

Connections between Major Geometric

Structures

Computational Geometry
Dan Halperin
Tel Aviv University

Overview

We begin by recalling several tools that we have studied throughout the course, learn a few more and then proceed with pointing out connections between the central structures that we have reviewed

Credits

- some figures are taken from Computational Geometry Algorithms and Applications by de Berg et al [CGAA]
- the original figures are available at the book's site: www.cs.uu.nl/geobook/

Orientation test

- given three points in the plane p, q, r, consider the line L through p and q oriented from p to q
- orientation (or side-of-line) test: is r to the left of L, on L, or to the right of L ?

Orientation test, cont'd

the vector product of \vec{v} and \vec{w} :

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
v_{x} & v_{y} & 1 \\
w_{x} & w_{y} & 1
\end{array}\right|=\left(v_{x} w_{y}-v_{y} w_{x}\right) \hat{k}
$$

$$
\begin{aligned}
\vec{v}=q-p & \Rightarrow v_{x}=q_{x}-p_{x}, \quad v_{y}=q_{y}-p_{y} \\
\vec{w}=r-p & \Rightarrow w_{x}=r_{x}-p_{x}, \quad w_{y}=r_{y}-p_{y}
\end{aligned}
$$

$$
\left(v_{x} w_{y}-v_{y} w_{x}\right)=\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right) \equiv \Delta(p, q, r)
$$

Orientation test, cont'd

if $\Delta(p, q, r)>0$ then r is to the left of $L(p, q)$
if $\Delta(p, q, r)=0$ then r is on of $L(p, q)$
if $\Delta(p, q, r)<0$ then r is to the right of $L(p, q)$

Orientation test, equivalent formulation

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
v_{x} & v_{y} & 1 \\
w_{x} & w_{y} & 1
\end{array}\right|=\left|\begin{array}{lll}
p_{x} & p_{y} & 1 \\
q_{x} & q_{y} & 1 \\
r_{x} & r_{y} & 1
\end{array}\right|
$$

Orientation test in higher dimensions

- in 3D: on which side of the oriented plane $H(p, q, r)$ does the point s lie?

$$
\left|\begin{array}{cccc}
p_{x} & p_{y} & p_{z} & 1 \\
q_{x} & q_{y} & q_{z} & 1 \\
r_{x} & r_{y} & r_{z} & 1 \\
s_{x} & s_{y} & s_{z} & 1
\end{array}\right|>,<,=0 ?
$$

- in R^{d} : on which side of an oriented hyperplane containing d points does another point lie? the determinant of a $d+1 \times d+1$ matrix

Point-line duality in the plane

primal plane

dual plane

Duality preserves vertical distances

Duality in higher dimensions

- in R^{d}, duality between
- the point $\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ and
the hyperplane $x_{d}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d-1} x_{d-1}-a_{d}$
- the hyperplane $x_{d}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d-1} x_{d-1}+a_{d}$ and the point $\left(a_{1}, a_{2}, \ldots,-a_{d}\right)$
preserves above/below/incidence relations, vertical distance

Arrangements of lines and their lower envelope

Envelopes

- arrg of n lines
- what is the shape below the lower envelope?
- what is the exact maximum complexity of the envelope?
- what is the shape above the upper envelope?
- what is the exact maximum complexity of the envelope?

Arrangements of planes and their lower envelope

- arrg of n planes, H
- how does the arrg look like on one plane in H ?
- how complex is one such arrg?
- how complex is the arrg of planes
- how many 3D cells it has?
- the upper and lower envelope: shape and complexity

Degenerate lower envelope of planes and its minimization diagram

- we assume henceforth general position

The lifting transform

- the lifting transform maps points in R^{d} to objects (points or hyperplanes) in R^{d+1}
- we will focus on the plane, and the vertical projection

[wikipedia] of planar points onto the unit paraboloid U in R^{3} :

$$
U: z=x^{2}+y^{2}
$$

- vertical cross-sections of U are parabolas, horizontal cross-sections are circles
- LT: $p(x, y) \mapsto \hat{p}\left(x, y, x^{2}+y^{2}\right)$

Lifting a circle

- LT: $p(x, y) \mapsto \hat{p}\left(x, y, x^{2}+y^{2}\right)$
- $C(a, b, r)$ is a circle in the plane with center at (a, b) and radius r
- LT: $C(a, b, r) \mapsto$?
- $C:(x-a)^{2}+(y-b)^{2}=r^{2}$
- $C: x^{2}-2 a x+a^{2}+y^{2}-2 b y+b^{2}=r^{2}$
- \hat{C} is on U, therefore in \hat{C} we can replace $x^{2}+y^{2}$ by z, to obtain
- $z=2 a x+2 b y-\left(a^{2}+b^{2}-r^{2}\right)$

Lifting a circle, cont'd

- $z=2 a x+2 b y-\left(a^{2}+b^{2}-r^{2}\right)$

- the lifted circle \widehat{C} resides on a plane!

Corollary

- Let p, q, r, s be points in the plane.

The point s lies inside the circle though p, q, r iff the point \hat{s} lies below the plane through $\hat{p}, \hat{q}, \hat{r}$.

Point-in-circle test

- without computing the center or radius of the circle
- recall, for p, q, r, s points in R^{3} :
$\left|\begin{array}{llll}p_{x} & p_{y} & p_{z} & 1 \\ q_{x} & q_{y} & q_{z} & 1 \\ r_{x} & r_{y} & r_{z} & 1 \\ s_{x} & s_{y} & s_{z} & 1\end{array}\right|>,<,=0 ?$
determines on which side of the plane $H(p, q, r)$ through p, q, r does s lie
- we still need to orient the plane $H(p, q, r)$

Orienting triangles

[wikipedia]

How exactly?

$\Phi(p, q, r, s)=\left|\begin{array}{llll}p_{x} & p_{y} & p_{z} & 1 \\ q_{x} & q_{y} & q_{z} & 1 \\ r_{x} & r_{y} & r_{z} & 1 \\ s_{x} & s_{y} & s_{z} & 1\end{array}\right|$
if $\Phi(p, q, r, s)>0$ then s is on the side of $H(p, q, r)$ from which (p, q, r) is oriented counterclockwise
if $\Phi(p, q, r, s)=0$ then s is on $H(p, q, r)$
if $\Phi(p, q, r, s)<0$ then s is on the side of $H(p, q, r)$ from which (p, q, r) is oriented clockwise

Point-in-circle test

- recall: For p, q, r, s points in the plane, the point s lies inside the circle though p, q, r iff the point \hat{s} lies below the plane through $\hat{p}, \hat{q}, \hat{r}$
- assume that (p, q, r) are oriented clockwise
- then the point s is inside the circle the circle through p, q, r in the plane iff $\Phi(\hat{p}, \hat{q}, \hat{r}, \hat{s})>0$, namely

$$
\Phi(\hat{p}, \hat{q}, \hat{r}, \hat{s})=\left|\begin{array}{cccc}
p_{x} & p_{y} & p_{x}^{2}+p_{y}^{2} & 1 \\
q_{x} & q_{y} & q_{x}^{2}+q_{y}^{2} & 1 \\
r_{x} & r_{y} & r_{x}^{2}+r_{y}^{2} & 1 \\
s_{x} & s_{y} & s_{x}^{2}+s_{y}^{2} & 1
\end{array}\right|>0
$$

Connection: hulls and envelopes

primal plane

Recall

primal plane

$$
p^{*}: y=p_{x} x-p_{y}
$$

- $p=\left(p_{x}, p_{y}\right)$
- $\ell^{*}=(m,-b)$
point $p=\left(p_{x}, p_{y}\right) \mapsto$ line $p^{*}: y=p_{x} x-p_{y}$
line $\ell: y=m x+b \mapsto$ point $\ell^{*}=(m,-b)$

Therefore: the upper hull corresponds to the lower envelope

- hull edges correspond to envelope breakpoints
- in what order?

Hulls and envelopes

- under "our" duality the upper hull of points in P corresponds to the lower envelope of the dual lines P^{*} and the lower hull correspond to the upper envelope
- holds in any dimension
- in R^{3} for a set P of points:
- a vertex of the upper hull of the points in P (which is a point of P) corresponds to a face of the lower envelope of the planes in P^{*}
- a facet of the upper hull corresponds to a vertex of the lower envelope
- an edge of the upper hull corresponds to an edge of the lower envelope: the edge connecting two vertices v_{1}, v_{2} of the hull corresponds to the joint edge on the boundary of the faces of the lower envelope that correspond to v_{1}, v_{2}

Convex hull vs. intersection of half-planes

- recall: the region below the lower envelope (or above the upper envelope) of lines is the intersection of half-planes
- question: can we use a convex-hull algorithm to compute the intersection of half-planes (tricky)?

Convex hull vs. intersection of half-planes, cont'd

- Q: can we use a convex-hull algorithm to compute the intersection of halfplanes?
- A: yes, but with care: we need to separate the half-planes into (i) upward facing, (ii) downward facing, and (iii) bounded by vertical lines
- for (i) and (ii) we can dualize the bounding lines and compute the relevant hull
- for (iii) ?

Convex hull vs. intersection of half-planes, cont'd

- corollary: computing the intersection of n half-planes in the plane requires $\Omega(n \log n)$ time
- notice: the convex hull is never empty while the intersection of half-planes can be
- holds in any dimension

Connection: Voronoi diagrams and upper envelopes in one dimension higher

- U is the unit paraboloid in R^{3}
- we lift the planar point $p\left(p_{x}, p_{y}\right)$ to \hat{p} on U
- consider the following plane $h(p)$ that contains the point $\hat{p}\left(p_{x}, p_{y}, p_{x}{ }^{2}+p_{y}{ }^{2}\right)$:

$$
h(p): z=2 p_{x} \mathrm{x}+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right)
$$

- lift another point q in the plane to \hat{q}
- let $q(p)$ be the point where the vertical line through q intersect $h(p)$

The (vertical) distance between \hat{q} and $q(p)$

- $h(p): z=2 p_{x} \mathrm{x}+2 p_{y} y-\left(p_{x}{ }^{2}+p_{y}{ }^{2}\right)$
- $\hat{q}\left(q_{x}, q_{y}, q_{x}{ }^{2}+q_{y}{ }^{2}\right)$
- $\Delta z=q_{x}{ }^{2}+q_{y}^{2}-2 p_{x} q_{x}-2 p_{y} q_{y}$ $+\left(p_{x}^{2}+p_{y}^{2}\right)=\left(q_{x}-p_{x}\right)^{2}+\left(q_{y}-p_{y}\right)^{2}$
- notice that $\Delta z \geq 0$, and $=0$ only for $q=p$, which means that $h(p)$ is tangent to U at \hat{p} (and otherwise below U)
- there are no vertical tangent planes to U

The (vertical) distance between \hat{q} and $q(p)$, cont'd

- $h(p): z=2 p_{x} \mathrm{x}+2 p_{y} y-\left(p_{x}^{2}+p_{y}{ }^{2}\right)$
- $\hat{q}\left(q_{x}, q_{y}, q_{x}{ }^{2}+q_{y}{ }^{2}\right)$
- $\Delta z=q_{x}{ }^{2}+q_{y}{ }^{2}-2 p_{x} q_{x}-2 p_{y} q_{y}$ $+\left(p_{x}{ }^{2}+p_{y}{ }^{2}\right)=\left(q_{x}-p_{x}\right)^{2}+\left(q_{y}-p_{y}\right)^{2}$
$=\operatorname{dist}(p, q)^{2}$
- furthermore, the vertical distance between \hat{q} and $h(p)$ encodes the square of the planar
 distance between p and q

Voronoi diagrams and upper envelopes

- given a set P of n points in the plane
- we produce a plane $h(p)$ for every $p \in P$
- $H:=\{h(p) \mid p \in P\}$
- $U E(H)$ is the upper envelope of the plane in H
- take a point q in the plane, lift it to \hat{q}, shoot a vertical ray downward from \hat{q} into $U E(H)$
- the ray will hit the plane $h(p)$, which is vertically closest to \hat{q}

Voronoi diagrams and upper envelopes, cont'd

- the ray will hit the plane $h(p)$, which is vertically closest to \hat{q}
- namely, p is the closest point (site) in the plane to q
- claim: the projection onto the plane of $U E(H)$ is the Voronoi diagram of P

Convex hull in 3D

- the convex hull of a set P of n points in R^{3} is a convex polytope whose vertices are points in P
- it therefore has at most n vertices
- its vertices and edges constitute a planar graph
[O’Rourke]
- $C H(P)$ has at most $2 n-4$ faces and at most $3 n-6$ edges

Convex polytopes and planar graphs

- the complexity bounds hold also for non-convex polytopes of genus zero with n vertices

Convex hulls in higher dimensions

- the complexity of the convex hull of a set of n points in R^{d} is $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$
- it can be computed in $O(n \log n)$ time in R^{2} and R^{3}, and in expected $\Theta\left(n^{[d / 2\rfloor}\right)$ time in R^{d}, for $d>3$

Connection: Delaunay triangulations and convex hulls in one dimension higher

- we are given a set P of points (sites) in general position in the plane
- \hat{P} : their projection onto the unit paraboloid U
- $L H(\hat{P})$: the lower convex hull of \hat{P}
- consider one facet (triangle, under general position) f of $L H(\widehat{P})$, with vertices $\hat{p}, \hat{q}, \hat{r}$
- the projection of the circle $\gamma(p, q, r)$ through p, q, r in the plane onto U lies on the plane $h(f)$ supporting the facet f of the hull, so all other vertices of \hat{P} lie above $h(f)$
- therefore, the circle $\gamma(p, q, r)$ is free of sites of P

Delaunay triangulations and convex hulls, cont'd

- project $L H(\hat{P})$, the lower convex hull of \hat{P}, back to the plane
- this projection is a triangulation T of the sites in P
- for every triangle (p, q, r) in T, the circle $\gamma(p, q, r)$ is free of sites of P
- T is the Delaunay triangulation of P

Delaunay triangulations and convex hulls, cont'd

- summary: for a planar set of sites P, the projection onto the plane of $L H(\widehat{P})$ is the Delaunay triangulation of P

Projectonto paraboloid.

Compute convex hull.

Project hull faces back to plane.

Summary of connections

Connections

- lower convex hull of points in $R^{d} \Leftrightarrow$ upper envelope of hyperplanes in R^{d} via point-hyperplane duality
- Symmetrically: upper convex hull of points in $R^{d} \Leftrightarrow$ lower envelope of hyperplanes in R^{d} via point-hyperplane duality
- convex hull of points in $R^{d} \Leftrightarrow$ intersection of half-spaces in R^{d} via point-hyperplane duality (through handling subcases)
- Voronoi diagram of points in $R^{d} \Leftrightarrow$ upper envelope of hyperplanes in R^{d+1}
- Delaunay triangulation of points in $R^{d} \Leftrightarrow$ lower convex hull of points in R^{d+1}

One algorithm?

- an algorithm for computing the convex hull of points in R^{2} and R^{3}, can help us (with a few extra relatively simple procedures) to compute:
- envelopes in R^{2} and R^{3}
- intersection of half-spaces in R^{2} and R^{3}
- Voronoi diagrams of point sites in R^{2}
- Delaunay triangulations in R^{2}
- an algorithm for computing the convex hull of points in any dimension can help us (with a few extra relatively simple procedures) compute these structures in any dimension

THE END

