Robust and Efficient Construction of Planar
Minkowski Sums*

Eyal Flato!

Dan Halperin!

January 4, 2000

Abstract

The Minkowski sum (also known as the vector sum)
of two sets P and @ in IR* is the set {p + ¢ | p €
P,g € @} Minkowski sums are useful in robot
motion planning, computer-aided design and man-
ufacturing (CAD/CAM) and many other areas. We
present a software package for robust and efficient
construction of Minkowski sums of planar polygonal
sets. We describe the different algorithms that we im-
plemented and an experimental comparison between
them. A distinctive feature of our implementation is
that it can accurately handle degenerate input and
in particular it can identify degenerate “holes” in the
Minkowski sum which consist of a line segment or a
singular point.

1 Introduction

Given two sets P and @ in R?, their Minkowski sum
(or vector sum), denoted by P ® @, is the set {p +
q|pé€ Pqe @} Minkowski sums are used in a
wide range of applications, including robot motion

planning [11], assembly planning [8], and computer-
aided design and manufacturing (CAD/CAM) [2].

Consider for example an obstacle P and a robot @)
that moves by translation. We can choose a reference
point r rigidly attached to @ and suppose that @ is
placed such that the reference point coincides with

*This work has been supported in part by ESPRIT IV LTR
Projects No. 21957 (CGAL) and No. 28155 (GALIA), and by
a Franco-Israeli research grant (monitored by AFIRST/France
and The Israeli Ministry of Science). D.H. has also been sup-
ported by a grant from the U.S.-Israeli Binational Science
Foundation, by The Israel Science Foundation founded by the
Israel Academy of Sciences and Humanities (Center for Geo-
metric Computing and its Applications), and by the Hermann
Minkowski — Minerva Center for Geometry at Tel Aviv Uni-
versity.

TDepartment of Computer Science, Tel Aviv University,
Tel-Aviv 69978, Israel. flato@math.tau.ac.il.

iDepartment of Computer Science, Tel Aviv University,
Tel-Aviv 69978, Israel. halperin@math.tau.ac.il.

|

Figure 1: Fork input: P and @ are polygons with horizontal
and vertical teeth. The complexity of P & @ is ©(n*m?)

the origin. If we let Q' denote a copy of @) rotated by
180° degrees, then P & Q' is the locus of placements
of the point r where PN Q # (. In the study of mo-
tion planning this sum is called a configuration space
obstacle because) collides with P when translated
along a path 7 exactly when the point r, moved along
m, intersects P & Q'.

There has been much work on obtaining sharp
bounds on the size of the Minkowski sum of two sets
in two and three dimensions, and on developing fast
algorithms for computing Minkowski sums. It is well
known that if P is a polygonal set with m vertices and
@ is another polygonal set with n vertices, then P®Q
is a portion of the arrangement (see Section 2) of mn
segments, where each segment is the Minkowski sum
of a vertex of P and an edge of), or vice-versa.
Therefore the size of P @ Q is O(m?n?) and it can
be computed within that time; this bound is tight in
the worst case [9]; see Figure 1. The sum has lower
worst-case complexity when one of the polygons or
both are convex; see for example Figure 2.

We devised and implemented three algorithms for
computing the Minkowski sum of two polygonal sets
based on the CGAL software library [1]. Our main
goal was to produce a robust and exact implemen-
tation. This goal was achieved by employing the
CGAL planar map package [6] while using exact num-
ber types. We are currently using our software to
solve translational motion planning problems in the

/ A\\ “‘/\\ /fk\\ “‘/\\ /f’\\
AWAWAWAWA
/‘/ \‘\\ “/ \‘\\ //‘/ \‘\ “/ \‘\\ //‘/ \
(v v v v

! \[

Figure 2: If P is one convex polygon, then a result of Kedem
et al. [10] implies that P & @ has ©(mn) vertices.

Figure 3: Tight passage: the desired target placement for
the small polygon is inside the inner room defined by the
larger polygon. In the configuration space the only possible
path to achieve this target passes through the line segment
emanating from the hole in the sum on the right-hand side.

plane. We are able to compute collision-free paths
even in environments cluttered with obstacles, where
the robot could only reach a destination placement by
moving through tight passages, practically moving in
contact with the obstacle boundaries. See Figure 3
for example. This is in contrast with most existing
motion planning software for which tight or narrow
passages constitute an insurmountable hurdle.

We also solve the following polygon separation
problem:! Given two polygons find the minimum
length translation of one polygon relative to the other
that will make the two polygon interior disjoint. See
Figure 4. Assuming that in their original placement
P and (@ intersect and that the reference point of @ is
at the origin O, it is not difficult to see that the min-
imum translation of @ relative to P is described by
the point on the boundary of P & @' which is closest
to O where @)’ is a copy of @) rotated 180° degrees.

All our algorithms start with decomposing the in-

1 This question was posed by Marc van Kreveld as a car-
tographic generalization problem in the Dagstuhl meeting on
Computational Geometry in March 1999.

Figure 4: Minimal distance separation

put polygons into convex subpolygons. We discov-
ered that the choice of the decomposition can have a
dramatic effect on the running time of the Minkowski-
sum algorithms. In a companion paper we inves-
tigate what constitute good decompositions for ef-
ficient construction of Minkowski sums [3]. Through-
out the experiments that we describe here we use the
same decomposition which has proved very efficient
for our purposes. It is based on a heuristic method
proposed in [4] which we have slightly improved; for
details see [3].

In the next section we survey the Minkowski sum
algorithms that we implemented. Experimental com-
parison between the algorithms is given in Section 3.

2 Minkowski Sum Algorithms

Given a collection C of curves in the plane, the ar-
rangement A(C) is the subdivision of the plane into
vertices, edges and faces induced by the curves in C.
Planar maps are arrangements where the curves are
pairwise interior disjoint. Our algorithms for com-
puting Minkowski sums rely on arrangements and
planar maps, and in the discussion below we assume
some familiarity with these structures, and with a
refinement thereof called the wvertical decomposition;
we refer the reader to [7, 14] for information on ar-
rangements and vertical decomposition, and to [6] for
a detailed description of the planar map package in
CGAL on which our algorithms are based.

The input to our algorithms are two polygonal sets
P and @ (each being an arbitrary collection of simple
polygons), with m and n vertices respectively. Our
algorithms consist of the following three steps:

Step 1: Decompose the polygons of P into convex
subpolygons Py, P,... ,Ps; and the polygons of @
into convex subpolygons Q1,Q2,. .. ,Q¢.

Step 2: For each i € [1..s] and for each j € [1..t]
compute the Minkowski subsum P; & (); which we
denote by R;;. We denote by R, the set {R;; | i €

[1..s],j € [L.4]}.

Step 3: Construct the union of all the polygons in
R, computed in Step 2; the output is represented as
a planar map.

The Minkowski sum of P and @ is the union of the
polygons in R. Each R;; is a convex polygon, and
it can easily be computed in time that is linear in
the sizes of P; and Q; [11]. Let k denote the overall
number of edges of the polygonsin R, and let I denote
the overall number of intersections between (edges of)
polygons in R

We briefly present three different algorithms for
performing Step 3, computing the union of the poly-
gons in R, which we refer to as the arrangement algo-
rithm, incremental union algorithm and divide-and-
conquer algorithm.

Arrangement algorithm. The algorithm con-
structs the arrangement A(R) induced by the poly-
gons in R (we refer to this arrangement as the under-
lying arrangement of the Minkowski sum) by adding
the polygons of R one by one in a random order and
by maintaining the vertical decomposition of the ar-
rangement of the polygons added so far; each polygon
is chosen with equal probability at each step. Once
we have constructed the arrangement, we traverse all
its cells (vertices, edges or faces) and we mark a cell
as belonging to the Minkowski sum if it is contained
inside at least one polygon of R. The construction
of the arrangement takes randomized expected time
O(I+klogk) [13]. The traversal stage takes O(I +k)

time.

Incremental union algorithm. In this algorithm
we incrementally construct the union of the polygons
in R by adding the polygons one after the other in
random order. We maintain the planar map repre-
senting the partial union of polygons in R. For each
r € R we insert the edges of r into the map and then
remove redundant edges from the map. All these op-
erations can be carried out efficiently using the pla-
nar map package. We could only give a naive bound
on the running time of this algorithm, which in the
worst case is higher than the worst-case running time
of the arrangement algorithm. Practically however
the incremental union algorithm works much better
than the arrangement algorithm on most problem in-
stances.

Divide and Conquer algorithm. This algorithm
is a combination of both previous algorithms, at-
tempting to overcome the shortcomings of both. First
we use the incremental union algorithm to compute
the Minkowski sums of P and @); for each 1 < j <.
This results with ¢ polygonal sets (each represented
as a planar map) Si,...,S:, where S;’s complexity
is O(n|®;]) [10]. In the second phase is we com-
pute the union of pairs of maps from Si, ... ,S; using
the arrangement algorithm, obtaining ¢/2 new maps.
We continue to compute union of pairs of maps log ¢
times until we end up with one map describing the
Minkowski sum of P and Q.

3 Experiments

We present experimental results of applying the al-
gorithms described in the previous section to a col-
lection of input pairs of polygonal sets. The input
data that we present here is just a small representa-
tive sample of the polygonal sets on which tests were
performed.

Our implementation of the Minkowski sum pack-
age is based on the CGAL (version 2.0) [5] and LEDA
(version 4.0) [12] libraries. Our package works with
Linux (g++ compiler) as well as with WinNT (Visual
C++ 6.0 compiler). The tests were performed under
WinNT workstation on an (unloaded) 266 MHz Pen-
tiumII machine with 64 Mb of RAM. We measured
the running times for the various algorithms with dif-
ferent input data. We also counted the number of op-
erations (e.g., comparison, orientation test, segment
intersections).

The Minkowski sum of a comb and a convex poly-
gon has complexity ©(mn) (see Figure 2), while the
fork input results in ©(m?n?) Minkowski sum com-
plexity (see Figure 1). The rest of the input data
results in Minkowski sum complexity that is between
O(m + n) and ©(m?n?). The star input is two star
shaped polygons. In the robot input P is a star
shaped robot and () is a set of convex obstacles. The
random input consist of two random-looking poly-
gons.

We used the three union algorithms to compute the
Minkowski sum of some pairs of polygonal sets. The
results are presented in Figure 5.

We can see that for polygonal set for which the
Minkowski sum is complex (e.g. the fork input) the
arrangement algorithm performs better. When the
sum is relatively small (e.g. the star input) the incre-
mental algorithm has the best running times. The
divide-and-conquer union algorithm mostly performs
close to the better algorithm and better than the
worst algorithm (for the comb input the results for
the divide-and-conquer algorithm are the worst since
P is a single convex polygon; in such a case the ef-
fect of this algorithm becomes negative * should be
explained better *). * PLEASE REPHRASE *

Another factor that affects the running time of the
union algorithm is the order in which the polygons
of R are inserted to the planar map. Consider for
example the covered fork input data (suggested to
us By R. Wenger). It consists of two fork polygons
whose Minkowski sum has complexity ©(m?n?) and
two long triangles whose Minkowski sum is a large

Unian time [Sec)

random fark robat star

comb

{30,402} {50, 50} {34.31} {20,192} {100, 100}

Figure 5: Running times for computing the Minkowski sum
of the different input data with all three union algorithms.
The sizes of P and @) are in parenthesis.

vspace-05cm

hexagon that covers (contains) the grid created by the
sum of the fork polygons. Therefore, The Minkowski
sum in this case has ©(mn) vertices while the un-
derlying arrangement has ©(m?n?) vertices. If we
use the incremental algorithm and insert the large
hexagon first, we can avoid handling the (complex)
grid planar-map and we get output sensitive running
time. This example shows that an algorithm that
inserts the subsum polygons of R in random order

cannot be output sensitive.

If we insert the polygons of R into the map in de-
scending order of fatness (we use here a very simple
measure of fatness— * to be completed *) we will
get the desired output-sensitivity effect in this spe-
cial case. The results are in Figure 6. This per-
mutation, however, does not always result in better
running times. Take for example Figure 7 where all
the thinner polygons of R are intersecting the fatter
polygons. We can see in the results that for this input
(fat-grid) the union time when using the fatness per-
mutation is about two times slower than when using
a random permutation.

& random permuation|
©i fatness permutation

fak-grid robot
{297, 15} {20,192}

random
{100, 100}

comb
{20, 200}

covered fork
{79.76)

Figure 6: Running times for computing the Minkowski sum
of the different input data using the incremental algorithm
and both random and fatness permutation on the polygons
of R. In parenthesis - the sizes of P and Q.

e —hg hd

—_—t

Figure 7: Fat grid input on the left. The Minkowski sum of
the vertical polygons with the horizontal polygons is on the
right.

Acknowledgement

The authors thank Pankaj Agarwal for discussions
and valuable comments on this work.

References

[1] The CGAL User Manual,
http://www.cs.ruu.nl/CGAL.

[2] Special issue: Offsets, sweeps and Minkowski sums.
Comput. Aided Design, 31(4), 1999.

3] P. K. Agarwal, E. Flato,
Polygon decomposition for efficient con-
struction of Minkowski sums. Manuscript.
http://www.math.tau.ac.il/ flato/ Trimink Web,
1999.

[4] B. Chazelle and D. P. Dobkin. Optimal convex de-
compositions. In G. T. Toussaint, editor, Computa-
tional Geometry, pages 63-133. North-Holland, Am-
sterdam, Netherlands, 1985.

[6] A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and
S. Schonherr. On the design of CGAL, the Com-
putational Geometry Algorithms Library. Technical
Report MPI-1-98-1-007, MPI Inform., 1998.

[6] E. Flato, D. Halperin, I. Hanniel, and O. Nechush-
tan. The design and implementation of planar maps
in CGAL. In J. Vitter and C. Zaroliagis, editors,
Proceedings of the 3rd Workshop on Algorithm Engi-
neering, volume 1148 of Lecture Notes Comput. Sci.,
pages 154-168. Springer-Verlag, 1999. Full version:

Version 2.0, 1999.

and D. Halperin.

http://www.math.tau.ac.il/ “flato/WaeHtml/index.htm.

[7] D. Halperin. Arrangements. In J. E. Goodman
and J. O'Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 21, pages 389-
412. CRC Press LLC, Boca Raton, FL, 1997.

[8] D. Halperin, J.-C. Latombe, and R. H. Wilson. A
general framework for assembly planning: The mo-
tion space approach. In Proc. 14th Annu. ACM Sym-
pos. Comput. Geom., pages 19-28, 1998. To appear
in Algorithmica.

[9] A. Kaul, M. A. O’Connor, and V. Srinivasan. Com-
puting Minkowski sums of regular polygons. In Proc.

[10]

[11]

[12]

[13]

[14]

3rd Canad. Conf. Comput. Geom., pages 74-77, Aug.
1991.

K. Kedem, R. Livne, J. Pach, and M. Sharir. On
the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete
Comput. Geom., 1:59-71, 1986.

J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, 1991.

K. Melhorn and S. Néher. The LEDA Platform
of Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

K. Mulmuley. Computational Geometry: An Intro-
duction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1994.

M. Sharir and P. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cam-
bridge University Press, 1995.

