

Connections between Major Geometric Structures

Computational Geometry Dan Halperin Tel Aviv University

Overview

We begin by recalling several tools that we have studied throughout the course, learn a few more and then proceed with pointing out connections between the central structures that we have reviewed

Credits

- some figures are taken from Computational Geometry Algorithms and Applications by de Berg et al [CGAA]
- the original figures are available at the book's site: www.cs.uu.nl/geobook/

Orientation test

- given three points in the plane *p*, *q*, *r*, consider the line *L* through *p* and *q* oriented from *p* to *q*
- orientation (or side-of-line) test: is *r* to the left of *L*, on *L*, or to the right of *L*?

Orientation test, cont'd

the vector product of \vec{v} and \vec{w} :

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & 1 \\ w_x & w_y & 1 \end{vmatrix} = (v_x w_y - v_y w_x) \hat{k}$$

$$\vec{v} = q - p \implies v_x = q_x - p_x, \quad v_y = q_y - p_y$$

 $\vec{w} = r - p \implies w_x = r_x - p_x, \quad w_y = r_y - p_y$

$$(v_x w_y - v_y w_x) = (q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x) \equiv \Delta(p, q, r)$$

Orientation test, cont'd

if $\Delta(p,q,r) > 0$ then r is to the **left** of L(p,q)if $\Delta(p,q,r) = 0$ then r is **on** of L(p,q)if $\Delta(p,q,r) < 0$ then r is to the **right** of L(p,q)

Orientation test, equivalent formulation

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & 1 \\ w_x & w_y & 1 \end{vmatrix} = \begin{vmatrix} p_x & p_y & 1 \\ q_x & q_y & 1 \\ r_x & r_y & 1 \end{vmatrix}$$

Orientation test in higher dimensions

• in 3D: on which side of the *oriented plane* H(p,q,r) does the point s lie?

$$\begin{vmatrix} p_x & p_y & p_z & 1 \\ q_x & q_y & q_z & 1 \\ r_x & r_y & r_z & 1 \\ s_x & s_y & s_z & 1 \end{vmatrix} >, <, = 0?$$

• in R^d : on which side of an oriented hyperplane containing d points does another point lie? the determinant of a $d + 1 \times d + 1$ matrix

Point-line duality in the plane

Duality preserves vertical distances

Duality in higher dimensions

- in *R^d*, duality between
 - the point (a_1, a_2, \dots, a_d) and

the hyperplane $x_d = a_1 x_1 + a_2 x_2 + \dots + a_{d-1} x_{d-1} - a_d$

• the hyperplane $x_d = a_1x_1 + a_2x_2 + \dots + a_{d-1}x_{d-1} + a_d$ and the point $(a_1, a_2, \dots, -a_d)$

preserves above/below/incidence relations, vertical distance

Arrangements of lines and their lower envelope

Envelopes

- arrg of *n* lines
- what is the shape below the lower envelope?
- what is the exact maximum complexity of the envelope?
- what is the shape above the upper envelope?
- what is the exact maximum complexity of the envelope?

Arrangements of planes and their lower envelope

- arrg of *n* planes, *H*
- how does the arrg look like on one plane in *H*?
- how complex is one such arrg?
- how complex is the arrg of planes
- how many 3D cells it has?
- the upper and lower envelope: shape and complexity

Degenerate lower envelope of planes and its minimization diagram

• we assume henceforth general position

The lifting transform

- the lifting transform maps points in \mathbb{R}^d to objects (points or hyperplanes) in \mathbb{R}^{d+1}
- we will focus on the plane, and the vertical projection of planar points onto the *unit paraboloid* U in R^3 : $U: z = x^2 + y^2$
- vertical cross-sections of U are parabolas, horizontal cross-sections are circles

•
$$LT: p(x, y) \mapsto \hat{p}(x, y, x^2 + y^2)$$

[wikipedia]

Lifting a circle

- $LT: p(x, y) \mapsto \hat{p}(x, y, x^2 + y^2)$
- C(a, b, r) is a circle in the plane with center at (a, b) and radius r
- $LT: C(a, b, r) \mapsto ?$
- C: $(x-a)^2 + (y-b)^2 = r^2$
- C: $x^2 2ax + a^2 + y^2 2by + b^2 = r^2$
- \hat{C} is on U, therefore in \hat{C} we can replace $x^2 + y^2$ by z, to obtain

•
$$z = 2ax + 2by - (a^2 + b^2 - r^2)$$

Lifting a circle, cont'd

•
$$z = 2ax + 2by - (a^2 + b^2 - r^2)$$

Corollary

• Let p, q, r, s be points in the plane. The point s lies inside the circle though p, q, r iff the point \hat{s} lies below the plane through $\hat{p}, \hat{q}, \hat{r}$.

Point-in-circle test

- without computing the center or radius of the circle
- recall, for p, q, r, s points in \mathbb{R}^3 :

$$\begin{vmatrix} p_x & p_y & p_z & 1 \\ q_x & q_y & q_z & 1 \\ r_x & r_y & r_z & 1 \\ s_x & s_y & s_z & 1 \end{vmatrix} >, <, = 0?$$

determines on which side of the plane H(p,q,r) through p,q,r does s lie

• we still need to orient the plane H(p,q,r)

Orienting triangles

How exactly?

$$\Phi(p,q,r,s) = \begin{vmatrix} p_x & p_y & p_z & 1 \\ q_x & q_y & q_z & 1 \\ r_x & r_y & r_z & 1 \\ s_x & s_y & s_z & 1 \end{vmatrix}$$

if $\Phi(p, q, r, s) > 0$ then s is on the side of H(p, q, r) from which (p, q, r) is oriented **counterclockwise**

if $\Phi(p,q,r,s) = 0$ then s is **on** H(p,q,r)

if $\Phi(p,q,r,s) < 0$ then s is on the side of H(p,q,r) from which (p,q,r) is oriented **clockwise**

Point-in-circle test

- recall: For p, q, r, s points **in the plane**, the point s lies inside the circle though p, q, r iff the point \hat{s} lies below the plane through $\hat{p}, \hat{q}, \hat{r}$
- assume that (*p*, *q*, *r*) are oriented **clockwise**
- then the point s is inside the circle the circle through p, q, r in the plane iff $\Phi(\hat{p}, \hat{q}, \hat{r}, \hat{s}) > 0$, namely

$$\Phi(\hat{p}, \hat{q}, \hat{r}, \hat{s}) = \begin{vmatrix} p_x & p_y & p_x^2 + p_y^2 & 1 \\ q_x & q_y & q_x^2 + q_y^2 & 1 \\ r_x & r_y & r_x^2 + r_y^2 & 1 \\ s_x & s_y & s_x^2 + s_y^2 & 1 \end{vmatrix} > 0$$

Connection: hulls and envelopes

point $p = (p_x, p_y) \mapsto$ line $p^* : y = p_x x - p_y$ line $\ell : y = mx + b \mapsto$ point $\ell^* = (m, -b)$

Therefore: the upper hull corresponds to the lower envelope

- hull edges correspond to envelope breakpoints
- in what order?

Hulls and envelopes

- under "our" duality the upper hull of points in P corresponds to the lower envelope of the dual lines P* and the lower hull correspond to the upper envelope
- holds in any dimension
- in R^3 for a set P of points:
 - a vertex of the upper hull of the points in P (which is a point of P) corresponds to a face of the lower envelope of the planes in P*
 - a facet of the upper hull corresponds to a vertex of the lower envelope
 - an edge of the upper hull corresponds to an edge of the lower envelope: the edge connecting two vertices v_1, v_2 of the hull corresponds to the joint edge on the boundary of the faces of the lower envelope that correspond to v_1, v_2

Convex hull vs. intersection of half-planes

- recall: the region below the lower envelope (or above the upper envelope) of lines is the intersection of half-planes
- question: can we use a convex-hull algorithm to compute the intersection of half-planes (tricky)?

Convex hull vs. intersection of half-planes, cont'd

- Q: can we use a convex-hull algorithm to compute the intersection of half-planes?
- A: yes, but with care: we need to separate the half-planes into (*i*) upward facing, (*ii*) downward facing, and (*iii*) bounded by vertical lines
- for (*i*) and (*ii*) we can dualize the bounding lines and compute the relevant hull

• for (*iii*) ?

Convex hull vs. intersection of half-planes, cont'd

- corollary: computing the intersection of n half-planes in the plane requires $\Omega(n \log n)$ time
- notice: the convex hull is never empty while the intersection of half-planes can be
- holds in any dimension

Connection: Voronoi diagrams and upper envelopes in one dimension higher

- U is the unit paraboloid in R^3
- we lift the planar point $p(p_x, p_y)$ to \hat{p} on U
- consider the following plane h(p) that contains the point $\hat{p}(p_x, p_y, p_x^2 + p_y^2)$: $h(p): z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)$
- lift another point q in the plane to \hat{q}
- let q(p) be the point where the vertical line through q intersect h(p)

The (vertical) distance between \hat{q} and q(p)

•
$$h(p): z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)$$

• $\hat{q}(q_x, q_y, q_x^2 + q_y^2)$
• $\Delta z = q_x^2 + q_y^2 - 2p_x q_x - 2p_y q_y$
+ $(p_x^2 + p_y^2) = (q_x - p_x)^2 + (q_y - p_y)^2$

- notice that $\Delta z \ge 0$, and = 0 only for q = p, which means that h(p) is tangent to U at \hat{p} (and otherwise below U)
- there are no vertical tangent planes to U

The (vertical) distance between \hat{q} and q(p), cont'd

•
$$h(p): z = 2p_x x + 2p_y y - (p_x^2 + p_y^2)$$

• $\hat{q}(q_x, q_y, q_x^2 + q_y^2)$
• $\Delta z = q_x^2 + q_y^2 - 2p_x q_x - 2p_y q_y$
+ $(p_x^2 + p_y^2) = (q_x - p_x)^2 + (q_y - p_y)^2$
= $dist(p,q)^2$

• furthermore, the vertical distance between \hat{q} and h(p) encodes the square of the planar distance between p and q

Voronoi diagrams and upper envelopes

- given a set P of n points in the plane
- we produce a plane h(p) for every $p \in P$
- $H \coloneqq \{h(p) | p \in P\}$
- UE(H) is the upper envelope of the plane in H
- take a point q in the plane, lift it to \hat{q} , shoot a vertical ray downward from \hat{q} into UE(H)
- the ray will hit the plane h(p), which is vertically closest to \hat{q}

Voronoi diagrams and upper envelopes, cont'd

- the ray will hit the plane h(p), which is vertically closest to \hat{q}
- namely, p is the closest point (site) in the plane to q
- claim: the projection onto the plane of UE(H) is the Voronoi diagram of P

Convex hull in 3D

- the convex hull of a set P of n points in R³ is a convex polytope whose vertices are points in P
- it therefore has at most n vertices
- its vertices and edges constitute a planar graph
- CH(P) has at most 2n 4 faces and at most 3n 6 edges

[O'Rourke]

Convex polytopes and planar graphs

• the complexity bounds hold also for non-convex polytopes of *genus* zero with *n* vertices

Convex hulls in higher dimensions

- the complexity of the convex hull of a set of *n* points in \mathbb{R}^d is $\Theta(n^{\lfloor d/2 \rfloor})$
- it can be computed in $O(n \log n)$ time in R^2 and R^3 , and in expected $\Theta(n^{\lfloor d/2 \rfloor})$ time in R^d , for d > 3

Connection: Delaunay triangulations and convex hulls in one dimension higher

- we are given a set P of points (sites) in general position in the plane
- \hat{P} : their projection onto the unit paraboloid U
- $LH(\hat{P})$: the lower convex hull of \hat{P}
- consider one facet (triangle, under general position) f of $LH(\hat{P})$, with vertices $\hat{p}, \hat{q}, \hat{r}$
- the projection of the circle $\gamma(p,q,r)$ through p,q,r in the plane onto U lies on the plane h(f) supporting the facet f of the hull, so all other vertices of \hat{P} lie above h(f)
- therefore, the circle $\gamma(p,q,r)$ is free of sites of P

Delaunay triangulations and convex hulls, cont'd

- project $LH(\hat{P})$, the lower convex hull of \hat{P} , back to the plane
- this projection is a triangulation T of the sites in P
- for every triangle (p, q, r) in T, the circle $\gamma(p, q, r)$ is free of sites of P
- T is the Delaunay triangulation of P

Delaunay triangulations and convex hulls, cont'd

• summary: for a planar set of sites P, the projection onto the plane of $LH(\hat{P})$ is the Delaunay triangulation of P

Summary of connections

Connections

- lower convex hull of points in $R^d \Leftrightarrow$ upper envelope of hyperplanes in R^d via point-hyperplane duality
- Symmetrically: upper convex hull of points in $R^d \Leftrightarrow$ lower envelope of hyperplanes in R^d via point-hyperplane duality
- convex hull of points in $R^d \Leftrightarrow$ intersection of half-spaces in R^d via point-hyperplane duality (through handling subcases)
- Voronoi diagram of points in $R^d \Leftrightarrow$ upper envelope of hyperplanes in R^{d+1}
- Delaunay triangulation of points in $R^d \Leftrightarrow$ lower convex hull of points in R^{d+1}

One algorithm?

- an algorithm for computing the convex hull of points in R^2 and R^3 , can help us (with a few extra relatively simple procedures) to compute:
 - envelopes in \mathbb{R}^2 and \mathbb{R}^3
 - intersection of half-spaces in \mathbb{R}^2 and \mathbb{R}^3
 - Voronoi diagrams of point sites in \mathbb{R}^2
 - Delaunay triangulations in \mathbb{R}^2
- an algorithm for computing the convex hull of points in any dimension can help us (with a few extra relatively simple procedures) compute these structures in any dimension

THE END

[Jeb Gaither, CGAL arrangements]

