time using a randomized algorithm [Mul90]. In
step 4 we construct the Voronoi diagram in O(n logn) time, while computing the intersection
V ∩ M(c) can be carried out in linear time. Thus, step 3, which can easily be performed
in O(n2 logn) time, clearly dominates the running time of the VV(c)-diagram construction
process. We conclude that it takes O(n2 log n) time to construct the VV(c)-diagram of an
input set P of pairwise interior-disjoint convex polygons for a given c-value, when using a

2A line segment is free if its interior is not contained in the interior of any dilated obstacle.

5.2. The VV(c)-Diagram 91

straightforward approach. We note that it might also be possible to improve the running
time to O(n logn+k), where k is the number of visibility edges, by constructing the visibility
complex of the dilated polygons [PV96].3

In case our polygons are not convex, we decompose them to obtain a set of convex
polygons and compute M(c) for this set. Note that in this case not every reflex vertex of
M(c) is now a chain point, since reflex vertices can also be induced by reflex vertices of the
original polygons. However, these reflex vertices of M(c) can be easily identified and are
not taken into account in the VV(c)-diagram (namely the diagram does not contain visibility
edges emanating from these vertices).

Querying the VV(c)-Diagram

Having constructed the VV(c)-diagram, once we are given a start configuration s and a goal
configuration g we just have to connect them to our diagram and compute the shortest path
between s and g using Dijkstra’s algorithm. It takes O(n logn) time to connect s and g
to the diagram, by performing a radial sweep from each configuration, and connecting s
and g to the circular arcs and chain points visible from these configurations. The execution
of Dijkstra’s algorithm takes O(n logn + `), where ` is the number of diagram edges we
encounter during the search (which is at most k).

As mentioned before, we may compromise on the amount of clearance our motion path
keeps from the obstacles if we can make a shortcut going through a narrow passage. It should
be noted that if a path contains a portion of the Voronoi diagram it may not be smooth any
more (this is however acceptable, as we consider making sharp turns inside narrow passages
to be natural). In order to balance between the length and the clearance of the selected
path we have to associate the appropriate weight with each diagram edge, so the Dijkstra
algorithm outputs the path which is most suitable for our application. The weight of a
visibility edge can simply be equal to its length (the lengths of the circular arcs we traverse
must also be taken into consideration), while for Voronoi edges we may add some penalty
to the edge length, taking into account their clearance values, which are below the preferred
c-value. For example, if the minimal clearance of a Voronoi arc is c′ < c, we can give it the
weight of its length multiplied by

(
c
c′

)κ
, where κ > 0 is a parameter controlling the amount

of extra weight given to Voronoi arcs.

Another option of weighting the edges, especially suitable for the application of coherent
group motion, where the path serves as a backbone to a wider corridor through which the
entities flow [KO04b], is to estimate the time it takes the group to traverse each edge. For
edges with a clearance of at least c = w

2
, where w is the preferred group width, this time

is clearly proportional to the edge length. On the other hand, for Voronoi edges the actual
clearance of the edge would also be taken into account, as the moving entities will have to
traverse this edge in a long row. The resulting path will therefore be the one enabling the
group to reach its goal as quickly as possible. In Chapter 6 we address the topic of assigning
weights to the diagram edges more thoroughly.

3The main difficulty here is that we handle dilated obstacles, which may not be disjoint. Moreover, the
obstacles (and of course the dilated obstacle) are not of constant complexity.

92 Chapter 5. The Visibility–Voronoi Complex

~uvll

~uvrl

~uvrr

αuv

v

c
ϕuv(c)

~uvlr

u

Figure 5.4: The four possible bitangents to the circles Bc(u) and Bc(v) of radius c centered at two

obstacle vertices u and v. Notice that in this specific scenario only the bitangent ~uvrl is a valid visibility

edge.

5.3 The VV-Complex

The construction of the VV(c)-diagram for a given c-value is straightforward, yet it requires
some non-trivial geometric and algebraic operations that should be computed in a robust
manner — see Section 5.4 for more details. Moreover, if we wish to plan motion paths for
different c-values and select the best one (according to some criterion), we must construct
the VV(c)-diagram for each c-value from scratch. In this section we explain how to efficiently
preprocess an input set of polygonal obstacles and construct a data structure called the VV-
complex, which can be queried to produce a natural-looking path for every start and goal
configuration and for any preferred clearance value c.

Let us examine what happens to the VV(c)-diagram as c continuously changes from zero
to infinity. For simplicity, we consider only convex obstacles in this section. As we mentioned
before, VV(0) is the visibility graph of the original obstacles, while VV(∞) is their Voronoi
diagram, so as c grows visibility edges disappear from VV(c) and make way to Voronoi chains.
We start with a set of visibility edges containing all pairs of the polygonal obstacle vertices
that are mutually visible, regardless whether these edges are bitangents of the obstacles.4

We also include the original obstacle edges in this set, as they can be viewed as visibility
edges between two adjacent polygon vertices. Furthermore, we treat our visibility edges as
directed, such that if the vertex u “sees” the vertex v, we will have two directed visibility
edges in our structure, ~uv and ~vu.

As c grows larger than zero, each of the original visibility edges potentially spawns as
many as four bitangent visibility edges. These edges are the bitangents to the circles Bc(u)
and Bc(v) (where Br(p) denotes a circle centered at p whose radius is r) that we name ~uvll,
~uvlr, ~uvrl and ~uvrr, according to the relative position (left or right) of the bitangent with

4Visibility edges are only valid when they are bitangents, otherwise they do not contribute to shortest
paths in the visibility graph. However, as c grows larger the invalid edges may become bitangents, as shown
in Figure 5.6(b), so we need them in our data structure.

5.3. The VV-Complex 93

respect to u and to v (see Figure 5.4).5 Let αuv be the angle between the vector ~uv and the
x-axis, and d(u, v) the Euclidean distance between u and v, then it is easy to see that the
two bitangents ~uvll and ~uvrr retain the same slope αuv for increasing c-values. The slope of
the other two bitangents changes as c grows: ~uvrl rotates counterclockwise and ~uvlr rotates
clockwise by the same amount, both around the midpoint 1

2
(u + v) of the original edge, so

their slopes become αuv+ϕuv(c) and αuv−ϕuv(c), respectively, where ϕuv(c) = arcsin(2c
d(u,v)

).

For c > 1
2
d(u, v) the two edges ~uvrl and ~uvlr disappear.

Note that for a given c-value, it is impossible that all four edges are valid. As we consider
only obstacles with non-empty interiors, line segments do not qualify, and therefore each
circular arc on a boundary of a dilated obstacle is of angle less than π. We conclude that at
most three visibility edges can be valid, and that the edges ~uvll and ~uvrr can never be valid
simultaneously. Our goal is to compute a validity range R(e) = [cmin(e), cmax(e)] for each
edge e, such that e is part of the VV(c)-diagram for each c ∈ R(e).6 If an edge is valid, then
it must be tangent to both circular arcs associated with its end-vertices. There are several
reasons for an edge to change its validity status:

• The tangency point of e to either Bc(u) or to Bc(v) leaves one of the respective circular
arcs.

Note that the circular arc ar(u) representing the dilation of a convex polygon vertex u
by radius r lies onBr(u) and is defined by the endpoints (xu + r cos θ1(u), yu + r sin θ1(u))
and (xu + r cos θ2(u), yu + r sin θ2(u)), where θ1(u) and θ2(u) are determined by the
shape of the polygon. Let us denote the tangency point of the visibility edge e to ar(u)
by (xu + r cosϕe(u, r), yu + r sinϕe(u, r)). We say that the tangency point of e leaves
the circular arc ac(u) if ϕe(u, r) equals θ1(u) or θ2(u), and for small enough ε > 0, we
have ϕe(u, r − ε) ∈ [θ1(u), θ2(u)] and ϕe(u, r + ε) 6∈ [θ1(u), θ2(u)].

• The tangency point of e to either Bc(u) or to Bc(v) enters one of the respective circular
arcs. Similar to the definition above, we say that the tangency point of e enters the
circular arc ac(u) if ϕe(u, r) equals θ1(u) or θ2(u), and for small enough ε > 0, we have
ϕe(u, r − ε) 6∈ [θ1(u), θ2(u)] and ϕe(u, r + ε) ∈ [θ1(u), θ2(u)].

• The visibility edge becomes blocked by the interior of a dilated obstacle.

The important observation is that at the moment that a visibility edge ~uv gets blocked,
it becomes tangent to another dilated obstacle vertex w, so essentially one of the edges
associated with ~uv becomes equally sloped with one of the edges associated with ~uw (see
Figure 5.6(a)). The first two cases mentioned above can also be realized as events of the
same nature, as they occur when one of the ~uv edges becomes equally sloped with ~uwlr (or
~uwrl), when v and w are adjacent vertices in a polygonal obstacle — see Figure 5.6(b).

5Recall that edges in the visibility graph are undirected, thus our directed visibility edges come in pairs.
According to our notation, ~uvll and ~uvrr are equivalent to the opposite edges ~vurr and ~vull, respectively,
while ~uvlr and ~uvrl are equivalent to ~vulr and ~vurl, respectively. A pair of opposite edges always become
valid or invalid simultaneously.

6Liu and Arimoto [LA95] use a similar notion to construct a structure that answers shortest-path queries
for disc robots, where the radius of the robot is given in the query. They do not, however, incorporate
portions of the Voronoi diagram in their construct.

94 Chapter 5. The Visibility–Voronoi Complex

w

vu

~uwrl

w

vu

~uvrl

(a) (b)

Figure 5.5: The circular list Lr(u) of “right” visibility edges associated with an obstacle vertex u. Valid

visibility edges are drawn as solid arrows while invalid edges are drawn as dashed arrows (for clarity,

some edges are omitted). Note that in (a) ~uwrl is a valid visibility edge, but as we increase c in (b), it

is blocked by ~uvrl (which becomes a valid edge) and removed from the list.

This observation stands at the basis of the algorithm we devise for constructing the VV-
complex. We sweep through increasing c-values, namely we start from c = 0 and gradually
increase c, keeping at each time the VV(c)-diagram for that clearance value. The main idea
is that we have to consider only a finite number of critical c-values, where the combinatorial
structure of the VV(c)-diagram changes. As we have just explained, we should stop at c-
values associated with visibility events, which occur when two edges become equally sloped.7

We note that the edge ~uvll (or ~uvlr) can only be involved in visibility events with arcs of
the form ~uwll or ~uwlr, while the edge ~uvrl (or ~uvrr) can only have events with arcs of the
form ~uwrl or ~uwrr. Hence, we can associate two circular lists Ll(u) and Lr(u) of the left
and right edges of the vertex u, respectively, both sorted by the slopes of the edges. Two
edges participate in an event at some c-value only if they are neighbors in one of these lists
for infinitesimally smaller c (see Figure 5.5 for an illustration). At these event points, we
should update the validity range of the edges involved and also update the adjacencies in
their appropriate lists, resulting in new events.

As mentioned in Section 5.2, an endpoint of a visibility edge in the VV(c)-diagram may
also be a chain point, so we must consider chain points in our algorithm as well. As a Voronoi
chain is either monotone or has a single point with minimal clearance, we need to associate
at most two chain points with every Voronoi chain. These chain points move towards the
end-vertices of the Voronoi edge as we increase c. Our algorithm will also have to compute
the validity ranges of edges connecting a chain point with a dilated vertex or with another
chain point. For that purpose, we will have a list L(p) of the outgoing edges of each chain
point p, sorted by their slopes (notice that we do not have to separate the “left” edges from
the “right” edges in this case).

7Our visibility events are reminiscent of the merge events and split events that occur in the algorithm for
drawing “fat” planar edges, as suggested by Duncan et al. [DEKW01].

5.3. The VV-Complex 95

In the next subsection we review the algorithmic details of the preprocessing stage for
constructing the VV-complex, and describe how to query this data structure in Section 5.3.2.
We continue the presentation of the algorithm by a proof of correctness in Section 5.3.3 and a
complexity analysis in Section 5.3.4. We finally explain how the algorithm can be generalized
for non-convex polygons in Section 5.3.5.

5.3.1 The Preprocessing Stage

Initialization

Given an input set P1, . . . , Pm of convex pairwise interior-disjoint polygonal obstacles, we
start by computing their visibility graph and classifying the visibility edges as valid (bitan-
gent) or invalid. We examine each bitangent visibility edge uv: For an infinitesimally small
c only one of the four ~uv edges it spawns is valid — we assign 0 to be the minimal value of
the validity range of this edge (and of the opposite ~vu edge).

As our algorithm is event-driven, we initialize an empty event queue Q, storing events
by increasing c-order.

We proceed by constructing the circular lists Ll(u) and Lr(u) for each obstacle vertex
u, based on the visibility edges we have just computed. We examine each pair of adjacent
edges e1, e2 in Ll(u) (and in Lr(u)), compute the c-value at which e1 and e2 become equally
sloped — if one exists — and insert the visibility event 〈c, e1, e2〉 into the event queue. In a
visibility event some edges become blocked and reach the end of their validity range, while
some new edges may become valid.

As our VV-complex also contains Voronoi chains, we have to compute the Voronoi dia-
gram of the polygonal obstacles. For each non-monotone Voronoi chain we locate the arc
a that contains the minimal clearance value cmin of the chain in its interior and insert the
chain event 〈cmin, a〉 into Q. A chain event occurs when a Voronoi chain starts contributing
to the VV(c)-diagram, namely when we sweep through its minimal clearance value. For now,
we do not need to worry about monotone chains — in the next section we explain how we
can correctly handle them without associating chain events with them.

Event Handling

While the event queue is not empty, we proceed by extracting the event in the front of Q,
associated with a minimal c-value, and handle it according to its type.

Visibility event: Visibility events always come in pairs — that is, if ~uv becomes equally
sloped with ~uw,8 we will either have an event for the opposite edges ~vu and ~vw, or
for the opposite edges ~wu and ~wv. We therefore handle a pair of visibility events as
a single event. Let us assume that the edges ~uv and ~uw become equally sloped for a

8In the rest of this section, we use the notation ~uv to represent any of the four edges ~uvll, ~uvlr, ~uvrl or
~uvrr. We also use L(u) to denote either Ll(u) or Lr(u) (whether we choose the “left” or the “right” list
depends on the type of edge involved).

96 Chapter 5. The Visibility–Voronoi Complex

v

w

u

~uwlr

~uvll

u

~uwrl

v

w

~uvrl

(a) (b)

Figure 5.6: Visibility events involving u, v and w: (a) The dilated vertex w blocks the visibility of u

and v. (b) As ~uwrl becomes equally sloped with ~uvrl (where vw is an obstacle edge), it becomes a

valid visibility edge.

clearance value c′, and at the same time the edges ~vu and ~vw become equally sloped
(see Figure 5.6).

As the edges ~uv and ~vu now become blocked, we assign c′ to be the maximal c-value
of the validity range of these edges. We also remove the other event, if any, involving
~uv (based on its other adjacency in L(u)) from Q, and delete this edge from L(u).
We examine the new adjacency created in L(u) and insert the corresponding visibility
event into the event queue Q. We repeat this procedure for the opposite edge ~vu.

If the edge ~uv was valid before it was deleted and the edge ~uw (or ~vw) does not have a
minimal validity value yet, we assign c′ to it, because this edge has become bitangent
for this c-value (see Figure 5.6(b) for an illustration).

Chain event: The value c equals the minimal clearance of a Voronoi chain χa, attained on
the arc a, which is equidistant from an obstacle vertex u and another obstacle feature
(see Figure 5.7(b)).9 Let z1 and z2 be a’s endpoints. We initiate two chain points
p1(χa) and p2(χa) associated with the Voronoi chain χa. As c grows, p1(χa) moves
toward z1 and p2(χa) moves toward z2 (see Figure 5.7(c) for an illustration).

As we increase c, larger portions of χa will enter the VV(c)-diagram and visibility edges
will become incident to its chain points, rather than to dilated vertices. We therefore
have to examine all edges e incident to u, compute the minimum c-value c′ for which
e becomes incident to one of the chain points pi(χa), and insert the tangency event
〈c′, e, pi(χa)〉 into the event queue. If a is equidistant from u and from another obstacle
vertex v (i.e., a is a vertex–vertex Voronoi arc), we do the same for the edges incident
to v.

Finally, we create two endpoint events, 〈c1, p1(χa), z1〉 and 〈c2, p2(χa), z2〉, associated
with the clearance values c1 and c2 attained at z1 and z2, respectively.

9Recall that a Voronoi arc equidistant to two polygon edges is always monotone with respect to the
clearance and can never contain a chain minimum in its interior.

5.3. The VV-Complex 97

Pi

χ Pj χ

p1(χ)

χ

p2(χ)

(a) (b) (c)

Figure 5.7: A chain event associated with the Voronoi chain χ (dotted) induced by the two obstacles Pi
and Pj. The endpoints of the arcs forming χ are drawn as small black dots. (a) The clearance value c is

less than the minimal clearance of the chain χ, so this chain does not contribute to the VV(c)-diagram.

(b) c equals the minimal clearance of the chain χ and a chain event occurs. Note that the two dilated

obstacles now begin to intersect. (c) When c grows the two chain points p1(χ) and p2(χ), that define

the portion of χ lying inside the VV(c)-diagram (drawn in a solid line) move along the arcs of the chain

χ toward its end-vertices (not shown in this figure).

When dealing with a chain event, we introduced two additional types of events, used to
handle chain points: tangency events and endpoint events. For a small enough positive c
value (smaller than the clearance value of any point on the Voronoi diagram) the endpoints
of all visibility edges lie on dilated obstacle vertices, but as c grows these endpoints gradually
become chain points. A tangency event occurs when a visibility edge becomes incident to a
chain point. The endpoint events are used to transfer the chain points along Voronoi chains.
We next explain how we deal with these events.

Tangency event: A visibility edge e = ~ux (the endpoint x may either represent a dilated
vertex or a chain point) becomes tangent to Bc′(u) at a chain point p(χa) associated
with the Voronoi arc a (see Figure 5.8 for an illustration for the case when x = v is a

dilated obstacle vertex). In this case we have to replace e by the visibility edge ~p(χa)x
associated with the chain point p(χa). We assign c′ to be the maximal validity value
of the edge e, and remove it from L(u). We now insert a reincarnate of e to L(p(χa)),
and assign c′ as its minimal validity value. We examine the new adjacency in L(p(χa))
and insert, if necessary, a new visibility event into Q.10 Finally, we replace the edge

~xu in L(x) by ~xp(χa), recompute the critical c-values of the visibility events of this

edge with its neighbors (notice that the slope of ~xp(a) becomes a different function of
c from now on) and modify the corresponding visibility events in Q.

In case x is a dilated obstacle vertex, we may have another tangency event in the
queue, associated with ~xu, which was computed under the (false) assumption that the
tangency point of the edge on x coincides with a chain point before the one on u does.
In this case, we have to locate the tangency event in Q that is associated with ~xu and
recompute the c-value associated with it.

10For a given c-value, let ~ω be the direction of the tangent to the Voronoi chain χa, such that when we
infinitesimally increase c, the chain point p(χa) moves in this direction. Note that even though L(p(χa)) is
represented as a circular list, the vector -~ω naturally splits it into a linear list. We note that a tangency event
always results in the insertion of a new edge at one of the list ends, so only one true adjacency is created.

98 Chapter 5. The Visibility–Voronoi Complex

u

p2(χ)

~uvrr

v

u ~uvrr

v

p2(χ)

u

v

~p2(χ)v

p2(χ)

(a) (b) (c)

Figure 5.8: A tangency event: (a) The chain point p2(χ), whose creation is depicted in Figure 5.7, lies

on the supporting circle of the dilated vertex u. (b) The visibility edge ~uvrr becomes tangent to Bc(u)

exactly at p2(χ), so a tangency event occurs. (c) The reincarnated visibility edge ~p2(χ)v replaces ~uvrr
as c grows. Note that this edge is not tangent to Bc(u) any more.

Endpoint event: A chain point p(χa) reaches the endpoint z of the Voronoi arc a. We
should consider the following cases here:

• The endpoint z is incident only to two Voronoi arcs a and a′ belonging to the
same chain (i.e., χa = χa′). In this case the chain point p(χa) is transferred from
a to a′, and we only have to examine the adjacencies in L(p(χa′)) and modify the
corresponding visibility events in the queue (as the slopes of these arcs become a
different function of c from now on). We also have to handle the opposite edges,
as we did in the tangency-event procedure. Moreover, if there are tangency events
associated with the opposite edges we should modify them as well.

As the chain point p(χa) now moves on the Voronoi arc a′, we have to take care
of tangency events that occur in the range of this new arc. Thus, if one of the
polygon features associated with a′ is a vertex u, we iterate over all edges incident
to u and check whether each edge has a tangency event in the range of the new
Voronoi arc a′ — if so, we insert the appropriate tangency event into the event
queue.11 In case a′ is a vertex–vertex arc, associated with two vertices u and v,
we repeat this procedure for v as well.

• If z is a Voronoi vertex and a local maximum of the clearance function, there are
multiple endpoint events associated with it. In non-degenerate cases, the edge
lists of all chain points coinciding with z are already empty. Only in degenerate
cases may chain points involved in an endpoint-event at z still have incident edges,
and in this case we just assign a maximal validity value to these edges and empty
the edge lists associated with these chain points.

• Otherwise, z is the endpoint of the chain χa (i.e., a Voronoi vertex) and it is not
a local maximum of the clearance function. In this case we may have several
chains χ1, χ2, . . . ending at z, having a simultaneous endpoint event, and a single

11Note that edges that had a tangency event in the range of the previous Voronoi arc a have already been
deleted from the incident-edge list of the vertex at the moment this endpoint event occurs.

5.3. The VV-Complex 99

monotone chain χ̂ beginning at z (see for example the left Voronoi vertex of
the marked chain in Figure 5.2). We therefore create a new chain point p(χ̂)
associated with the monotone chain, assign a maximal validity value c′ to each
edge in L(p(χ1)),L(p(χ2)), . . ., where c′ is the clearance value at z. We remove all
visibility events associated with these edges from Q and insert their reincarnates
into L(p(χ̂)). We examine all adjacencies in L(p(χ̂)) and add the appropriate
visibility events into Q. We also have to deal with the opposite edges and modify
any tangency events they are involved in.

We note that in order to avoid duplicate work, when we have several events occurring at
the same c-value, we deal with endpoint events first, to make sure that edges are associated
with the correct chain. We can then handle the visibility events, chain events and finally the
tangency events.

5.3.2 Querying the VV-Complex

The result of the preprocessing stage is the VV-complex 〈V, T 〉, where:

• V is the Voronoi diagram of the polygonal obstacles. We also store the clearance value
c(z) of each vertex z in the Voronoi diagram, and for each non-monotone chain χ we
store its minimal clearance value cmin(χ).

• T is a set of interval trees: For each obstacle vertex u, Tu ∈ T contains, for each edge
incident to u, its validity range (namely the intervals are the valid c-ranges of the edges
incident to u). For each Voronoi chain χ, Tχ,i ∈ T is an interval tree storing edges
and Voronoi arcs incident to the ith chain point (i ∈ {1, 2}) of the chain χ, along with
their validity ranges.

A query on the VV-complex is defined by a triple 〈s, g, ĉ〉, where s and g are the start
and goal configurations, respectively, and ĉ is the preferred clearance value. We assume that
s and g themselves have a clearance larger than ĉ (one could apply standard techniques for
testing whether s and g have sufficient clearance). Given a query, we start by computing
the relevant portion of the Voronoi diagram: For each Voronoi chain we can examine the
clearance values of its end-vertices, as well as the chain minimum, and determine which
portion of the chain (if at all) we should consider. This way we also obtain all the chain
points for the given c-value ĉ.

Next we need to find the incident edges of s and g. This means that we should obtain
two lists L(s) and L(g) containing the visibility edges emanating from s and g (respectively)
to every visible circular arc and chain point (or to original obstacle vertices if c = 0). This
can be done using a radial sweep-line algorithm. We can now start searching the implicitly
constructed VV(ĉ)-diagram using a Dijkstra-like search to find the “shortest” path between
s and g.

When we reach a vertex x (a dilated polygon vertex or a chain point) during the Dijkstra
search we query Tx with the given c-value ĉ to obtain the valid edges incident to x, as we
do not have an explicit representation of the graph. In addition, we add g to the list of x’s

100 Chapter 5. The Visibility–Voronoi Complex

v

w

x

u

pc(v)

v

w

pc(v)

x
u

x′

(a) (b)

Figure 5.9: Visible dilated vertices from a chain point x. (a) If a vertex v is visible from a vertex–edge

Voronoi arc, it must be also visible from the vertex u inducing this arc, and cannot be blocked by the

dashed polygon. (b) In case of an edge–edge Voronoi arc, we consider the vertex u, which lies closest

to the arc endpoint with the minimum clearance x′, as the “inducing vertex”.

neighbors if x ∈ L(g) (that is, if the goal is visible from x). If x is an obstacle vertex, we
should keep in mind to add the length of the portion of the corresponding circular arc to the
distance.12 We proceed until the goal configuration g is reached.

The way we select the weights associated with the graph edges may depend on the path-
planning strategy we employ. All visibility edges (and portions of the circular arcs which
need to be traversed) have a clearance of at least ĉ, so their distance measure depends only
on their length. For the portions of the Voronoi diagram, the limited amount of clearance
may add extra weight (see the discussion in Section 5.2 about the weight we give the graph
edges). Since the graph edges are implicitly represented, we have to dynamically compute
their associated weights, but this can be done in O(1) time per edge and does not incur a
significant computational load.

5.3.3 Proof of Correctness

We begin by stating a lemma that asserts that the manner in which we move visibility events
from dilated vertices to chain points when handling tangency events is indeed correct — i.e.,
that a chain point cannot start “seeing” an object (a dilated vertex or another chain point)
all of a sudden, unless this object is visible from one of the vertices inducing the Voronoi
arcs along the chain.

Lemma 5.1 If a dilated obstacle vertex Bc(v) is visible from a chain point on a Voronoi
arc, then the original vertex v is visible from the vertices inducing this arc. In case of an

12In some cases we will have fictitious visibility edges of length 0, for example when we have a chain point
y that lies on a vertex–vertex or a vertex–edge Voronoi edge (see Figure 5.8(a) for an illustration). In this
case, y is connected to the polygon vertices that induce this Voronoi edge with visibility edges of distance
0, and when we examine a path through the relevant Voronoi edge and involving a visibility edge incident
to one of the vertices inducing y, we should only consider the length of the circular arcs between y and the
endpoint of the visibility edge.

5.3. The VV-Complex 101

edge–edge Voronoi arc, we consider the arc endpoint with the minimum clearance value, and
refer to the obstacle vertex that lies closest to this point as the “inducing vertex”.

Proof: Consider the example depicted in Figure 5.9(a), where the dilated vertex Bc(v)
is visible from the chain point x, which lies on a vertex–edge Voronoi arc. Let u be the
obstacle vertex inducing this arc. Assume u and v are not mutually visible, then there must
exist some polygon blocking the straight line segment uv — let w be an extreme vertex
of this polygon. Let pc(v) be the tangency point of the visibility edge emanating from x
toward Bc(v). It is clear that the distance of v from the line supporting (x, pc(v)) is exactly
c, but the distance of u from this line is less than c, as it cannot be tangent to Bc(u) and it
penetrates the interior of this circle. We conclude that the distance of w from this line must
also be less than c, thus Bc(w) blocks the visibility of Bc(v) from the chain point x. We
have reached a contradiction, so we conclude that the original vertices u and v are mutually
visible.

The same arguments hold for a chain point located on a vertex–vertex Voronoi arc, and
we conclude that v is visible from both vertices inducing the arc. The case of a chain point
which lies on an edge–edge Voronoi arc is depicted in Figure 5.9(b). Note that in this case
the two dilated polygon edges incident to x define the portion of the plane it can “see”. Once
again, assume w blocks the visibility edge of u and v (recall that u is the vertex inducing
the Voronoi arc). Since the distance of u from the supporting line of (x, pc(v)) must be less
than c (notice that also in this case this line intersects the interior of Bc(u)), the distance of
w from this line is also less than c. Again, we have reached a contradiction, as Bc(w) blocks
the segment (x, pc(v)). 2

Theorem 5.2 Every visibility edge has only one continuous range [cmin, cmax] of c-values for
which it is valid. Thus, once it has been deleted it will not become valid again for a higher
c-value.

Proof: Consider Figure 5.10, which describes the schematic “life-cycle” of a visibility
edge along the preprocessing step described in Section 5.3.1. When we construct the VV-
complex by gradually increasing the c-value, edges can only be deleted when a visibility
event occurs and they become blocked by some dilated vertex: It is clear that just before a
dilated vertex w starts blocking the visibility of x and y (x and y may be dilated vertices or
chain points), it must lie on the line segment connecting x and y, so a visibility event must
occur and no visibility edge can “disappear” as c grows without being involved in a visibility
event. Note that an edge can also reincarnate as a different edge (see Figure 5.8), but in this
case we can treat the validity range of its reincarnate as a direct continuation of the range
of the original edge.13 Here we show that once an edge becomes blocked, it does not become
unblocked again for a higher c-value.

13When presenting the algorithm we created a new validity range for reincarnated visibility edges instead
of treating the validity ranges as a single continuum, as we do in this theorem. This representation simplifies
the algorithm without incurring any asymptotic run-time penalty. Our theorem is therefore slightly stronger
than what we need for proving the correctness of our algorithm.

102 Chapter 5. The Visibility–Voronoi Complex

visibility
event

visibility
event

endpoint
event

invalid

valid

chain−chaindeleted
(blocked)

tangency event

tangency event

visibility event

visibility event

visibility
event

visibility event

visibility event
event

tangency

endpoint event

endpoint event

valid valid

chain−vertex

invalid

chain−vertexvertex−vertex

vertex−vertex

Figure 5.10: The schematic “life-cycle” of a visibility edge during the execution of the preprocessing

stage. The rounded-corner rectangles denote possible visibility edges by the type of their endpoints. The

solid arrows denote a change in the validity of the edge while the dashed arrows denote a reincarnation

of the edge. For c = 0, all visibility edges, valid or invalid, are incident to two vertices (represented by

the two rectangles on the left). As c grows and parts of the Voronoi diagram are included in the VV(c)-

diagram, an endpoint of such an edge may become incident to a Voronoi chain — namely a tangency

event occurs and the edge is reincarnated as a vertex–chain edge (and later on as a chain–chain edge).

Such edges are affected by endpoint events that occur along the Voronoi chain, but their validity status

remains unchanged. Visibility events can turn invalid edge to valid ones, or block visibility edges. In the

latter case, the blocked edge is deleted.

Consider a visibility edge ~uv (it may either be invalid or valid) tangent to the supporting
circles of the dilated vertices u and v for some clearance value c1 > 0. Let ζ1(u) and ζ1(v)
be the two endpoints of this edge, lying on Bc1(u) and Bc1(v), respectively. As illustrated
in Figure 5.11, for a clearance value c2 > c1, the edge (ζ2(u), ζ2(v)) between u and v for
clearance c2 is contained in the Minkowski sum (ζ1(u), ζ1(v)) ⊕ Bc2−c1 , as the distance of
both ζ2(u) and ζ2(v) from the line segment (ζ1(u), ζ1(v)) is clearly less than c2 − c1.

Let us assume that for the clearance value c1 the visibility edge ~uv becomes blocked by a
dilated obstacle vertex w, which touches (ζ1(u), ζ1(v)) at some point q — then for each c2 > c1
the disc Bc2−c1(q) of radius c2− c1 centered at q is fully contained in a dilated obstacle, and
no visibility edges can cross it: note that this disc subdivides the region (ζ1(u), ζ1(v))⊕Bc2−c1
into two, making it impossible for the edge (ζ2(u), ζ2(v)) to be valid.

It is therefore clear that once a visibility edge between two dilated vertices becomes
blocked, it can never become unblocked again.14 Moreover, similar arguments apply if one
of the endpoints of the visibility edge (or both its endpoints) is a chain point lying on a
Voronoi arc. We begin by showing that the chain point for the clearance value c2 lies inside

14In this case, there is also a simple algebraic proof for this fact: The bitangent to Bc1
(u) and Bc1

(v) is
also tangent to Bc1

(w) only when c1 equals half the distance between u and the line connecting v and w.
For the edge to become unblocked at some c2 > c1, the three circles Bc2

(u), Bc2
(v) and Bc2

(w) must have
another common tangent, but this is of course impossible.

5.3. The VV-Complex 103

��
��
��
��

v

u

w

q

ζ2(u)

ζ2(v)

ζ1(v)ζ1(u)

Figure 5.11: The visibility edges ~uvrl and ~vurl, realized as the segment (ζ1(u), ζ1(v)) (the dashed

black line), are blocked at q by the dilated vertex Bc1(w). For c2 > c1, (ζ2(u), ζ2(v)) (the dash-dotted

line segment) is contained in the region (ζ1(u), ζ1(v)) ⊕ Bc2−c1 (lightly shaded), which is divided into

two by the disc Bc2−c1(q).

the cigar-shaped region obtained by taking the Minkowski sum of the original visibility edge
with Bc2−c1 :

• The endpoint ζ1 of a visibility edge for a clearance value c1 lies on a vertex–vertex
Voronoi arc (see Figure 5.12(a) for an illustration). Without loss of generality, let us
assume that the two vertices u and v inducing this Voronoi arc are located at (0,−δ)
and (0, δ), where 2δ < c1 is the distance between the vertices. In this case the Voronoi
arc is supported by the line y = 0 and the two chain points for ci (i = 1, 2) are given
by ζi = (

√

c2i − δ2, 0).

Let us consider the extremal case where the visibility edge is tangent to Bc1(0, δ) —
that is, it is tangent to one of the dilated obstacles and if its slope is increased by ε > 0
it will penetrate this dilated obstacle and become blocked. In this case, the lower part
of the “cigar” intersects y = 0 at ζ̃, where:

xζ̃ = xζ1 +
c2 − c1
sin θ

=
√

c21 − δ2 +
c1(c2 − c1)
√

c21 − δ2
=
c1c2 − δ2

√

c21 − δ2

It is straightforward to show that xζ̃ > xζ2 , hence ζ2 is contained in the “cigar”.

• The endpoint ζ1 lies on a vertex–edge Voronoi arc. Without loss of generality, we
assume that the obstacle edge inducing the arc is supported by the line y = δ and the
obstacle vertex is given by (0,−δ) (again, we have 2δ < c1). It is clear that the slope
of a visibility edge emanating from ζ1 is non-positive. In the extremal case, depicted
in Figure 5.12(b), it is a horizontal segment, and since |yζ2 − yζ1| = c2 − c1 then ζ2
is located on the boundary of the cigar-shaped region around the horizontal visibility
edge. It is also clear that in other cases, when the slope of the original visibility is
negative, then ζ2 is located in the interior of the “cigar” around this edge.

104 Chapter 5. The Visibility–Voronoi Complex

ζ2ζ1

ζ̃
θ ζ1

ζ2

ζ1
ζ2

(a) (b) (c)

Figure 5.12: The chain points ζ1 and ζ2, at clearance values c1 and c2, respectively (c2 > c1). The

relevant Voronoi arcs are drawn as thin dashed lines, where the light dashed (dash-dotted) segments

and circles correspond to clearance c1 (c2, respectively) from the obstacle features inducing these arcs.

The visibility edges emanating from ζ1 are drawn in a thick dashed line, with the Minkowski sum of the

edge with Bc2−c1 is lightly shaded. (a) An extreme case where the visibility edge from a chain point

lying on a vertex–vertex arc is tangent to one of the dilated obstacles. (b) Another extreme case where

the visibility edge from a chain point lying on a vertex–edge arc is parallel to the edge. (c) The case of

chain points lying on an edge–edge arc.

• The same arguments also apply if ζ1 and ζ2 lie on an edge–edge Voronoi arc. Note
that in this case we should consider the slopes of both obstacle edge involved: indeed,
‖ζ1− ζ2‖ may be significantly larger that c2− c1, as shown in Figure 5.12(c), but since
the slope of the visibility edge is bounded by the slope of the obstacle edges, it follows
that ζ2 must be contained in the “cigar”.

We have showed that a visibility edge ē2 for c2 is always contained in the cigar-shaped
region, which is the Minkowski sum of the visibility edge ē1 for c1 < c2 with Bc2−c1. According
to our assumption, ē1 is blocked by some point q, so ē1 ⊕ Bc2−c1 is divided into two by the
disc Bc2−c1(q). We argue that each part contains exactly one endpoint of ē2, which can be
easily verified by examining the various cases in Figure 5.12. If this is not the case, then
q must lie between ζ1 and the projection of ζ2 onto ē1 — this is of course impossible, as
it implies that there exists another obstacle on the way, other than the ones defining the
Voronoi arc. As a consequence, the visibility edge ē2 must also be blocked.

We conclude that once a visibility edge has been blocked, it will never become valid again.
Note that what we have shown so far is that we can associate a single validity range with
a visibility edge one of whose endpoints lie on a Voronoi arc, while our edges are actually
associated with chain points that move along Voronoi chains. However, when a chain point
is created, there are no visibility edges associated with it. By Lemma 5.1, visibility edges can
be associated with a chain point only when it is involved in tangency events, as it traverses a
vertex–vertex or a vertex–edge Voronoi arc, and it cannot “see” any object not visible from
the relevant vertex. As the chain point moves along the chain, these visibility edges are even-
tually blocked (the chain point can never move from an edge–edge arc to another edge–edge

5.3. The VV-Complex 105

arc, as there should always be a vertex on the way). We conclude that the association of a
single validity range with each visibility edge (and with its reincarnates) is indeed correct. 2

5.3.4 Complexity Analysis

Theorem 5.3 Constructing the VV-complex takes O(n2 log n) in total, where n is the total
number of obstacle vertices.

Proof: In the initialization of the preprocessing stage we first have to compute the visibility
graph, which can be performed in O(n2 log n) time — this also accounts for the time needed
to construct the initial edge lists L(u) for each obstacle vertex u (we need O(n logn) time
to construct each of the 2n edge lists) and label the valid visibility edges. The construction
of the Voronoi diagram can be performed in O(n logn), and the complexity of the diagram
(the number of arcs) is linear in n.

After the initialization, the priority queue Q contains O(1) events per visibility edge, of
which there are O(n2) in total, and in addition O(n) chain events. Any operation on the
event queue thus takes O(logn). The initialization takes O(n2 log n) time in total.

As the preprocessing algorithm proceeds, it starts handling events: In total, Theorem 5.2
implies that we have O(n2) visibility events:15 Every vertex can be involved at most once in
a visibility event with another vertex, where a visibility edge between the two vertices (or
their dilated version) is created. Each of the visibility events can be handled in O(logn) time
as it involves a constant number of operations on the queue and on the edge lists. There
are O(n) chain events, each of them can be handled in O(n logn) time. Each chain event
spawns O(n) tangency events, so in total there are O(n2) tangency events, each of them can
be handled in O(logn) time. Finally, there are O(n) endpoint events, and we need O(n logn)
time to handle each of these events.16 2

The query phase starts with a stage that takes O(n logn) time, which is spent on calcu-
lating the valid visibility edges emanating from s and g. Calculating the relevant portions
of the Voronoi diagram takes O(n) time (note that the Voronoi diagram itself has already
been constructed in the preprocessing phase).

The rest of the query phase consists of executing Dijkstra’s algorithm, or an equally
suited A∗-algorithm. The worst-case running-time of these algorithms is O(n logn + `)
where ` = O(k) is the number of edges encountered during the search (recall that k is
the number of visibility edges). In practice, Dijkstra’s algorithm turns out to be very fast,
because hardly any geometric operations have to be performed anymore. In particular the

15We consider all potential events in our analysis. In practice, some of these events were computed under
false assumptions (see Section 5.3.1) and will be eventually discarded.

16It is in fact possible to construct the visibility graph of the input polygons in O(n logn+ k) time, where
k is the number of visibility edges in this graph (valid and invalid ones), construct the initial edge lists
in O(k logn) time and then charge each of the O(k) directed visibility edges with O(log n) operations, to
account for all visibility events, chain events and tangency events. Unfortunately, the entire preprocessing
stage cannot be completed inO(k logn) time even if k = o(n2), as there are cases where Θ(n2 logn) operations
are needed to handle the endpoint events.

106 Chapter 5. The Visibility–Voronoi Complex

u

w
v

~uwlr

~up(χv)l

(a) (b)

Figure 5.13: (a) A portion of the Voronoi diagram of two non-convex polygons. The Voronoi chain

separating the two obstacles is drawn with a solid line, while the Voronoi chains induced by features of

the same polygon are drawn with a dashed line. (b) The edge ~uwlr becomes valid after being involved

in a visibility event with a visibility edge to the chain point p(χv) that is associated with the reflex

obstacle vertex v.

A∗-variant of Dijkstra may be the method of choice here, as it biases the search toward the
goal configuration, which keeps the number ` low.

As we noted in Section 5.2, the VV(c)-diagram for a fixed c-value may be constructed in
O(n logn+k) time, so it may seem we do not need any preprocessing stage, and it is better to
construct the VV(c)-diagram from scratch whenever we are given a preferred clearance value.
However, this algorithm involves the construction of the planar arrangement of line segments,
circular arcs and parabolic arcs, which is very complicated when carried out in a robust
manner (see the next section). Such an approach will require longer running times than
the query stage of the second algorithm. We note that Dijkstra’s algorithm, whose running
time theoretically dominates the query phase, is in practice very fast if after preprocessing
our set of input obstacles in an exact manner, we switch to machine-precision floating-point
arithmetic in the query stage.17

5.3.5 Handling Non-Convex Obstacles

So far we described the algorithm for constructing a VV-complex for a set of convex polygonal
obstacles. Our algorithm can however be easily adapted to work with non-convex obstacles as
well. The only thing that is changed is the way in which the Voronoi diagram is constructed.

Due to the non-convexity of the obstacles, some obstacles may contain reflex vertices.
These reflex vertices are treated as normal vertices in the initial construction (for c = 0) of
the visibility graph. Note that the visibility edges emanating from reflex vertices will never
be part of a shortest path, but we still need to keep track of these edges, as they may induce
visibility events that give other valid edges the correct c-values of their validity ranges (see
Figure 5.13(b) for an illustration).

17Indeed, we lose some accuracy here, but as our constructed diagram is topologically correct, the worst
thing that can happen is that we may compute a path that is only slightly longer than the shortest possible
path.

5.4. Implementation Details 107

As c grows, the reflex vertices will be treated as chain points. These chain points
move over monotone Voronoi chains originating in the reflex vertices themselves (see Fig-
ure 5.13(a)). To this end, the definition of the Voronoi diagram should be adapted such that
Voronoi arcs can be equidistant to two edges of the same polygon as well. Still, this new
Voronoi diagram is an instance of the Voronoi diagram of line segments, so this change is
easily carried through.

The rest of the algorithm remains unchanged. Also, the complexity analysis is still valid,
since the construction time and the complexity of both the visibility graph and the Voronoi
diagram are not affected by the non-convexity of the input obstacles. We should mention
that when we query the VV-complex we do not compute the chain points along Voronoi
chains induced by reflex vertices, and therefore do not account for these “reflex” chains, as
these chains lead to a dead-end (a reflex vertex) and can never be used for making shortcuts
in the motion path.

5.4 Implementation Details

Cgal offers the infrastructure we need for developing a robust software for computing the
VV(c)-diagram. The Minkowski-sum package described in Chapter 3 is able to compute the
offset of the polygonal obstacles by radius c and obtain the dilated obstacles. We then use
the package described in Section 2.6.1 to compute the union of the dilated obstacles.

The Voronoi diagram of the polygons is computed using the Cgal package for computing
Voronoi diagrams of line segments, developed by Karavelas [Kar04]. We have to preprocess
the input of the package by adding a label to each segment (polygon edge) and each segment
endpoint (polygon vertex) that identifies the source polygon and the feature index within this
polygon. Let us assume that all obstacles are convex; even in this simple case, the complete
Voronoi diagram of the polygon edges contains also the medial axis of each polygon, which
is redundant in our case. However, having computed the diagram, we can then conveniently
disregard Voronoi chains induced by features of the same polygon by examining the labels
of the sites that induce arcs along these chains.

In case the obstacles are not convex, we have to keep some of the Voronoi edges induced
by distant features of the same polygon. To this end, we subdivide the obstacles into convex
sub-polygons [Her06]. In this case we label each polygon feature with both the index of the
convex sub-polygon and the input (non-convex) polygonal obstacle from which it originated.
This labeling helps us to determine which Voronoi arcs should be discarded.

The intersection among the dilated obstacles and between the boundary of the union of
the dilated obstacles and the Voronoi arcs is robustly computed using the conic-arc traits of
the arrangement package (see Section 2.3.3). We exploit the fact that our polygonal obstacles
are given as sequences of points with rational coordinates, so that the supporting curves of
each dilated obstacle boundary and each Voronoi arc can be represented as algebraic curves
of degree 2 with rational coefficients if the squared clearance value is also rational (see below),
to robustly maintain the arrangement of such curves. The endpoints of the line segments,
the circular arcs and the parabolic arcs that form our arrangement are in general algebraic
numbers of degree 4.

108 Chapter 5. The Visibility–Voronoi Complex

In the rest of this section we give a constructive proof of a lemma that enables us to
robustly construct the skeleton of the VV(c)-diagram for rational inputs, based on robust
computations with the conic-arc arrangement traits:

Lemma 5.4 Let P = {P1, . . . , Pm} be a set of pairwise interior-disjoint simple polygons,
such that all polygon vertices have rational coordinates. Then all Voronoi arcs have sup-
porting algebraic curves of degree 2 at most with rational coefficients and all chain minima
are also points with rational coordinates. Moreover, for a clearance value c such that c2 is
rational, the dilated obstacle boundaries are also supported by algebraic curves of degree 2
with rational coefficients.

Proof: The case of offsetting a rational polygon by a radius r, such that r2 is rational,
was discussed in Section 3.4. The dilated obstacles vertices correspond to arcs of ratio-
nal circles, and the dilated edges can be expressed as segments of line-pairs with rational
coefficients.

Let us now examine the representation of the Voronoi arcs. An arc a of the Voronoi
diagram corresponds to the locus of all points equidistant from two polygon features, and
the following cases are possible:

Vertex–vertex arc: The arc is equidistant from two polygon vertices u and v. The equa-
tion of its supporting curve, a line in this case, is simply given by (throughout this
section we use the squared distance, in order to avoid the square-root operation):

(x− xu)2 + (y − yu)2 = (x− xv)2 + (y − yv)2

2(xv−xu)x+ 2(yv−yu)y = x2
v + y2

v − (x2
u+y2

u) . (5.1)

This line is perpendicular to the line segment connecting u an v and bisects it. The
point with minimal clearance on the arc is therefore the midpoint between u and v,
zmin = 1

2
(xu + xv, yu + yv), and its clearance is of course cmin = 1

2
d(u, v).

Vertex–edge arc: The arc is equidistant from a polygon vertex u and a polygon edge vw,
whose supporting line will be denoted ` : Ax + By + C = 0, where A, B and C are
rational (since the vertices have rational coordinates). The equation of its supporting
curve, a parabola in this case, is thus given by:

(Ax+By + C)2

A2 +B2
= (x− xu)2 + (y − yu)2 . (5.2)

In this case, to find the point with minimal clearance on the arc we compute a line
perpendicular to ` that passes through u. The equation of this line is `⊥ : By−Ax+
(Ayu−Bxu) = 0, and the point with minimal clearance is the midpoint between u and
the intersection point of ` and `⊥:

zmin =
1

2

(

xu +
B2xu − A(Byu + C)

A2 +B2
, yu +

A2yu − B(Axu + C)

A2 +B2

)

. (5.3)

The minimal clearance value, attained at zmin is half the distance between u and the
line `.

5.5. Experimental Results 109

(a) (b) (c)

Figure 5.14: The VV(c)-diagrams constructed for several input files and c-values: (a) octagon with

c = 7
10 , (b) two rooms with c = 2

5 , and (c) rectangles with c = 9
10 (visibility edges are not shown in

this case).

Edge–edge arc: The arc is equidistant from two polygon edges, whose supporting lines are
denoted `1 : A1x + B1y + C1 = 0 and `2 : A2x + B2y + C2 = 0, respectively. The
supporting curve of this edge is a line bisecting the angle formed between `1 and `2, but
in general this line cannot be represented as a linear curve with rational coefficients.18

Instead, we represent the edge as a segment of a pair of perpendicular lines (naturally,
only one line in this pair supports the relevant segment), which form the two angle
bisectors of `1 and `2:

(A1x+B1y + C1)
2

A2
1 +B2

1

=
(A2x+B2y + C2)

2

A2
2 +B2

2

. (5.4)

Using this representation, it is possible to represent the Voronoi arc as a segment of
a curve of degree 2 with rational coefficients. As we mentioned before, such an arc is
always monotone — that is, as we traverse it from the endpoint with smaller clearance
value to the other endpoint, we get further away from the obstacles.

2

5.5 Experimental Results

Our software is implemented using Cgal 3.2, relying on the exact number types supplied by
Core 1.7 that can handle algebraic numbers in a certified way (see also Section 2.3.3). As
we wish to obtain an exact representation of the VV(c)-diagram, we may spend some time
on the diagram construction, especially if it contains chain points, which are algebraically
more difficult to handle. For example, the construction of the VV(c)-diagram depicted in

18For example, if `1 : y = 0 and `2 : y = x, the slope of the line bisecting the angle between `1 and `2
is tan π

8 = 1
1+

√
2
, and this line (y = 1

1+
√

2
x) cannot be represented using rational coefficients. Note however

that the perpendicular line y = 1
1−

√
2x

is also an angle bisector in this case, and the bisector curve therefore

consists of a pair of perpendicular lines.

110 Chapter 5. The Visibility–Voronoi Complex

Figure 5.15: A group of 40 entities moving in a virtual scene along a backbone path, drawn with a

dashed line. (Courtesy of Arno Kamphuis.)

Figure 5.3 (the four shapes scene) takes about 10 seconds (running on a Pentium IV 2 GHz
machine with 512 MB of Ram), but if we choose a smaller clearance value for the same
scene, such that no chain points appear in the diagram, the construction time drops to 2.3
seconds (see Table 5.1). In more involved scenes, the construction of the diagram may take
15–20 seconds (see Figure 5.14 and Table 5.1).

However, once the VV(c)-diagram is constructed, it is possible to use a floating-point
approximation of the edge lengths to speed up the time needed for answering motion-planning
queries, so that the average query time is only a few milliseconds.

Table 5.1: The construction time of the VV(c)-diagram for several input scenes and different c-values.

The query times were averaged over five manually entered queries for each scene.

Bounding-box Construction Average query
Input dimensions c time (sec.) time (sec.)

four shapes 10× 7 1/5 2.3 0.01
four shapes 10× 7 2/5 9.7 0.01
octagon 14× 14 3/10 4.9 0.01
octagon 14× 14 7/10 15.2 0.01
two rooms 14× 14 2/5 2.8 0.02
rectangles 18× 15 9/10 15.4 0.02

We also used the VV(c)-diagram to generate convincing group motions in a more complex
scene, as the one depicted in Figure 5.15. The construction of such diagrams takes about
40–60 seconds (for clearance values that induce chain points), but the average query time
was only a few milliseconds. This is a considerable improvement over previous techniques,
which require smoothing operations in the query stage, taking about one second on average.

♦ ♦
♦

5.5. Experimental Results 111

We introduced a simple, yet powerful, data structure — the VV(c)-diagram — which contains
all shortest paths for a robot in a planar environment of configuration-space obstacles, given
a preferred clearance value and that allows for a trade-off between path length and clearance
in the presence of narrow passages. We have implemented a robust software package that
maintains this data structure and used it to plan natural-looking paths for coherent groups of
moving entities in the plane. Our method, which requires some preprocessing for construct-
ing the diagram but can answer queries very efficiently without the need for smoothing or
additional post-processing, is especially suitable to real-time applications, such as computer
games.

We have also introduced the VV-complex, a data structure that efficiently encodes all
VV(c)-diagrams for all possible clearance values. We showed how to efficiently construct the
VV-complex for a given set of obstacles and how to query it given start and goal configura-
tions and a preferred clearance value.

112 Chapter 5. The Visibility–Voronoi Complex

Chapter 6

Planning Near-Optimal Corridors
amidst Planar Obstacles

Planning corridors among obstacles has arisen as a central problem in game design, but can
also be used for other motion-planning applications. Instead of devising a one-dimensional
motion path for a moving entity, it is possible to let it move in a corridor, where the exact
motion path is determined by a local planner. A high-quality path should be short, but at
the same time it should be sufficiently wide to allow for maneuvering inside it. As already
discussed in the previous chapter, these two requirement often contradict.

In this chapter we introduce a measure for the quality of such corridors that aims to
balance between these two desirable properties of the corridor. We analyze the structure of
optimal corridors amidst point obstacles and polygonal obstacles in the plane, and propose
methods to plan corridors that are (nearly) optimal, with respect to this measure, amidst
point obstacles or polygonal obstacles in the plane.

The rest of this chapter is organized as follows. In Section 6.1, we formally define corridors
and introduce the quality measure. Section 6.2 discusses properties of optimal corridors
amidst point obstacles in the plane, and in Section 6.3 we generalize our results to the case
of polygonal obstacles. As mentioned in the previous chapter, it is often preferred that the
path of the moving entity is not too winding. In Section 6.4 we therefore also take the
curvature of the corridor into account and augment the quality measure accordingly.

6.1 Measuring Corridors

A corridor C = 〈γ(t), w(t), wmax〉 in a d-dimensional workspace (typically d = 2 or d = 3) is
defined as the union of a set of d-dimensional balls whose center points lie along the backbone
path of the corridor, which is given by the continuous function γ : [0, L] −→ Rd. The radii of
the balls along the backbone path are given by the function w : [0, L] −→ (0, wmax]. Both γ
and w are parameterized by the length of the backbone path. In the following, we will refer
to w(t) as the width of the corridor at point t. The width is positive at any point along the
corridor, and does not exceed wmax, a prescribed desired width of the corridor.

113

114 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

Given a corridor C = 〈γ(t), w(t), wmax〉 of length L in Rd, the interior of the corridor is
thus defined by:

⋃

t∈[0,L]

Bw(t) (γ(t)) ,

where Br(p) is an open d-dimensional ball with radius r that is centered at p. In typical
motion-planning applications we are given a set of obstaclesO that the moving entities should
avoid. The interior of the corridor should be disjoint from the given obstacles, otherwise it
is an invalid corridor. In the rest of this chapter we consider only valid corridors.

6.1.1 The Weighted Length Measure

As we have already indicated, a good corridor must be short — namely its backbone path
should avoid unnecessarily long detours — and its width should be as wide as some predefined
maximum in order to allow maximal flexibility for the motion within the corridor. The
corridor should contain narrow passages only if they allow considerable shortcuts.

Note that if we examine the intersection of the corridor C = 〈γ(t), w(t), wmax〉 with
a (d − 1)-dimensional hyperplane through γ(t) whose normal is tangent to γ at γ(t), the
volume of the cut is proportional to wd−1(t). Thus, in order to combine the two desired
properties of the corridor as discussed above, we define the weighted length L∗(C) of a
corridor C = 〈γ(t), w(t), wmax〉 to be:

L∗(C) =

∫

γ

(
wmax

w(t)

)d−1

dt . (6.1)

We wish to minimize the weighted length by either shortening the backbone path or
by extending the corridor’s width (up to wmax). Given a start position s ∈ Rd and a goal
position g ∈ Rd, a corridor C = 〈γ(t), w(t), wmax〉 satisfying γ(0) = s and γ(L) = g is optimal
if for any other valid corridor C ′ connecting the two endpoints we have L∗(C) ≤ L∗(C ′).

We note that unlike the algorithms and methods discussed in previous chapters, where
obtaining an exact solution to the problem at hand played an important role, here it is
not important to compute exactly the optimal corridor for a given scene. Obtaining a good
approximation to the optimal corridor is enough for the motion-planning applications we
consider. However, in order to devise a good approximation strategy, one has to have a good
idea of the structure of the entity one wishes to approximate. We therefore proceed and
study the properties of optimal corridors more rigorously.

6.1.2 Properties of an Optimal Corridor

Observation 6.1 If for some portion of the backbone path γ of a corridor C, we have
w(t) < min{c(γ(t)), wmax} for t ∈ [t0, t0 + τ] (τ > 0), where c(p) is the clearance of the point
p, namely its distance to the nearest obstacle, we can improve the quality of the corridor by
letting w(t)←− min{c(γ(t)), wmax} for each t ∈ [t0, t0 + τ].

6.1. Measuring Corridors 115

Given a set of obstacles and a wmax value, we can associate the bounded clearance measure
ĉ(p) with each point p ∈ Rd, where ĉ(p) = min{c(p), wmax}. Using the observation above, it
is clear that the width function of an optimal path C = 〈γ(t), w(t), wmax〉 is simply w(t) =
ĉ(γ(t)). From now on we can therefore concentrate on computing an optimal backbone path,
given its two endpoints. Note that ĉ(p), hence the width function of an optimal corridor, is
a continuous function. Moreover, for any p1, p2 ∈ Rd we have |ĉ(p2) − ĉ(p1)| ≤ ‖p2 − p1‖,
hence the width function also satisfies the Lipschitz condition for K = 1.

Our weighting scheme can be directly applied to extracting backbone paths from Prms
that contain cycles, as suggested in [NKMO04, NO04b]. However, instead of weighting each
edge in the Prm by its Euclidean length and extracting the shortest path from the graph,
we can consider some preferred width value, and give each edge e the weight of L∗(e), with
respect to the bounded clearance measure of the edge. We can thus extract the optimal
corridor the Prm contains with respect to wmax. If the Prm is adequately sampled, this
corridor can serve as an approximation for the optimal corridor. However, for some sets of
obstacles we can actually devise a complete scheme for calculating an optimal corridor, as
we show in the next section. We conclude this section with two lemmas, which will be used
in the subsequent analysis and point out interesting properties of optimal corridors.

Lemma 6.2 Given a set of obstacles and wmax, the backbone path of the optimal corridor
connecting any given start position s and to any goal position g is smooth.

r

p∗

Proof: We have already observed that the width function of
the optimal corridor connecting s and g is the bounded clear-
ance function of the backbone path. Thus w(t) is a continuous
function and satisfies the Lipschitz condition. Assume that γ
contains a sharp turn (a C1-discontinuity). Let us approximate
the sharp turn using a circular arc of radius r that smoothly
connects to the original path. As illustrated in the figure on the
right, as r approaches 0 the approximation is tighter. Let `1 be the length of the original
path segment we approximate and let `2 be the length of the circular arc. It is easy to show
that there exists r̂ > 0 and some constants A1 > A2 > 0 such that for each 0 < r < r̂ we
have `1 ≥ A1r and `2 = A2r. If the maximal width w∗ along the original path segment is
obtained at some point p∗, then as the distance of any point p along the circular arc from p∗

is bounded by Kr, where K is some constant, and as the width function is 1-Lipschitz, we
can write w∗ − w(p) < Kr. Let L∗

1 be the weighted length of the original path segment and
let L∗

2 be the weighted length of the circular arc. We therefore know that:

L∗
1 ≥

wmax

w∗ l1 , L∗
2 ≤

wmax

w∗ −Krl2 ,

so we can write:

L∗
1

L∗
2

≥
wmax

w∗
l1

wmax

w∗−Kr l2
≥ w∗ −Kr

w∗ · A1

A2
.

As A1 > A2, we can choose 0 < r < min
{
w∗

K

(

1− A2

A1

)

, r̂
}

such that the entire expression

above is greater than 1. We thus have L∗
1 > L∗

2, and we managed to decrease the weighted

116 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

(x, 0)

α1

α2

p1 = (x1, y1)

p2 = (x2, y2)

y = 0

w1

w2

Figure 6.1: Refraction of the optimal backbone in case of a discontinuity in the width function.

length of the corridor, in contradiction to its optimality. We conclude that γ(t) must be a
smooth function. 2

At several places in this chapter we apply infinitesimal analysis, where we assume that
the bounded clearance measure (hence the width function) is not continuous. Assume that
we have some hyperplane H in Rd that separates two regions, such that in one region the
bounded clearance is w1 and in the second it is w2. Minimizing the weighted length between
two endpoints that are separated by H is equivalent to applying Fermat’s principle, stating
that the actual path between two points taken by a beam of light is the one which is traversed
in the least time. The optimal backbone thus crosses the separating hyperplane once, such
that the angles α1 and α2 it forms with the normal to H obey Snell’s Law of refraction,1

with w1 and w2 playing the role of the “speed of light” in the respective regions. We next
bring the proof for the two-dimensional case:

Lemma 6.3 (Snell’s Law of Refraction) Consider the example depicted in Figure 6.1,
where we have two regions separated by the line y = 0, such that if our path is given by
γ(t) = (x(t), y(t)), then w(t) = w1 for y(t) ≥ 0 and w(t) = w2 for y(t) < 0. The angles
α1 and α2 that the backbone of the optimal corridor between p1 = (x1, y1) and p2 = (x2, y2),
where y1 > 0 and y2 < 0, forms with a vertical line perpendicular to y = 0 satisfy:

w2 sinα1 = w1 sinα2 . (6.2)

Proof: It is clear that while the width of the corridor remains constant when moving
inside either one of the regions, the optimal backbone path in each region is a line segment.
Thus, we have to find a cross point (x, 0) minimizing the weighted length, as defined by
Equation (6.1), which is in our case given by the following function of x:

L∗(x) =
wmax

w1

√

(x− x1)2 + y2
1 +

wmax

w2

√

(x2 − x)2 + y2
2 . (6.3)

We therefore derive the weighted length function and obtain:

L∗′(x) =
wmax

w1
· 2(x− x1)

2
√

(x− x1)2 + y2
1

− wmax

w2
· 2(x2 − x)
2
√

(x2 − x)2 + y2
2

. (6.4)

1See also Mitchell and Papadimitriou [MP91], who used this observation in a similar setting of the
problem.

6.2. Optimal Corridors amidst Point Obstacles 117

To find the minimal weighted length we need an x value such that L∗′(x) = 0, thus we get:

1

w1
· x− x1
√

(x− x1)2 + y2
1

=
1

w2
· x2 − x
√

(x2 − x)2 + y2
2

,

w2 ·
x−x1

y1
√
(
x−x1

y1

)2

+ 1

= w1 ·
x2−x
y2

√
(
x2−x
y2

)2

+ 1

.

However, tanα1 = x−x1

y1
and tanα2 = x2−x

y2
. As for any angle ϕ we can write tanϕ√

tan2 ϕ+1
=

tanϕ · cosϕ = sinϕ, we obtain that w2 sinα1 = w1 sinα2. 2

6.2 Optimal Corridors amidst Point Obstacles

In this section we consider planar environments cluttered with point obstacles p1, . . . , pn ∈
R2. Given two endpoints s, g ∈ R2 and a preferred corridor width wmax, we show how to
compute a (near-)optimal corridor that connects s and g.

6.2.1 A Single Point Obstacle

Let us assume we have a single point obstacle p. Without loss of generality we assume p is
located at the origin. We start with computing an optimal corridor between two endpoints
whose distance from p is smaller than or equal to wmax. Note that the width of such a
corridor at γ(t) along its backbone is c(γ(t)) = ‖γ(t)‖.

A

B

α1

α2

β1

p = (0, 0)

We first approximate the optimal backbone by a
polyline: for some small ∆r > 0, if we look at the cir-
cles of radii ∆r, 2∆r, 3∆r, . . . that are centered at the
origin. Each pair of neighboring circles define an an-
nulus. Since ∆r is small we assume that the distance
from p of all points in the kth annulus is constant
and equals k∆r. Consider the scenario depicted to
the right, where γ enters one of the annuli at some
point A, where ‖A‖ = r1, and leaves this annulus
at B, where ‖B‖ = r2 = r1 + ∆r. The angles that
the backbone path forms with pA and pB are α1 and
β1, respectively. When entering the annulus we have
w1 = r1 and w2 = r2, so applying Equation (6.2) we
can express the refracted angle α2, using:

sinα2 =
r2
r1

sinα1 .

118 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

By applying the Law of Sines on the triangle 4pAB, we get:

r2
sin(π − α2)

=
r1

sin β1

,

sin β1 =
r1
r2

sin(π − α2) =
r1
r2

sinα2 = sinα1 .

As both angles are less than π
2
, we conclude that β1 = α1. Taking ∆r −→ 0, we obtain

a smooth curve γ, such that the angle that ∇γ(t) forms with
−−−→
pγ(t) is a constant ψ. It is

possible to show that a curve that has this property must be a segment of a logarithmic
spiral (also named an equiangular spiral)2 whose polar equation is given by r(t) = aebθ(t),
where a is a constant and b = cotψ. See, e.g., [Gra97] for a proof of this latter fact.

Proposition 6.4 Given a single point obstacle located at the origin, a start position s =
rse

iθs and a goal position g = rge
iθg (in polar coordinates), where rs, rg ≤ wmax, the backbone

of the optimal corridor connecting s and g is a spiral arc supported by a logarithmic spiral
r = a∗eb

∗θ. Since both s and g lie on this spiral, we have (assuming θs 6= θg, otherwise the
optimal backbone path is simply a line segment):

a∗ = rg
θs

θs−θg · rs−
θg

θs−θg , (6.5)

b∗ =
1

θg − θs
· ln rg

rs
. (6.6)

p
s

s′

s∗

wmax

g
g′

g∗
We now consider the case where the clearance of the two end-

points exceeds wmax, namely the two endpoints of our path lie
outside the closure of the disc Bwmax(p). There are two possi-
ble scenarios: (i) The straight line segment sg does not intersect
Bwmax(p); in this case, this segment is the backbone of the opti-
mal corridor. (ii) sg intersects Bwmax(p). In this latter case the
optimal backbone path is a bit more involved. Consider some
backbone path γ connecting s and g. It is clear that the intersec-
tion of γ with Bwmax(p) comprises a single component (otherwise we have a segment of the
backbone path lying outside the circle, which we can shortcut be traversing the circular arc
that connects its endpoints), so we denote the point where the path enters the disc by s′ and
the point where it leaves the disc by g′ (see the illustration to the right). As s′ and g′ lie on
the disc boundary, their polar representation is s′ = wmaxe

iθs′ and g′ = wmaxe
iθg′ , so we use

Equations (6.5) and (6.6) and obtain that a∗ = wmax and b∗ = 0. The optimal path between
s′ and g′ therefore lies on the degenerate spiral r = wmax, namely the circle that forms the
boundary of Bwmax(p). We conclude that the optimal backbone path between s and g must
contain a circular arc on the boundary of Bwmax(p). As according to Lemma 6.2 this path
must be smooth, it should comprise two line segments ss∗ and g∗g that are tangent to the
disc and a circular arc that connects the two tangency points s∗ and g∗ (see the dashed
path in the figure above). Note that as there are two possible tangents emanating from each
endpoint, we should consider the four possible paths and select the shortest one.

2See, e.g., 〈http://www-groups.dcs.st-and.ac.uk/∼history/Curves/Equiangular.html〉 for more
details.

6.2. Optimal Corridors amidst Point Obstacles 119

6.2.2 Multiple Well-Separated Point Obstacles

Let us now go back to our original setting, where we are given a set of n point obstacles O =
{p1, . . . , pn}, along with a preferred width wmax, and wish to compute the optimal corridor
from s to g, where we assume that c(s) = mini ‖s− pi‖ ≥ wmax and c(g) = mini ‖g − pi‖ ≥
wmax.

In case the points are well separated — that is, for each i 6= j the discs Bwmax(pi)
and Bwmax(pj) are disjoint in their interiors (implying that ‖pi − pj‖ ≥ 2wmax for each
1 ≤ i < j ≤ n), we can follow the same arguments we used above for a single obstacle and
conclude that the optimal backbone is either the straight line segment sg (in case it is free,
namely its interior does not intersect the interior of any of the discs), or it comprises circular
arcs and line segments that connect them.

We can therefore construct the visibility graph of the dilated obstacles (namely, the
obstacles offset by radius wmax) and use it to construct optimal paths. The vertices of this
graph are the endpoints of the free bitangents to two dilated obstacles, which in turn are
represented as graph edges. In addition, each pair of neighboring tangency points on a
disc Bwmax(pi) are connected by a circular arc. This visibility graph can be constructed in
O(n logn+ E) time, where E is the number of visibility edges in the graph [PV96].

Given a path-planning query, namely two endpoints s and g, we first check if the straight
line segment sg is free. If it is, it should serve as the backbone of the corridor connecting s
and g. Otherwise, we treat s and g as graph vertices and add all free tangents from s and
from g to the discs as graph edges. We then perform Dijkstra’s algorithm from s to find a
shortest path to g in the resulting graph. Dijkstra’s algorithm minimizes the length of the
path according to some weight measure ω(e) we define for each graph edge e, and in our case
we define ω(e) to be the weighted length of e. Note that all edges in the graph represent line
segments or circular arcs that have clearance of at least wmax, so ω(e) is simply the length
of the curve associated with e.

Proposition 6.5 Given a set O of n point obstacles in the plane that are well-separated
with respect to wmax, and two endpoints s and g with clearance at least wmax, it is possible
to compute the optimal corridor connecting s and g in O(E logn) time using the visibility
graph of the dilated obstacles, where E is the number of visibility edges in this graph.

6.2.3 Corridors amidst Point Obstacles: The General Case

The Bounded Voronoi Diagram

In case the endpoints s and g have arbitrary clearance, and the dilated obstacles
Bwmax(p1), . . . , Bwmax(pn) are not necessarily pairwise disjoint in their interiors, let us consider
M =

⋃n
i=1Bwmax(pi). The boundary of M comprises whole circles and circular arcs, such

that a common endpoint of two arcs is a reflex vertex. We now construct V, the Voronoi
diagram of the points, and compute the intersection V ∩ M, namely the portions of the
Voronoi edges contained within the union of the dilated obstacles. Note that reflex vertices
are equidistant to two point obstacles, so they serve as the connection points between the

120 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

p1

v

p2

p4

p5

p6

p3

Figure 6.2: The bounded Voronoi diagram of six points. The boundary ofM, the union of the dilated

point obstacles, is drawn is solid lines. The Voronoi edges are dotted.

Voronoi edges and the boundary arcs ofM; see Figure 6.2 for an illustration. The Voronoi
edges, together with the arcs that form the boundary ofM, constitute the bounded Voronoi
diagram of the point set O = {p1, . . . , pn}, which we denote by V̂(O).

Note that V̂(O) partitions the plane into two-dimensional cells of two types: bounded
Voronoi regions of the point obstacles, and regions where the clearance is larger than wmax.
Given two points s′ and g′ that belong to the same cell ζ , we know that:

• If ζ is a cell whose clearance is greater than wmax, the optimal backbone path between
s′ = (x1, y1) and g′ = (x2, y2) is the straight line segment σ that connects them,
provided that σ does not intersect any feature of V̂(O). The weighted length of this
segment simply equals the Euclidean distance:

L∗(σ) = ‖g′ − s′‖ =
√

(x2 − x1)2 + (y2 − y1)2 . (6.7)

• If ζ is a bounded Voronoi cell of a point obstacle pi, the optimal backbone path between
s′ and g′ is a spiral arc σ centered at pi, provided that a does not intersect any feature
of V̂(O). If s′ = r1e

iθ1 and g′ = r2e
iθ2 are the polar coordinates of the endpoints with

respect to pi, the weighted length of a is given by (recall that from Equation (6.6) we
have b = 1

θ2−θ1 · ln
r2
r1

):

L∗(σ) =

∫ θ2

θ1

wmax

r(θ)

√

r2(θ) +
(dr

dθ

)2
(θ) dθ =

∫ θ2

θ1

wmax

aebθ

√
1 + b2aebθ dθ =

=

∫ θ2

θ1

wmax

√
1 + b2 dθ = wmax

√
1 + b2(θ2 − θ1) =

= wmax

√

(θ2 − θ1)2 + (ln r2 − ln r1)2 . (6.8)

We characterized the optimal backbone paths in each two-dimensional cell of V̂(O). Let
us examine the other features of the diagram. It is not difficult to see that the edges of
V̂(O) are locally optimal, namely they can serve as backbone paths of optimal corridors (see

6.2. Optimal Corridors amidst Point Obstacles 121

Figure 6.3(a)). We already know that portions of the circular arcs that form the boundary
ofM are locally optimal, and that the weighted length of such a circular arc simply equals
its length. The Voronoi edges are also locally optimal: given s′ and g′ on the same Voronoi
edge, the optimal backbone path that connects them is simply the straight line segment s′g′

which coincides with the Voronoi edge.

Following the construction of the visibility graph of the dilated point obstacles (Sec-
tion 6.2.2), it is possible to add visibility edges to the bounded Voronoi diagram, namely
to consider every free bitangent of two circular arcs, every free line segment from a reflex
vertex tangent to a circular arc and every free line segment between two reflex vertices. The
resulting construct is the visibility–Voronoi diagram of the point obstacles for a clearance
value wmax; compare with the construction for polygonal obstacles presented in Section 5.2.
However, a path extracted from the VV(wmax)-diagram may pass through Voronoi vertices
and reflex vertices, thus it may contain sharp turns. According to Lemma 6.2, such a path
cannot serve as a backbone to an optimal corridor.

One may try to rectify this problem by adding edges to the VV(wmax)-diagram that allow
smooth shortcuts and avoid the sharp turns. We introduce such a shortcut edge between
each pair of Voronoi edges that are incident to a common Voronoi vertex. Similarly, we
introduce a shortcut edge between each pair consisting of a Voronoi edge and a visibility
edge that are both incident to a common reflex vertex, moving the visibility edge so it would
be tangent to one of the endpoints of this arc.

Let us consider two Voronoi chains that are incident to a common Voronoi vertex v. One
of the chains separates the Voronoi cell of some point obstacle p from the cell of another
point p′, while the other chain separates the cells of p and p′′. We form the shortcut by
penetrating the Voronoi cell of p. Note that all points in this cell are closer to p than to
any other point obstacle, so it is possible to view p as a single obstacle. As we have shown
in Section 6.2.1, in this scenario the shortcut curve must be an arc of a logarithmic spiral
centered at p. We next explain how to compute the endpoints of this arc and deduce the
parameterization of the spiral.

v = (0, 0)

∆θ

ψ

q′2

ψ

p = (0, h)

q1

q2

y =
m

1x

q′1

y
=

m
2
x

Without loss of generality, we assume that the Voronoi
vertex v is located at the origin and that the obstacle
inducing the Voronoi cell is p = (0, h) (we can always
apply a rigid transformation such that this assumption
holds). The two Voronoi chains χ1 and χ2 incident to v are
supported by the lines y = m1x and y = m2x, respectively.
Note that h, m1 and m2 are known constants; see the
figure to the right for an illustration. The angle]q1vq2 is

also known and equals
(

arctan m1−m2

1+m1m2

)

. We look for two

points q1 = (x1, m1x1) and q2 = (x2, m2x2) that form the endpoints of the logarithmic spiral.
In a polar coordinate system whose origin is p, we denote the coordinates of these points as
q1 = r1e

iθ1 and q2 = r2e
iθ2 .

First note that the angle that χ1 forms with ~q1p and the angle that χ2 forms with ~q2p
are equal, and we denote them by ψ. Let q′1 and q′2 be two points on χ1 and χ2 respectively,

such that ~q′ip is perpendicular to χi. We thus have 4pq1q′1 ∼ 4pq2q′2, and as the length of

122 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

~q′ip equals the distance of the point p from the line y = mix, we can write:

r2
r1

=
‖q2 − p‖
‖q1 − p‖

=
‖q′2 − p‖
‖q′1 − p‖

=

∣
∣
∣
∣

m2

m1

∣
∣
∣
∣
·
√

1 +m2
1

1 +m2
2

.

Note that as]pq1v +]pq2v = ψ + (π − ψ) = π, and since the sum of the angles in the
quadrangle 2pq1vq2 is 2π, then]q1pq2 = π −]q1vq2. Note that ∆θ = θ2 − θ1, and as both
q1 and q2 lie on the logarithmic spiral r = aebθ, we can write:

r2
r1

=
aebθ2

aebθ1
= eb∆θ ,

b =
1

∆θ
· ln r2

r1
. (6.9)

As the angle that y = mix forms with the x-axis is (arctanmi) and the angle between

~qip and the x-axis is
(

arctan mixi−h
xi

)

, we can express ψ as follows (for i ∈ 1, 2):

tanψ =

mixi−h
xi
−mi

1 + mixi−h
xi

mi

=
−h

(1 +m2
i)xi −mih

.

However, b is known from Equation (6.9) and equals cot(π − ψ) = − 1
tan ψ

. We can thus
compute x1 and x2 simply by solving the linear equations:

b =
1 +m2

i

h
· xi −mi (i ∈ 1, 2) .

Computing the shortcut arcs for reflex vertices is similar. In this case we look for a
point q′ on the boundary of Bwmax(p) where the spiral arc that shortcuts the reflex vertex
smoothly connects to the visibility segment; the visibility segment is also modified as q′ now
becomes its endpoint, instead of the reflex vertex. However, introducing shortcuts for a
single Voronoi vertex or for a single reflex vertex is not sufficient. We can show, for instance,
that it is sometimes possible to shortcut two Voronoi vertices v1 and v2 at once by connecting
two Voronoi edges that are separated by another edge using a single curve. This curve may
be contained in a single Voronoi cell, as in the example depicted in Figure 6.3(b) (compare
it to the case depicted in Figure 6.3(a)), or it may cross the Voronoi edge v1v2 at some point
q′ (see Figure 6.3(c)).

We should therefore continue and examine the possibility of shortcutting k > 2 Voronoi
vertices by considering sequences of (k+1) contiguous Voronoi edges and trying to locate an
endpoint q1 on the first edge and q2 on the last edge that are connected by a smooth curve
that comprises spiral arcs. This operation is not trivial, and requires solving a system of
low-degree polynomial equations with 2(c+1) unknowns, where c is the number of crossings
between the shortcut curve and the Voronoi diagram. In some scenarios it may be possible
to construct shortcuts to Θ(n) Voronoi vertices by considering sequences of Θ(n) contiguous
Voronoi edges, thus the size of the augmented diagram may blow up exponentially.

6.2. Optimal Corridors amidst Point Obstacles 123

v2v1

ψ1

p

ψ1
ψ2

ψ2
q2

q1

q1

q2

p

ψ

v1

v2

ψ

∆θ

q1

q′

q2

v2

p1

p2

y = αx+
β

v1

(a) (b) (c)

Figure 6.3: (a) The spiral arc connecting q1 and q2 (dashed) crosses the Voronoi edge v1v2; the

optimal backbone path between q1 and q2 therefore comprises two spiral arcs that shortcut v1 and v2
(solid arrows) and portions of Voronoi edges. (b) Shortcutting two adjacent Voronoi vertices v1 and

v2 by a single spiral arc. Computing the spiral shortcut in this case is very similar to shortcutting a

single vertex; the only difference is that we consider the pentagon pq1v1v2q2 and therefore]q1pq2 =

2π − (]q1v1v2 +]v1v2q2). (c) Shortcutting two Voronoi vertices by a cross-cell curve obtained by a

smooth concatenation of two spiral arcs. Both arcs have a common tangent y = αx+ b, which crosses

the Voronoi edge v1v2 at q′.

An ε-Approximation Algorithm for Optimal Backbone Paths

We therefore devise an approximation algorithm based on the structure of the bounded
Voronoi diagram V̂(O) and the planar partition it induces. Given ε > 0, we subdivide the
line segments and the circular arcs that form the features of V̂(O) into small intervals of

length c(I)
wmax

ε: as ε is small, we consider the clearance of an interval I to be constant and
denote it by c(I). Notice that (i) the intervals are shorter in regions where the clearance is
smaller, and (ii) that each interval has weighted length ε. It follows that if Λ is the total
weighted length of the features of V̂(O), then there are Λ

ε
intervals in total. Let us now

define a graph D whose set of nodes equals the set of intervals I. Each interval is incident
to two of the cells defined by the bounded Voronoi diagram, and we connect I1, I2 ∈ I by
an edge only if they are incident to a common cell. This edge is:

• a line segment in a cell where the clearance is larger than wmax,

• a spiral segment in a Voronoi region of one of the point obstacles,

• a circular arc on the boundary of a dilated obstacle, or

• a straight line segment on a Voronoi edge.

In addition, an edge should not cross any of the features of V̂(O). Using a brute-force
algorithm that checks each candidate edge versus the O(n) diagram features, D can be

constructed in O
(

Λ2

ε2
n
)

time.

Given two endpoints s and g, we can connect them to the graph and use Dijkstra’s

algorithm to compute a near-optimal backbone connecting s and g in O
(

Λ2

ε2

)

time. Let γ∗

124 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

be the backbone path of the optimal corridor between s and g. We can subdivide the path
into k maximal segments γ1, . . . , γk, such that the interior of each path segment is contained
in a single cell of the bounded Voronoi diagram, or overlap an edge of V̂(O) (a maximal
path segment may thus be a straight line segment, a spiral arc, a portion of a circular arc
or a portion of a Voronoi edge). We next show that k = O(n) and that each such segment
is approximated by an edge in the graph D we have constructed.

Lemma 6.6 An optimal path γ∗ consists of O(n) maximal segments.

Proof: We have already seen that the edges of the bounded Voronoi diagram are locally
optimal paths. Hence, if there are two points on an edge of V̂(O) belonging to γ∗, these
points are connected by a portion of the diagram edge. For each edge e in V̂(O), one of the
following holds:

• The optimal path γ∗ does not intersect e at all, or

• γ∗ crosses e exactly once, or

• γ∗ contains one continuous portion of e, and this portion is adjacent to two path
segments that do not lie on V̂(O).

At the same time, the endpoints of a maximal path segment whose interior does not lie on
the bounded Voronoi diagram must coincide with V̂(O), as they are cross points between
two diagram cells.

As the complexity of V̂(O) is linear in the number of point obstacles n, the complexity
of γ∗ is O(n) as well. 2

Lemma 6.7 For each maximal segment γi of the optimal backbone path γ∗, there exists an
edge e in D such that L∗(e) < L∗(γi) + 2ε.

Proof: Let us denote the endpoints of the path segment γi by q1 and q2, and let I1 and I2
be the intervals that contain these endpoints, respectively.

In case γi is a straight line segment in a cell ζ whose clearance is greater than wmax, then
its weighted length is ‖q2 − q1‖, the Euclidean distance between its endpoints. In the graph
D there exists an edge connecting I1 and I2, and we denote its endpoints by q̃1 and q̃2. By
the construction of the intervals, we know that ‖qj − q̃j‖ ≤ c(Ij)

wmax
ε = ε (for j = 1, 2), hence:

‖q̃2 − q̃1‖ < ‖q2 − q1‖+ 2ε .

Similar arguments hold when γi is a circular arc with clearance wmax.

In case γi is a segment on a Voronoi edge, the graph D contains a segment q̃1q̃2 that in
the worst case extends c(q1)

wmax
ε to one side of q1 and c(q2)

wmax
ε to the other side of q2. Since the

contribution of each of these extensions is wmax

c(qj)
times its length (for j = 1, 2), the weighted

length of q̃1q̃2 is at most 2ε more than L∗(γi).

6.3. Optimal Corridors amidst Polygonal Obstacles 125

In case that γi is a spiral arc contained in a Voronoi cell of a point obstacle pi, let us
denote by γ̃i the spiral arc connecting the intervals I1 and I2 in D, which is the optimal path
connecting two endpoints q̃1 ∈ I1 and q̃2 ∈ I2. In particular, the weighted length of γ̃i is less
than the weighted length of the path comprising the line segment q̃1q1, the spiral arc γi, and
the line segment q2q̃2. We therefore obtain:

L∗(γ̃i) < L∗(q̃1q1) + L∗(γi) + L∗(q2q̃2)

≤ wmax

c(I1)
· ‖q̃1 − q1‖+ L∗(γi) +

wmax

c(I2)
· ‖q2 − q̃2‖ ≤ L∗(γi) + 2ε .

The length of the approximated spiral arc contained in D can therefore be at most L∗(γi)+2ε.
2

As two consecutive segments γi and γj of the optimal path both have an endpoint in a
common interval, we know that the edges from D approximating γi and γj are connected
in a common vertex of D. Hence, the sequence of edges approximating each of the optimal
path segments form a continuous path γ̃. This path is near-optimal:

Corollary 6.8 Given two endpoints s and g, it is possible to use the graph D and compute

a near-optimal backbone path γ̃ connecting s and g in Õ
(

Λ2

ε2

)

time,3 such that L∗(γ̃) <

L∗(γ∗) +O(n)ε.

Alternatively, we can choose the length of the intervals to be c(I)
wmax

· ε
n
. In this case, a

near-optimal backbone path γ̃ can be found in Õ
(

Λ2

ε2
n2
)

time, such that L∗(γ̃) < L∗(γ∗)+2ε.

6.3 Optimal Corridors amidst Polygonal Obstacles

In this section we generalize the data structures introduced in Section 6.2 to compute optimal
corridors amidst polygonal obstacles.

6.3.1 Moving Near a Single Polygon

As we did in the case of point obstacles, we first examine how an optimal backbone path
looks like in the vicinity of a single obstacle. Note that a polygon P can be viewed as a
collection of points (vertices) and line segments (edges), such that the distance of a point
q ∈ R2 to P is either attained on a polygon vertex or in the interior of an edge. We can
thus subdivide the plane into regions, such that the closest polygon feature is the same for
all points in any of the regions. Using the analysis we performed in Section 6.2.1 we already
know that the optimal backbone path in a region closest to a polygon vertex is an arc of
a logarithmic spiral. We now study the case of two points that lie in a region closest to a
polygon edge.

3We use the Õ-notation as we neglect poly-logarithmic factors.

126 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

C

p0 = (x0, 0)

α2

α3

α1
α0

x
=

0

∆y2

∆y3

∆y1

Without loss of generality, we shall assume that the polygon
edge we consider is an arbitrarily long segment of the vertical
line x = 0, and analyze the optimal backbone path γ between two
points s and g, whose distance from this line is less than wmax (see
the figure to the right for an illustration). Note that the width of
the corridor at γ(t) = (x(t), y(t)) simply equals |x(t)|. We begin
by approximating the backbone path by a polyline. Assume that
γ(t) passes through a point p0 = (x0, 0) and forms an angle α0

with the line y = 0 perpendicular to the obstacle. For some
small ∆x > 0 we can define the lines x = x0, x = x0 + ∆x, x =
x0+2∆x, . . ., where each pair of neighboring lines define a vertical
slab; since ∆x is small we assume that the distance of all points
in the slab from the obstacle is constant and equals x0 + k∆x.
We can now use Equation (6.2) and write:

sinα1 =
x0 + ∆x

x0
sinα0 ,

sinα2 =
x0 + 2∆x

x0 + ∆x
sinα1 =

x0 + 2∆x

x0
sinα0 ,

...
...

sinαk =
x0 + k∆x

x0
sinα0 .

If we examine the kth slab we can write x = x0 + k∆x, so we have:

∆yk = ∆x tanαk = ∆x · sinαk
√

1− sin2 αk
= ∆x · x sinα0

√

x2
0 − x2 sin2 α0

. (6.10)

Letting ∆x tend to zero we obtain a smooth curve. We can use Equation (6.10) to express
the derivative of the curve and we obtain:

y′(x) = lim
∆x−→0

∆yk
∆x

=
x sinα0

√

x2
0 − x2 sin2 α0

, (6.11)

y(x) = − 1

sinα0

√

x2
0 − x2 sin2 α0 +K . (6.12)

As the point (x0, 0) lies on the curve we can express the constant K:

K = 0 +
1

sinα0

√

x2
0 − x2

0 sin2 α0 =

√

1− sin2 α0

sinα0
x0 = x0 cotα0

Observe that y(x) is defined only for x < x0

sinα0
. When x = x0

sinα0
the path is reflected from

the vertical wall and starts approaching the obstacle. Indeed, by squaring and re-arranging
Equation (6.12) we obtain:

x2 + (y − x0 cotα0)
2 =

(
x0

sinα0

)2

,

thus we conclude that γ is a circular arc, whose supporting circle is centered at C =
(0, x0 cotα0) and its radius is x0

sinα0
.

6.3. Optimal Corridors amidst Polygonal Obstacles 127

Proposition 6.9 Given a start position s = (xs, ys) and a goal position g = (xg, yg) in the
vicinity of a single segment obstacle supported by x = 0 and with 0 < xs, xg ≤ wmax, the
backbone of the optimal corridor between these two endpoints is a circular arc supported by
the a circle of radius r∗ that is centered at (0, y∗), where (we assume that ys 6= yg, otherwise
the optimal backbone path is simply the line segment sg):

y∗ =
ys + yg

2
+

x2
g − x2

s

2(yg − ys)
, (6.13)

r∗ =

√

1

2
(x2

s + x2
g) +

1

4
(yg − ys)2 +

(x2
g − x2

s)
2

4(yg − ys)2
. (6.14)

6.3.2 Moving amidst Multiple Polygons

We are given a set P = {P1, . . . , Pk} of polygonal obstacles having n vertices in total, along
with a preferred corridor width wmax.

We first mention that if the polygons are well-separated, namely the distance between
each Pi and Pj (1 ≤ i < j ≤ k) is more than 2wmax, we can use the visibility graph of
the dilated polygons to plan optimal backbone paths. The dilated obstacles in this case are
Minkowski sums of the polygonal obstacles with a disc of radius wmax and their boundary
comprises line segments, which correspond to dilated polygon edges, and circular arcs, which
correspond to dilated vertices. Visibility edges in this case correspond to line segments
tangent to two circular arcs. As the polygons may not be convex, computing the visibility
graph of the dilated obstacles may not be possible in an output-sensitive manner and requires
O(n2 log n) time. Proving that the visibility graph indeed contains optimal backbone paths
is done in exactly the same manner as we did in Section 6.2.2 for point obstacles.

In case there exist narrow passages between the obstacles, we generalize the construction
detailed in Section 6.2.3 to polygons, and introduce the bounded Voronoi diagram of the set
of polygons P. We note the following facts:

• The portions of the Voronoi diagram we consider comprise Voronoi chains that are
sequences of Voronoi edges (see also Section 5.1.2). A Voronoi edge may be induced
by two polygon vertices or by two polygon edges, in which case it is a line segment,
or by a polygon vertex and an edge of another polygon, in which case it is a parabolic
arc.

• As polygons in P need not be convex, the dilated obstacle boundaries may contain
reflex vertices induced by a single polygon, which are of no interest. We only need to
consider reflex vertices that are generated by the intersection of two (or more) dilated
obstacle boundaries. As in Section 5.2, we refer to such vertices as chain points.

• The bounded Voronoi diagram V̂(P) also contains edges that separate the Voronoi
cells of adjacent polygon features, namely a polygon edge and a vertex incident to this
edge. These edges are line segments perpendicular to the obstacles (see Figure 6.4 for
an illustration).

128 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

Observe that if we are given two points on the same Voronoi chain, then the locally
optimal backbone path between them is simply the segment of the chain they define. This is
clear in case of point obstacles, as the edges are straight line segments. In case of chains that
separate Voronoi cells of polygons and may contain parabolic arcs this fact is less obvious.
We therefore prove the following lemma:

Lemma 6.10 Parabolic arcs on a Voronoi chain are locally optimal.

Proof: To prove local optimality, we show that it is not possible to shortcut such an arc
segment defined by two points on the parabolic edges by choosing a shorter route that is
closer to one of the polygons, as such a route always has a larger weighted length.

p2p1

v

e

σ

τ

a

Consider a parabolic Voronoi arc a induced by a polygon
vertex v and an edge e of another polygon, and let p1 and p2

be two points on a. Assume that it is possible to shortcut
the portion of a defined by p1 and p2 by penetrating the
Voronoi cell of e. In this case, the shortcut is a circular arc
σ centered at some point on e; this arc clearly penetrates
the Voronoi cell of the vertex v, as can be seen in the illus-
tration to the right. On the other hand, if we try to create a
shortcut contained in the Voronoi cell of v, we end up with
a spiral arc τ centered at v. As p1 and p2 are equidistant
from v, τ is a circular arc, whose curvature is larger than
that of the parabolic edge, hence it penetrates the Voronoi cell of e. Either way, we reach a
contradiction, and we conclude that the parabolic arc is locally optimal. 2

Corollary 6.11 As all features of the bounded Voronoi diagram V̂(P) are locally optimal,
Lemma 6.6 also applies for optimal paths amidst polygonal obstacles. Namely, the complexity
of an optimal backbone path amidst polygonal obstacles is linear in the number of obstacle
vertices.

V̂(P) subdivides the plane into cells of three types: regions where the clearance is greater
than wmax, Voronoi cells of polygon vertices, and Voronoi cells of polygon edges. We have
already encountered cells of the first two types in the bounded Voronoi diagram of a set of
points (Section 6.2.3). We also know from Proposition 6.9 that if we have two points in the
Voronoi cell of a polygon edge, the optimal backbone path connecting them is a circular arc
whose center lies on this edge. Assume, without loss of generality, that the obstacle edge
lies on the line y = 0 and that the center of the circular arc a is the origin, and let r∗eiθ1

and r∗eiθ2 be the arc endpoints. The weighted length of the circular arc is therefore given
by (note that r(θ) = r∗):

L∗(a) =

∫ θ2

θ1

wmax

r∗ sin θ

√

r2(θ) +
(dr

dθ

)2
(θ) dθ =

∫ θ2

θ1

wmax

sin θ
dθ =

= wmax

(

ln
1− cos θ

sin θ

)∣
∣
∣
∣

θ2

θ1

= wmax

(

ln tan
θ2
2
− ln tan

θ1
2

)

. (6.15)

6.3. Optimal Corridors amidst Polygonal Obstacles 129

g s

wmax

(a) (b)

Figure 6.4: (a) A near-optimal backbone path (dashed) amidst polygonal obstacles, overlayed on top

of the bounded Voronoi diagram of the obstacles. Boundary edges are drawn in light solid lines, Voronoi

chains between polygons are dotted, and Voronoi edges that separate cells of adjacent polygon features

are drawn in a light dashed line. The bounded Voronoi diagram was computed using the software

described in Section 5.4. The backbone path was computed using an A∗ algorithm on a fine grid

discretizing the environment. (b) Zooming in on a portion of the path; note the shortcuts the path

takes.

(The last transition is due to the half-angle formula tan ϕ

2
= 1−cosϕ

sinϕ
.)

The approximation algorithm given in Section 6.2.3 can also be extended to handle
polygonal obstacles. In this case we refine the Voronoi cells according to the closest polygon
feature (vertex or edge), and accordingly we also consider intervals that lie on Voronoi edges
that subdivide the Voronoi cell of each polygon into simple regions. Each region is induced
by a polygon vertex, a polygon edge, or corresponds to regions where the clearance is above
wmax. However, such Voronoi edges have zero clearance in one of their endpoints, which would
make the intervals (which should be of length c(I)

wmax
ε), arbitrarily small as c(I) approaches

zero. In addition, Λ, the total weighted length of V̂(P), becomes infinity. This would render
the bounds of Corollary 6.8 useless. Fortunately, we can prove that the minimal clearance
attained on an optimal path γ∗ is never smaller than the minimal clearance attained at the
Voronoi chains of V̂(P) (which only contain Voronoi arcs induced by features of different
polygons). As a consequence, we only need to subdivide into intervals the portions of the
Voronoi edges of V̂(P) that have clearance larger than this minimum, and simply disregard
the portions that lie too close to the obstacles.

Lemma 6.12 The minimal clearance attained on an optimal backbone path γ∗ is greater
than (or equal to) the minimal clearance attained at the Voronoi chains of V̂(P).

Proof: First we observe that for each of the spiral segments and circular segments of the
optimal backbone path γ∗ (recall that such segments correspond to portions of the path
that are contained within a bounded Voronoi cell of a polygon vertex or a polygon edge)
the minimal clearance is attained at one of its endpoints. This means that a local minimum

130 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

along γ∗ is attained at a point where it crosses a feature of V̂(P), or where γ∗ consists of a
portion of a Voronoi chain.

p

ve

However, a local minimum of γ∗ cannot be attained at a Voronoi
edge separating two Voronoi cells of features of the same polygon.
Consider the scenario depicted to the right, and suppose that the
optimal path γ∗ goes through point p on a Voronoi edge separating a
Voronoi region of a vertex v and a Voronoi region of a polygon edge
e incident to this vertex. We assume, without loss of generality, that
e is supported by some horizontal line. If p is a local minimum of
γ∗ in terms of clearance, the path should not go closer to the polygon than the dotted curve
in the vicinity of p. As we know that γ∗ is smooth, it has a well-defined slope at p. This
slope should be strictly negative, otherwise the circular segment of γ∗ on the left-hand side
of p goes below the dotted line. However, this means that the spiral segment of γ∗ on the
right-hand side of p will go below the dotted circular arc, whose slope at p is exactly zero.
Thus, p cannot be a local minimum of γ∗.

We conclude that local minima can only be attained at Voronoi chains, which separate
features of different polygons. The clearance attained along γ∗ is therefore never smaller
than the minimal clearance attained at the Voronoi chains of V̂(P). 2

We can show that Lemma 6.7 also applies for the circular arcs inside a Voronoi cell of
a polygon edge, using similar arguments to the ones we used in case of a spiral arc inside a
Voronoi cell of a point. Let γi be the circular arc contained in a Voronoi cell of a polygon
edge, and let γ̃i be the circular arc connecting the intervals I1 and I2 in D. If we denote the
endpoints of this latter arc by q̃1 ∈ I1 and q̃2 ∈ I2, we use the fact that L∗(γ̃i) is bounded
by the weighted length of the path comprising the line segment q̃1q1, the circular arc γi, and
the line segment q2q̃2, and conclude that L∗(γ̃i) < L∗(γi) + 2ε.

Corollary 6.13 Given a set of polygonal obstacles P having n vertices in total, where d is
the minimal distance between a pair of polygons in P (namely minP,Q∈P dist(P,Q)). Let Λ

be the total weighted length of the bounded Voronoi diagram V̂(P) with respect to a given
wmax value, ignoring portions of the diagram having clearance less than d

2
. Given ε > 0, we

can construct a graph D over the intervals of V̂(P) in O
(

Λ
2

ε2
n
)

time, such that for each pair

of endpoints s and g it is possible use D and compute a near-optimal backbone of a corridor
C connecting s and g. L∗(C) is at most O(n)ε more than the weighted length of the optimal
corridor connecting s and g.

6.4 Accounting for the Corridor Curvature

In some applications having a winding backbone path decreases the quality of the corridor. In
the group-motion application [KO04b], for example, when the entities move along a straight
line, they can all move at the maximal possible speed. Assume that the backbone path is a
circular arc and the corridor width is w, such that it is bounded by two concentric circular

6.4. Accounting for the Corridor Curvature 131

arcs. The entities moving along the outer arc in this case have to take a longer route, so
even if we let them move at maximal speed, the other entities have to move at a lower speed
and the time it takes the group to traverse such a path increases. Bounding the curvature is
also very important if we wish to consider kinematic and dynamic constraints of the moving
entity; see, e.g., [BK05, BL03] and the references therein.

6.4.1 Augmenting the Weighted-Length Measure

`i

αi

wi

C

ri = 1
κi

Assume that the backbone path γ is smooth and let κ(t)
be the curvature of γ at time t. We can subdivide the path
into infinitesimally small segments, such that the length
of the ith path segment is `i (with

∑

i `i = L), the width
of each segment, denoted wi, is assumed constant and the
curvature is also assumed constant and denoted by κi — see
the figure on the right for an illustration. Hence, each path
segment can be considered as a circular arc whose radius is
ri = 1

κi
and defined by the angle αi = `i

ri
. The length of the

outer boundary of the corridor along the ith path segment is given by αi(ri + wi), and we
can thus bound the length of each of the corridor boundary-curves by:

∑

i

αi(ri + wi) =
∑

i

`i
ri

(ri + wi) =
∑

i

`i +
∑

i

wi
ri
`i = L+

∑

i

wiκi`i .

We therefore wish to augment the weighted length function by adding penalty for the extra
length induced by the curvature of the backbone path, which is proportional to

∑

i wiκi`i.
However, as we can make our path segments infinitesimally small, and as γ is parameterized
by its length, we can simply redefine our weighted-length function for C = 〈γ(t), w(t), wmax〉
to be:

L∗
µ(C) =

∫

γ

(
wmax

w(t)

)d−1

dt+ µ

∫

γ

w(t)κ(t)dt , (6.16)

where 0 < µ ≤ 1 is the weight we give to the curvature measure.

θ

∇γ(t̂+)

θ

p = γ(t̂)
∇γ(t̂−)

r

We can also account for backbone paths that contain
sharp turns, and are only piecewise C1-continuous, thus
the curvature of γ is not defined at a finite number of
points. Let p = γ(t̂) be such a point, and let θ be the
angle between ∇γ(t̂−) and ∇γ(t̂+). Let us replace the
sharp turn with a circular arc a of a small radius r. The
arc is defined by the angle θ (see the illustration to the
right), so its length is θr (θ is of course measured in
radians). If r is small enough, we can assume that the
corridor has a fixed width wp = w(t̂) over the circular
arc, so we have:

lim
r→0

∫

a

w(t)κ(t)dt = lim
r→0

∫

a

wp
r
dt = lim

r→0
θr · wp

r
= θwp .

132 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

We can thus abuse the curvature-integral notation, as appears in Equation (6.16), and
account for sharp turns by adding the discrete weight as explained above. We note however
that backbone paths of optimal corridors with respect to the augmented weighed-length
measure, as defined in Equation (6.16), should be smooth and cannot contain sharp turns.
To see why, we can follow the proof of Lemma 6.2, and assume that we have an optimal
backbone path γ∗ that contains a sharp turn, defined by the angle θ. In the original proof we
show that it is always possible to shortcut the sharp turn by a circular arc that decreases the
weighted length of the path. While the original path makes a sharp turn of θ radians, the
shortcut also makes the same turn, but “spreads” it over the entire arc, which contains points
with less clearance. The curvature penalty we give the circular shortcut is thus smaller than
the penalty of the original path, so our circular shortcut decreases the augmented weighted
length of the path. We conclude that a sharp turn is not possible in an optimal corridor also
when we take the curvature into account.

6.4.2 Moving Amidst Well-Separated Obstacles

We are given a set P of obstacles (point obstacles or polygonal obstacles) in the plane, and
preferred width wmax, such that the obstacles of P are well-separated with respect to wmax.
Given two query points s, g ∈ R2 whose clearance value is at least wmax, we would like to
compute the backbone path connecting s and g that induces an optimal corridor with respect
to the augmented measure L∗

µ.

In Section 6.2.2 we showed that such an optimal path is contained in the visibility graph
of the dilated obstacles for the special case where µ = 0. We next show that the same holds
also for any 0 < µ ≤ 1. We do so by examining the various types of arcs that can comprise
a backbone path extracted from the visibility graph and show it is impossible to shortcut
them, namely to replace any of them by a different backbone curve having a smaller weighted
length. Recall that the path extracted from the visibility graph is smooth and contains line
segments and circular arcs. It is clear that it is impossible to shortcut the straight line
segments. We now show that it is also impossible to shortcut a circular arc in a manner that
reduces the augmented weighted length of the corridor.

α
2

a

α
2

α
2

wmax
p = (0, 0)

σ

α
2

Consider a circular arc a defined by an angle α that
lies on a dilated obstacle vertex p (we can consider point
obstacles as degenerate polygons having a single ver-
tex). Without loss of generality, we assume that p is
the origin and that both arc endpoints have the same y-
coordinate; see the figure to the right. We have already
mentioned that the backbone path lies at a distance
wmax from the closest obstacle, so we allow the corridor
to have maximal width along the arc. Since the arc has
constant curvature 1

wmax
, the contribution of the arc a to the weighted length of the path is

simply (1 + µ)αwmax.

Let us examine what happens if we try to shortcut the arc by moving on the straight line
segment σ connecting its two endpoints, which are (−wmax sin α

2
, wmax cos α

2
) and (wmax sin α

2
,

wmax cos α
2
). Note that we make two sharp turns of size α

2
each, so the curvature integral

6.4. Accounting for the Corridor Curvature 133

contributes µαwmax to the weighted length, as was the case with the original arc. Let us
consider the width integral — here the segment length is obviously shorter, but we have to
account for a smaller corridor width. Note that because of symmetry we can write:

∫

σ

wmax

w(t)
dt = 2

∫ wmax sin α
2

0

wmax
√
x2 + w2

max cos2 α
2

=

= 2wmax · ln
(

x+

√

x2 + w2
max cos2

α

2

)∣
∣
∣
∣

wmax sin α
2

0

=

= 2wmax · ln
1 + sin α

2

cos α
2

= 2wmax · ln
1− cos(α

2
+ π

2
)

sin(α
2

+ π
2
)

=

= 2wmax · ln
(

tan
(α

4
+
π

4

))

.

If we look at the function f(α) = wmax

(
2 ln tan(α

4
+ π

4
)− α

)
, which describes the difference

between the width integrals over σ and over a, we have f(0) = 0 and limα→π f(α) =∞ (note
that α can never reach π). At the same time:

1

wmax
· f ′(α) = 2 · 1

tan(α
4

+ π
4
)
· 1

cos2(α
4

+ π
4
)
· 1
4
− 1 =

=
1

2 sin(α
4

+ π
4
) cos(α

4
+ π

4
)
− 1 =

1

sin(α
2

+ π
2
)
− 1 .

Thus, f ′(α) = 0 only if α = 0, and f is positive for all 0 < α < π. We conclude that the
weighted length of σ is greater than the weighted length of a.

We can show that for every convex path a′ that shortcuts the arc a, the width integral over
a′ is larger than αwmax. This is done by approximating (with arbitrary precision) the curve
by a polyline and separately considering each of the line segments this polyline contains. We
conclude that selecting a shorter backbone path with less clearance will only decrease the
quality of the corridor.

α2

α′

2

α′

1

α1

C ′

C

At the same time, it is not recommended to take wider
turns. Consider the example depicted to the right, where the
corridor C ′ has a longer backbone path than the corridor C
extracted from the visibility graph of the dilated polygons. As
both corridors are of maximal width, it is clear that its width
integral is also larger. However, the curvature integral of each
the corridors is proportional the sum of the angles defining the
circular arcs, so it is obvious that the curvature integral of C ′

is larger than of C, as α′
1 + α′

2 > α1 + α2. It is therefore clear
that L∗

µ(C) < L∗
µ(C

′) for each 0 < µ ≤ 1.

♦ ♦
♦

In this chapter we have introduced a measure for the quality of corridors and studied the
structure of optimal corridors amidst point obstacles and polygonal obstacles in the plane.

134 Chapter 6. Planning Near-Optimal Corridors amidst Planar Obstacles

Our measure balances between the length and clearance of the backbone path of the corridor,
and we show that optimal paths with respect to our measure are always smooth. We have
also showed how the curvature of the backbone path can be taken into account. After
studying the structure of an optimal corridor with respect to our quality measure, we devised
an approximation algorithm for computing near-optimal corridors amidst obstacles, and
showed that extracting backbone paths from the visibility-Voronoi diagram is also a good
approximation strategy.

Chapter 7

Conclusions and Future Work

In this thesis we described how a complete and extendible implementation of planar ar-
rangements (and their sub-structures) is used to develop exact techniques and robust appli-
cations that give accurate solutions to problems arising in domains such as motion planning,
computer-aided design and solid modeling.

We now describe some future prospects, giving some insight to the future evolvement of
the arrangement package, and suggesting more applications that can be implemented on top
of the forthcoming infrastructure.

7.1 Handling Curves of a Higher Degree

The applications described in this thesis were mostly based on arrangements of curves with
algebraic degree 2 at most, using the segment-traits class, the circle/segment traits-class,
or the conic-traits class (see Section 2.3), which instantiates the arrangement template. We
next review additional traits classes that are under development and highlight some of their
applications.

7.1.1 A Filtered Traits-Class for Bézier Curves

An important family of planar curves that is extensively used in fields like computer graphics
and computer-aided design, is the family of Bézier curves. A planar Bézier curve B is a
parametric curve that is defined by a sequence of control points p0, . . . , pn as follows:

B(t) = (X(t), Y (t)) =

n∑

k=0

pk ·
n!

k!(n− k)! · t
k(1− t)n−k , t ∈ [0, 1] . (7.1)

The degree of the curve is therefore n — namely, X(t) and Y (t) are polynomials of degree
n. In case the control polygons have rational coordinates, then both these polynomials have
rational coefficients. In order to subdivide a Bézier curve into x-monotone subcurves, one
simply has to compute the solutions of X ′(t) = 0 that lie in the open interval (0, 1). As
X ′(t) has rational coefficients, its roots are obviously algebraic numbers. Moreover, if t0 is

135

136 Chapter 7. Conclusions and Future Work

such a root, substituting it into the curve equation results in a point B(t0) with algebraic
coefficients. That is, an x-monotone subcurve is defined by B(t) and by two algebraic
parameter values 0 ≤ t1 < t2 ≤ 1 that define its endpoints, which in turn have algebraic
coefficients.

The intersection of two Bézier curves B1(s) = (X1(s), Y1(s)) and B2(t) = (X2(t), Y2(t))
can be computed by solving the polynomial system:

{
X1(s) = X2(t)
Y1(s) = Y2(t)

.

This system of equations can be separately solved for s and for t using resultant calculus,
and the valid solutions are the parameter pairs 〈s, t〉 such that s ∈ [0, 1] and t ∈ [0, 1]. Once
again, as all the polynomials involved have rational coefficients, the parametric solutions are
algebraic numbers, and the intersection points all have algebraic coordinates.

It is therefore possible to implement an arrangement-traits class for Bézier curves that
uses exact algebraic computation employing the number-types supplied by the Core library
(or the Leda library), and to handle all inputs in a robust manner. The main drawback in
this approach is that the degree of the algebraic numbers involved can rapidly grow, yielding
prohibitive running times.

At the same time, industrial systems that handle Bézier curves usually use bisection
methods that are based on de Casteljau’s algorithm and utilize the geometric properties
of Bézier curves; see, e.g., [Pie93]. These methods are very fast and are especially suited
for machine-precision arithmetic, yet they are vulnerable to instabilities when the output is
degenerate or near-degenerate.

Our goal is to apply a geometric filtering scheme that combines these two approaches.
Thus, we compute vertical tangency points and intersection points based only on bisection
methods, employing interval arithmetic. As a result, each point of interest is bounded in
some small isolating box. Comparing two such points is trivial in case their isolating boxes
do not overlap. Otherwise, we can refine the approximation quality by performing additional
bisection steps, or — in case we reach the precision limits of the machine — resort to exact
computation. This approach can handle non-degenerate inputs very efficiently, and is robust
to degenerate inputs as well, where the more computationally demanding procedures have
to be employed.

The development of the Bézier curve traits-class is done jointly with Iddo Hanniel from
the Technion. A paper describing the techniques we used in more details [HW07] has been
recently accepted to ACM Solid and Physical Modeling Symposium (SPM’07). Our traits
class will also be included in the next public release of Cgal (Version 3.3). The traits
class also allows the application of Boolean operations on sets defined by Bézier splines,
namely smooth curves formed by sequences of low-degree Bézier curves (see, e.g., [CER01]).
Figure 7.1 shows the intersection of two general polygons whose boundaries are formed by
continuous sequences of Bézier curves. We also intend to continue our work and develop
traits classes for related families of curves, such as splines and rational Bézier curves, that
are used in various application domains.

7.2. Arrangements on Surfaces in 3D 137

Figure 7.1: Computing the intersection (shaded) of two Times New Roman characters. The boundary

of the letter R is modeled using 37 Bézier curves of degrees up to 6, while the boundary of the letter

W comprises 36 Bézier curves.

7.1.2 An Emerging Curved Kernel

As already mentioned in Section 2.3.3, traits classes for algebraic curves of degrees higher
than 2 — namely of curve of degree 3 [EKSW04], and special types of curves of degree
4 [BHK+05] — have already been implemented. In addition, there is an ongoing effort in
the Cgal community to design a concept of a curved kernel, which will supply primitive
operations on rational algebraic curves of arbitrary degree, as the current Cgal kernels
operate on linear objects. Models of the curved kernel will be parameterized with an algebraic
kernel, which provides some basic algebraic primitives (e.g., solving a system defined by
two bivariate polynomials) needed for implementing the geometric operations in the curved
kernel. The curved kernel is thus decoupled from the algebraic primitives and can operate
with various algebraic kernels, which in turn may employ different sets of algebraic tools.

An arrangement-traits class for handling algebraic curves, or segments of such curves,
will therefore be just a thin wrapper for the curved kernel functionality, once such a kernel is
introduced — as is currently the case for the segment-traits classes, which wrap the function-
ality of the linear kernel and adapt it to the interface required by the traits-class concepts.
A fundamental problem that can be solved in an exact manner using planar arrangements
of algebraic curves with rational coefficients is the motion-planning problem for a translat-
ing and rotating polygon amidst polygonal obstacles. The piano-movers’ algorithm [SS83a]
solves this motion-planning variant by considering the arrangement of a set of planar critical
curves, whose degree is bounded by 4 (see also Section 1.1.2). In Appendix A we revisit the
construction of these critical curves and apply some careful analysis to show that in case all
input polygons have rational coordinates, then all critical curves have rational coefficients.
This latter observation is crucial for a future implementation of the piano-movers’ algorithm
on top of the Cgal arrangement package.

7.2 Arrangements on Surfaces in 3D

So far we only discussed arrangements of bounded curves, which are usually sufficient for
many applications. However, in some cases it is necessary to consider arrangements of

138 Chapter 7. Conclusions and Future Work

unbounded curves. For example, the duality transform [CGL85] can be used for solving
various problems on point sets, by constructing lines dual to the input points and examining
the planar subdivision these dual lines induce on the plane.

We have recently enhanced the functionality of the Cgal arrangement package so it
can handle unbounded curves as well. This enhanced capability will be included in the
next public release of Cgal (version 3.3), which will also include a traits class for handling
arbitrary linear objects (lines, rays and line segments).

The important property of the framework we suggest for handling arrangements of un-
bounded curves is that it can be extended to handle the more generic case of a 2D arrange-
ment embedded on a surface. In Appendix B we explain how we extended the arrangement
package to support unbounded curves, and show how the design principles we have used can
be slightly adapted to allow the construction of arrangements on surfaces. The paradigm
described in Appendix B is based on ongoing work with Eric Berberich from Max-Planck
Institut für Informatik and with Efi Fogel from Tel-Aviv University. An extended abstract
describing our preliminary results appeared in [BFHW07], and a more elaborate version,
including some experimental results, is about to appear in [BFH+07].

Supporting arrangements on generic 3D surfaces opens the door for implementing a
multitude of new applications. Here we mention just a few:

• Fogel and Halperin [FH06] have recently implemented an efficient algorithm for com-
puting Minkowski sums of convex polyhedra in 3D. In their implementation, they
projected the normal diagrams of each polyhedron onto the cube [−1, 1]3, such that
the diagram is represented by six planar arrangements formed on the cube facets.
The Minkowski sum is computed by overlaying the six arrangement pairs. Having the
ability to construct a single arrangement on a sphere can simplify the computational
process and help achieving additional speedups.

• Computing arrangements of circles on a sphere is a fundamental tool for develop-
ing molecular modeling applications, where each sphere models and atom and the
circles correspond to intersection curves induced by pairs of atoms. Halperin and
Shelton [HS98] developed a perturbation scheme that enables the construction of such
arrangements using floating-point arithmetic. Their perturbation scheme works very
well when one considers the var der Waals radii of the atoms, such that the intersec-
tions induced by the spheres are very sparse. However, when computing the solvent-
accessible surface of a molecule, one typically needs to inflate each atom by the radius
of the solvent, making the intersections denser. In some cases it may be impossible to
devise a valid perturbation and one has to resort to exact computation. Cazals and
Loriot [CL06] have recently have recently developed a software package that computes
arrangements of circles on a sphere. However, their implementation is restricted to
the case of a spherical topology, and does not generalize to arbitrary surfaces as our
suggested framework.

• Arrangements on surfaces can serve as a convenient basis for a package that handles
arrangements of 3D surfaces. Imagine we are given a set S = {S1, . . . , Sn} of surfaces
in R3. We can consider each surface Sk separately and construct the arrangement Ak

7.2. Arrangements on Surfaces in 3D 139

(a) (b) (c)

Figure 7.2: Typical operations performed by constructive geometry modelers: (a) The

union of a cube and a sphere; (b) The set-difference between the cube and the sphere.

(c) The intersection of the two primitives. (This figure is taken from Wikipedia,

〈http://en.wikipedia.org/wiki/Constructive solid geometry〉.)

of all intersection curves it forms with other surfaces in the set. The arrangements
A1, . . . ,An can subsequently be connected together to properly represent the spatial
arrangement A(S). Similar to what was done for 2D set-operations, it will be possible
to provide a package that performs robust set-operations on general polyhedra in 3D,
namely sets whose boundaries comprise surface patches.

While there already exists a Cgal package that performs set-operations of 3D Nef
polyhedra [HK06], this package operates only on linear polyhedra whose facets are
planar patches defined by straight-line edges. Having the ability to represent arrange-
ment in 3D and to perform set-operations on general (curved) polyhedra is crucial for
giving an exact solution for many fundamental problems in fields like solid modeling
and motion planning.

◦ Computing the union of general polyhedra created by offsetting linear polyhedra,
is necessary for obtaining an exact representation of the forbidden configuration
space of a “free-flyer” sphere robot moving amidst polyhedral obstacles.

◦ As mentioned in Appendix B, we intend to provide traits classes that can han-
dle arrangements of quadric surfaces, based on the algebraic methods proposed
in [BHK+05]. Operating on general polyhedra whose faces are given as quadratic
surface patches plays an important role in constructive solid geometry,1 where
a complex surface or object is created by using Boolean operators to combine
objects, which may be complex themselves, or are some primitive solids, such as
boxes, spheres, cylinders and cones (see Figure 7.2 for an illustration). We note
that all the typical primitive solids are special cases of quadric surfaces. As con-
structive geometry models are mainly used in applications where mathematical
accuracy is important, it is highly desirable to be able to cope with such models
in an accurate manner.

1See, e.g., 〈http://en.wikipedia.org/wiki/Constructive solid geometry〉.

140 Chapter 7. Conclusions and Future Work

Appendix A

Revisiting the Critical Curves in the
Piano Movers’ Algorithm

In the early 1980’s, Schwartz and Sharir published a seminal series of articles proposing
complete solutions to several motion-planning problems. In the first article [SS83a], they
treated the problem of moving (translating and rotating) a line segment (a so-called “ladder”)
amidst polygonal obstacles, and of moving a polygonal robot amidst polygonal obstacles.
Both problems have three degrees of motion freedom. The “ladder” case is also discussed by
Latombe [Lat91] in a somewhat more intuitive manner.

The nice property of the piano-movers’ algorithm is that it enables solving the motion-
planning problem using only planar geometry, without the need to perform computations
in the three-dimensional configuration space. The availability of software tools for handling
planar geometry makes the algorithms more feasible to implement, in comparison to algo-
rithms that require computations in the (three dimensional) configuration space (see, e.g.,
the work of Avnaim et al. [ABF89]).

Both piano-movers’ algorithms are based on the definition of planar critical curves and
the ability to construct their arrangement, namely the subdivision into maximally-connected
components they induce on the planar workspace. Bañon [Bañ90] presented an implemen-
tation for the “ladder” algorithm. However, Bañon’s work uses floating-point arithmetic,
making the implementation inexact. Thus, it may fail to find a path if it involves going
through tight passages. If the input is not in general position and contains degeneracies, or
even if it is nearly degenerate, the output may be inconsistent or inaccurate.

Here we concentrate on the algebraic definition of the critical curves and strive to achieve
a compact representation for them. We give a detailed analysis of the critical curves in case of
a general polygonal robot, omitted from the publicly available version of the paper [SS83a].1

Our additional contribution is that we show that under the assumption that the input is
given as polygons with rational coordinates, it is possible to represent the critical curves as
algebraic curves with rational (or, equivalently, integer) coefficients. As the next releases of
Cgal will include an algebraic kernel that can serve as a basis for an arrangement-traits

1This analysis was previously done by Schwartz and Sharir, but its details can only be found in a technical
report [SS81] which is unfortunately not available in electronic form.

141

142 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

class for such algebraic curves with rational coefficients, our analysis paves the way for an
exact implementation of the piano-movers’ algorithm in the near future.

A.1 Motion Planning for a Ladder

The simplest form of a robot whose motion in the plane has three degrees of freedom is a line
segment pq (also called a “ladder”), which is free to translate and rotate. A configuration c
of the robot is given by 〈x, y, θ〉, where (x, y) is the location of p and θ is the angle between
the vector ~pq and the x-axis. A configuration c is called free if the ladder does not collide
with any of the obstacles when placed at c. If it just touches an obstacle when placed at c,
but does not penetrate any obstacle, c is called semi-free. If the robot placed at c penetrates
some obstacle, the configuration is called forbidden.

In addition, we are given a set of polygonal obstacles with a total number of n vertices.
Our goal is to preprocess the input scene, so we can answer motion-planning queries effi-
ciently: Given a start and a goal configuration (both are free configurations of course), we
should find collision-free motion path for the ladder, such that the robot does not penetrate
any of the obstacles when moving along this path, or determine that no such path exists.

The main idea in the piano-movers algorithm is to subdivide the plane into a finite number
of maximally connected cells, such that all points in the same cell share a combinatorial
property which we define next. This subdivision is realized as the arrangement of a set of
critical curves, defined by the set of configurations where a specific ladder feature (the vertex
q or the interior of the ladder) is in contact with a specific obstacle feature (a vertex or an
edge). Assume that we place the reference point p at (x0, y0). It is possible to subdivide
the range (−π, π] of possible orientations of the ladder into maximal sub-intervals, such that
each interval is either free, namely the ladder is disjoint from any obstacle, or forbidden, as
the the ladder penetrates one of the obstacles. In the latter case, we can label each boundary
of every free interval with an identifier of the obstacle feature that the ladder touches at this
configuration, such that the point (x0, y0) can be given a characteristic label, which is a set
of labels associated with its forbidden orientation intervals. The cells are constructed in a
way that guarantees that two points belonging to the same cell have the same characteristic
label. Thus, it is possible to give a characteristic label to the entire cell, and to construct
a graph that captures the connectivity of the free orientation intervals between neighboring
cells. The task of answering a motion-planning query is thus reduced to finding a path in
this connectivity graph.

We will assume that as an input we get a set of simple polygonal obstacles P1, . . . , Pk,
such that each polygon is given as a sequence of points with rational coordinates. The length
of the ladder, denoted by `, is also given as part of the input and we will also assume that
` ∈ Q.

We now define a set of critical curves. First, each obstacle edge defines a critical curve
which is a line segment. If an obstacle edge is defined by the endpoints v1 = (xv1 , yv1) and
v2 = (xv2 , yv2), then its supporting line is given by:

(yv1 − yv2)x+ (xv2 − xv1)y + (xv1yv2 − xv2yv1) = 0 , (A.1)

A.1. Motion Planning for a Ladder 143

and is therefore an algebraic curve of degree 1 with rational coefficients. In addition, five
types of critical curves are defined as follows (see Figure A.1):

Type I: For each obstacle edge E, the curve traced by p as q slides along E. This curve is
a line segment parallel to E and at distance ` from it.

Type II: For each obstacle vertex v, the curve traced by p as q touches v and the ladder
rotates around it. This curve is a circular arc centered at v and whose radius is `,
bounded by the two lines supporting the two obstacle edges that intersect at v.

Type III: For each obstacle edge E with a convex vertex v as its endpoint, the curve traced
by p as q slides from v along E. This curve is a line segment of length ` that lies on
the same line as E with v being its endpoint.

Type IV: For each pair of convex obstacle vertices v1 and v2 that are not two endpoints
of a common obstacle edge and such that d = ||v1 − v2|| < `, the curve traced by p as
the ladder slides while touching both vertices and initially q touches v1. This curve is
a line segment of length `− d that lies on the line connecting v1 and v2 with v2 as its
endpoint.

Type V: For each obstacle edge E and a vertex v that is not one of E’s endpoints and whose
distance d from E is less than `, the curve traced by p as q slides along E and the
interior of the ladder touches v. This curve is the loop of the conchoid of Nicomedes,
which is an algebraic curve of degree 4, as we will show in Section A.1.1.

We first mention that a critical curve of type I is a line segment parallel to an obstacle
edge that lies at a distance ` from this edge. As we show in Section 3.1.2, if the edge is
supported by the line ax + by + c = 0 (with a, b, c ∈ Q) we can formulate the locus of all
points at a distance ` from that line (recall that the signed distance of a point (x, y) from
the line ax+ by + c = 0 is given by ax+by+c√

a2+b2
):

(ax+ by + c)2

a2 + b2
= `2 . (A.2)

We can therefore represent a critical curve of type I as a segment of a degree 2 curve (a
line-pair) with rational coefficients. We stress that the endpoints of this segment do not
have rational coordinates in the general case.

A critical curve of type II is a circular arc of radius ` centered at an obstacle vertex
v = (xv, yv), and is therefore supported by a rational circle.

A critical curve of type III is a continuation of an obstacle edge and therefore lies on the
same supporting line as this edge. A curve of type IV lies on the straight line connecting
two obstacle vertices. In both cases, the supporting curve can be represented as a line with
rational coefficients.

144 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

E

γ(1)

`
v

`

γ(2)

E

v

` γ(3)

v2

v1

d

`

γ(4)

E
v

d
`

γ(5)

Figure A.1: The critical curves for translation and rotation of a ladder in the plane: γ(1), . . . , γ(5)

represent critical curves of types I–V, respectively.

A.1. Motion Planning for a Ladder 145

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������v = (0, 0)

p′
p

q′
q

E : ax
+ by + c = 0

Figure A.2: Analysis of a critical curve of type V.

A.1.1 Critical Curves of Type V

We wish to determine the locus of all points (x, y) where the ladder vertex p can be located,
such that its other vertex q touches the obstacle edge E, and the interior of the ladder
touches the convex obstacle vertex v. Let us assume for simplicity that v = (0, 0). Let
ax + by + c = 0 be the line supporting the edge E. If we denote the x-coordinate of q by
σ, we have q = (σ,−aσ+c

b
), assuming without loss of generality that b 6= 0 (otherwise we can

rotate the scene by π
2

and swap the roles of x and y).

The equation of the line perpendicular to E through the origin v is bx − ay = 0. Let
p′ and q′ be the projection of p and q onto this line, respectively (see Figure A.2 for an
illustration). We therefore have:

p′ =

(

−a(ax + by)

a2 + b2
, −b(ax + by)

a2 + b2

)

, q′ =

(

− ac

a2 + b2
, − bc

a2 + b2

)

.

The (signed) distances of these two points from the origin are given by:

‖p′‖ =

√

a2(ax+ by)2

(a2 + b2)2
+
b2(ax+ by)2

(a2 + b2)2
=

ax+ by√
a2 + b2

,

‖q′‖ =

√

a2c2

(a2 + b2)2
+

b2c2

(a2 + b2)2
=

c√
a2 + b2

.

We can also compute the (signed) distances of p and q from the line bx− ay = 0:

‖p− p′‖ =
bx− ay√
a2 + b2

,

‖q − q′‖ =
bσ + aaσ+c

b√
a2 + b2

=
(a2 + b2)σ + ac

b
√
a2 + b2

.

146 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

Now since the triangles 4vpp′ and 4vqq′ are similar, and since x and σ have opposite
signs, we have:

‖p− p′‖
‖p′‖ = −‖q − q

′‖
‖q′‖ . (A.3)

Substituting the expressions for these distances and reducing the
√
a2 + b2 factor, we obtain:

bx− ay
ax+ by

= −(a2 + b2)σ + ac

bc
,

(ax+ by)(a2 + b2)σ = (a2 + b2)cx ,

σ =
cx

ax+ by
. (A.4)

Having expressed σ in terms of x and y we can write the equation expressing the length
of the ladder (namely, ‖p− q‖2 = `2):

(x− σ)2 +

(

y +
aσ + c

b

)2

= `2 ,

b2
(

x− cx

ax+ by

)2

+

(

by +
cx

ax+ by
+ c

)2

= b2`2 ,

b2(ax2 + bxy − cx)2 + (abxy + b2y2 + 2acx+ bcy)2 = b2`2(ax+ by)2 . (A.5)

We found that the locus of p such that q touches E, and the interior of the ladder touches
v is an algebraic curve of degree 4. In case v is not located at the origin, but at (xv, yv),
one can simply substitute each x by (x− xv) and (y − yv) into the equation above, and the
degree of the curve remains unchanged. Finally, since xv, yv, a, b, c, ` ∈ Q, its is clear that
our curve has rational coefficients.

Our analysis generalizes the analysis given in [Lat91, SS83a], where E lies on the hori-
zontal line y = −d, where d is the distance between v and E.

Observation A.1 It is important to notice that in all cases, it is the squared length of the
ladder ` takes part in the definition of a critical curve (see equations (A.2) and (A.5) above).
It is therefore possible to relax the requirement that ` ∈ Q and instead assume that only `2

is rational.

A.2 Motion Planning for a General Polygon

The case of a general polygon which is free to translate and rotate amidst polygonal obstacles
is more complicated. However, the same notions and techniques developed for the case of a
ladder can be extended to deal with the general case.

As we did in the previous section, we assume that the obstacles are simple polygons, such
that all obstacle vertices have rational coordinates. In addition, we are given a polygonal
robot with m vertices, all of them having rational coordinates. One of the vertices will be
denoted p and serve as our reference point, while the other robot vertices will be denoted

A.2. Motion Planning for a General Polygon 147

p
L2

L3

L4 L5 L6

L7

L8

L9

L10L1

Figure A.3: The subdivision of a polygonal robot with 7 edges into 10 sub-edges with respect to the

reference vertex p.

q1, . . . , qm−1. A configuration c = 〈x, y, θ〉 of the polygonal robot defines its placement
uniquely, where the reference vertex p is located at (x, y) and θ is the angle the vector ~pq1
forms with the x-axis.

The robot has m edges, but in order to generalize the concept of a characteristic label for
a cell, as developed in the previous section, we have to subdivide some of these edges into
two sub-edges. A sub-edge2 is a maximal continuous portion of an edge not containing the
projection of the vertex p onto its supporting line in its interior. That is, for each edge qiqi+1

we draw a line perpendicular to the edge that passes through p. If this line intersects the
interior of the segment qiqi+1 (that is, if both angles]pqiqi+1 and]pqi+1qi are acute) we will
use this intersection point to subdivide the edge into two sub-edges. Otherwise, the edge
remains undivided and induces a single sub-edge. We label the sub-edges L1, L2, . . . , Lm′

starting from p in a counterclockwise direction (m′ is obviously bounded by 2(m− 1), so the
asymptotic complexity of the robot remains unchanged); see Figure A.3 for an illustration.

It is important to notice that even though we create new robot vertices, these vertices
still have rational coordinates. Let us assume that we subdivide a robot edge L supported
by the line ax + by + c = 0. We split this edge at the intersection point of this line with a
line perpendicular to it that passes through p = (xp, yp). As this perpendicular line is given
by bx − ay + (ayp − bxp) = 0, the new vertex v′ is the intersection of these two lines (recall
that if L’s endpoints are qi and qj then a = yqi − yqj , b = xqj − xqi and c = xqiyqj − xqjyqi):

v′ =

(
b(bxp − ayp)− ac

a2 + b2
,
a(ayp − bxp)− bc

a2 + b2

)

,

and as a, b, c, xp and yp are all rational, v′ is a point with rational coefficients.

As we did in the previous section for the ladder case, we define a set of critical curves
based on the structure of the obstacles and the polygonal robot. When dealing with a

2Schwartz and Sharir used the term half-edge; as we reserve this term to Dcel components, we use a
different term in the sequel.

148 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

polygonal robot the degenerate semi-free configurations that induce the critical curves are
somewhat more complex. First, each obstacle edge defines a critical curve which is obviously
a segment of a straight line with rational coefficients. In addition, the following critical
curves are defined:

Type I: For each obstacle edge E and for each convex robot vertex q 6= p, the curve traced
by p as q slides along E, such the line supporting the segment pq is perpendicular to
E. This curve is a line segment parallel to E and at distance ||q − p|| from it.

Type II: For each obstacle vertex v and for each robot vertex q 6= p, the curve traced by p
as the robot rotates around v and q touches v. This curve is a circular arc centered at
v and whose radius equals ||q − p||.

Type III: For each obstacle edge E and two convex robot vertices q1, q2 6= p such that
||q1 − q2|| < ||E||, the curve traced by p as q1, q2 slide along E. This curve is a line
segment of length ||E|| − ||q1 − q2|| that lies parallel to E.

Type IV: For each pair of convex obstacle edges E1, E2 and two convex robot vertices
q1, q2 6= p, the curve traced by p as q1 slides along E1 while q2 slides along E2. This
curve is an elliptic arc — see Section A.2.1.

Type V: For each obstacle edge E, non-incident convex obstacle vertex v, convex robot
vertex q 6= p and robot sub-edge L, the curve traced by p as q slides along E while L
touches v. These constraints define a segment of an algebraic curve of degree 4 — see
Section A.2.2.

Type VI: For each pair of convex obstacle vertices v1, v2 and each robot sub-edge L not
incident to p, and such that ||v1 − v2|| < ||L||, the curve traced by p as L slides while
touching both v1 and v2. This curve is a line segment of length ||L|| − ||v1 − v2|| that
lies parallel to the line connecting v1 and v2.

Type VII: For each pair of convex obstacle vertices v1, v2 and two robot sub-edges L1, L2,
the curve traced by p as L1 touches v1 and L2 touches v2. This curve is a segment of
an algebraic curve of degree 4 — see Section A.2.3.

Type VIII: For each obstacle edge E and each robot sub-edge L not incident to p, the
curve traced by p as L slides along E. This curve is a line segment that lies parallel to
E.

The supporting lines of critical curves of types I, III, VI and VIII can all be characterized
as the locus of all points lying at some distance δ from a given line:

• A critical curve of type I is parallel to an obstacle edge E at a distance of δ = ‖pq‖.

• A critical curve of type III is parallel to an obstacle edge E, with δ being the distance
between p and the line connecting the robot vertices q1 and q2.

• A critical curve of type VI is parallel to the line connecting the obstacle vertices v1

and v2, where δ is the distance of p from the robot sub-edge L.

A.2. Motion Planning for a General Polygon 149

E
q

p

γ(1)

v

p

q

γ(2)

E

q1

p

q2

γ(3)

E2

E1

γ(4)
p

q1
q2

E

v

q

p

L
γ(5)

v1 v2

γ(6)

p

L

v1
v2

γ(7)

p

L2L1

E

p

L

γ(8)

Figure A.4: The critical curves for translation and rotation of a polygon in the plane: γ(1), . . . , γ(8)

represent critical curves of types I–VIII, respectively.

150 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
����

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

E2

y
=
ax

E1

q′1 d

p′

q′2

KR: KS:

q1
p

q2

ϕ

Figure A.5: Analysis of a critical curve of type IV.

• A critical curve of type VII is parallel to the obstacle edge E, lying at a distance δ
that equals the distance of p from the robot sub-edge L.

In all cases, the base line defining the line supporting the critical curve is either an obstacle
edge or a line connecting two obstacle vertices and therefore has rational coefficients. More-
over, the required squared distance δ2 is also a rational number, as it is either the distance
between the reference vertex p and another obstacle vertex, or the distance between p and a
line with rational coefficients. We conclude that critical curves of types types I, III, VI and
VIII are all segments of line-pairs with rational coefficients of the form of Equation (A.2)
(where we use δ2 instead of `2).

The analysis of a type II curve is very similar to the ladder case. We only have to replace
the squared radius of the circle by ‖pq‖2, which is obviously a rational number.

We shall next analyze the algebraic representation of the critical curves of types IV,
V and VII and parameterize them in terms of the robot features and the location of the
obstacles. As we show next, all these critical curves are supported by algebraic curves with
rational coefficients of degree 4 at most.

A.2.1 Critical Curves of Type IV

We are interested in the location (x, y) of the reference robot vertex p such that the convex
robot vertex q1 touches the obstacle edge E1 and the convex robot vertex q2 touches the
obstacle edge E2.

For our convenience, let us define a coordinate system KR associated with the robot, such
that q1 is its origin and q2 lies on it x-axis. If the distance between these two robot vertices
is d, then the location of q2 in KR is (0, d). Let us denote the location of the reference vertex

A.2. Motion Planning for a General Polygon 151

p in this coordinate system by (x0, y0). To avoid confusion, we shall refer to these locations
as q′1, q

′
2 and p′, respectively.

We shall also associate a second coordinate system KS with the obstacle scene, such that
E1 coincides with its y-axis (that is, it lies on the line x = 0) and E2 lies on a line passing
through the origin (that is, it lies on the line y = ax where a is a constant that depends only
on the shape and placement of the obstacle in the scene). See Figure A.5 for an illustration.

Now let us define a rigid transformation T : KR → KS in the following manner: Pick
a point on E1, whose coordinates in KS are given by (0, σ) and move the robot so that q′1
coincides with it. Now rotate the robot around this point by ϕ until q′2 becomes in contact
with E2. We shall denote the coordinates of q2 = T (q′2) by (τ, aτ). Let (x, y) be the location
of p in KS after this transformation.

It is clear that since T preserves distances, then ||q2 − q1|| = ||q′2 − q′1||, so we have:

τ 2 + (aτ − σ)2 = d2 . (A.6)

Furthermore, since all angles are preserved under T , and in particular]p′q′1q
′
2 =]pq1q2,

the vector ~q′1p
′ equals the vector ~q1p rotated by −ϕ, where ϕ is the angle between the vector

~q1q2 and KS’s x-axis. Thus:

(
x0

y0

)

=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x

y − σ

)

. (A.7)

But it is clear that (see Figure A.5):

cosϕ =
τ

√

τ 2 + (aτ − σ)2
=
τ

d
, sinϕ =

aτ − σ
√

τ 2 + (aτ − σ)2
=
aτ − σ
d

.

Hence (A.7) can be written as (note that we have inverted the rotation matrix):

1

d

(
τ σ − aτ

aτ − σ τ

)(
x0

y0

)

=

(
x

y − σ

)

. (A.8)

We therefore obtain a linear system of equations in σ and τ :

{
y0σ + (x0 − ay0)τ = dx
(d− x0)σ + (ax0 + y0)τ = dy

. (A.9)

For now we shall assume that the rank of this system is 2. (In the next subsection we
focus on the degenerate case when its rank is 1.) Thus, the matrix of the system coefficients
is not singular as

(
x2

0 + y2
0 + d(ay0 − x0)

)
6= 0. To solve our linear system, we can simply

invert the coefficient matrix, and compute σ and τ :

(
σ
τ

)

=
1

x2
0 + y2

0 + d(ay0 − x0)

(
ax0 + y0 ay0 − x0

x0 − d y0

)(
dx
dy

)

=

=
d

x2
0 + y2

0 + d(ay0 − x0)

(
a(x0x+ y0y) + (y0x− x0y)

(x0x+ y0y)− dx

)

. (A.10)

152 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

E1

E2

KR: KS:

d ψ

p′

q′1 q′2

q1

p

q2

α1 α2 β

Figure A.6: Analysis of the degenerate case for a critical curve of type IV.

We can now substitute the expressions for σ and τ into Equation (A.6), and obtain (after
multiplying by the denominator):

d2
(
(x0x+ y0y)− dx

)2
+ d2

(
a(x0x+ y0y)− adx− a(x0x+ y0y)− (y0x− x0y)

)2
=

= d2
(
x2

0 + y2
0 + d(ay0 − x0)

)2
.

This expression can be simplified to yield the following equation of a conic curve — that is,
an algebraic curve of degree 2:

(
(x0x+ y0y)− dx

)2
+
(
adx+ (y0x− x0y)

)2
=
(
x2

0 + y2
0 + d(ay0 − x0)

)2

(
(x0−d)2 +(y0 +ad)2

)
x2 +(x2

0−y2
0)y

2−2d(ax0 +y0)xy =
(
x2

0 +y2
0 +d(ay0−x0)

)2
. (A.11)

It is possible to classify the conic curve defined by Equation (A.11) by looking at the sign
of the following expression, involving the coefficients of x2, y2 and xy:

4
(
(x0 − d)2 + (y0 + ad)2

)
(x2

0 − y2
0)−

(
2d(ax0 + y0)

)2
=

= 4
(
x2

0 + y2
0 + d(ay0 − x0)

)2
.

Since
(
x2

0 + y2
0 + d(ay0− x0)

)
6= 0 (recall this is the determinant of the matrix of coefficients

of the linear system (A.9)), this expression is always positive — thus we can conclude that
the curve is an ellipse.

The Degenerate Case

We have already mentioned that in case that x2
0 + y2

0 + d(ay0 − x0) = 0, the rank of the
system (A.9) is 1, so we cannot proceed and extract the expressions for σ and τ as we did
in the general case.

A.2. Motion Planning for a General Polygon 153

First, let us examine when does such a degenerate case occur. Since we have x2
0 + y2

0 =
−d(ay0 − x0), then obviously:

a = −x0(x0 − d) + y2
0

dy0
. (A.12)

Since E1 forms a right angle with the x-axis of KS, then the slope a of E2’s supporting line
equals tan(π

2
− ψ), where ψ is the angle between E1 and E2 (see Figure A.6). We therefore

have:

tanψ = cot(
π

2
− ψ) =

1

a
= − dy0

x0(x0 − d) + y2
0

. (A.13)

Now let us examine the triangle 4q1q2p, and let us denote by α1, α2 and β the triangle
angles at q1, q2 and p respectively. By examining the triangle in KR it is easy to see that (see
Figure A.6):

tanα1 =
y0

x0
, tanα2 =

y0

d− x0
.

And so:

tan β = tan
(
(
π

2
− α1) + (

π

2
− α2)

)
=

cotα1 + cotα2

1− cotα1 cotα2

=
dy0

x0(x0 − d) + y2
0

. (A.14)

Since tanψ = − tan β and both angles must be less than π, we can conclude that the
degenerate case occurs when ψ = π−β. In addition, as the rank of the equation system (A.9)
is 1, the second equation in this system must equal the first equation times some constant
factor. In particular, we obtain:

y0

d− x0

=
x

y
, (A.15)

so the critical curve in this degenerate case is a segment of the following line:

(d− x0)x− y0y = 0 . (A.16)

Moreover, we already know that the right term of Equation (A.15) above equals tanα2, so
tanα2 = x

y
, and we conclude that the angle between the vector connecting KS’s origin and

p and the y-axis must equal α2 (recall that p = (x, y) in KS — see Figure A.6).

Recall that ψ = π − β = α1 + α2. The critical curve therefore lies on the line cutting
ψ into two angles that equal α1 and α2, respectively. However, in the next subsection we
show that it is more convenient to represent the supporting curve as a conic curve also in the
degenerate case. To this end, we multiply Equation (A.16) by the equation of a perpendicular
line passing through KS’s origin, which is given by y0x+ (d− x0)y = 0. We therefore obtain
the line-pair:

(d− x0)y0(x
2 − y2) +

(
(d− x0)

2 − y2
0

)
xy = 0 . (A.17)

Analysis for Arbitrary Location

Up to this point, we have assumed that the robot and the obstacles are positioned in some
canonical setting, in order to simplify our analysis and to find the algebraic degree of the

154 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

critical curve. In order to obtain the true equation of the underlying ellipse in the original
coordinate system of the workspace, we still have to apply some rigid transformations on the
resulting curves. We next show that these rigid transformations provide us with the desired
rational coefficients, while they obviously do not effect the algebraic degree of the curve.

So far we obtained the representation in Equation (A.11), where d is the distance between
q1 and q2, (x0, y0) are the coordinates of p in the coordinate system KR and a is the slope of
the obstacle edge E2 in the coordinate system KS.

Let us assume that the relevant robot vertices are given with the input coordinates
(xp, yp), (xq1, yq1) and (xq2, yq2). We first note that d =

√
(xq2 − xq1)2 + (yq2 − yq1)2, so d is

in general an irrational number whereas d2 is obviously rational. To bring the vector ~q1q2 to
coincide with the x-axis, we have to translate the robot by (−xq1 ,−yq1) and to rotate it by
−θ, where θ is the angle between ~q1q2 and the x-axis, using the rotation matrix R−θ. We
thus have:

R−θ =

(
cos θ sin θ
− sin θ cos θ

)

,

where:

cos θ =
xq2 − xq1

d
, sin θ =

yq2 − yq1
d

.

The coordinates of p′ = (x0, y0) can be therefore expressed as:
(
x0

y0

)

= R−θ

(
xp − xq1
yp − yq1

)

=
1

d

(
(xq2 − xq1)(xp − xq1) + (yq2 − yq1)(yp − yq1)
(yq1 − yq2)(xp − xq1) + (xq2 − xq1)(yp − yq1)

)

.

It is easy to show that if we substitute x0 and y0 into Equation (A.11) (or in Equation (A.17)
in the degenerate case), we get an equation involving just d2 and the input coordinates
(xp, yp), (xq1, yq1) and (xq2, yq2).

We still have to express the slope a. Let us assume that the obstacle edges E1 and E2

are defined by the endpoints u1, v1 and u2, v2, respectively. The angles ω1 and ω2 these two
edges form with the x-axis in the original coordinate system are therefore given by:

cosω1 =
xv1 − xu1

‖E1‖
, sinω1 =

yv1 − yu1

‖E1‖
,

cosω2 =
xv2 − xu2

‖E2‖
, sinω2 =

yv2 − yu2

‖E2‖
.

The sine and cosine of the angle ω between the two edges are therefore:

cosω = cos(ω2 − ω1) =
(xv2 − xu2)(xv1 − xu1) + (yv2 − yu2)(yv1 − yu1)

‖E1‖ · ‖E2‖
,

sinω = sin(ω2 − ω1) =
(yv2 − yu2)(xv1 − xu1)− (xv2 − xu2)(yv1 − yu1)

‖E1‖ · ‖E2‖
.

As E1 coincides with the y-axis in KR, it follows that a is also a rational number, since we
can express it as:

a = tan(
π

2
− ω) = cotω =

(xv2 − xu2)(xv1 − xu1) + (yv2 − yu2)(yv1 − yu1)

(yv2 − yu2)(xv1 − xu1)− (xv2 − xu2)(yv1 − yu1)
.

A.2. Motion Planning for a General Polygon 155

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

v′

E

KR: KS:

p
q

L

L′

p′

q′ v

ϕ′

ϕ

Figure A.7: Analysis of a critical curve of type V.

Up to this point, we showed that our ellipse has rational coefficients in the coordinate
system KS. We still have to transform it back to the original coordinate system. We begin
by rotating by an angle ω1 − π

2
, namely by replacing x by x̂ and y by ŷ, where:

(
x̂
ŷ

)

= Rω1−π
2

(
x
y

)

=
1

‖E1‖

(
(yv1 − yu1)x+ (xv1 − xu1)y
(yv1 − yu1)y − (xv1 − xu1)x

)

.

The length ‖E1‖ is irrational, but as all monomials in Equation (A.11) have an even degree
(namely, we have the monomials containing x2, y2, xy and a free coefficient), the equation
we get only involves ‖E1‖2, which is a rational number. We finally translate the origin of
KR to the intersection point (xt, yt) between the lines supporting E1 and E2. This point
clearly has rational coordinates, so the translation preserves the “rationality” of the ellipse
coefficients.

A.2.2 Critical Curves of Type V

We are interested in the location (x, y) of the reference robot vertex p such that the convex
robot vertex q touches the obstacle edge E and the robot sub-edge L touches the convex
obstacle vertex v (where v is not an endpoint of E).

Let us first assume that q is not an endpoint of the L. We can then associate a coordinate
system KR with the robot, such that L coincides with its y-axis (that is, it lies on the line
x = 0) and such that q lies on the x-axis and its coordinates are (0, d), where d is the
distance between q and the line containing L. Let (x0, y0) denote the coordinates of the
vertex p in KR. For clarity, we shall denote these robot features L′, q′ and p′ respectively in
this coordinate system.

156 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

We also associate another coordinate system KS with the obstacle, with v as its origin
and with E being parallel to the y-axis, lying on a line whose equation is x = δ, where δ is
the distance between v and the line supporting E (see Figure A.7).

Now let us define a rigid transformation T : KR → KS in the following manner: Pick a
point v′ on L′, whose coordinates in KR are (0, σ) and shift the robot such that it coincides
with v. Then rotate the robot until q touches the obstacle edge E — at this point, its
coordinates in KS are (δ, τ). Let (x, y) be the location of p in KS after this transformation.

Since the rigid transformation preserves distances, we have ||p − v|| = ||p′ − v′|| and
||q − v|| = ||q′ − v′||, hence we obtain:

x2 + y2 = x2
0 + (y0 − σ)2 , (A.18)

and:
δ2 + τ 2 = d2 + σ2 . (A.19)

Moreover, we can use the fact that]p′v′q′ =]pvq, since the transformation T preserves
angles. Hence, if we rotate the vector ~v′p′ by −ϕ′ (where ϕ′ is the angle between the vector
~v′q′ and KR’s x-axis) we will get an identical vector to the one obtained by the rotation of
~vp by −ϕ (where ϕ is the angle between the vector ~vq and KS’s x-axis). That is, we can
write: (

cosϕ′ sinϕ′

− sinϕ′ cosϕ′

)(
x0

y0 − σ

)

=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x
y

)

. (A.20)

The sines and cosines of ϕ and ϕ′ are given by (see Figure A.7):

cosϕ′ =
d√

d2 + σ2
, sinϕ′ =

−σ√
d2 + σ2

,

cosϕ =
δ√

δ2 + τ 2
, sinϕ =

τ√
δ2 + τ 2

,

so Equation (A.20) can be rewritten as:

1√
d2 + σ2

(
d −σ
σ d

)(
x0

y0 − σ

)

=
1√

δ2 + τ 2

(
δ τ
−τ δ

)(
x
y

)

. (A.21)

Using the equality (A.19) we can eliminate the denominators and obtain the following
system: {

dx0 − σ(y0 − σ) = δx+ τy
σx0 + d(y0 − σ) = δy − τx . (A.22)

In order to eliminate τ from this system, we can multiply the first equation by x and add to
it the second equation, multiplied by y. We then get:

x0(dx+ σy) + (y0 − σ)(dy − σx) = δ(x2 + y2) . (A.23)

We now wish to eliminate σ2 from the equation and obtain a linear equation in σ. To this
end we multiply Equation (A.18) by x and subtract Equation (A.23). We obtain:

(x− δ)(x2 + y2) = x(x2
0 + y2

0 − dx0)− dy0y + σ(dy − x0y − y0x) , (A.24)

A.2. Motion Planning for a General Polygon 157

so we can now express σ as:

σ =
(x− δ)(x2 + y2) + (x0(d− x0)− y2

0) + dy0y

(d− x0)y − y0x
. (A.25)

Substituting this expression back into Equation (A.18) we get:

x2 + y2 = x2
0 +

(

y0 −
(x− δ)(x2 + y2) + (x0(d− x0)− y2

0) + dy0y

(d− x0)y − y0x

)2

,

(x2 + y2) ((d− x0)y − y0x)
2 = x2

0 ((d− x0)y − y0x)
2 +

+
(
(d− x0)y0y − y2

0x − (x− δ)(x2 + y2) + (y2
0 − x0(d− x0))− dy0y

)2
,

(x2 + y2) ((d− x0)y − y0x)
2 =

= x2
0 ((d− x0)y − y0x)

2

︸ ︷︷ ︸

I

+

(x− δ)(x2 + y2) + x0

(
(d− x0)x+ y0y

)

︸ ︷︷ ︸

II

2

. (A.26)

One can easily notice that the terms in (A.26) that do not contain the factor x2 + y2 all
result in I + II2, where:

I + II2 = x2
0(d− x0)

2y2 − 2x2
0(d− x0)y0xy + x2

0y
2
0x

2+

+x2
0(d− x0)

2x2 + 2x2
0(d− x0)y0xy + x2

0y
2
0y

2 =

= x2
0

(
(d− x0)

2 + y2
0

)
(x2 + y2) .

It is therefore possible to reduce Equation (A.26) by the factor x2 +y2 to obtain the equation
of an algebraic curve of degree 4:

((d− x0)y − y0x)
2 = (x− δ)2(x2 + y2) +

+2x0(x− δ) ((d− x0)x+ y0y) +

+x2
0

(
(d− x0)

2 + y2
0

)
. (A.27)

We mention that in case that q is an endpoint of L, we have d = 0 and the coordinate
system KR is defined such that L lies on the y-axis and q is the origin. The equation of the
critical curve in this case is obtained by substituting d = 0 into Equation (A.27):

(x0y + y0x)
2 = (x− δ)2(x2 + y2) + 2x0(x− δ)(y0y − x0x) + x2

0(x
2
0 + y2

0) . (A.28)

Analysis for Arbitrary Location

In Equation (A.27) we expressed the critical curve in terms of: (i) δ, the distance between
the obstacle vertex v and the obstacle edge E, (ii) d, which is the distance between the robot
vertex q and the sub-edge L, and (iii) (x0, y0), the coordinates of p in the coordinate system
KR.

158 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

Let us assume that the endpoints of the robot sub-edge L are r1 and r2. We can write
the distance of p from the line containing L as:

d =
|(yr1 − yr2)xp + (xr2 − xr1)yp + (xr1yr2 − xr2yr1)|

√

(yr1 − yr2)2 + (xr2 − xr1)2
. (A.29)

Notice that the denominator of this expression equals ‖L‖.
Let (xt, yt) be the intersection point of a line perpendicular to L going through p with

the line supporting the sub-edge L. As we previously showed, this point can be computed
from the coordinates of p, r1 and r2 and has rational coordinates. To obtain the coordinate
system KR we first have to translate the coordinates by (−xt,−yt) and then rotate it using
the rotation matrix Rπ

2
−θ, where θ is the angle between L and the x-axis:

Rπ
2
−θ =

(
sin θ cos θ
− cos θ sin θ

)

,

where:

cos θ =
xr2 − xr1
‖L‖ , sin θ =

yr2 − yr1
‖L‖ .

We thus have:
(
x0

y0

)

= Rπ
2
−θ

(
xp − xt
yp − yt

)

=
1

‖L‖

(
(yr2 − yr1)(xp − xt) + (xr2 − xr1)(yp − yt)
(xr1 − xr2)(xp − xt) + (yr2 − yr1)(yp − yt)

)

.

It is easy to show that if we substitute d, x0 and y0 into Equation (A.27), we get an equation
involving just ‖L‖2 and the input coordinates (xp, yp), (xr1 , yr1) and (xr2 , yr2). It is not
difficult to prove a similar result for the special case of Equation (A.28).

In an analogous manner, let us assume that the endpoints of the obstacle edge E are u1

and u2. The distance between v and the line containing E is:

δ =
|(yu1 − yu2)xv + (xu2 − xu1)yv + (xu1yu2 − xu2yu1)|

√

(yu1 − yu2)
2 + (xu2 − xu1)

2
. (A.30)

Notice that the denominator of this expression equals ‖E‖.
We now have to change the coordinate system KR to the original coordinate system. We

first have to perform rotation using the rotation matrix Rω−π
2
, where ω is the angle between

the edge E and the x-axis in the original coordinate system, and the sine and cosine of this
angle obviously have ‖E‖ as their denominator (see the case of curves of type IV).

Let us examine what happens when we substitute the rotated coordinates and the dis-
tance δ into Equation (A.27). If we consider the monomials in δ, x and y, then we have
only monomials of an even degree. As a result, our substitution will yield coefficients that
involve only ‖E‖2, which is a rational number. We finally translate the origin of KS to the
location of the vertex v = (xv, yv), preserving the “rationality” of the curve coefficients as v
has rational coordinates.

A.2. Motion Planning for a General Polygon 159

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����

v′1

v′2

v1

v2

KR: KS:

L′
1

p′

L′
2

L1

p

L2ϕ′

y
=
ax

Figure A.8: Analysis of a critical curve of type VII.

A.2.3 Critical Curves of Type VII

We are interested in the location (x, y) of the reference robot vertex p such that the two
robot sub-edges L1 and L2 touch the two convex obstacle vertices v1 and v2, respectively.

As we did in our analysis of the previous curve types, let us associate a coordinate system
KR with the robot, such that L2 coincides with its y-axis (that is, it lies on the line x = 0)
and such that L1 lies on a line that passes through KR’s origin (that is, it lies on the line
y = ax, where a is a constant that depends only on the shape of the robot). Let (x0, y0)
denote the coordinates of the vertex p in KR. For clarity, we shall denote the relevant robot
features in this coordinate system by L′

1, L
′
2 and p′.

We also associate another coordinate system KS with the obstacles, such that v1 coincides
with its origin and v2 lies on the x-axis. Thus, if d is the distance between the two vertices,
v2 is located at (0, d) in KS (see Figure A.8).

Now let us define a rigid transformation T : KR → KS in the following manner: Pick a
point v′1 on L′

1, whose coordinates in KR are (τ, aτ) and shift the robot such that it coincides
with v1. Then rotate the robot around that point until L2 touches the obstacle vertex v2.
Let v′2 = (0, σ) be the point of L′

1 which is mapped by T to v2, and let (x, y) be the location
of p in KS after this transformation.

Since the rigid transformation preserves distances, we have ||p − v1|| = ||p′ − v′1|| and
||v2 − v1|| = ||v′2 − v′1||, hence we obtain:

x2 + y2 = (x0 − τ)2 + (y0 − aτ)2 , (A.31)

and:

d2 = τ 2 + (σ − aτ)2 . (A.32)

160 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

Since the transformation T is angle preserving, we know that]p′v′1v
′
2 =]pv1v2. Hence,

if we rotate the vector ~v′1p
′ by −ϕ′ (where ϕ′ is the angle between the vector ~v′1v

′
2 and KR’s

x-axis) we will get an identical vector to ~v1p (notice that there is no need to further rotate
this vector, since ~v1v2 is the direction of the x-axis). That is, we can write:

(
cosϕ′ sinϕ′

− sinϕ′ cosϕ′

)(
x0 − τ
y0 − aτ

)

=

(
x
y

)

. (A.33)

As the sine and cosine of ϕ′ are given by (recall that d =
√

τ 2 + (σ − aτ)2):

cosϕ′ =
−τ

√

τ 2 + (σ − aτ)2
=
−τ
d

, sinϕ′ =
σ − aτ

√

τ 2 + (σ − aτ)2
=
σ − aτ
d

,

Equation (A.33) can be rewritten as:

(
−τ σ − aτ

aτ − σ −τ

)(
x0 − τ
y0 − aτ

)

= d

(
x
y

)

. (A.34)

Let us now multiply Equation (A.34) by the matrix

(
x0 − τ y0 − aτ
aτ − y0 x0 − τ

)

. Notice that this

matrix and the matrix that appears on the left-hand side of Equation (A.34) both correspond
to rotational transformations, hence their multiplication is commutative. It is easy to verify
that (aτ − y0)(x0 − τ) + (x0 − τ)(y0 − aτ) = 0, and using Equation (A.31) we obtain the
following:

(
−τ σ − aτ

aτ − σ −τ

)(
x2 + y2

0

)

= d

(
x0 − τ y0 − aτ
aτ − y0 x0 − τ

)(
x
y

)

, (A.35)

hence we obtain the following system of linear equations:

{
−τ(x2 + y2) = d(x0x+ y0)− d(x+ ay)τ
(aτ − σ)(x2 + y2) = d(x0y − y0x) + d(ax− y)τ . (A.36)

Notice that σ does not appear in the first equation, and we can readily obtain an expression
for τ :

τ =
d(x0x+ y0y)

d(x+ ay)− (x2 + y2)
. (A.37)

Substituting τ back into Equation (A.31) we get:

x2 + y2 =

(

x0 −
d(x0x+ y0y)

d(x+ ay)− (x2 + y2)

)2

+

(

y0 −
ad(x0x+ y0y)

d(x+ ay)− (x2 + y2)

)2

,

(x2 + y2)
(
d(x+ ay)− (x2 + y2)

)2
=

=

d(ax0 − y0)y
︸ ︷︷ ︸

I

−x0(x
2 + y2)

2

+

d(y0 − ax0)x
︸ ︷︷ ︸

II

−y0(x
2 + y2)

2

. (A.38)

A.2. Motion Planning for a General Polygon 161

As we did in the previous section for curves of type V, we shall examine all the terms of
Equation (A.38) that do not contain the factor x2 + y2. It is easy to see that they all result
in I2 + II2, where:

I2 + II2 = (d(ax0 − y0)y)
2 + (d(y0 − ax0)x)

2 = d2(ax0 − y0)
2(x2 + y2) .

It is therefore possible to reduce Equation (A.38) by the factor x2+y2 and obtain an equation
of an algebraic curve of degree 4:

(
d(x+ ay)− (x2 + y2)

)2
= (x2

0 + y2
0)

2(x2 + y2) +

+2d(ax0 − y0)(y0x− x0y) +

+d2(ax0 − y0)
2 . (A.39)

Analysis for Arbitrary Location

We shall now transform the curve given in Equation (A.39) to the original coordinate system,
using similar techniques to those we used for curves of type IV and V.

We first note that the slope a depends on the tangent of the angle between the two
supporting lines of L1 and L2, and is a rational expression that involves the coordinates of
the endpoints of the two sub-edges, as given in the reference coordinate system for the robot
(see Equation (A.30) for a similar expression).

Moreover, if we denote the intersection between the supporting lines lines of L1 and L2

by (xt, yt), we can express x0 and y0 using the the following expression, where r1 and r2
denote the endpoints of L1 and θ is the angle its supporting line forms with the x-axis:

(
x0

y0

)

= Rπ
2
−θ

(
xp − xt
yp − yt

)

=
1

‖L1‖

(
(yr2 − yr1)(xp − xt) + (xr2 − xr1)(yp − yt)
(xr1 − xr2)(xp − xt) + (yr2 − yr1)(yp − yt)

)

.

Note that all monomials in x0 and y0 of Equation (A.39) are of an even degree, so if
we substitute the expressions for x0 and y0 we obtained above into this equation, our curve
equation will only contain ‖L1‖2, which is a rational number.

We finally apply a rigid transformation to convert KS to our original coordinate system.
To do this, we first rotate by ω, which is the angle between the vector ~v1v2 and the x-axis
in the original coordinate system. Clearly:

cosω =
xv2 − xv1

√

(xv2 − xv1)2 + (yv2 − yv1)2
=
xv2 − xv1

d
, sinω =

yv2 − yv1
d

.

As all monomials in x, y and d in Equation (A.39) are of an even degree, this results in
coefficients that only involve d2, which is a rational number. We finally translate the origin
to v1, and obtain a curve of degree 4 with rational coefficients.

162 Appendix A. Revisiting the Critical Curves in the Piano Movers’ Algorithm

Appendix B

Sweeping Curves and Maintaining 2D
Arrangements on Surfaces

In this appendix we describe how the classes and algorithms in the arrangement package of
Cgal, which we have overviewed in Chapter 2, can be extended to represent more diverse
topologies. We first describe the extension for unbounded curves, then go one step further
and describe how we can construct and maintain arrangement of arbitrary curves embedded
on a 3D parametric surface. Namely, given a parametric surface S in R3 and a set C of
curves that all lie on this surface, we compute the subdivision these curves induce on S.

The ability to construct and maintain arrangement of curves defined on a surface in a
robust manner makes it possible to develop software solutions in diverse application fields.
See Section 7.2 for more details.

A parametric surface S is a surface defined by a parametric equation involving two
parameters u and v, namely:

fS(u, v) = (x(u, v), y(u, v), z(u, v)) . (B.1)

Thus, fS : P −→ R3 and S = fS(P), where P is a continuous and simply connected two-
dimensional parameter space. We use the surface parameterization in order to sweep over a
set of curves embedded on the surface in the two-dimensional uv-plane, rather than consid-
ering the three-dimensional image of P.

B.1 The Augmented Sweep-Line Algorithm

Our goal is to generalize the Bentley–Ottmann algorithm [BO79], as described in Sec-
tion 2.4.1, and perform the sweep procedure over a parametric surface S = fS(P) in its
parameter space. However, to conveniently do so, we must consider a subspace of P. Sweep-
ing over the entire parameter space raises, in general, several difficulties either when the
parameter space is unbounded, or when there is no inverse mapping from the surface to the
parameter space. We eliminate these difficulties by cutting out portions of the parameter
space and symbolically keeping track of these modifications.

163

164 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

We next formally define three aspects that require special attention when generalizing the
sweep procedure. In all cases, S is a parametric surface defined over P in the uv-plane. We
give the definitions using the u-parameter; the definitions with respect to the v-parameter
are similar.

Definition B.1 (Infinite boundary) Let û be one of the values defining the u-range of P

(û may be finite or û = ±∞). We say that the surface has an infinite boundary in u if:

∀v lim
u→û

fS(u, v) = ±∞ .

Definition B.2 (Curve of discontinuity) If u is defined over a bounded parameter range
[umin, umax) such that:

∀v lim
u→umax

fS(u, v) = fS(umin, v) ,

then the curve defined by fS(umin, v) forms a curve of discontinuity in u on the surface S.

Definition B.3 (Singularity point) We say that a point fS(u0, v0) = p0 ∈ S is a singu-
larity point in u, if u0 is either the maximum or the minimum of the u-parameter range in
P (i.e., either u0 = umin or u0 = umax), and for each δ > 0 we have:

∀v ∃u ‖fS(u, v)− p0‖ < δ .

Consider, for example, the xy-plane, which can be parameterized by P = R2 and fS =
(u, v, 0). An alternative representation is P = (−π

2
, π

2
) × (−π

2
, π

2
) and fS = (tanu, tan v, 0).

In both cases, the surface has an infinite boundary in the minimal and the maximal values
of u and in the minimal and maximal values of v.

Let us examine the canonical 3D cylinder of radius r, given by the implicit represen-
tation x2 + y2 = r2. It can be parameterized for P = [−π, π) × R such that fS(u, v) =
(r cosu, r sin u, v). We have fS(−π, v) = (−r, 0, v) = limu→π fS(u, v), so in this case the
cylinder contains a line of discontinuity that is parallel to the z-axis and passes through
(−r, 0, 0).

The unit sphere, which can be parameterized over P = [−π, π)× [−π
2
, π

2
] using fS(u, v) =

(cosu sin v, sinu sin v, cos v), contains a semicircle of discontinuity that connects the two poles
(0, 0,−1) and (0, 0, 1) through (−1, 0, 0). In addition, the two poles are singularity points in
v: for instance, for each u if we take v > arcsin(1− δ

2
) we get that the distance of fS(u, v)

from the north pole (0, 0, 1) is 2(1− sin v) < δ.

Given a surface containing curves of discontinuity and singularity points we modify the
parameter space as follows: In case of discontinuity in u (similarly, in v), we consider the
open u-range (umin + ε, umax − ε) for an infinitesimally small ε > 0. In case of a singularity
point in umin we augment the u-parameter range to be lower bounded by umin + ε (or upper
bounded by umax − ε in case of a singularity point in umax), for an infinitesimally small
ε > 0; we handle singularities in v in a similar fashion. As a result, we obtain an augmented
parameter space P̃, for which it is possible to define the inverse mapping f−1

S : R3 −→ P̃.

B.1. The Augmented Sweep-Line Algorithm 165

It is now possible to apply an augmented sweep-line algorithm to our parametric surface,
where we perform a plane sweep over P̃. Let S̃ denote the image of the augmented parameter
space, namely fS(P̃). Given a set C of curves defined on S, we start by computing C ′ = C∩S̃
for each C ∈ C, and by subdividing C ′ into u-monotone subcurves. We refer to the resulting
subcurves as sweepable curves. Note that in particular, the interior of a sweepable curve
cannot intersect a curve of discontinuity or contain a singularity point. However, the curve-
ends may be incident to the modified surface boundaries.

We start the sweep with the curve fS(u0, v), for some initial fixed u-value u0 (e.g., u0 =
umin + ε in the example of the cylinder). We now sweep the curve over the surface S̃. For
each u-value u′, a subset of the sweepable curves induced by C intersect the sweep-curve
fS(u

′, v), at the points p1, . . . , pk ∈ S. The status structure stores these curves ordered in
ascending v of f−1

S (p1), . . . , f
−1
S (pk). Similarly, when we detect an intersection point p, we

insert it into the event queue, considering the lexicographic uv-order of f−1
S (p). For the

proper maintenance of the algorithm the event queue must contain — along with events
that represent regular curve endpoints and intersection points — events associated with
curve-ends incident to the surface boundaries.

In the next subsection we give an overview of our augmented sweep-line algorithm for the
case of unbounded planar curves. In Section B.1.2 we show that this algorithm is actually a
special case of sweeping over the augmented parameter space, and generalize it to the case
of general orientable parametric surfaces. We give special attention to the detection and
handling of curve-ends that are incident to the modified surface boundaries.

B.1.1 Sweeping Unbounded Curves

The main difficulty in applying the Bentley–Ottmann sweep algorithm on a set of unbounded
planar curves lies in the initialization step. When dealing with bounded curve segments, we
insert all curve endpoints into a event queue, where they are sorted by an ascending xy-
lexicographic order. As unbounded curves do not have valid endpoints, we have to augment
the algorithm.

One approach that comes to mind is to extend the definition of a point and allow points
at infinity. To maintain the order of the event queue, we have to support lexicographical
comparison on these extended points. This is quite straightforward in some cases, but
more intricate in others. For instance, if we have to compare two points lying at x =
−∞, we need to compare the vertical position of the curves that induce these points at
x = −∞. This means that a point at infinity is implicitly associated with a curve, and
the lexicographic comparison of two points may involve computations with their underlying
curves. A similar approach was taken in Exacus [BEH+05] to make the sweep-line algorithm
of Cgal (version 3.1) operate on unbounded algebraic curves.

The main advantage of this approach is that the sweep-line algorithm remains the same
and needs no alteration. On the other hand, the burden of comparisons at infinity falls
on the traits class, which is undesirable in our case. Recall that we have a single generic
implementation for the sweep-line algorithm, which can be instantiated with different traits
classes (see Section 2.4.1). It therefore makes more sense to handle the infinite curve-ends

166 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

C2 : y = − 2
x

C3 : y = − 1
x

C1 : y = −x
2

p = (0, 0)

C2 : y = 1
x−10

C1 : y = 1
x

C
3

:
x

=
1
0
0

C2 : y = 3
x

C1 : y = 1
x

(a) (b) (c)

Figure B.1: Comparing unbounded curve-ends: (a) Comparing curve-ends at x = −∞. Note that

C1 is obviously above C2 and C3, but C2 is considered to by above C3 as there exists x0 such that

for each x < x0, C2(x) > C3(x). (b) Comparing the horizontal positions of a curve-end and a point.

The vertical curve that passes through p is to the right of C1’s right end and to the left of C2 left end.

(c) Comparing the horizontal positions of curve-ends at y = ±∞. Note that C1’s left end is to the left

of C2’s left end and both are to the left of C3.

at a single centralized place and slightly modify the sweep-line algorithm, allowing a simpler
interface and logic for the various traits classes.

Let us revise the terminology we used when we introduced the arrangement-traits con-
cepts in Section 2.3.1. Instead of talking about endpoints of an x-monotone curve, we refer to
the two curve-ends. A curve-end may be unbounded or bounded, and only in the latter case
we have a valid endpoint. In addition, we require any model of the ArrangementBasicTraits 2

concept to support the following predicates involving unbounded curve-ends:

Infinity type: Given a curve-end (the left end or the right end of the x-monotone curve
C), determine whether it lies at x = ±∞. If the curve-end has a finite x-coordinate,
determine whether it lies at y = ±∞, or whether it also has a finite y-coordinate.1

Compare y at infinity: Given the unbounded left ends of C1 and C2, both defined at
x = −∞, compare the vertical positions of C1 and C2 at x = −∞ (similarly for
unbounded right ends at x =∞).

Compare x at infinity (I): Given a curve C whose end lies at y = ±∞ and a point p,
compare the horizontal position of C’s end and the vertical line that contains p.

Compare x at infinity (II): Given two curves C1 and C2 whose ends lie at y = ±∞,
compare the horizontal positions of the two curve-ends.

The last three comparison operations should consider the asymptotic behavior of the curve-
ends, as shown in Figure B.1. Thus, two curve-ends are equal at infinity only in case of overlap
between two curves. Naturally, there are traits classes that do not support unbounded curves
and need not implement the extra predicates. To this end, each traits class should define a
tag that signals whether it supports unbounded curves or not. The extra predicates listed
above are only required when this tag is defined as a true tag.

1For example, the left end of the hyperbolic branch y = 1
x
, x > 0 has a bounded x-coordinate but lies at

y =∞. Typically, vertical lines and vertical asymptotes share this behavior.

B.1. The Augmented Sweep-Line Algorithm 167

Having defined the additional traits-class operations, we are ready to modify the sweep-
line algorithm to handle infinite curves. First, we store extra information with the events:
an event may be associated with a (finite) point, or it may be associated with an unbounded
curve-end and lie at x = ±∞ or at y = ±∞. We begin the sweep process by construct-
ing events that represent all unbounded curve-ends and all finite endpoints. To sort these
events we use a simple procedure based on the basic comparison functions implemented by
the arrangement-traits class: if the two events are associated with finite points, we simply
compare these points; if one event lies at x = −∞ and the other is a finite point, then the
first event is obviously smaller; if both events lie at x = −∞ we compare their associates
curve-ends there, etc.

Once the event queue is initialized the main loop of the sweep-line process begins. Note
that the first events that are extracted from the event queue are all associated with un-
bounded left curve-ends, and are already given in the correct increasing vertical order of
these curves at x = −∞. Thus, as long as we handle events at x = −∞, we can insert
the corresponding curve at the top of the status line, without having to perform additional
geometric comparisons. Similarly, when the sweep-line process advances to some finite x-
coordinate and handles an event that lies at y = −∞ (or y = +∞) that represents an
unbounded curve-end, we already know that the curve lies below (above) all other curves
currently intersecting the sweep line. Thus, we simply insert the corresponding curve at the
bottom (top) end of the status line without performing any geometric comparisons. We note
that intersection points are always finite, therefore we do not modify the way we handle
intersection events.

Consider the example depicted in Figure B.2(a), where we sweep over the lines `1 : y = x
2
,

`2 : y = 0 and over the two branches of the hyperbola y = − 1
x
, denoted h1 and h2,

respectively. The order of the events in this case is: min(`1), min(`2), min(h1), max(h1),
min(h2), max(h2), max(`2), max(`1), where min(c) and max(c) refer to the minimal and
maximal ends of the curve c, respectively. When the intersection point at the origin is
discovered, it is inserted into the event queue between max(h1) and min(h2).

To summarize, adapting the sweep-line process to handle unbounded curves helps keeping
the interface of the traits class simple, so the correct handling of unbounded curve-ends is
done in a single centralized place, namely in the modified sweep-line procedure. In addition,
we benefit from reducing the number of geometric operations the algorithm needs to perform.
As most traits classes employ the exact computation paradigm and perform exact geometric
computations, these geometric operations can be quite costly, so reducing their number is
essential in order to control the running-time of the application.

B.1.2 Sweeping on General Surfaces

The additional advantage, and perhaps the most significant one, of the approach we have
just described, is that it enables an elegant generalization of the sweep-line procedure for
sweeping over curves embedded on a surface in R3.

So far we swept over the parameter space P = R2, and treated curve-ends that coincide
with the infinite boundaries symbolically. It is not difficult to verify that the same set of
geometry-traits operations required in the planar case also applies when sweeping over a set

168 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

h2

h1

`2

`1

cr2

cr1 c`2

c`1

w
c2

c1

(a) (b) (c)

Figure B.2: Comparing curve-ends with boundary conditions: (a) Comparing at infinity. (b) Comparing

near the line of discontinuity. (c) Comparing near a singularity point.

of curves on a surface. However, we have to re-interpret the geometric predicates as if they
are given in the uv-plane.

As mentioned before, we begin by subdividing each input curve into sweepable subcurves.
Note that each sweepable subcurve C in defined over a continuous range of u-values in P̃,
and we consider the curve as the graph of the function v = C(u) where fS(u, v) ∈ C. A
sweepable curve-end may have boundary conditions. In the previous subsection we have
already encountered curves with unbounded ends, and we say that the boundary condition
in x (or in y) of such a curve-end is of type minus infinity or plus infinity. In the general
case, we may also encounter curve-ends whose boundary condition is leaving discontinuity
(or approaching discontinuity), or leaving singularity (or approaching singularity). By leaving
a singularity we mean that a singularity point is defined by the minimal value of the u-range
(or the v-range) of the parameter space, so we view its incident curves as if they begin in an
ε-environment after the singularity. Similarly, by approaching a singularity we mean that a
singularity point is defined by the maximal value of the u-range (or the the v-range).

The rest of the geometry-traits primitives involve only sweepable curves and regular
points, namely points that do not coincide with the boundaries of the augmented surface S̃.
We next list the new formulations of the traits-class operations (compare with Section 2.3.1
and with Section B.1.1 above):

Compare u: Given two points p1, p2 ∈ S̃ compare the u-values of f−1
S (p1) and f−1

S (p2).

Compare uv: Compare f−1
S (p1) and f−1

S (p2) lexicographically, by their u-values, and in
case of equality by their v-values.

Boundary type: Given a curve-end (the minimal or the maximal end of a sweepable curve
C), determine whether it has a boundary condition in u (infinity, discontinuity or
singularity). If it has no boundary condition in u, determine if the curve-end has a
boundary condition in v.

Min/max endpoint: Return the uv-lexicographically smaller, or the uv-lexicographically
larger, endpoint of a given sweepable curve, with the precondition that the correspond-
ing curve-end is not unbounded.

B.1. The Augmented Sweep-Line Algorithm 169

Compare v at u: Given a sweepable curve C and a point p0 = fS(u0, v0) such that u0 is
in the u-range of C, compare v0 and C(u0).

Compare v to right: Given two sweepable curves C1 and C2 that intersect at a given point
p0 = fS(u0, v0) (note that u0 > umin), compare C1(u

′) and C2(v
′), for u′ > u0 such

that for any other intersection point p1 = fS(u1, v1) of the curves we have u′ < u1.

Intersect: Compute the intersection points of two given sweepable curves C1 and C2.

Compare v at boundary: Given two curve-ends of C1 and C2, both having a boundary
condition at û (û may also be ±∞), compare limu→ûC1(u) and limu→ûC2(u).

Compare u at boundary (I): Given a curve-end of a sweepable curve C with a boundary
condition at v̂ and a point p0 = fS(x0, y0), compare limv→v̂ C

−1
1 (v) and u0.

Compare u at boundary (II): Given two curve-ends of the sweepable curves C1 and C2,
having boundary conditions at v̂1 and at v̂2, respectively, compare limv→v̂1 C

−1
1 (v) and

limv→v̂2 C
−1
2 (v).

We note that even though the traits-class operations refer to the parameter space, it is
possible to carry out the necessary geometric and algebraic operations wherever it is most
convenient — e.g., on the surface itself, or on some projected image of S. These operations
need not be done in parameter-space coordinates.

Let us consider the canonical cylinder depicted in Figure B.2(b). As we remove the line
of discontinuity, we have P̃ = (−π, π)×R (where fS(u, v) = (r cosu, r sin u, v)). In this case,
all curve-ends may start right after the line of discontinuity or may end right before this
line. The two curves C1 and C2 are split at the line of discontinuity, forming the sweepable
curves c`1, c

r
1 and c`2, c

r
2, respectively. Yet when we compare the curve-ends we consider an ε-

neighborhood around the line of discontinuity (shaded). Thus, c`1 is above c`2 after the line of
discontinuity (when the sweep starts), and cr1 lies below cr2 immediately before this line (when
the sweep ends) — meaning that we actually consider four distinct events. Observe that if we
wish to implement a sweep-line visitor (see Section 2.4.1) that detects all intersection points
induced by a set of curves on a sphere, we can easily compute the intersection points that
occur on the line of discontinuity and are not detected as such by the sweep-line procedure,
by simply examining the adjacencies between curves incident to the line of discontinuity.

Let us now consider the case of a pole. By the definition of a singularity point on a
parametric surface (see Definition B.3), had we not removed singularity points from the
surface, a curve that coincides with a singularity point would have always been contained in
the status structure. However, by removing an infinitesimally small neighborhood around
the pole we make sure that all sweepable curves enter and leave the status structure during
the sweep process.

Consider for instance Figure B.2(c). We symbolically handle curve-ends that are incident
to a singularity point (the north pole of a sphere in this case): c1 lies to the left of c2, as we
compare the ends of sweepable curves in an ε-neighborhood below the north pole (shaded).
Note that this means that we have a different event for every curve-end that coincides with
a pole. Once again, a sweep-line visitor can properly process these events, and report them
as a single intersection point, if necessary.

170 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

f7

f6

f8

f5

f1

f2

f3

f4

f̃
vtl

v3

v2

v1

vbl

v5

v4 vbr

v6

v7

v8

vtr

f8

f7

f6

f5
f4

f3

f2

f1

vinf

(a) (b)

Figure B.3: Possible Dcel representations of an arrangement of four lines: (a) Using an implicit

bounding rectangle. The face denoted f̃ (lightly shaded) is the fictitious face, which lies outside the

imaginary rectangle (dashed) that bounds the actual arrangement. The vertices v1, . . . v8 lie at infinity,

while vbl, vtl, vbr and vtr are fictitious vertices that represent the four corners of the imaginary bounding

rectangle. (b) Using a single vertex at infinity vinf , with all unbounded curve-ends being incident to this

vertex.

B.2 Constructing Arrangements on Surfaces

As explained in Section 2.4.1, it is possible to devise various algorithms that are all based on
the sweep-line framework by implementing an appropriate visitor class and instantiating the
Sweep line 2 class-template accordingly. So far we have just considered a sweep-line visitor
that computes the intersection points induced by a set of curves. However, the augmented
sweep-line algorithm can be used for constructing and maintaining arrangements on surfaces,
if only we can supply the appropriate visitor class. Note that as the modifications of the
original sweep-line algorithm involve curve-ends with boundary conditions, we only need
augment the visitor that handles bounded curves (see Section 2.4.1) so that it properly
inserts such curve-ends into the Dcel.

B.2.1 The Topology-Traits Concept

It is straightforward to represent an arrangement of bounded planar curves using the Dcel

structure, where the Dcel contains a single unbounded face. However, already when moving
to unbounded curves we should consider alternative representations of the arrangement.
Figure B.3(a) demonstrates one possibility, where we use an implicit bounding rectangle
embedded in the Dcel structure. First of all, we allow vertices to be located at infinity,
where a vertex at infinity is associated with an unbounded curve-end rather than being
associated with a point (as finite vertices are). The vertices at infinity lie on the edges of the
imaginary boundary rectangle and split them into pairs of fictitious halfedges. These edges
are called fictitious as they do not represent any concrete planar curve. Each face whose
boundary contains at least one fictitious edge is considered to be unbounded. In addition,

B.2. Constructing Arrangements on Surfaces 171

the Dcel also contains one exterior face, which contains the bounding rectangle as a hole in
its interior. It is fictitious, as it does not represent any two-dimensional portion of the plane
bounded by the input curves, and we do not regard it as part of the arrangement.

It is possible to choose a different representation of a planar arrangement of unbounded
curves that uses a single vertex at infinity vinf , such that all unbounded curve-ends are
incident to this vertex; see Figure B.3(b) for an illustration. Note that in the former repre-
sentation, an empty arrangement is represented by four fictitious edges that form an empty
bounding rectangle. These edges are eventually split, as unbounded curves are inserted into
the arrangement. Using the representation of a vertex at infinity, an empty arrangement
contains just a single unbounded face, where vinf is created upon the insertion of the first
unbounded curve. To insert an additional unbounded curve into the arrangement, we have
to locate its unbounded end(s) around vinf . We mention that all finite vertices, edges, and
faces are identically represented in both options.

We extend the classical definition of the Dcel structure, by introducing vertices at
infinity and fictitious features. We also have to extend the representation of a face to support
more general surfaces. Consider the portion of the canonical 3D cylinder x2 + y2 = r2

sandwiched between the planes z = 0 and z = 1. This portion forms a perimetric face
whose outer boundary comprises two connected components. However, extending the Dcel

structure to support the representation of such faces is fairly straightforward. So far we
have supported Dcel faces with multiple holes, also known as inner components of the
face boundary (see Section 2.2); we now also have to support faces with multiple outer
components.

Aiming for modularity, we wish to decouple the implementation of the basic arrangement
operations (e.g., inserting a new edge associated with a subcurve, removing an edge, etc.)
from the actual representation of the arrangement. We do this by introducing the concept of a
topology-traits class, which encapsulates the topology of the surface on which the arrangement
is embedded, and determines the underlying Dcel representation of the arrangement. It does
so by supplying predicates and operations related to curve-ends with boundary conditions.
For example, it is responsible for initializing a Dcel structure that represents an empty
arrangement, and for locating the Dcel feature that represents a given curve-end. In case
no such Dcel feature exists (e.g., when inserting the first unbounded curve and vinf is not
yet created), the topology-traits class is responsible for creating it.

Using the topology-traits primitives, the sweep-line visitor is capable of constructing the
arrangement of a set of curves on a surface. When the visitor is notified on a subcurve
with boundary conditions, it queries the topology-traits class to obtain the Dcel feature
containing the curve-end, then inserts the subcurve accordingly. For example, if we sweep
over the cylinder depicted in Figure B.2(b), a vertex w is created on the line of discontinuity
when we insert c`1 into the arrangement. The topology-traits class keeps track of this vertex,
so it will associate w as the minimal end of c`2 and as the maximal ends of cr1 and cr2. Similarly,
in the example shown in Figure B.2(c), the north pole will eventually be represented as a
single Dcel vertex, with c1 and c2 incident to it.

According to our software design, future releases of the Cgal arrangement package will
contain a class template named Arrangement on surface 2<GeomTraits,TopTraits>. This

172 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

class is parameterized with a geometry-traits class, which encapsulates the geometry of the
curves the arrangement handles (so far we referred to it simply as a traits class), and a
topology-traits class that defines the topology of the surface on which the arrangement is
embedded. We mention that the two parameters are not entirely decoupled, as the geometry-
traits class needs to be aware of the topology of the surfaces on which its curves are defined.

In order to maintain backward compatibility, we will still supply the class-template
Arrangement 2<GeomTraits,Dcel>, which represents a planar arrangement by instantiat-
ing the Arrangement on surface 2 template with its geometry-traits class and the with
a default topology-traits class. The topology-traits class may be one that handles only a
bounded planar topology (when the geometry-traits class defines the relevant tag as a false
tag — see Section B.1.1), or a topology-traits class that handles unbounded curves as well,
using an imaginary bounding rectangle.

B.2.2 Implementation Details

The arrangement package included in the next version of Cgal (the forthcoming Version 3.3)
will support planar arrangements of unbounded curves. We use the imaginary bounding
rectangle approach, described in the previous subsection (see also Figure B.3(a)), to represent
arrangements of such curves. We note that this representation is somewhat similar to the
usage of an infimaximal frame (namely, a dynamic bounding box) proposed by Mehlhorn and
Seel [MS03]. However, our representation has several advantages over the infimaximal-frame
approach: First, it requires less algebraic operations, which can be very costly when using
exact computing with non-linear curves.2 Secondly, our approach makes much of the logic of
handling the curve-ends centralized in one place and saves code duplication for different types
of curves. In addition to a new geometry-traits class for linear curves in the plane (lines,
rays and line segments), the conic-traits class and the traits class for rational functions (see
Section 2.3.3) will be extended to handle unbounded curves as well.

In addition to the topology-traits classes for curves on the plane, we intend to provide
two additional topology-traits classes. The first handles a spherical topology, and will come
with a geometry-traits class for handling arcs of great circles. A favorable property of these
curves is that they can be handled using only exact rational arithmetic, yet they have useful
applications; see, e.g., [GHH+03].

We also intend to provide geometry-traits class and a topology-traits class that handle
arrangements of curves on a quadric surface, where the curves correspond to the intersections
of this quadric with other quadric surfaces. A quadric surface is defined by the zero-set of
a trivariate polynomial of degree 2 at most. The geometry-traits class will be based on the
work of Berberich et al. [BHK+05], who implemented a (planar) geometry-traits class that
can handle the projection of intersection curves of two quadric surfaces onto the plane. These
projected intersections are algebraic curves of degree 4, and it is possible to implement the
operations on the 3D curves by considering their projected images. We note that while some

2The infimaximal approach is general and can be applied to arbitrary planar curves. The paper [MS03]
however describes experiments with linear objects only.

B.2. Constructing Arrangements on Surfaces 173

quadric surfaces, such as hyperbolic paraboloids3 and planes (degenerate forms of quadric
surfaces) are xy-monotone, other surfaces such as ellipsoids or parabolic paraboloids are not,
and we should consider their upper part and their a lower part separately. The quadric-
topology traits-class will encapsulate this separation and will also perform the “stitching”
of the curves that reside on the upper part of the surface and the ones that lie on its lower
part, in order to form a single arrangement on the entire surface.

3See, e.g., 〈http://mathworld.wolfram.com/HyperbolicParaboloid.html〉.

174 Appendix B. Sweeping Curves and Maintaining 2D Arrangements on Surfaces

Bibliography

[ABF89] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A practical exact motion plan-
ning algorithm for polygonal object amidst polygonal obstacles. In Geometry
and Robotics, volume 391 of LNCS, pages 67–86. Springer, 1989.

[ACA01] E. U. Acar, H. Choset, and P. N. Atkar. Complete sensor-based coverage with
extended-range detectors: A hierarchical decomposition in terms of critical
points and Voronoi diagrams. In Proc. IEEE/RSJ Internat. Conf. Intell. Robot.
Sys. (IROS), pages 1305–1311, 2001.

[AFH02] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for effi-
cient construction of Minkowski sums. Computational Geometry: Theory and
Applications, 21:39–61, 2002.

[AK00] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages 201–290. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

[AS00a] P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages
49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[AS00b] P. K. Agarwal and M. Sharir. Pipes, cigars, and kreplach: The union of
Minkowski sums in three dimensions. Discrete and Computational Geometry,
24(4):645–685, 2000.

[Ata85] M. J. Atallah. Some dynamic computational geometry problems. Computers
and Mathematics with Applications, 11(12):1171–1181, 1985.

[Aus98] M. H. Austern. Generic Programming and the Stl: Using and Extending the
C++ Standard Template Library. Addison-Wesley, 1998.

[Bañ90] J. Bañon. Implementation and extension of the ladder algorithm. In Proc.
IEEE Internat. Conf. Robot. Auto. (ICRA), pages 1548–1553, 1990.

[BBP01] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. Discrete Applied Mathematics,
109(1–2):25–47, 2001.

175

176 BIBLIOGRAPHY

[BEH+02] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer. A computational basis for conic arcs and Boolean operations
on conic polygons. In Proc. 10th Europ. Sympos. Alg. (ESA), volume 2461 of
LNCS, pages 174–186. Springer, 2002.

[BEH+05] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,
J. Reichel, S. Schmitt, E. Schömer, and N. Wolpert. Exacus: Efficient and
exact algorithms for curves and surfaces. In Proc. 13th Europ. Sympos. Alg.
(ESA), volume 3669 of LNCS, pages 155–166. Springer, 2005.

[BFH+07] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein. Sweeping and
maintaining two-dimensional arrangements on surfaces: A first step. In Proc.
15th Europ. Sympos. Alg. (ESA), October 2007. To appear.

[BFHW07] E. Berberich, E. Fogel, D. Halperin, and R. Wein. Sweeping and maintaining
two-dimensional arrangements on surfaces. In Proc. 23rd Europ. Workshop
Comp. Geom. (EWCG), pages 223–226, 2007.

[BFM+01] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In Proc. 9th Europ. Sympos. Alg. (ESA),
volume 2161 of LNCS, pages 254–265. Springer, 2001.

[BHK+05] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact,
complete and efficient implementation for computing planar maps of quadric
intersection curves. In Proc. 21st Annu. ACM Sympos. Comput. Geom. (SCG),
pages 99–106, 2005.

[BK05] S. Bereg and D. G. Kirkpatrick. Curvature-bounded traversals of narrow cor-
ridors. In Proc. 21st Annu. ACM Sympos. Comput. Geom. (SCG), pages 278–
287, 2005.

[BL03] J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for computing
a shortest path of bounded curvature amidst moderate obstacles. Internat. J.
Computational Geometry and Applications, 13(3):189–229, 2003.

[BMK+03] E. L. J. Bohez, N. T. H. Minh, B. Kiatsrithanakorn, P. Natasukon, H. Ruei-
Yun, and L. T. Son. The stencil buffer sweep plane algorithm for 5-axis CNC
tool path verification. Computer-Aided Design, 35(12):1129–1142, October
2003.

[BMS97] U. Bartuschka, K. Mehlhorn, and S.Näher. A robust and efficient implementa-
tion of a sweep line algorithm for the straight line segment intersection problem.
In Proc. 1st Workshop Alg. Eng. (WAE), pages 124–135, 1997.

[BNS00] U. Bartuschka, S. Näher, and M. Seel. A generic plane sweep framework, 2000.
Unpublished manuscript.

[BO79] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geomet-
ric intersections. IEEE Trans. Computers, 28(9):643–647, 1979.

BIBLIOGRAPHY 177

[BPR96] S. Basu, R. Pollack, and M.-F. Roy. Computing roadmaps of semi-algebraic
sets. In Proc. 28th Annu. ACM Sympos. Theory Comput. (STOC), pages 168–
173, 1996.

[BSM03] M. Balasubramaniam, S. E. Sarma, and K. Marciniak. Collision-free finishing
toolpaths from visibility data. Computer-Aided Design, 35(4):359–374, April
2003.

[But06] Z. Butler. Corridor planning for natural agents. In Proc. IEEE Internat. Conf.
Robot. Auto. (ICRA), pages 499–504, 2006.

[BZ88] B. K. Bhattacharya and J. Zorbas. Solving the two-dimensional findpath prob-
lem using a line-triangle representation of the robot. J. Algorithms, 9:449–469,
1988.

[Can86] J. F. Canny. Collision detection for moving polyhedra. IEEE Trans. Pattern
Analysis and Machine Intelligence, 8(2):200–209, March 1986.

[Can87] J. F. Canny. The Complexity of Robot Motion Planning. ACM – MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[Can88] J. F. Canny. Some algebraic and geometric computations in Pspace. In Proc.
20th Annu. ACM Sympos. Theory Comput. (STOC), pages 460–469, 1988.

[CD85] B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Tou-
ssaint, editor, Computational Geometry, pages 63–133. North-Holland, Ams-
terdam, The Netherlands, 1985.

[CEGS91] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. A singly-exponential
stratification scheme for real semi-algebraic varieties and its applications. The-
oretical Computer Science, 84:77–105, 1991.

[CER01] E. Cohen, G. Elber, and R. F. Riesenfeld. Geometric Modeling with Splines:
An Introduction. A. K. Peters, 2001.

[CGL85] B. Chazelle, L. J. Guibas, and D.-T. Lee. The power of geometric duality. BIT,
25:76–90, 1985.

[CL06] F. Cazals and S. Loriot. Computing the exact arrangement of circles on a
sphere, with applications in structural biology. Technical Report 6049, INRIA
Sophia-Antipolis, December 2006.

[CLRS01] T. E. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

[Col75] G. E. Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Proc. 2nd GI Conf. Automat. Theory Form. Lang.,
volume 33 of LNCS, pages 134–183. Springer, 1975.

178 BIBLIOGRAPHY

[dBvKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer, Berlin, Germany, 2nd
edition, 2000.

[DEKW01] C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with fat
edges. In Proc. 9th Intern. Sympos. Graph Drawing, pages 162–177, 2001.

[DFMT02] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods
and arithmetic filtering for exact predicates on circle arcs. Computational
Geometry: Theory and Applications, 22(1–3):119–142, 2002.

[DLLP03] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parame-
terization of the intersection of quadrics. In Proc. 19th Annu. ACM Sympos.
Comput. Geom. (SCG), pages 246–255, 2003.

[EK06] I. Z. Emiris and M. I. Karavelas. The predicates of the Apollonius diagram:
Algorithmic analysis and implementation. Computational Geometry: Theory
and Applications, 33(1–2):18–57, 2006.

[EKP+04] I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards
an open curved kernel. In Proc. 20th Annu. ACM Sympos. Comput. Geom.
(SCG), pages 438–446, 2004.

[EKSW04] A. Eigenwillig, L. Kettner, E. Schömer, and N. Wolpert. Complete, exact and
efficient computations with cubic curves. In Proc. 20th Annu. ACM Sympos.
Comput. Geom. (SCG), pages 409–418, 2004.

[Elb95] G. Elber. Freeform surface region optimization for 3-axis and 5-axis milling.
Computer-Aided Design, 27(6):465–470, June 1995.

[ET04] I. Z. Emiris and E. P. Tsigaridas. Computing with real algebraic numbers of
small degree. In Proc. 12th Europ. Sympos. Alg. (ESA), volume 3221 of LNCS,
pages 652–663. Springer, 2004.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the
design of Cgal, the Computational Geometry Algorithms Library. Software
— Practice and Experience, 30:1167–1202, 2000.

[FH06] E. Fogel and D. Halperin. Exact and efficient construction of Minkowski sums
of convex polyhedra with applications. In Proc. 8th Wrkshp. Alg. Eng. Exper.
(ALENEX), pages 3–15, 2006.

[FHK+06] E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, and N. Wolpert.
Arrangements. In J.-D. Boissonnat and M. Teillaud, editors, Effective Compu-
tational Geometry for Curves and Surfaces, chapter 1. Springer, 2006.

[Fla00] E. Flato. Robust and efficient construction of planar Minkowski sums. M.Sc.
thesis, School of Computer Science, Tel-Aviv University, 2000.
http://www.cs.tau.ac.il/CGAL/Theses/flato/thesis/.

BIBLIOGRAPHY 179

[For04] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 23, pages 513–528. Chapman & Hall/CRC, 2nd edition, 2004.

[FP06] A. Fabri and S. Pion. A generic lazy evaluation scheme for exact geometric
computations. In Proc. 2nd Workshop on Library-Centric Software Design
(LCSD), 2006.
http://sms.cs.chalmers.se/bibliography/proceedings/2006-LCSD.pdf.

[FWH04] E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency
by genericity: Improving Cgal’s arrangements. In Proc. 12th Europ. Sympos.
Alg. (ESA), volume 3221 of LNCS, pages 664–676. Springer, 2004.

[FWZH06] E. Fogel, R. Wein, B. Zukerman, and D. Halperin. 2D regularized boolean set-
operations. In Cgal Editorial Board, editor, Cgal-3.2 User and Reference
Manual. 2006. http://www.cgal.org/Manual/3.2/doc html/cgal manual/

Boolean set operations 2/Chapter main.html.

[GHH+03] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and M. Seel.
Boolean operations on 3D selective Nef complexes: Data structure, algorithms,
and implementation. In Proc. 11th Europ. Sympos. Alg. (ESA), volume 2832
of LNCS, pages 174–186. Springer, 2003.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GM91] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing
visibility graphs. SIAM J. on Computing, 20(5):888–910, 1991.

[GO03] R. Geraerts and M. H. Overmars. A comparative study of probabilis-
tic roadmap planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and
S. Hutchinson, editors, Algorithmic Foundations of Robotics V, pages 43–57.
Springer, 2003.

[GO04] R. Geraerts and M. H. Overmars. Clearance based path optimization for motion
planning. In Proc. IEEE Internat. Conf. Robot. Auto. (ICRA), pages 2386–
2392, 2004.

[Gra97] A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathe-
matica, chapter Logarithmic Spirals, pages 40–42. CRC Press, Boca Raton,
FL, 2nd edition, 1997.

[Gre83] D. H. Greene. The decomposition of polygons into convex parts. In F. P.
Preparata, editor, Computational Geometry, volume 1 of Adv. Comput. Res.,
pages 235–259. JAI Press, Greenwich, CT, 1983.

[GRS83] L. J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational
geometry. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 100–111, 1983.

180 BIBLIOGRAPHY

[GS87] L. J. Guibas and R. Seidel. Computing convolutions by reciprocal search.
Discrete and Computational Geometry, 2:175–193, 1987.

[Hal04] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 24, pages 529–
562. Chapman & Hall/CRC, 2nd edition, 2004.

[Han00] I. Hanniel. The design and implementation of planar arrangements of curves
in Cgal. M.Sc. thesis, School of Computer Science, Tel-Aviv University, 2000.

[Hel91] M. Held. On the Computational Geometry of Pocket Machining, volume 500
of LNCS. Springer, 1991.

[Her89] J. Hershberger. Finding the upper envelope of n line segments in O(n logn)
time. Information Processing Letters, 33:169–174, 1989.

[Her06] S. Hert. 2D polygon partitioning. In Cgal Editorial Board, editor, Cgal-3.2
User and Reference Manual. 2006.
http://www.cgal.org/Manual/3.2/doc html/cgal manual/Partition 2/

Chapter main.html.

[HH03] S. Hirsch and D. Halperin. Hybrid motion planning: Coordinating two discs
moving among polygonal obstacles in the plane. In J.-D. Boissonnat, J. Bur-
dick, K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of
Robotics V, pages 239–255. Springer, 2003.

[HHK+01] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and
extensible geometry kernel. In Proc. 5th Internat. Workshop Alg. Eng. (WAE),
volume 2141 of LNCS, pages 79–90. Springer, 2001.

[HK06] P. Hachenberger and L. Kettner. 3D Boolean operations on Nef polyhedra. In
Cgal Editorial Board, editor, Cgal-3.2 User and Reference Manual. 2006.
http://www.cgal.org/Manual/3.2/doc html/cgal manual/Nef 3/

Chapter main.html.

[HKL04] D. Halperin, L. E. Kavraki, and J.-C. Latombe. Robotics. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 48, pages 1065–1094. Chapman & Hall/CRC, 2nd edition, 2004.

[HL02] S. Hirsch and E. Leiserowitz. Exact construction of Minkowski sums of polygons
and a disc with application to motion planning. Technical Report ECG-TR-
181205-01, Tel-Aviv University, 2002.

[HM83] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proc. 4th
Internat. Conf. Found. Comput. Theory, volume 158 of LNCS, pages 207–218.
Springer, 1983.

BIBLIOGRAPHY 181

[Hof04] C. M. Hoffmann. Solid modeling. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 56, pages 1257–
1278. Chapman & Hall/CRC, 2nd edition, 2004.

[HPCA+95] S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The
complexity of a single face of a Minkowski sum. In Proc. 7th Canad. Conf.
Comput. Geom. (CCCG), pages 91–96, 1995.

[HS86] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of
generalized path compression schemes. Combinatorica, 6:151–177, 1986.

[HS96] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the mo-
tion of a polygon in a polygonal environment. Discrete and Computational
Geometry, 16:121–134, 1996.

[HS98] D. Halperin and C. R. Shelton. A perturbation scheme for spherical arrange-
ments with application to molecular modeling. Computational Geometry: The-
ory and Applications, 10(4):273–288, 1998.

[HSA01] S. Ho, S. Sarma, and Y. Adachi. Real-time interference analysis between a
tool and an environment. Computer-Aided Design, 33(13):935–947, November
2001.

[HW07] I. Hanniel and R. Wein. An exact, complete and efficient computation of
arrangements of Bézier curves. In Proc. ACM Solid Phys. Model. Sympos.
(SPM), pages 253–263, June 2007.

[IEH+04] O. Ilushin, G. Elber, D. Halperin, R. Wein, and M.-S. Kim. Precise global col-
lision detection in multi-axis machining. Computer-Aided Design, 37(9):909–
920, August 2004.

[JHDS89] R. B. Jerard, S. Z. Hussaini, R. L. Drysdale III, and B. Schaudt. Approximate
methods for simulation and verification of numerically controlled machining
programs. The Visual Computer, 5(6):329–348, 1989.

[Kar04] M. I. Karavelas. A robust and efficient implementation for the segment Voronoi
diagram. In Proc. Internat. Sympos. Voronoi Diag., pages 51–62, 2004.

[KF95] A. Kaul and R. T. Farouki. Computing Minkowski sums of plane curves.
Internat. J. Computational Geometry and Applications, 5(4):413–432, 1995.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
Internat. J. Robotics Research, 5(1):90–98, 1986.

[KLPS86] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete
and Computational Geometry, 1:59–70, 1986.

182 BIBLIOGRAPHY

[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and C. K. Yap. A core library for
robust numeric and geometric computation. In Proc. 15th Annu. ACM Sympos.
Comput. Geom. (SCG), pages 351–359, 1999.

[KMP+04] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. K. Yap. Classroom
examples of robustness problems in geometric computations. In Proc. 12th
Europ. Sympos. Alg. (ESA), volume 3221 of LNCS, pages 702–713. Springer,
2004.

[KO04a] A. Kamphuis and M. H. Overmars. Finding paths for coherent groups using
clearance. In R. Boulic and D. K. Pai, editors, Eurographics/ACM SIGGRAPH
Sympos. Computer Animation, pages 1–10, 2004.

[KO04b] A. Kamphuis and M. H. Overmars. Motion planning for coherent groups of
entities. In Proc. IEEE Internat. Conf. Robot. Auto. (ICRA), pages 3815–3822,
2004.

[Kol04] V. Koltun. Almost tight upper bounds for vertical decompositions in four
dimensions. J. of the ACM, 51:699–730, 2004.

[KOS91] A. Kaul, M. A. O’Connor, and V. Srinivasan. Computing Minkowski sums of
regular polygons. In Proc. 3rd Canad. Conf. Comput. Geom. (CCCG), pages
74–77, 1991.

[KPOL05] A. Kamphuis, J. Pettre, M. H. Overmars, and J.-P. Laumond. Path finding for
the animation of walking characters. In Proc. Eurographics/ACM SIGGRAPH
Sympos. Comp. Animat., pages 8–9, 2005.

[KR03] B. Kim and J. Rossignac. Collision prediction for polyhedra under screw mo-
tions. In Proc. 8th ACM Sympos. Solid Model. Appl., pages 4–10, 2003.

[Kra99] S. G. Krantz. Handbook of Complex Variables. Birkhäuser, Boston, MA, 1999.

[KS02] M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple
polygons. Internat. J. Computational Geometry and Applications, 12(3):181–
192, 2002.

[KŠLO96] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE
Trans. Robotics and Automation, 12:566–580, 1996.

[KVLM03] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha. Fast swept volume
approximation of complex polyhedral models. In Proc. 8th ACM Sympos. Solid
Model. Appl., pages 11–22, 2003.

[LA95] Y. H. Liu and S. Arimoto. Finding the shortest path of a disc among polyg-
onal obstacles using a radius-independent graph. IEEE Trans. Robotics and
Automation, 11:682–691, 1995.

BIBLIOGRAPHY 183

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
1991.

[Lat99] J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors,
and other artifacts. Internat. J. Robotics Research, 18(11):1119–1128, 1999.
Special Issue on Robotics at the Millennium — Part I.

[LC95] Y.-S. Lee and T.-C. Chang. 2-phase approach to global tool interference avoid-
ance in 5-axis machining. Computer-Aided Design, 27(10):715–729, October
1995.

[LD81] D.-T. Lee and R. L. Drysdale III. Generalization of Voronoi diagrams in the
plane. SIAM J. on Computing, 10(1):73–87, 1981.

[LDK03] B. Lauwers, P. Dejonghe, and J. P. Kruth. Optimal and collision free tool pos-
ture in 5-axis machining through the tight integration of tool path generation
and machine simulation. Computer-Aided Design, 35(5):421–432, April 2003.

[LKE98] I.-K. Lee, M.-S. Kim, and G. Elber. Polynomial/rational approximation of
Minkowski sum boundary curves. Graphical Models and Image Processing,
60(2):136–165, 1998.

[LM04] M. C. Lin and D. Manocha. Collision and proximity queries. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 35, pages 787–807. Chapman & Hall/CRC, 2nd edition, 2004.

[LP83] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE
Trans. Computers, C-32(2):108–120, February 1983.

[LPW79] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, October 1979.

[LS87] D. Leven and M. Sharir. Planning a purely translational motion for a convex
object in two-dimensional space using generalized Voronoi diagrams. Discrete
and Computational Geometry, 2:9–31, 1987.

[LY01] C. Li and C. K. Yap. New constructive root bound for algebraic expressions.
In Proc. 12th ACM-SIAM Symp. Disc. Alg. (SODA), pages 496–505, 2001.

[Mae99] T. Maekawa. An overview of offset curves and surfaces. Computer-Aided De-
sign, 31(3):165–173, March 1999.

[Mey06] M. Meyerovitch. Robust, generic and efficient construction of envelopes of
surfaces in three-dimensional space. In Proc. 14th Europ. Sympos. Alg. (ESA),
volume 4168 of LNCS, pages 792–803. Springer, 2006.

[Mig82] M. Mignotte. Identification of algebraic numbers. J. Algorithms, 3(3):197–204,
1982.

184 BIBLIOGRAPHY

[Mit04] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 27, pages 607–642. Chapman & Hall/CRC, 2nd edition, 2004.

[MN00] K. Mehlhorn and S. Näher. Leda: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, Cambridge, UK, 2000.

[MP91] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem:
Finding shortest paths through a weighted planar subdivision. J. of the ACM,
38(1):18–73, 1991.

[MS03] K. Mehlhorn and M. Seel. Infimaximal frames: A technique for making lines
look like segments. Internat. J. Computational Geometry and Applications,
13(3):241–255, 2003.

[Mul90] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Computation,
10(3–4):253–280, 1990.

[Mye97] N. Myers. A new and useful template technique: “Traits”. In S. B. Lippman,
editor, C++ Gems, volume 5 of SIGS Reference Library, pages 451–458. 1997.

[Nee97] T. Needham. Visual Complex Analysis. Oxford University Press, Oxford, UK,
1997.

[NKMO04] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M. H. Overmars. Auto-
matic construction of roadmaps for path planning in games. In Proc. Internat.
Conf. Computer Games: Artificial Intelligence, Design and Education, pages
285–292, 2004.

[NO04a] D. Nieuwenhuisen and M. H. Overmars. Motion planning for camera move-
ments. In Proc. IEEE Internat. Conf. Robot. Auto. (ICRA), pages 3870–3876,
2004.

[NO04b] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic roadmap
graphs. In Proc. IEEE Internat. Conf. Robot. Auto. (ICRA), pages 446–452,
2004.

[ÓSY83] C. Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: A new approach to
motion-planning. In Proc. 15th Annu. ACM Sympos. Theory Comput. (STOC),
pages 207–220, 1983.

[Ove05] M. H. Overmars. Path planning for games. In Proc. 3rd Internat. Game Design
Tech. Workshop (GDTW), pages 29–33, 2005.

[ÓY85] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion
of a disc. J. Algorithms, 6:104–111, 1985.

[Pie93] L. Piegl. Fundamental Developments of Computer Aided Geometric Design.
Academic Press, 1993.

BIBLIOGRAPHY 185

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer, New York, NY, 1985.

[PV96] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. of Computa-
tional Geometry and Applications, 6(3):279–308, 1996.

[Ram96] G. D. Ramkumar. An algorithm to compute the Minkowski sum outer-face
of two simple polygons. In Proc. 12th Annu. ACM Sympos. Comput. Geom.
(SCG), pages 234–241, 1996.

[Rei87] J. Reif. Complexity of the generalized movers problem. In J. Hopcroft,
J. Schwartz, and M. Sharir, editors, Planning, Geometry and Complexity of
Robot Motion, pages 267–281. Ablex Publishing, Norwood, NJ, 1987.

[RKLM04] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha. Fast continuous collision
detection for articulated models. In Proc. 9th ACM Sympos. Solid Model. Appl.,
pages 145–156, 2004.

[Roh91] H. Rohnert. Moving a disc between polygons. Algorithmica, 6:182–191, 1991.

[RS94] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles.
J. Association for Computing Machinery, 41(4):764–790, 1994.

[RW95] J. Reif and H. Wang. Social potential fields: A distributed behavioral con-
trol for autonomous robots. In K. Goldberg, D. Halperin, J.-C. Latombe,
and R. Wilson, editors, Internat. Workshop on Algorithmic Foundations of
Robotics, pages 431–459. A. K. Peters, 1995.

[SA95] M. Sharir and P. Agarwal. Davenport–Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, 1995.

[Sch00] S. Schirra. Robustness and precision issues in geometric computation. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages
597–632. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[SH89] J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. In Proc.
5th Annu. ACM Sympos. Comput. Geom. (SCG), pages 354–363, 1989.

[Sha04] M. Sharir. Algorithmic motion planning. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 47, pages
1037–1064. Chapman & Hall/CRC, 2nd edition, 2004.

[SLL02] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library, User guide
and reference manual. Addison-Wesley, 2002.

[SM88] K. Sutner and W. Maass. Motion planning among time dependent obstacles.
Acta Informatica, 26:93–122, 1988.

186 BIBLIOGRAPHY

[SS81] J. T. Schwartz and M. Sharir. On the “piano movers” problem I: The case
of a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Technical Report 39, Department of Computer Science, New-York University,
October 1981.

[SS83a] J. T. Schwartz and M. Sharir. On the “piano movers” problem I: The case
of a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Commun. Pure and Applied Mathematics, 36:345–398, 1983.

[SS83b] J. T. Schwartz and M. Sharir. On the “piano movers” problem II: General
techniques for computing topological properties of real algebraic manifolds.
Advances in Applied Mathematics, 4:298–351, 1983.

[SS83c] J. T. Schwartz and M. Sharir. On the “piano movers” problem III: Coordinating
the motion of several independent bodies: The special case of circular bodies
moving amidst polygonal barriers. Internat. J. Robotics Research, 2(3):46–75,
1983.

[SS91] M. Sharir and S. Sifrony. Coordinated motion planning for two independent
robots. Ann. Mathematics and Artificial Intelligence, 3:107–130, 1991.

[vdS94] A. F. van der Stappen. The complexity of the free space for motion planning
amidst fat obstacles. J. Intelligent and Robotic Systems, 11:21–44, 1994.

[Ver94] S. Verma. Simulation of numerically controlled machines. M.Sc. thesis, Com-
puter Science Department, The University of Utah, 1994.

[Wei02a] R. Wein. High-level filtering for arrangements of conic arcs. M.Sc. thesis,
School of Computer Science, Tel-Aviv University, 2002.

[Wei02b] R. Wein. High-level filtering for arrangements of conic arcs. In Proc. 10th
Europ. Sympos. Alg. (ESA), volume 2461 of LNCS, pages 884–895. Springer,
2002.

[Wei05] R. Wein. Efficient implementation of red-black trees with split and catenate
operations. Technical report, Tel-Aviv University, 2005.
http://www.cs.tau.ac.il/∼wein/publications/pdfs/rb tree.pdf.

[Wei06a] R. Wein. 2D envelopes. In Cgal Editorial Board, editor, Cgal-3.3 User and
Reference Manual. 2006.
http://www.cgal.org/Manual/3.3/doc html/cgal manual/Envelope 2/

Chapter main.html.

[Wei06b] R. Wein. 2D Minkowski sums. In Cgal Editorial Board, editor, Cgal-3.3
User and Reference Manual. 2006.
http://www.cgal.org/Manual/3.3/doc html/cgal manual/Minkowski sum 2/

Chapter main.html.

BIBLIOGRAPHY 187

[Wei06c] R. Wein. Exact and efficient construction of planar Minkowski sums using the
convolution method. In Proc. 14th Europ. Sympos. Alg. (ESA), volume 4186
of LNCS, pages 829–840. Springer, 2006.

[Wei07] R. Wein. Exact and approximate construction of offset polygons. Computer-
Aided Design, 39(6):518–527, June 2007.

[WFZH05] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming
techniques applied to Cgal’s arrangement package. In Proc. 1st Workshop on
Library-Centric Software Design (LCSD), pages 24–33, 2005.
www.cs.rpi.edu/research/pdf/06-12.pdf.

[WFZH07] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming
techniques applied to Cgal’s arrangement package. Computational Geometry:
Theory and Applications, 38(1–2):37–63, 2007.

[WH04] R. Wein and D. Halperin. Generic implementation of the construction of lower
envelopes of planar curves. Technical Report ECG-TR-361100-01, Tel-Aviv
University, 2004.

[WIEH04] R. Wein, O. Ilushin, G. Elber, and D. Halperin. Continuous path verification in
multi-axis NC-machining. In Proc. 20th Annu. ACM Sympos. Comput. Geom.
(SCG), pages 86–95, 2004.

[WIEH05] R. Wein, O. Ilushin, G. Elber, and D. Halperin. Continuous path verifica-
tion in multi-axis NC-machining. Internat. J. Computational Geometry and
Applications, 15(4):351–377, 2005.

[WvdBH05] R. Wein, J. P. van den Berg, and D. Halperin. The visibility-Voronoi com-
plex and its applications. In Proc. 21st Annu. ACM Sympos. Comput. Geom.
(SCG), pages 63–72, 2005.

[WvdBH06] R. Wein, J. P. van den Berg, and D. Halperin. Planning near-optimal corridors
amidst obstacles. In Proc. 7th Internat. Workshop Alg. Found. Robot. (WAFR),
2006. To appear.

[WvdBH07] R. Wein, J. P. van den Berg, and D. Halperin. The visibility-Voronoi com-
plex and its applications. Computational Geometry: Theory and Applications,
36(1):66–87, 2007.

[WZ06] R. Wein and B. Zukerman. Exact and efficient construction of planar arrange-
ments of circular arcs and line segments with applications. Technical Report
ACS-TR-121200-01, Tel-Aviv University, March 2006.

[Yap04] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 41, pages
927–952. Chapman & Hall/CRC, 2nd edition, 2004.

188 BIBLIOGRAPHY

[YD95] C. K. Yap and T. Dubé. The exact computation paradigm. In D. Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture
Notes Series on Computing, pages 452–492. World Scientific, Singapore, 2nd
edition, 1995.

