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Overview

We begin by recalling several tools that we have studied throughout 
the course, learn a few more and then proceed with pointing out 
connections between the central structures that we have reviewed



Credits

• some figures are taken from Computational 
Geometry Algorithms and Applications by de Berg et 
al [CGAA]

• the original figures are available at the book’s site: 
www.cs.uu.nl/geobook/
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Orientation test

• given three points in the plane 𝑝, 𝑞, 𝑟, consider the line 𝐿 through 𝑝
and 𝑞 oriented from 𝑝 to 𝑞

• orientation (or side-of-line) test: is 𝑟 to the left of 𝐿, on 𝐿, or to the 
right of 𝐿?



Orientation test, cont’d



Orientation test, cont’d



Orientation test, equivalent formulation



Orientation test in higher dimensions

• in 3D: on which side of the oriented plane 𝐻(𝑝, 𝑞, 𝑟) does the point 𝑠 lie?

• in 𝑅𝑑: on which side of an oriented hyperplane containing 𝑑 points does 
another point lie? the determinant of a 𝑑 + 1 × 𝑑 + 1 matrix



Point-line duality in the plane



Duality in higher dimensions

• in 𝑅𝑑, duality between 

• the point (𝑎1, 𝑎2, … , 𝑎𝑑) and

the hyperplane 𝑥𝑑 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑−1𝑥𝑑−1 − 𝑎𝑑
• the hyperplane 𝑥𝑑 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑑−1𝑥𝑑−1 + 𝑎𝑑 and

the point (𝑎1, 𝑎2, … , −𝑎𝑑)

preserves above/below/incidence relations, vertical distance



Arrangements of lines and their lower envelope



Envelopes

• arrg of 𝑛 lines

• what is the shape below the lower envelope?

• what is the exact maximum complexity of the envelope?

• what is the shape above the upper envelope?

• what is the exact maximum complexity of the envelope?



Arrangements of planes and their lower envelope

• arrg of 𝑛 planes, 𝐻

• how does the arrg look like on one plane in 𝐻?

• how complex is one such arrg?

• how complex is the arrg of planes

• how many 3D cells it has?

• the upper and lower envelope: shape and 
complexity

[wikipedia]



Degenerate lower envelope of planes and its 
minimization diagram

• we assume henceforth general position



The lifting transform

• the lifting transform maps points in 𝑅𝑑 to objects 
(points or hyperplanes) in 𝑅𝑑+1

• we will focus on the plane, and the vertical projection 
of planar points onto the unit paraboloid 𝑈 in 𝑅3:

𝑈: 𝑧 = 𝑥2 + 𝑦2

• vertical cross-sections of 𝑈 are parabolas, horizontal 
cross-sections are circles

• 𝐿𝑇: 𝑝(𝑥, 𝑦) ⟼ Ƹ𝑝(𝑥, 𝑦, 𝑥2 + 𝑦2)

[wikipedia]



Lifting a circle

• 𝐿𝑇: 𝑝(𝑥, 𝑦) ⟼ Ƹ𝑝(𝑥, 𝑦, 𝑥2 + 𝑦2)

• 𝐶(𝑎, 𝑏, 𝑟) is a circle in the plane with center at (𝑎, 𝑏) and radius 𝑟

• 𝐿𝑇: 𝐶(𝑎, 𝑏, 𝑟) ⟼ ?

• 𝐶: (𝑥 − 𝑎)2+(𝑦 − 𝑏)2= 𝑟2

• 𝐶: 𝑥2 − 2𝑎𝑥 + 𝑎2 + 𝑦2 − 2𝑏𝑦 + 𝑏2 = 𝑟2

• መ𝐶 is on 𝑈, therefore in መ𝐶 we can replace 𝑥2 + 𝑦2 by 𝑧, to obtain

• 𝑧 = 2𝑎𝑥 + 2𝑏𝑦 − (𝑎2 + 𝑏2 − 𝑟2)



Lifting a circle, cont’d

• 𝑧 = 2𝑎𝑥 + 2𝑏𝑦 − (𝑎2 + 𝑏2 − 𝑟2)

• the lifted circle ෡𝐶 resides on a plane!

[Aurenhammer and Klein]



Corollary

• Let 𝑝, 𝑞, 𝑟, 𝑠 be points in the plane. 
The point 𝑠 lies inside the circle 
though 𝑝, 𝑞, 𝑟 iff the point Ƹ𝑠 lies 
below the plane through ො𝑝, ො𝑞, Ƹ𝑟.

[Aurenhammer and Klein]



Point-in-circle test

• without computing the center or radius of the circle

• recall, for 𝑝, 𝑞, 𝑟, 𝑠 points in 𝑅3:

determines on which side of the plane 𝐻(𝑝, 𝑞, 𝑟) through 
𝑝, 𝑞, 𝑟 does 𝑠 lie

• we still need to orient the plane 𝐻(𝑝, 𝑞, 𝑟)



Orienting triangles

[wikipedia]



How exactly?



Point-in-circle test

• recall: For 𝑝, 𝑞, 𝑟, 𝑠 points in the plane, the point 𝑠 lies inside the 
circle though 𝑝, 𝑞, 𝑟 iff the point Ƹ𝑠 lies below the plane through Ƹ𝑝, ො𝑞, Ƹ𝑟

• assume that (𝑝, 𝑞, 𝑟) are oriented clockwise

• then the point 𝑠 is inside the circle the circle through 𝑝, 𝑞, 𝑟 in the 
plane iff Φ Ƹ𝑝, ො𝑞, Ƹ𝑟, Ƹ𝑠 > 0, namely



Connection: hulls and envelopes



Recall



Therefore: the upper hull corresponds to the 
lower envelope

• hull edges correspond to envelope breakpoints

• in what order?



Hulls and envelopes

• under “our” duality the upper hull of points in 𝑃 corresponds to the 
lower envelope of the dual lines 𝑃∗ and the lower hull correspond to 
the upper envelope

• holds in any dimension

• in 𝑅3 for a set 𝑃 of points:
• a vertex of the upper hull of the points in 𝑃 (which is a point of 𝑃) 

corresponds to a face of the lower envelope of the planes in 𝑃∗

• a facet of the upper hull corresponds to a vertex of the lower envelope
• an edge of the upper hull corresponds to an edge of the lower envelope: the 

edge connecting two vertices 𝑣1, 𝑣2 of the hull corresponds to the joint edge 
on the boundary of the faces of the lower envelope that correspond to 𝑣1, 𝑣2



Convex hull vs. intersection of half-planes

• recall: the region below the lower 
envelope (or above the upper envelope) 
of lines is the intersection of half-planes

• question: can we use a convex-hull 
algorithm to compute the intersection of 
half-planes (tricky)? 



Convex hull vs. intersection of half-planes, cont’d

• Q: can we use a convex-hull algorithm 
to compute the intersection of half-
planes? 

• A: yes, but with care: we need to 
separate the half-planes into (𝑖) 
upward facing, (𝑖𝑖) downward facing, 
and (𝑖𝑖𝑖) bounded by vertical lines

• for (𝑖) and (𝑖𝑖) we can dualize the 
bounding lines and compute the 
relevant hull

• for (𝑖𝑖𝑖) ?



Convex hull vs. intersection of half-planes, cont’d

• corollary: computing the intersection 
of 𝑛 half-planes in the plane requires 
Ω(𝑛 log 𝑛) time

• notice: the convex hull is never empty 
while the intersection of half-planes 
can be 

• holds in any dimension



Connection: Voronoi diagrams and upper 
envelopes in one dimension higher

• 𝑈 is the unit paraboloid in 𝑅3

• we lift the planar point 𝑝 𝑝𝑥 , 𝑝𝑦 to Ƹ𝑝 on 𝑈

• consider the following plane ℎ 𝑝 that 
contains the point Ƹ𝑝 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑥

2 + 𝑝𝑦
2 :

ℎ 𝑝 : 𝑧 = 2𝑝𝑥x + 2𝑝𝑦𝑦 − 𝑝𝑥
2 + 𝑝𝑦

2

• lift another point 𝑞 in the plane to ො𝑞

• let 𝑞 𝑝 be the point where the vertical line 
through 𝑞 intersect ℎ 𝑝

ො𝑞ො𝑞
Ƹ𝑝



The (vertical) distance between ො𝑞 and 𝑞 𝑝

• ℎ 𝑝 : 𝑧 = 2𝑝𝑥x + 2𝑝𝑦𝑦 − 𝑝𝑥
2 + 𝑝𝑦

2

• ො𝑞 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑥
2 + 𝑞𝑦

2

• Δ𝑧 = 𝑞𝑥
2 + 𝑞𝑦

2 − 2𝑝𝑥𝑞𝑥 − 2𝑝𝑦𝑞𝑦
+ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑞𝑥 − 𝑝𝑥

2 + 𝑞𝑦 − 𝑝𝑦
2

• notice that Δ𝑧 ≥ 0, and = 0 only for 𝑞 = 𝑝, 
which means that ℎ 𝑝 is tangent to 𝑈 at Ƹ𝑝
(and otherwise below 𝑈)

• there are no vertical tangent planes to 𝑈

ො𝑞ො𝑞
Ƹ𝑝



The (vertical) distance between ො𝑞 and 𝑞 𝑝 , cont’d

• ℎ 𝑝 : 𝑧 = 2𝑝𝑥x + 2𝑝𝑦𝑦 − 𝑝𝑥
2 + 𝑝𝑦

2

• ො𝑞 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑥
2 + 𝑞𝑦

2

• Δ𝑧 = 𝑞𝑥
2 + 𝑞𝑦

2 − 2𝑝𝑥𝑞𝑥 − 2𝑝𝑦𝑞𝑦
+ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑞𝑥 − 𝑝𝑥

2 + 𝑞𝑦 − 𝑝𝑦
2

= 𝑑𝑖𝑠𝑡(𝑝, 𝑞)2

• furthermore, the vertical distance between ො𝑞
and ℎ 𝑝 encodes the square of the planar 
distance between 𝑝 and 𝑞

ො𝑞ො𝑞
Ƹ𝑝



Voronoi diagrams and upper envelopes

• given a set 𝑃 of 𝑛 points in the plane

• we produce a plane ℎ 𝑝 for every 𝑝 ∈ 𝑃

• 𝐻 ≔ ℎ 𝑝 𝑝 ∈ 𝑃

• 𝑈𝐸 𝐻 is the upper envelope of the plane in 
𝐻

• take a point 𝑞 in the plane, lift it to ො𝑞, shoot a 
vertical ray downward from ො𝑞 into 𝑈𝐸 𝐻

• the ray will hit the plane ℎ 𝑝 , which is 
vertically closest to ො𝑞

ො𝑞ො𝑞
Ƹ𝑝



Voronoi diagrams and upper envelopes, cont’d

• the ray will hit the plane ℎ 𝑝 , which is 
vertically closest to ො𝑞

• namely, 𝑝 is the closest point (site) in the 
plane to 𝑞

• claim: the projection onto the plane of 𝑈𝐸 𝐻
is the Voronoi diagram of 𝑃 ො𝑞ො𝑞

Ƹ𝑝



Convex hull in 3D

• the convex hull of a set 𝑃 of 𝑛 points in 𝑅3 is 
a convex polytope whose vertices are points 
in 𝑃

• it therefore has at most n vertices

• its vertices and edges constitute a planar 
graph

• 𝐶𝐻 𝑃 has at most 2𝑛 − 4 faces and at 
most 3𝑛 − 6 edges

[O’Rourke]



Convex polytopes and planar graphs

• the complexity bounds hold also for non-convex polytopes of genus
zero with 𝑛 vertices



Convex hulls in higher dimensions

• the complexity of the convex hull of a set of 
𝑛 points in 𝑅𝑑 is Θ(𝑛 𝑑/2 )

• it can be computed in 𝑂(𝑛 log 𝑛) time in 𝑅2

and 𝑅3, and in expected Θ(𝑛 𝑑/2 ) time in 
𝑅𝑑, for 𝑑 > 3



Connection: Delaunay triangulations and convex 
hulls in one dimension higher

• we are given a set 𝑃 of points (sites) in general position in the plane

• ෠𝑃: their projection onto the unit paraboloid 𝑈

• 𝐿𝐻 ෠𝑃 : the lower convex hull of ෠𝑃

• consider one facet (triangle, under general position) 𝑓 of 𝐿𝐻 ෠𝑃 , with 
vertices Ƹ𝑝, ො𝑞, Ƹ𝑟

• the projection of the circle 𝛾 𝑝, 𝑞, 𝑟 through 𝑝, 𝑞, 𝑟 in the plane onto 
𝑈 lies on the plane ℎ(𝑓) supporting the facet 𝑓 of the hull, so all 
other vertices of ෠𝑃 lie above ℎ(𝑓)

• therefore, the circle 𝛾 𝑝, 𝑞, 𝑟 is free of sites of 𝑃



Delaunay triangulations and convex hulls, cont’d

• project 𝐿𝐻 ෠𝑃 , the lower convex hull of ෠𝑃, back to the plane

• this projection is a triangulation 𝑇 of the sites in 𝑃

• for every triangle 𝑝, 𝑞, 𝑟 in 𝑇, the circle 𝛾 𝑝, 𝑞, 𝑟 is free of sites of 𝑃

• 𝑇 is the Delaunay triangulation of 𝑃



Delaunay triangulations and convex hulls, cont’d

• summary: for a planar set of sites 𝑃, the projection onto the plane of 
𝐿𝐻 ෠𝑃 is the Delaunay triangulation of 𝑃

[Suri]



Summary of connections



Connections

• lower convex hull of points in 𝑅𝑑 ⟺ upper envelope of hyperplanes 
in 𝑅𝑑 via point-hyperplane duality

• Symmetrically: upper convex hull of points in 𝑅𝑑 ⟺ lower envelope 
of hyperplanes in 𝑅𝑑 via point-hyperplane duality

• convex hull of points in 𝑅𝑑 ⟺ intersection of half-spaces in 𝑅𝑑 via 
point-hyperplane duality (through handling subcases)

• Voronoi diagram of points in 𝑅𝑑 ⟺ upper envelope of hyperplanes in 
𝑅𝑑+1

• Delaunay triangulation of points in 𝑅𝑑 ⟺ lower convex hull of points 
in 𝑅𝑑+1



One algorithm?

• an algorithm for computing the convex hull of points in 𝑅2 and 𝑅3, 
can help us (with a few extra relatively simple procedures) to 
compute: 
• envelopes in 𝑅2 and 𝑅3

• intersection of half-spaces in 𝑅2 and 𝑅3

• Voronoi diagrams of point sites in 𝑅2

• Delaunay triangulations in 𝑅2

• an algorithm for computing the convex hull of points in any 
dimension can help us (with a few extra relatively simple procedures) 
compute these structures in any dimension



THE END

[Jeb Gaither, CGAL arrangements]


