TEL-AVIV UNIVERSITY
RAYMOND AND BEVERLY SACKLER
FACULTY OF EXACT SCIENCES
SCHOOL OF MATHEMATICAL SCIENCES

Robust and Efficient Construction of
Planar Minkowski Sums

Thesis submitted in partial fulfillment of the requirements for the M.Sc. degree in

the Department of Computer Science, Tel-Aviv University
by

Eyal Flato

The research work for this thesis has been carried out at Tel-Aviv University

under the supervision of Prof. Dan Halperin

August 2000

I deeply thank Prof. Dan Halperin for supervising this research and contributing many
useful ideas.

I thanks Pankaj K. Agarwal for discussions and valuable comments on this work. I
also wish to thank Iddo Hanniel, Sigal Raab, Oren Nechushtan, Eti Ezra, Eli Pecker, Sariel
Har-Peled and Michal Ozery for helpful discussions concerning the problems studied in this
thesis. I wish to thank the whole CGAL team and especially CGAL members in Tel-Aviv
University.

Contents

1 Introduction
1.1 Fundamental Complexity Bounds,
1.2 Related Work e
1.3 The CGAL Library
1.4 Thesis Outline
2 Preliminaries
2.1 Planar Arrangements Lo L
2.2 Vertical Decomposition. 0 000
2.2.1 Robot Motion Planning
2.3 Planar Maps and Arrangementsin CGAL
3 Minkowski Sum Algorithms
3.1 Minkowski Sum of Two Convex Polygons
3.2 Polygons Union Algorithms
3.2.1 Arrangement Algorithm L L.
3.2.2 Incremental Union Algorithm
3.2.3 Divide and Conquer Algorithm
3.3 Input Sets L
3.4 Experiments.
3.4.1 Test Platform and Frame Program
3.42 Results
3.4.3 Order of Insertion o o

10
11

15
15
17
17
18

Polygon Decomposition 37

4.1 The Decomposition Algorithms 39
4.1.1 Triangulation L 39
4.1.2 Convex Decomposition without Steiner Points 40
4.1.3 Convex Decomposition with Steiner Points 40

4.2 A First Round of Experiments 41

4.3 Revisiting the More Efficient Algorithms 44
4.3.1 Nonoptimality of Min-Convex Decompositions 44
4.3.2 Mixed Objective Functions 45
4.3.83 Improving the AB and KD methods 48

Conclusions 51

Handling Degeneracies in the Union Algorithms 53

A.1 Handling Degeneracies in the Arrangement Union Algorithm 53

A .2 Handling Degeneracies in the Incremental Union Algorithm 57

Proof of Theorem 3.2.1: Construction Time of Arrangements of Convex

Polygons 61
Polygons Decomposition Minimizing the Mixed Objective Function 65
C.1 Minimum Length Decomposition 66

C.2 Constrained Minimum Length Decomposition 68

Chapter 1

Introduction

Given two sets P and @ in R?, their Minkowski sum (or vector sum), denoted by P @ Q,
is the set {p+ ¢ | p € P,q € Q}. Minkowski sums are used in a wide range of applications,
including robot motion planning [34], assembly planning [20], and computer-aided design

and manufacturing (CAD/CAM) [13].

Consider for example an obstacle P and a robot ¢ that moves by translation. We can
choose a reference point r rigidly attached to) and suppose that Q) is placed such that the
reference point coincides with the origin. If we let Q' denote a copy of @ rotated by 180°,
then P @ Q' is the locus of placements of the point » where PN Q # . In the study of
motion planning this sum is called a configuration space obstacle because @ collides with P
when translated along a path m exactly when the point r, moved along 7, intersects P® Q’.
See Figure 1.1.

1.1 Fundamental Complexity Bounds

Motivated by these applications, there has been much work on obtaining sharp bounds on
the size of the Minkowski sum of two sets in two and three dimensions, and on developing
fast algorithms for computing Minkowski sums. It is well known that if P is a polygonal set
with m vertices and @) is another polygonal set with n vertices, then P @ @) is a portion of
the arrangement of O(mn) segments, where each segment is the Minkowski sum of a vertex
of P and an edge of Q, or vice-versa. Therefore the size of P @ @ is O(m?n?) and it can
be computed within that time; this bound is tight in the worst case [27] (see Figure 1.2).
If both P and @ are convex, then P @ () is a convex polygon with at most m + n vertices
(see Figure 1.3), and it can be computed in O(m + n) time [34].

If only P is convex, then a result of Kedem et al. [29] implies that P & @ has ©(mn)
vertices (see Figure 1.4). Their proof relies on special properties of a set of pseudodiscs. We
say that a collection of planar regions each bounded by a closed Jordan curve is a collection

5

/&
=<

Figure 1.1: Robot and obstacles: a reference point is rigidly attached to the robot on the
left-hand side. The configuration space obstacles and a free translational path for the robot on
the right-hand side.

Figure 1.2: Fork input: P and () are polygons with m and n vertices respectively each having
horizontal and vertical teeth. The complexity of P @ @ is ©(m?n?).

O -

Figure 1.3: Convex input: P and @ are convex polygons with m and n vertices. The complexity

of P®Q is ©(m + n).

O

Figure 1.4: Comb input: P is a convex polygon with m vertices and @ is a comb-like polygon
with n vertices. The complexity of P @ Q is ©(mn).

of pseudodiscs, if the boundary curves of every pair in the collection intersect at most
twice. Kedem et al. [29] prove that the number of intersection points (namely vertices on
the boundary where two curves intersect) on the union boundary of n pseudodiscs is O(n).
If P, @, and @, are convex polygons then PG Q; and PP @, are proved to be pseudodiscs.
Q can be decomposed into O(n) convex subpolygons such that P® Q = JP & Q;. The
boundary of this union includes O(n) intersection points among the subsums P @ @Q; and
a total of O(mn) vertices. Such a Minkowski sum can be computed in O(mnlog(mn))
time [35].

1.2 Related Work

More Complexity Bounds

In the previous section we presented the well known combinatorial bounds on the size of the
Minkowski sum of polygonal sets. In motion-planning applications, one is often interested in
computing only a single connected component of the complement of P®Q [40]. Har-Peled et
al. [24] showed that the complexity of a single face of the complement of P&Q is @(mna(n))
in the worst case where m and n are the number of vertices of P and Q respectively (without
loss of generality n < m), and «o(-) is the functional inverse of Ackermann’s function [43].

Barrera [6] showed that the Minkowski sum of two monotone polygons can be computed
in O(n?logn) time for two polygons with a total of n edges. He also proved that computing
the Minkowski sum of two polygons is at least as hard as sorting X +Y [7]. Sorting X +Y
is the problem of sorting the set of numbers {z + y|z € X,y € Y} for two sets X, Y of n
numbers each. The best known time bound for solving this problem is O(n?logn) and it
is an open problem whether it can be improved. There is a set of other problems that are
“sorting X +Y hard” (for example: the polygon containment problem for two rectilinearly
convex polygons').

De Berg and van der Stappen [11] report on results concerning the relation between the

! A polygon is rectilinearly convez if its intersection with any horizontal or vertical line is connected.

fatness of the Minkowski sum of two sets and the fatness of the sets. The fatness of an
object is determined by the emptiest ball centered inside the object and not fully containing
it in its interior. Using this measure they show that the fatness of A @ B is at least as large
as min(fatness(A), fatness(B)), where A and B are connected closed and bounded sets in

R<.

Discrete Approximations

Hartquist et al. [25] suggest a computing strategy for applications that use offsets, sweeps
and Minkowski operations based on the ray-representation method. This method involves
clipping a given input to a grid of rays and applying the mathematical definitions and
operators (such as Minkowski sum) on the resulting discrete set. The authors aim to solve
motion planning, process-modeling and visualization problems and they present a hardware
design for those applications.

Kavraki [28] uses the Fast Fourier Transform (FFT) algorithm on the bitmaps of a robot
and obstacles to find the corresponding configuration-space obstacles for the robot translat-
ing among the obstacles. This method approximates the configuration space obstacles. The
method is inherently parallel and can benefit from existing experience and special hardware
for computing the FFT.

Applications

The translational robot motion problem planning is a convenient case study for Minkowski
sum algorithms, and therefore detailed and given as an example in the rest of this thesis.
There are many more applications in which the Minkowski sum operation is a useful tool.
Some examples are listed here.

The following problem arises in mechanical assembly planning. An assembly is a col-
lection of non-overlapping rigid parts. Given an assembly, identify a subassembly (i.e., a
subset of the parts) that can be removed as a rigid object without colliding with the rest of
the assembly. This is the assembly partitioning problem. A simple instance of the problem
is where the given parts Py, P, ..., F, are polygons in the plane, and we would like to find
a removal path consisting of two consecutive translations that will separate a subset of the
parts from the rest of them (notice that finding the subset is part of the problem).

Halperin and Wilson [22] use Minkowski sums to compute the configuration space ob-
stacle P;; = P;@ — P; for every ordered pair of parts (P;, P;) using the origin as the common
reference point for all the parts. For a point ¢ in the plane, if ¢ € P;; then if P; is placed
with its reference point in ¢ it will collide with P;. Therefore, a path through ¢ cannot
be used to separate a subset of parts that contains P; but not F;. In the arrangement A
of all the sums F;;, every face introduces a set of constrains of the form: “P; cannot be
moved through this face without P;” (according to the Minkowski sums P;; in which it is
contained). Given a path 7 in the plane we define a directed graph G = G(7) whose nodes

= £=

Figure 1.5: Minimal distance separation

correspond to the parts Py, Py, ..., F,. There is a directed edge in G between the nodes
corresponding to P; and P; if such a constraint appears in one of the faces of A that are
intersected by 7. It is easily verified that if G is not strongly connected then there is a
subassembly that can be removed along v and this subassembly is a strongly connected
subgraph of G. In [22] an O(n?N°®) algorithm is given to solve this problem (where N is
the total number of vertices in the input).

The approach described above makes extensive use of planar Minkowski sums, and
therefore calls for an efficient construction of such sums.

Geographic Information Systems (GIS) are increasingly studied in computational geom-
etry. There are some problems in GIS that are closely related to our work. One of them
is the buffer searching problem in which we would like to find geographic features that
are within a given buffer distance from a polygonal feature. Boolean operations on planar
objects are frequently used in GIS and therefore have efficient implementations in many
geographic systems. Instead of measuring the distance between each feature and the query
polygon, we can execute the buffer searching by first computing the Minkowski sum of a
circle and the query polygon. Then, we intersect the resulting planar subdivision with the
geographic database. The latter is a boolean operation that can be carried out efficiently.

The following question was posed by Marc van Kreveld as a cartographic generalization
problem [45]: Given two polygons find the minimum length translation of one polygon
relative to the other that will make the two polygons interior disjoint; see Figure 1.5.
Assuming that in their original placement P and () intersect and that the reference point
of () is at the origin O, it is not difficult to see that the minimum translation of @) relative
to P is described by the point on the boundary of P @ Q' which is closest to O where Q' is
a copy of) rotated 180°.

Given two polygons P and @ in the plane, another widely studied problem is to find
whether P can be contained inside). This problem is known as the polygon containment
problem [9]. If we restrict it to a translational problem (namely the orientation of P is
fixed) it can be solved as follows: consider the complement of Q as an obstacle for the robot
P and try to place P such that it does not penetrate the obstacle. Practically, let B be the
bounding box of Q and let Q@ = B\ Q. The free placements for P inside @ can be found by
computing P’ @ Q were P’ is P rotated by 180°. See Figure 1.6 for an example.

10

L

Figure 1.6: Polygon containment: the input polygons P and @) are displayed on the left-hand
side, P'@Q is in the middle, and a possible placement for P inside Q is on the right-hand side.

Three and Higher Dimensions

In planar motion planning, if beside translating we allow the robot to rotate then the
configuration space is 3-dimensional [21]. For a given rotation angle ¢ the Minkowski sum
Py, @ @, where Py, is P rotated by ¢ degrees, is the translational configuration-space
obstacle for the robot in a fixed rotation angle. The entire configuration space includes
beside the translational axis, a rotation axis ¢. Each horizontal slice of this space (the
plane ¢ = ¢) contains the sum P, & Q. This observation is used in several approximate
solutions to motion planning problems; see, e.g., [3] and [34, Section 6.5.1].

The Minkowski operations in higher dimensions are defined similarly. A summary of the
known results on computing the Minkowski sum of two sets in three and higher dimensions
can be found in a recent survey by Agarwal and Sharir [2].

This thesis is concerned with the 2-dimensional case where both the input and the result
are planar.

1.3 The CGAL Library

We devised and implemented a package for computing the Minkowski sum of two polygo-
nal sets based on the CGAL software library [1, 16]. CGAL — Computational Geometry
Algorithms Library — is a software library developed by several research groups in Europe
and Israel. The package supplies a robust, efficient, and flexible implementation of com-
putational geometry algorithms and data structures. CGAL consist of the kernel which
supplies geometric primitives and data types, the basic library which contains a large collec-
tion of basic algorithms and data structures (for example triangulations, planar maps), and
a support library for 1/0, debugging and visualization. CGAL is developed following the
generic programming paradigm known from the Standard Template Library (STL) for C+-+
[5, 44]. Our Minkowski-sum package employs CGAL’s planar maps [17] and arrangements
[23] packages and follows CGAL’s look-and-feel of generic programming (planar maps and
arrangements are subdivisions induced by geometric objects; see Chapter 2 for details).

11

A

Figure 1.7: Tight passage: the desired target placement for the small polygon is inside the inner
room defined by the larger polygon (left-hand side). In the configuration space (right-hand side)
the only possible path to achieve this target passes through the line segment emanating into
the hole in the sum.

We are currently using our software to solve translational motion planning problems in
the plane. We are able to compute collision-free paths even in environments cluttered with
obstacles, where the robot could only reach a destination placement by moving through
tight passages, practically moving in contact with the obstacle boundaries. See Figure 1.7
for an example. This is in contrast with most existing motion planning software for which
tight or narrow passages constitute a significant hurdle.

The CGAL library provides a robust implementation of basic geometric structures (e.g.,
planar maps) that can handle degenerate inputs (without assuming “general position”).
Furthermore, we are able to choose different number types and geometric predicates to be
used by the implementation. In our implementation we use rational numbers and filtered ge-
ometric predicates from LEDA — the library of efficient data structures and algorithms [37].

Transforming a geometric algorithm from theory to practical implementation raises sev-
eral issues (like arithmetic precision and the treatment of degenerate inputs) which we
collectively refer to as robustness issues. Our implementation handles robustness issues by
applying exact number types and floating point filters and by directly handling degenerate
input. We refer the reader to recent surveys on this topic [42, 46] for further information.

1.4 Thesis Outline

The thesis presents a general scheme for computing the Minkowski sum of two polygonal
sets and describes the different steps of the computation. We describe the software package

12

which implements those steps and report on experimental results.

Computing the Minkowski sum of two polygonal sets P and @ can be done as follows:
(1) decompose P and Q into s and ¢ convex subpolygons respectively, (2) compute the
Minkowski sum of each pair of subpolygons of P and) resulting in the set R of s -t
subsums, and (3) construct the union of those subsums; the result is represented as a
planar map.

In the next chapter we introduce some related basic definitions and algorithms in com-
putational geometry. We present the concept of an arrangement of curves, the vertical
decomposition of an arrangement and point location algorithms. We then describe the
implementation of those data structures and algorithms in CGAL.

In Chapter 3 we concentrate on the last steps in the computation of a Minkowski sum
of two polygonal sets. Based on the decomposition of the input polygonal sets into convex
subpolygons, after describing how to compute the Minkowski sum of two convex polygons,
we present three algorithms for computing the union of the set of Minkowski subsums. The
first is the arrangement algorithm, in which we construct the arrangement induced by the
edges of the polygons in B. Then we traverse the arrangement and mark each face, edge
and vertex as inside the union, on its boundary or outside the union. The construction of
the arrangement takes randomized expected time O(I 4 klogk) (where k is the number
of edges in R and [is the overall number of intersections between (edges of) polygons in
R). The traversal stage takes O(] + k) time. The second algorithm is the incremental
union algorithm, in which we maintain the partial union in a planar map by inserting the
polygons of R one after the other. After each insertion we remove the redundant edges
from the map. We could only give a naive bound on the running time of this algorithm,
which in the worst case is higher than the worst-case running time of the arrangement
algorithm. Practically however the incremental union algorithm works much better than
the arrangement algorithm on most problem instances. The third algorithm is the divide-
and-conquer algorithm. This algorithm is a combination of both previous algorithms. First
we use the incremental union algorithm to compute ¢ maps representing the Minkowski
sums of P and each convex subpolygon of). Then we compute the union of pairs of
maps using the arrangement algorithm, obtaining ¢/2 new maps. We continue to compute
union of pairs of intermediate maps logt times until we end up with one map describing
the Minkowski sum of P and). We report on our experiments with these three algorithms
as well as on other factors that can affect the computation such as the order of insertion of
subsums.

In the theoretical study of Minkowski sum computation (e.g., [29]), the choice of decom-
position is often irrelevant (as long as we decompose the polygons into convex subpolygons)
because it does not affect the worst-case asymptotic running time of the algorithms. In
practice however, different decompositions can induce a large difference in running time of
the Minkowski sum algorithms. In Chapter 4 we examine different methods for decompos-
ing polygons by their suitability for efficient construction of Minkowski sums. We study and
experiment with various well-known decompositions as well as with several new decomposi-

13

tion schemes. We report on our experiments with the various decompositions and different
input polygons. Among our findings are that in general: (i) triangulations are too costly
(although they can be produced quickly, they considerably slow down the Minkowski-sum
computation), (ii) what constitutes a good decomposition for one of the input polygons
depends on the other input polygon — consequently, we develop a procedure for simultane-
ously decomposing the two polygons such that a “mixed” objective function is minimized,
(iii) there are optimal decomposition algorithms that significantly expedite the Minkowski-
sum computation, but the decomposition itself is expensive to compute — in such cases
simple heuristics that approximate the optimal decomposition perform very well.

We give concluding remarks and suggest directions for further research in Chapter 5.

14

Chapter 2

Preliminaries

In this chapter we present some of the tools and terminology that we will be using through-
out the thesis.

2.1 Planar Arrangements

An arrangement of curves in the plane is the subdivision of the plane induced by these
curves. Consider, for example, the arrangement induced by a collection of n line segments
in the plane. The line segments partition the plane into vertices, edges and faces. A vertex
is an endpoint of a segment or an intersection point of two (or more) segments, an edge is a
maximal connected portion of an original segment that does not meet any vertex, and a face
is a maximal connected region of the plane not meeting any edge or vertex; see Figure 2.1
for an illustration. Such an arrangement has at most O(n?) vertices, edges and faces, and
this bound is tight. The features of the arrangement are also called cells. A vertex is a
0-dimensional cell, an edge is a 1-dimensional cell and a face is a 2-dimensional cell. A
subcell of a k-dimensional cell ¢; is a (k — 1)-dimensional cell ¢y that is on the boundary of
c1. If ey is a subcell of ¢; then e; and ¢y are considered incident.

Let I' be a collection of n curves in the plane, and let A(I') be the arrangement of
I'. Given another curve 7w we define the zone of 7w to be the set of faces of A(I') that are
intersected by 7 (Figure 2.2). If the curves of I' are z-monotone Jordan arcs such that
each pair intersects in at most s points then the complexity of the zone of a curve m which
intersects any curve of I' in at most some constant number of points is @(As42(n)), where
As(n) is the maximum length of a Davenport-Shinzel sequence of order s on n symbols [43].
This result implies that for arrangements of line segments, the complexity of the zone of
another segment is @(na(n)) where a(-) is the extremely slowly growing functional inverse
of Ackermann’s function.

Arrangements are also defined for higher dimensional objects. See [2, 19] for more

15

16

Edge

Vertex

Figure 2.1: A vertex, an edge and a face in an arrangement of segments

Figure 2.2: An arrangement of segments. The shaded area is the zone of the segment in bold
line.

17

Figure 2.3: An arrangement of segments on the left-hand side and its vertical decomposition
on the right-hand side

details on arrangements in two and higher dimensions and other important substructures
(e.g., envelopes) of them. However, in this work we will focus on planar arrangements.

2.2 Vertical Decomposition

Let S be a set of n line segments in the plane. In the previous section we defined the arrange-
ment A(S) of S. A(S) is a subdivision of the plane into regions that can, unfortunately,
have complex shapes. Hence, it is convenient to further refine this subdivision. The vertical
decomposition (also known as the trapezoidal decomposition) is a planar subdivision D such
that from each vertex of A(S) we extend a vertical attachment. Each vertical attachment
extends upwards and downwards until it hits another edge or vertex of A(S) and if no such
feature exists, then it extends to infinity (Figure 2.3). D is a refinement of the original
subdivision A(S): every face of D lies completely in one face of A(S). The faces of D are
called wvertical trapezoids even though they can also be triangles or unbounded trapezoids.
Let I be the number of intersection points among the segments of S then the complexity of
A(S)is O(I+n). The complexity of the subdivision D is O(I+n) and it can be constructed
in expected O(I 4 nlogn) time using a randomized incremental algorithm [39]. During an
incremental construction of D we can also build a search structure such that the trapezoid
in which a query point lies can be found in expected O(logn) time. This operation is called
point location. In Section 2.3 we briefly describe three different strategies to answer a point
location query in arrangements and planar maps as they are implemented in CGAL.

2.2.1 Robot Motion Planning

Vertical decompositions are commonly used in theory and practice. They are used to
simplify the subdivision induced by an arrangement of curves with a fairly low overhead
in time and storage. The ability to get a simple and efficient search structure on the

18

Q —

Figure 2.4: Robot and obstacles: on the left-hand side the workspace which includes the robot
(on the bottom left) and the obstacles and on the right-hand side the configuration-space
obstacles

vertical decomposition is another reason for its popularity. One of the applications of
vertical decomposition is robot motion planning which is relevant to this work. We describe
methods for constructing the Minkowski sum of polygonal sets. Planning a motion of a
polygonal robot translating among polygonal obstacles (Figure 2.4) can be carried out as
follows: (i) First, fix a reference point » on the robot and construct the configuration-space
obstacles C' by computing the Minkowski sum of the robot rotated by 180° and the obstacles
(Figure 2.4). (ii) Plan a path in the free portion FP of the configuration space. Moving r
along the computed path while the robot is rigidly attached to r gives a collision free motion
plan for the robot in the workspace. We discuss the first step in detail in the sequel. The
second step can be easily accomplished using a trapezoidal decomposition as we explain
next.

Let C’ be the trapezoidal decomposition of FP. We would like to compute a path in FP
for a point from psart t0 Pgoal. If Pstart a0 pgoqr lie in the same trapezoid we can simply
move along a straight line segment between them. Otherwise, we construct a road map
through the free space. We set a node in the center of each free trapezoid and in the center
of each of its vertical walls. We connect each node in the center of a trapezoid with all the
nodes on the trapezoid’s boundary. This gives us a planar graph embedded entirely in FP
(Figure 2.5) . Constructing the road map and finding a path in it from the trapezoid that
contains psqr¢ to the trapezoid that contains pgoq; is easily achieved in time linear in the
complexity of the road map, after the trapezoidal decomposition had been constructed.

2.3 Planar Maps and Arrangements in CGAL

CGAL — Computational Geometry Algorithms Library — is a software library developed
by several research groups in Europe and Israel. The library provides a robust, efficient, and

19

Figure 2.5: Road map constructed using a vertical decomposition of the free space

flexible implementation of computational geometry algorithms and data structures [1, 16].
The planar-map [17] and arrangement software packages are part of CGAL’s basic library.

Given a set S of non-intersecting z-monotone curves in the plane, the planar-map pack-
age contains data structures and algorithms to dynamically maintain the planar subdivision
induced by the curves of S. Furthermore, the planar-map package allows for flexibility in
choosing the curve type and supports the use of robust number types for computations. The
package does not assume general position, namely it handles degenerate inputs. Beside the
insertion and removal operations, it supports several useful services: traversal of the map
features, point location and trapezoidal decomposition. These capabilities are implemented
as follows (the full details are given in [17] and [23]):

Geometric Traits The geometric traits class is an abstract interface of predicates and
functions that wraps the access of an algorithm to the geometric (rather than combi-
natorial) inner representation. In the planar-map package the traits class is defined
as the minimal geometric interface which will enable a construction and handling of
a geometric map. The traits class defines the basic objects of the map: the point and
the z-monotone curve. In addition it defines predicates for comparing points, access-
ing curves’ endpoints, comparing points and curves (e.g., whether a point is above,
below or on a given curve), and comparing curves (e.g., compare the y-coordinate of
two curves at a given z-coordinate). The traits class implicitly defines the geometric
representation and robustness handling methods.

Doubly Connected Edge List (DCEL) The DCEL [12, Chapter 2] is the fundamen-
tal data structure used by the planar map. This representation belongs to a family
of edge-based data structures in which each edge is represented as a pair of oppo-
site halfedges. Each halfedge e points to its source and target vertices: source(e)

20

twin(€)

Figure 2.6: Source and target vertices, and twin halfedges in a face with a hole

and target(e), to its twin (opposite) halfedge: twin(e), to the next and previous
halfedges on the Connected Component of the Boundary (CCB) of its face: next(e)
and previous(e), and to the face on its left: face(e). Each face f points to a halfedge
on its outer boundary (if it exists) and to a list of holes: outer(f) and holes(f). Each
vertex v points to a halfedge from it: halfedge(v). See an example of a DCEL in
Figure 2.6. We can use the bidirectional pointers (previous and next) to traverse a
CCB of a face , to jump to neighboring faces (twin pointer) and to explore all the
faces and halfedges that are incident to a vertex. The implementation enables keeping
extra data in each feature of the DCEL.

Topological Layer and Geometric Layer The topological layer is responsible for main-

taining the combinatorial data by using the DCEL as the storage class. We can update
the map by using insert, remove and split operations. The topological layer also en-
ables us to traverse the features of the planar map by combinatorial connectivity using
a set of iterators: (i) halfedges around vertex iterator, (ii) connected component of
the boundary of a face (CCB) iterator, (iii) holes iterator. The geometric layer is an
embedding of the topological layer in the plane using the geometric traits. The topo-
logical layer can also be used for non-planar subdivisions (e.g., terrains, subdivisions
on a sphere).

Point Location Strategy The planar map package supports point location queries. Us-

ing the point location as a strategy’ enables the users to implement their own point
location algorithms. The planar-map package supplies three point location strategies:
(i) a naive algorithm — goes over all the edges in the map to find the location of

!The use of “strategy” here refers to the strategy pattern [18].

21

the query point; (ii) an efficient algorithm — Mulmuley’s randomized incremental
algorithm that uses a vertical decomposition and a search structure to answer a point
location query in expected O(log? n) time [38] (we get an additional logarithmic factor
over the regular trapezoidal decomposition because here the search structure is fully
dynamic); and (iii) a “walk” algorithm that is an improvement over the naive one; it
finds the point’s location by walking along a ray from “infinity” towards the query
point, traversing only the zone of this ray rather than the entire map.

The arrangement package [23] uses the same technology but handles curves that are not
necessarily z-monotone and that are allowed to intersect. The arrangement class keeps a
hierarchy graph by which we can get the original curve from which a halfedge in the map
was created.

We use the planar maps of CGAL along with the implementation of rational numbers
from LEDA? — the Library of Efficient Data-structures and Algorithms [36, 37]. LEDA
provides a set of algorithms and data structures from graph theory and computational geom-
etry. The library includes an implementation of exact number types (e.g., rational numbers,
real numbers). LEDA’s rational number holds two varying length integers: a numerator
and a denominator to represents an exact rational. In addition, it includes a floating point
approximation (floating-point filter) to save computing time by resorting to expensive com-
putation only when the correct answer cannot be determined with the approximation only.
LEDA also provides a graphic user interface for interactive applications.

http:/ /www.mpi-sb.mpg.de/LEDA /leda.html

22

Chapter 3

Minkowski Sum Algorithms

We devised and implemented three algorithms for computing the Minkowski sum of two
polygonal sets based on the CGAL software library [1, 16]. Our main goal was to produce a
robust and exact implementation. This goal was achieved by employing the CGAL planar
map package (described in Chapter 2) while using exact number types.

The input to our algorithms are two polygonal sets P and @, with m and n vertices
respectively. P and () are sets of simple polygons that are not necessarily pairwise disjoint.
All our algorithms consist of the following three steps:

Step 1: Decompose P into the convex subpolygons Py, Ps, ..., P; and @ into the convex
subpolygons Q1,Q3, . ..,Q¢ The number of vertices of a polygon X is denoted by | X|.

Step 2: For each 7 € [1..s] and for each j € [1..t] compute the Minkowski subsum P; ® Q;
which we denote by R;;. We denote by R the set {R;; | € [1..s],j € [1..t]}.

Step 3: Construct the union of all the polygons in R, computed in Step 2; the output is
represented as a planar map.

We discovered that the choice of the decomposition in Step 1 can have a dramatic effect
on the running time of the Minkowski-sum algorithms. We postpone the discussion of
the decomposition process to Chapter 4. We can assume, for this chapter, that the input
polygonal sets are decomposed into convex subpolygons. Throughout the experiments that
we describe in this chapter we use the same decomposition which has proved very efficient
for our purposes. It is based on a heuristic method proposed in [10] which we have slightly
improved and we refer to as the small-side angle-bisector decomposition; for details see
Chapter 4.

In the next section we describe the computation of the Minkowski sum of two convex
polygon (Step 2). We survey the polygons union algorithms (Step 3) that we implemented in
Section 3.2. The input sets on which we performed the experiments are listed in Section 3.3
and experimental comparison between the algorithms is given in Section 3.4.

23

24
3.1 Minkowski Sum of Two Convex Polygons

The second phase of the Minkowski-sum computation is constructing the subsums R;; :=
P; ®Q;. We review a simple, well-known linear-time algorithm to compute this Minkowski
sum [12, Chapter 13]*.

Given two convex polygons P and Q with m and n vertlces respectively, we will compute
PaQ. For agiven d1rect10n d an extreme point in direction d on P®Q is the vector sum of
extreme points in direction don P and Q. For a convex polygon, if we change the direction d
in a counterclockwise manner then we get a sequence of extreme points that contains all the
vertices of the polygon ordered exactly as they are ordered on the polygon’s counterclockwise
boundary. The following algorithm scans the directions in counterclockwise order and uses
the above observation to simultaneously traverse both polygons and find extreme points in
each direction.

1. Letvy,..., vy and wy, ..., w, be the vertices of P and @), ordered in counter-clockwise
order, with v; and w; being the vertices with smallest y-coordinate (and smallest z-
coordinate in case of ties)

i+ 1,5+ 1
Umt1 ¢ U1; Wt ¢ Wi
repeat
Add v; + w; as a vertex to P @ Q
if angle(v;v;11) < angle(wjwji,) then ¢ < i+ 1
else if angle(v;v;11) > angle(wjwji,) then j <+ j+1

elsei+—i+1;j+j5+1

O 0 N O Ot ks W N

ifi>m+1thenie—m-+1
10. ifj>n+1thenj<«+ n+1
11. untili=m+land j=n+1

We use the notation angle(ab) to denote the angle that the vector ab makes with the
positive z-axis.

This algorithm runs in linear time O(m + n), because at each iteration of the loop in
lines 4 — 11 either 7 or j are incremented. The vertices of P @ () are vector sums of pairs of
vertices from P and () that are extreme at a common direction. Since the input polygons
are convex the angle test ensures that all extreme pairs are found.

!The algorithm as it appears in the book might run into an infinite loop. The algorithm that we present
contains the necessary fixes.

25
3.2 Polygons Union Algorithms

The Minkowski sum of P and () is the union of the polygons in R. Let k denote the overall
number of edges of the polygons in R, and let I denote the overall number of intersections
between (edges of) polygons in R. We present three different algorithms for performing
Step 3, computing the union of the polygons in R, which we refer to as the arrangement
algorithm, the incremental union algorithm and the divide-and-conguer algorithm.

3.2.1 Arrangement Algorithm

The algorithm constructs the arrangement A(R) induced by the polygons in R (we refer
to this arrangement as the underlying arrangement of the Minkowski sum) by adding the
(boundaries of the) polygons of R one by one in a random order and by maintaining the
vertical decomposition of the arrangement of the polygons added so far. Each polygon is
chosen with equal probability at each step. Once we have constructed the arrangement,
we traverse all its cells (vertices, edges or faces) and we mark a cell as belonging to the
Minkowski sum if it is contained inside at least one polygon of R.

Theorem 3.2.1 The construction of A(R) takes randomized expected time O(I + klogk).

Proof: See Appendix B. O

The traversal stage takes O(I+k) time. The number of vertices in R is k = O(mn) there-
fore the expected construction time using the arrangement algorithm is O(I 4+ mnlog(mn))
and the traversal stage takes O(I + mn).

As mentioned earlier, a distinctive feature of our work is our ability to handle degenerate
input such as “tight passages” (Figure 1.7). To do this we need to pay special attention to
various “boundary conditions”.

Let Union(R) be the union of the polygons of R. Union(R) can be represented by a
subset of the features of the arrangement A(R). Therefore, we would like to compute for
each feature in the underlying arrangement (face, edge or vertex) whether it is inside the
union or not.

During the insertion of polygons into the arrangement we count for each halfedge on
how many boundaries of polygons of R it lies. Using this count we can find for each face
in how many polygons it is contained by traversing the arrangement once in a breadth-first
manner. Then, a face is inside the union if and only if it lies in at least one of the polygons

of R.

Next, we would like to know which edges are on the boundary of the union. Trivially we
would check for each edge e its two incident faces. If one of those faces is inside the union
and the other is not then we would mark e to be on the boundary of the union. But this

26

O

Figure 3.1: Semi-free vertex: the small polygon can fit into the cavity in the larger polygon
(left-hand side) as indicated by a singular point in the middle of the Minkowski sum of the larger
polygon with a copy of the small one rotated by 180° (right-hand side)

is insufficient since there are edges that are on the boundary of one or more polygons of R
but are not contained in any of those polygons (in motion planning such an edge represents
a tight passage for the robot through the obstacles — see Figure 1.7). This edge is on the
boundary of the union but the faces on its sides are both inside the union (in some cases
such an edge might not be connected to the rest of the boundary of the union). We refer to
such an edge as a semi-free edge. If the number of polygons that contain a halfedge on their
boundary equals to the number of polygons that contain the face bounded by this halfedge
in the arrangement then we mark this halfedge to be on the boundary.

Finally, we should check the vertices. A vertex is on the boundary of Union(R) if it
is a target or a source vertex of an edge that is on the boundary of Union(R), or it can
be disconnected from the rest of the boundary (in motion planning it is a semi-free vertex
which represents a location in which a robot can be placed but from which it cannot move
in any direction — see Figure 3.1). We provide the full technical details of this process in
Appendix A.1.

3.2.2 Incremental Union Algorithm

In this algorithm we incrementally construct the union of the polygons in R by adding the
polygons one after the other in random order. We maintain the planar map representing
the partial union of polygons in R. For each r € R we insert the edges of r into the
map and then remove redundant edges from the map. Redundant edges are edges that are
completely contained in (at least) one of the polygons of R inserted so far. We do this
using the “coloring” procedure described below. All the operations of this procedure can
be carried out efficiently using the planar map package. We could only give a naive bound
on the running time of this algorithm, which in the worst case is higher than the worst-case
running time of the arrangement algorithm. Practically however the incremental union
algorithm works much better than the arrangement algorithm on most problem instances.

To compute the exact union and boundary we should identify in each insertion step

27

of the incremental algorithm what features are redundant and can therefore be removed.
While the arrangement algorithm uses a post-processing stage, in this algorithm we execute
a coloring procedure after each insertion of a polygon into the map. After the insertion of
a polygon r, the coloring procedure marks all the faces that are contained in 7 to be inside
the union. In addition we can remove all the edges and vertices that lie completely inside
r since they do not contribute to the union any more. A special treatment should be given
to the edges and vertices on the boundary of r. Some of those edges may be a part of the
boundary of the partial union as they separate between a face that is inside the union and
a face outside the union. Again, as in the arrangement algorithm we have cases in which
an edge (or a vertex) is surrounded by faces that are in the partial union but the edge (or
the vertex) is on the union’s boundary.

We can remove an edge from the boundary of r if it does not overlap with part of the
union’s boundary before we added r and both its adjacent faces are inside the union. A
vertex that is on the boundary of r can be removed if it was first inserted with » and all the
faces that are adjacent to it are inside the union. The full details of the coloring procedure
are explained in Appendix A.2.

3.2.3 Divide and Conquer Algorithm

While the incremental algorithm removes the redundant edges from the union map, the
arrangement algorithm handles all the edges of the polygons of R during the entire process.
On the other hand, with the incremental algorithm we may have very complex faces in our
planar map. Handling these faces is highly time consuming (we discuss these issues in Sec-
tion 3.4.2). The divide-and-conquer algorithm is a combination of both previous algorithms,
attempting to overcome the shortcomings of both. First we use the incremental union al-
gorithm to compute the Minkowski sums of P and Q); for each 1 < j < ¢. This results in
t polygonal sets (each represented as a planar map) Si,...,S;, where S;’s complexity is
O(n|Q;l) [29]. In the second stage we compute the union of pairs of maps from Sy,...,S;
using the arrangement algorithm, obtaining ¢/2 new maps. We continue to compute union
of pairs of maps logt times until we end up with one map describing the Minkowski sum of

P and Q.

This algorithm is just one way of applying a divide-and-conquer scheme for computing
the union of polygons. We found this method efficient because it balances the use of the
previous two union algorithms.

3.3 Input Sets

The input data we used is described in Table 3.1 and in Figures 3.2 through 3.10. The
Minkowski sum of a comb and a convex polygon has complexity @(mn) (see Figure 3.2),
while the fork input results in ©(m?n?) Minkowski sum complexity (see Figure 3.4). The

28

H input name ‘ description ‘ figure H
comb P is a ‘comb’ with (m — 3)/2 teeth, and Q is a convex | Figure 3.2
polygon with n vertices, of which n — 2 lie on the top
boundary
star P and @ are star-shaped polygons Figure 3.3
fork P and @ each consists of two orthogonal sets of | Figure 3.4
‘teeth’ such that their Minkowski sum has ©(n?m?)
complexity
random P and @ are random looking polygons [15] Figure 3.5

concave chain | P and () consist of concave chains with m — 1 and | Figure 3.6
n — 1 vertices, respectively

mixed chain P consists of chains of different type of vertices: con- | Figure 3.7
vex vertices, concave vertices and comb-like vertices
(alternating from concave to convex repeatedly), @ is
a star-shaped polygon

knife P is shaped as a long triangle with short and even | Figure 3.8
comb teeth along its base and @ consists of horizontal
and vertical teeth

countries This is real-life data consisting of the polygonal de- | Figure 3.9
borders scription of the borders of several countries across the
world

robot and | Q) is a star-shaped robot and P consist of triangular | Figure 3.10
obstacles obstacles which are randomly placed inside a square

Table 3.1: Input data

rest of the input data results in Minkowski sum complexity that is between ®(m + n) and
©(m?n?). The ‘intermediate’ inputs (star, random, countries) are interesting in that there
are many different ways to decompose them into convex subpolygons — this is the topic of
the next chapter.

3.4 Experiments

We present experimental results of applying the algorithms described in Section 3.2 to the
collection of input pairs of polygonal sets that are listed in the previous section.

3.4.1 Test Platform and Frame Program

Our implementation of the Minkowski sum package is based on the CGAL (version 2.0) and
LEDA (version 4.0) libraries. Our package works with Linux (g++ compiler) as well as with

29

Ry

Figure 3.2: Comb input on the left-hand side and the Minkowski sum on the right-hand side

» .

Figure 3.3: Star input

Figure 3.4: Fork input

'

Figure 3.5: Random looking polygons input

30

o ¥

Figure 3.6: Concave chains input

.

Figure 3.7: Mixed chain input

Figure 3.8: Knife input

O

Figure 3.9: Countries borders input

31

Figure 3.10: Robot and obstacles input

WinNT (Visual C++ 6.0 compiler). The tests were performed under WinNT workstation
on a 500 MHz PentiumlIII machine with 128 Mb of RAM.

We implemented an interactive program (Figure 3.11) which constructs Minkowski sums,
computes configuration space obstacles, and solves polygon containment and polygon sepa-
ration problems. The software also enables to choose the decomposition method and union
algorithm and presents the resulting Minkowski sum and underlying arrangement. The
software is available from http://www.math.tau.ac.il/"flato/.

We measured the running times for the various algorithms with different input data.

3.4.2 Results

The results of running the three union algorithms are presented in Figure 3.12. We can
see that for polygonal sets for which the Minkowski sum is complex (e.g., the fork input)
the arrangement algorithm performs better. When the sum’s complexity is relatively small
(e.g., the star input) the incremental algorithm has the best running times. The divide-and-
conquer algorithm’s performance is mostly between the other two algorithms and is likely
to be closer to the best algorithm.

The complexity of the Minkowski sum varies for the different input data. For the two
input sets P and ¢ we denote by Vpg the total number of vertices in the arrangement of

the polygons of R, and Mpg the number of vertices on the boundary of P ¢ Q. Figure 3.13
algorithms (Figure 3.12) it is clear that for small Cpg the incremental algorithm performs
best but as the ratio grows the arrangement algorithm overtakes so that for inputs like the
fork and comb it performs better than the other algorithms. The incremental algorithm
maintains the union of the polygons of R removing redundant edges and vertices. Smaller
Cpg indicates that there are many vertices and edges in the arrangement of R that do
not contribute to the boundary of the Minkowski sum. Handling those features during the

union process (as the arrangement algorithm does) is therefore costly. When Cpq is large,

presents the ratio Cpg = . From comparing this ratio to the running times of the three

32

p CGAL Minkowski Algorithm [_ O] %]

File Edit “iew Option Build ()) @ &9 (=) (= FPan Zoom (%)

296.13 -40.27

&lgonthm Time (mill-sect: 3324

Figure 3.11: The Minkowski-sum application — a screenshot

400

Union Time (sec)

B arrangement

Bincremental

B divide-and- conguer

comb

star fork

403,30} {100, 1000 {34, 21}

random concave mixed knife countries rabot
{50, 80} {24, 24} {162 30} {84 22} {183, 30} {182 20}

33

Figure 3.12: Running times in seconds for computing the Minkowski sum of different input data
with all three union algorithms. The sizes of P and @ are in parenthesis.

0450

0400

0350

0.300

0402

0276

0.050

0.021
0.008 0.002 0.001 0.002 0.004
e ‘ ‘ B —
comb star fork random concave rnixed knife countries robot
{6B01: {28323} {6411} {38047} {84321} {17408} {52357} {80002} 111056}

Figure 3.13: Cpg: the ratio between the number of vertices in the Minkowski sum of different
input data compared with the number of vertices of the underlying arrangement. The values
Vpg are in parenthesis. We measured Cpg for the same inputs we used to produce the results

in Figure 3.12.

34

Figure 3.14: Covered fork: input sets on the left-hand side (the first set includes the larger fork
polygon and a long vertical triangle and the second set includes the smaller fork polygon and a
long horizontal triangle), the Minkowski sum in the middle, and the underlying arrangement on
the right-hand side

removing the unnecessary edges and vertices almost does not help and in the extreme cases
results in poor running times. Removing the redundant edges from the map sometimes
results in very complex faces. In our implementation of the planar map handling these
complex faces can take longer time. Such complex faces are likely to be created when the
Minkowski sum is relatively complex (large Cpg).

3.4.3 Order of Insertion

Another factor that affects the running time of the union algorithms is the order in which
the polygons of R are inserted into the planar map. Consider for example the covered
fork input data (suggested to us by R. Wenger). It consists of two fork polygons whose
Minkowski sum has complexity ©(m?n?) and two long triangles whose Minkowski sum is
a large hexagon that covers (contains) the grid created by the sum of the fork polygons.
Therefore, The Minkowski sum in this case has ®@(m + n) vertices while the underlying
arrangement has ©(m?n?) vertices. See Figure 3.14. If we use the incremental algorithm
and insert the large hexagon first, we can avoid handling the (complex) grid-like planar
map and we get output-sensitive running time. This example shows that an algorithm that
inserts the subsum polygons of R in random order cannot be output sensitive.

If we insert the polygons of R into the map in descending order of fatness (we use here a
very simple measure of fatness — the area divided by the diameter squared) we will get the
desired output-sensitivity effect in this special case. The results are given in Figure 3.15.
This permutation, however, does not always result in better running times. Consider for
example Figure 3.16 where all the thinner polygons of R are intersecting the fatter polygons.
We can see in the results that for this input (fat grid) the union time when using the fatness
permutation is about two times slower than when using a random permutation.

35

180 _
M random permutation

160

@ fatness permutation

140

J
fam

=
]

oo
o}
|

o
=
|

Union Time (sec)

I
=

o
o |
|

T

o |

covered fark comb fat grid random robot
{78, 76} {403, 30} {297, 18} {100, 100} {182, 20}

Figure 3.15: Running times in seconds for computing the Minkowski sum of different input data
using the incremental algorithm with both random and fatness permutations on the polygons
of R. The sizes of P and @) are in parenthesis.

———

Figure 3.16: Fat grid input

36

Chapter 4

Polygon Decomposition

In this chapter we examine different methods for decomposing polygons by their suitabil-
ity for efficient construction of Minkowski sums. We study and experiment with various
well-known decompositions as well as with several new decomposition schemes. Some of
the presented algorithms are optimal while others approximate an optimal solution or use
various heuristics.

In the theoretical study of Minkowski-sum computation (e.g., [29]), the choice of decom-
position is often irrelevant (as long as we decompose the polygons into convex subpolygons)
because it does not affect the worst-case asymptotic running time of the algorithms. In
practice however, different decompositions can induce a large difference in running time of
the Minkowski-sum algorithms (see Figure 4.1 for an example). The decomposition can af-
fect the running time of algorithms for computing Minkowski sums in several ways: some of
them are global to all algorithms that decompose the input polygons into convex polygons,
while some others are specific to certain algorithms or even to specific implementations. We
examine these various factors and report our findings below.

Polygon decomposition has been extensively studied in computational geometry; it is
beyond the scope of this thesis to give a survey of results in this area and we refer the reader
to the survey papers by Keil [33] and Bern [8], and the references therein. As we proceed,
we will provide details on specific decomposition methods that we will be using.

We apply several optimization criteria to the decompositions that we employ. In the con-
text of Minkowski sums, it is natural to look for decompositions that minimize the number
of convex subpolygons. As we show in the sequel, we are also interested in decompositions
with minimal maximum vertex degree of the decomposition graph, as well as several other
criteria.

We report on our experiments with the various decompositions and different input poly-
gons. As mentioned in the Introduction, among our findings are that in general: (i) tri-
angulations are too costly, (ii) what constitutes a good decomposition for one of the input
polygons depends on the other input polygon — consequently, we develop a procedure for

37

38

P’s decomposition
naive triang. | min 2d? triang. | min convex

nd? 754 530 192
of convex subpolygons in P 33 33 6
time (mSec) to compute P & Q 2133 1603 120

Figure 4.1: Different decomposition methods applied to the polygon P (leftmost in the figure),
from left to right: naive triangulation, minimum Xd? triangulation and minimum convex decom-
position (the details are given in Section 4.1). We can see in the table for each decomposition
the sum of squares of degrees, the number of convex subpolygons, and the time in milliseconds
to compute the Minkowski sum of the polygon with a small convex polygon, @, with 4 vertices.

simultaneously decomposing the two polygons such that a “mixed” objective function is
minimized, (iii) there are optimal decomposition algorithms that significantly expedite the
Minkowski-sum computation, but the decomposition itself is expensive to compute — in
such cases simple heuristics that approximate the optimal decomposition perform very well.

In the next section we describe the different decomposition algorithms we have imple-
mented. We present a first set of experimental results in Section 4.2 and filter out the
methods that turn out to be inefficient. In Section 4.3 we focus on the decomposition
schemes that are not only fast to compute but also help to compute the Minkowski sum
efficiently.

We use the notation from Chapter 3. For simplicity of the exposition we assume here
that the input data for the Minkowski algorithm are two stmple polygons P and Q). In prac-
tice we use the same decomposition schemes that are presented here for general polygonal
sets, mostly without changing them at all. However this is not always possible. For example,
Keil’s optimal minimum convex decomposition algorithm will not work on polygons with
holes!. Furthermore, the problem of decomposing a polygon with holes to convex subpoly-
gons is proven to be NP-Hard whether Steiner points are allowed or not; see [31]. Other
algorithms that we use (e.g., AB algorithm) can be applied to general polygons without
changes. We discuss these decomposition algorithms in the following sections.

'In such cases we can apply a first decomposition step that connects the holes to the outer boundary and
then use the algorithm on the simple subpolygons. This is a practical huristic that does not guarantee an
optimal solution.

39
4.1 The Decomposition Algorithms

We briefly describe here the different algorithms that we have implemented for decomposing
the input polygons into convex subpolygons. We used both decomposition with or without
Steiner points. Some of the techniques are optimal and some use heuristics to optimize
certain objective functions. The running time of the decomposition stage is significant only
when we search for the optimal solution and use dynamic programming; in all other cases
the running time of this stage is negligible even when we implemented a naive solution.
Therefore we only mention the running time for the ‘heavy’ decomposition algorithms. In
what follows P is a polygon with n vertices py, ..., pn, r of which are reflex.

4.1.1 Triangulation

Greedy triangulation. This procedure searches for a pair of vertices p;, p; such that
the segment p;p; is a diagonal, namely it lies inside the polygon. It adds such a diagonal,
splits the polygon into two subpolygons by this diagonal, and triangulates each subpolygon
recursively. The procedure stops when the polygon becomes a triangle. See Figure 4.1 for
an illustration.

In some of the following decompositions we are concerned with the degrees of vertices in
the decomposition (namely the number of diagonals incident to a vertex). Our motivation
for considering the degree comes from an observation on the way our planar map structures
perform in practice: we noted that the existence of high degree vertices makes maintaining
the maps slower. The DCEL structure that is used for maintaining the planar map has,
from each vertex, a pointer to one of its incident halfedges. We can traverse the halfedges
around a vertex by using the adjacency pointers of the halfedges. If a vertex v; has d incident
halfedges then finding the location of a new edge around v; will take O(d) traversal steps.
To avoid the overhead of a search structure for each vertex the planar-maps implementation
does not include such a structure. Therefore, since we build the planar map incrementally,
if the degree of v; in the final map is d; then we performed £%0(i) = O(d?) traversal
steps on this vertex. Trying to minimize this time over all the vertices we can either try
to minimize the maximum degree or the sum of squares of degrees, ¥d?. Now, high degree
vertices in the decomposition result in high degree vertices in the underlying arrangement,
and therefore we try to avoid them. We can apply the same minimization criteria to the
vertices of the decomposition.

Optimal triangulation — minimizing the maximum degree. Using dynamic pro-
gramming we compute a triangulation of the polygon where the maximum degree of a vertex
M AX (d;) is minimal. The algorithm is described in [26], and runs in O(n?) time.

Optimal triangulation — minimizing ¥d? . We adapted the minimal-maximum-degree
algorithm to find the triangulation with minimum %d? where d; is the degree of vertex v; of
the polygon. See Figure 4.1. In the min-max degree triangulation the dynamic programming
scheme apply recursively the triangulation algorithm on smaller parts of the polygon and

40

Figure 4.2: From left to right: Slab decomposition, angle bisector (AB) decomposition, and
KD decomposition

computes the maximum degree over all the returned triangulations. The modification that
is used to give the minimum Xd? is done only in the final step. We compute the sum of
squares of degrees instead of maximum degree. Since both Xd? and M AX (d;) are global
properties of the decomposition that can be updated in constant time at each step of the
dynamic programming algorithm — the rest of the algorithm and its analysis remain the
same.

4.1.2 Convex Decomposition without Steiner Points

Greedy convex decomposition. The same as the greedy triangulation algorithm except
that it stops as soon as the polygon does not have a reflex vertex.

Minimum number of convex subpolygons (min-convex). We apply the algorithm
of Keil [30] which computes a decomposition of a polygon into the minimum number of
convex subpolygons without introducing new vertices (Steiner points). The running time of
the algorithm is O(r?nlogn). This algorithm uses dynamic programming. See Figure 4.1.
This result was recently improved to O(n + r2 min{r?,n}) [32].

Minimum Xd? convex decomposition. We modified Keil’s algorithm so that it will
compute decompositions that minimize ¥d?, the sum of squares of vertex degree. Like the
modification of the min-max degree triangulation, in this case we also modify the dynamic
programming scheme by simply replacing the cost function of the decomposition. Instead
of computing the number of polygons (as the original min-convex decomposition algorithm
does) we compute a different global property, namely the sum of squares of degrees. We
can compute Xd? in constant time given the values £d? of the decompositions of two sub-
polygons.

4.1.3 Convex Decomposition with Steiner Points

Slab decomposition. Given a direction €, from each reflex vertex of the polygon we extend
a segment in directions € and —¢ inside the polygon until it hits the polygon boundary. The
result is a decomposition of the polygon into convex slabs. If € is vertical then this is the

41

well-known vertical decomposition of the polygon. See Figure 4.2. The obvious advantage
of this decomposition is its simplicity.

Angle “bisector” decomposition (AB). In this algorithm we extend the internal angle
“bisector” from each reflex vertex until we first hit the polygon’s boundary or a diagonal
that we have already extended from another vertex?. See Figure 4.2. This decomposition
(suggested by Chazelle and Dobkin [10]) gives a 2-approximation to the optimal convex
decomposition: If P has r reflex vertices then every decomposition of P must include at
least [r/2] + 1 subpolygons, since every reflex vertex should be eliminated by at least one
diagonal incident to it and each diagonal can eliminate at most 2 reflex vertices. The AB
decomposition method extends one diagonal from each reflex vertex until P is decomposed
into at most r 4+ 1 convex subpolygons.

KD decomposition. This algorithm is inspired by the KD-tree method to partition a set
of points in the plane [12]. First we divide the polygon by extending vertical rays inside the
polygon from a reflex vertex horizontally in the middle (the number of vertices to the left
of a vertex v, namely having smaller z-coordinate than v’s, is denoted v; and the number of
vertices to the right of v is denoted v,. We look for a reflex vertex v for which max{v;, v, }
is minimal). Then we divide each of the subpolygons by extending an horizontal line from a
vertex vertically in the middle. We continue dividing the subpolygons that way (alternating
between horizontal and vertical division) until no reflex vertices remain. See Figure 4.2. By
this method we try to lower the stabbing number of the subdivision (namely, the maximum
number of subpolygons in the subdivision intersected by any line) — see the discussion in
Section 4.3.2 below. The decomposition is similar to the quad-tree based approximation
algorithms for computing the minimum-length Steiner triangulations [14].

4.2 A First Round of Experiments

We present experimental results of applying the decompositions described in the previous
section to a collection of input pairs of polygons. We summarize the results and draw
conclusions that lead us to focus on a smaller set of decomposition methods (which we
study further in the next section). The implementation and test platform details are given
in Chapter 3.

We ran the union algorithms (arrangement and incremental-union) with all nine decom-
position methods on the input data described in Section 3.3. The running times for the
computation of the Minkowski sum for four input examples are summarized in Figures 4.3
through 4.6.

It is obvious from the experimental results that triangulations result in poor union

%1t is not necessary to compute exactly the direction of the angle bisector, it suffice to find a segment
that will eliminate the reflex vertex from which it is extended. Let v be a reflex vertex and let u (w) be
the previous (resp. next) vertex on the boundary of the polygon then a segment at the direction @ + w0
divides the angle Zuvw into two angles with less than 180° each.

42

7 star Input

W arrangement]
B incremental

Union time (Sec)

A \)}’
)

—<

a AN '\

EAN:
.ts?g". greedy minmax min greedy min min slabs+ ab+ kd +
‘\‘/ triang degT sigD2T convex convex sigD2C

Figure 4.3: Star input: The input (on the left-hand side) consists of two star-shaped polygons.
The underlying arrangement of the Minkowski sum is shown in the middle. Running times in
seconds for different decomposition methods (for two star polygons with 20 vertices each) are
presented in the graph on the right-hand side.

250 Border Input

W arrangement
 incremental

Union time (Sec)

greedy minmax minsigD2 greedy min minsigD2 slabs+ ab+ kd+
tiang deg T T cowex covex C

Figure 4.4: Border input: The input (an example on the left-hand side) consists of a border of
a country and a star shaped polygon. The Minkowski sum is shown in the middle, and running
times in seconds for different decomposition methods (for the border of Israel with 50 vertices
and a star shaped polygon with 15 vertices) are shown in the graph on the right-hand side.

W arrangemen]
incremental

300 Random polygons Input

Union time (Sec)

2

oreedy minmax minsigD2 greedy min minsigD2 slabs+ ab+ kd+
tiang degT T comex comwex C

Figure 4.5: Random polygons input: The input (an example on the left-hand side) consists of
two random looking polygons. The Minkowski sum is shown in the middle, and running times in
seconds for different decomposition methods (for two random looking polygons with 30 vertices
each) are shown in the graph on the right-hand side.

43

0 Fork Input

W arrangement]
Hincremental

100

80

60

Union time (Sec)

40

|

20

greedy minmax min greedy min min slabs kd +
tiang degT sigD2T convex convex sigD2C

Figure 4.6: Fork input: The input (on the left-hand side) consists of two orthogonal fork
polygons. The Minkowski sum is shown in the middle, and running times in seconds for different
decomposition methods (for two fork polygons with 8 teeth each) are shown in the graph on
the right-hand side.

running times (the left three pairs of columns in the histograms of Figures 4.3 through 4.6).
By triangulating the polygons, we create (n — 1)(m — 1) hexagons in R with potentially
Q(m?n?) intersections between the edges of these polygons. We get those poor results
since the performance of the union algorithms strongly depends on the number of vertices
in the arrangement of the hexagon edges. Minimizing the maximum degree or the sum
of squares of degrees in a triangulation is a slow computation that results in better union
performance (compared to the naive triangulation) but is still much worse than other simple
convex-decomposition techniques.

In most cases the arrangement union algorithm runs much slower than the incremental
union approach. By removing redundant edges from the partial sum during the insertion
of polygons, we reduce the number of intersections of new polygons and the current planar
map features. The fork input is an exception since the complexity of the union is roughly
the same as the complexity of the underlying arrangement and the edges that we remove
in the incremental algorithm do not significantly reduce the complexity of the planar map;
see Figure 4.6. More details on the comparison between the arrangement union algorithm
and the incremental union algorithm are given in Chapter 3.

The min-convex algorithm almost always gives the best union computation time but
constructing this optimal decomposition may be expensive — see Figure 4.7. Minimizing
the sum of squares of degrees in a convex decomposition rarely results in a decomposition
that is different from the min-convex decomposition.

This first round of experiments helped us to filter out inefficient methods. In the next
section we focus on the better decomposition algorithms (i.e., minimum convex, slab, angle
“bisector”, KD), we further study them and attempt to improve their performance.

44

30
B decomposition time
B union time
25
20
)
@
@
B 15
E
'_
10
5
0
min conwesx slabs + ab + kd +

Figure 4.7: When using the min-convex decomposition the union computation time is the
smallest but it becomes inefficient when considering the decomposition time as well (running
times in seconds for two star polygons with 100 vertices each)

4.3 Revisiting the More Efficient Algorithms

In this section we focus our attention on the algorithms that were found to be efficient in
the first round of experiments. As already mentioned, we measure efficiency by combining
the running times of the decomposition step together with the union step. We present an
experiment that shows that, contrary to the impression that the first round of results may
give, minimizing the number of convex subpolygons in the decomposition does not always
lead to better Minkowski-sum computation time.

We also show in this section that in certain instances the decision how to decompose
the input polygon P may change depending on the other polygon @, namely for the same
P and different Q’s we should decompose P differently based on properties of the other
polygon. This leads us to propose a “mixed” objective function for the simultaneous optimal
decomposition of the two input polygons. We present an optimization procedure for this
mixed function. Finally, we take the two most effective decomposition algorithms (AB and
KD) — not only are they efficient, they are also very simple and therefore easy to modify
— and we try to improve them by adding various heuristics.

4.3.1 Nonoptimality of Min-Convex Decompositions

Minimizing the number of convex parts of P and @ can be expensive to compute, but
it does not always yield the best running time of the Minkowski-sum construction. In
some cases other factors are important as well. Consider for example the knife input data.
P is a long triangle with j teeth along its base and) is composed of horizontal and

45

— i =
—

H j + 1 long decomposition ‘ j + 2 short decomposition

number of vertices 23448 9379
running time (sec) 71.7 25.6

Figure 4.8: Knife input: The input polygons are on the left-hand side. Two types of decompo-
sitions of P (enlarged) are shown second left: on top, j + 2 subpolygons with short diagonals
length, and below minimum convex decomposition with 5 4+ 1 subpolygons with long diagonals.
Third from the left is the Minkowski sum of P and Q. The underlying arrangement (using
the short decomposition of P) is shown on the right-hand side. The table below presents the
number of vertices in the underlying arrangement and the running time for both decompositions
(P has 20 teeth and 42 vertices and Q) has 34 vertices).

vertical teeth. See Figure 4.8. P can be decomposed into j + 1 convex parts by extending
diagonals from the teeth in the base to the apex of the polygon. Alternatively, we can
decompose it into j + 2 convex subpolygons with short diagonals (this is the “minimal
length AB” decomposition described below in Section 4.3.3). If we fix the decomposition
of), the latter decomposition of P results in considerably faster Minkowski-sum running
time, despite having more subpolygons, because the Minkowski sum of the long subpolygons
in the first decomposition with the subpolygons of () results in many intersections between
the edges of polygons in R. In the first decomposition we have j+ 1 long subpolygons while
in the latter we have j + 2 subpolygons when only one of them is a “long” subpolygon and
the rest are j 4+ 1 small subpolygons.

We can also see a similar behavior in real-life data. Computing the Minkowski sum
of the countries borders with star polygons mostly worked faster while using the KD-
decomposition than with the AB technique; the KD decomposition always generates at
least as many subpolygons as the AB decomposition.

4.3.2 Mixed Objective Functions

Good decomposition techniques that handle P and () separately might not be sufficient
because what constitutes a good decomposition of P depends on (). We measured the
running time for computing the Minkowski sum of a knife polygon P (Figure 4.8 — the
knife polygon is second left) and a random polygon @ (Figure 3.5). We scaled @ differently
in each test. We fixed the decomposition of) and decomposed the knife polygon P once
with the short 7 + 2 “minimal length AB” decomposition and then with the long j 4+ 1
minimum convex decomposition. The results are presented in Figure 4.9. We can see that

46

[| —#—short
60 £ min_ Convex

g x
.g i

20 Aa A: /////!

04 08 12 g 32 36

18 2 24 2
diameter(P) ! diameter{Q)

Figure 4.9: Minkowski sum of a knife, P, with 22 vertices and a random polygon, @, with 40
vertices using the arrangement union algorithm. On the left-hand side the underlying arrange-
ment of the sum with the smallest random polygon and on the right-hand side the underlying
arrangement of the sum with the largest random polygon. As @ grows, the number of ver-
tices I in the underlying arrangement is dropping from (about) 15000 to 5000 for the “long”
decomposition of P, and from 10000 to 8000 for the “short” decomposition.

for small @’s the short decomposition of the knife P with more subpolygons performs better
but as) grows the long decomposition of P with fewer subpolygons wins.

These experiments imply that a more careful strategy would be to simultaneously de-
compose the two input polygons, or at least take into consideration properties of one polygon
when decomposing the other.

The running time of the arrangement union algorithm is O(I 4 klogk), where k is the
number of edges of the polygons in R and I is the overall number of intersections between
(edges of) polygons in R (see Section 3.2). The value of k depends on the complexity of
the convex decompositions of P and (). Hence, we want to keep this complexity small. It
is harder to optimize the value of I. Intuitively, we want each edge of R to intersect as
few polygons of R as possible. If we consider the standard rigid-motion invariant measure
p on lines in the plane [41] and use L(C) to denote the set of lines intersecting a set
C, then for any polygon R;;, pu(L(R;;)) is the perimeter of R;;. This suggests that we
want to minimize the total lengths of the diagonals in the convex decompositions of P and
Q. (Aronov and Fortune [4] use this approach to show that minimizing the length of a
triangulation can decrease the complexity of the average case ray shooting query.) But we
want to minimize the two criteria simultaneously, and let the decomposition of one polygon
govern the decomposition of the other.

We can see supporting experimental results for segments in Figure 4.10. In these exper-
iments we randomly chose a set T of points inside a square in R? and connected pairs of
them by a set S of random segments (for each segment we randomly chose its two endpoints
from T'). Then we measured the average number of intersections per segment as a function

47

120
. "
%L,
+ %
100 D Sy
g i
v * 0’
% BD * ‘
@ w
[+
o P
@ 60 -
2 - ‘0"
E * *
;m_, 40 5
£ %2
- +*%
o &
o~
+*
1} T T T T T T T T 1
1] 100 200 ao0o 400 500 GO0 700 600 ao0
Average Segment Length

Figure 4.10: Average number of intersections per segment as a function of the average segment
length. The configuration contains 125 randomly chosen points in a square [0, 1000] x [0, 1000]
in R% and 500 randomly chosen segments connecting pairs of these points.

of the average length of a segment. To get different average length of the segments, at each
round we chose each segment by taking the longest (or shortest) segment out of [randomly
chosen segments, where [is a small integer varying between 1 and 15. The average number
of intersections is % where I is the total number of intersections in the arrangement A(S).
We performed 5 experiments for each value of [between 1 and 15, each plotted point in
the graph in Figure 4.10 represents such an experiment. The values of [are not shown in
the graph — it was used to generate sets of segments with different average lengths. In
the case of the arrangement A(R) of the polygons of R we have O(mn) endpoints and k
segments, where min(m, n) < k < 6mn. For the presented results we took |S| = 4|T|. As
the results show, the intersection count per segment grows linearly (or close to linearly)
with the average length of a segment.

Therefore, we assume that the expected number of intersection of a segment in the
arrangement A(R) of the polygons of R is proportional to the total length of edges of A(R)
which we denote by 7 4(g). The intuition behind the mixed objective function which we
propose next, is that minimizing m 4z will lead to minimizing I.

Let P, P, ..., P, be the convex subpolygons into which P is decomposed. Let mp, be
the perimeter of P;. Similarly define Q1,@Q2, ..., Qk, and mg;. If 7g;; is the perimeter of R;;
(the Minkowski sum of P; and @Q;) then

TR;; = TP; T TQ,
Summing over all (7,) we get

TAR) = YijTR;; = Xij(Tp, +7q;) = ko(Ximp;) + kp(X;mg;)

48

Let mp denote the perimeter of P and Ap denote the sum of the lengths of the diagonals
in P. Similarly define mg and Ag. Let Dpg be the decomposition of P and). Then

C(DP,Q) = TAR) = kQ(2AP + ’7'l'p) + kp(2AQ + 7TQ).

The function ¢(Dpg) is a cost function of a simultaneous convex decomposition of P and
). Our empirical results showed that this cost function approximates the running time
of the arrangement algorithm. We want to find a decomposition that minimizes this cost
function. Let ¢* = minp, , ¢(Dpq)-

If we do not allow Steiner points, we can modify the dynamic-programming algorithm
by Keil [30] to compute ¢* in O(n’r} + mzré) as follows. We define an auxiliary cost
function é(P,), which is the minimum total length of diagonals in a convex decomposition
of P into at most ¢ convex polygons. Then

e* = minlj(26(P i) + p) + i(26(Q) + Q)]
Since the number of convex subpolygons in any minimal convex decomposition of a simple
polygon is at most twice the number of the reflex vertices in it, the values 7 and j are
at most 2rp and 2rg, respectively, where rp (resp. rq) is the number of reflex vertices in
P (resp. Q). One can compute é(P,¢) by modifying Keil’s algorithm [30] — the modified
algorithm as well as the algorithm for computing ¢* are described in detail in Appendix C.

Since the running time of this procedure is too high to be practical, we did not implement
it nor did we make any serious attempt to improve the running time. We regard this
algorithm as a first step towards developing efficient algorithms for approximating mixed
objective functions.

If we allow Steiner points, then it is an open question whether an optimal decomposi-
tion can be computed in polynomial time. Currently, we do not even have a constant-factor
approximation algorithm. The difficulty arises because unlike the minimum-size decompo-
sition for which an optimal algorithm is known [10], no constant-factor approximation is
known for minimum-length convex decomposition of a simple polygon if Steiner points are
allowed [31].

4.3.3 Improving the AB and KD methods

It seems from most of the tests that in general the AB and KD decomposition algorithms
work better than the other heuristics. We next describe our attempts to improve these
algorithms.

Minimal length angle “bisector” decomposition. In each step we handle one reflex
vertex. For a reflex vertex we look for one or two diagonals that will eliminate it. We
choose the shortest combination among the eliminators we have found. As we can see in
Figure 4.12, the minimal length AB decomposition performs better than the naive AB even
though it generally creates more subpolygons.

49

While the AB decomposition performs very well, in some cases (concave chains, countries
borders) the KD algorithm performs better. We developed the KD-decomposition technique
aiming to minimize the stabbing number of the decomposition of the input polygons (which
in turn, as discussed above, we expect to reduce the overall number I of intersections in the
underlying arrangement A(R) of the polygons of R). This method however often generates
too many convex parts. We tried to combine these two algorithms as follows.

Angle “bisector” and KD decomposition (AB+KD). In this algorithm we extend a
“bisector” from each reflex vertex that both its neighbors are convex vertices. We apply the
KD decomposition algorithm for the remaining non-convex polygons. By this method we
aim to lower the stabbing number without creating redundant convex polygons in the sec-
tions of the polygons that are not bounded by concave chains). We tested these algorithms
on polygons with different number of convex vertices, vertices in concave chains and “tooth
vertices”. We can see from the results in Figure 4.11 that AB+KD performs best when
the numbers of vertices in concave chains and tooth vertices are the same. When there are
more tooth vertices than vertices in concave chains, then the AB decomposition performs
better.

Next, we tried to further decrease the number of convex subpolygons generated by the
decomposition algorithm. Instead of emanating a diagonal from any reflex vertex, we first
tested whether we can eliminate two reflex vertices with one diagonal (let’s call such a
diagonal a 2-reflex eliminator). All the methods listed below generate at most the same
number of subpolygons generated by the AB algorithm but practically the number is likely
to be smaller.

Improved angle “bisector” decomposition. For a reflex vertex, we look for 2-reflex
eliminators. If we cannot find such a diagonal we continue as in the standard AB algorithm.

Reflex angle “bisector” decomposition. In this method we work harder trying to find
2-reflex eliminator diagonals. In each step we go over all reflex vertices trying to find an
eliminator. When there are no more 2-reflex eliminators, we continue with the standard
AB algorithm on the rest of the reflex vertices.

Small side angle “bisector” decomposition. As in the reflex AB decomposition, we
are looking for 2-reflex eliminators. Such an eliminator decomposes the polygon into two
parts, one on each of its side. Among the candidate eliminators we choose the one that has
the minimal number of reflex vertices on one of its sides. Vertices on different sides of the
added diagonal cannot be connected by another diagonal because it will intersect the added
diagonal. By choosing this diagonal we are trying to “block” the minimal number of reflex
vertices from being connected (and eliminated) by another 2-reflex eliminator diagonal.

Experimental results are shown in Figure 4.12. These latter improvements to the AB
decomposition seem to have the largest effect on the union running time, while keeping
the decomposition method very simple to understand and implement. Note that the small
side AB heuristic results in 20% faster union time than the improved AB and reflex AB
decompositions, and 50% faster than the standard angle “bisector” method.

50

160
ab
140 i
i [ab+kd
120 +—

-
(=]
(=]

60

Union time (Sec)
=]
(=]

40 A

20 +—

0 S T . T
30teeth, 15 concave 20 teeth, 20 concave 15 teeth, 30 concave

Figure 4.11: Running times in seconds for computing the Minkowski sum of the chain input

using AB, KD, and AB+KD decompositions

Union time (sec)

ah + kd + ab+kd+ min length improved reflex ah + small side
ab + ah + ah +

Figure 4.12: Average union running times in seconds for star inputs with the improved decom-
position algorithms

Chapter 5

Conclusions

We presented a general scheme for computing the Minkowski sum of polygonal sets. We
concentrated on improving the efficiency of this scheme by attacking its two main steps:
polygon decomposition and computing the union of polygons.

We implemented three union algorithms which overcome all possible degeneracies. Using
exact number types and special handling for geometric degeneracies we obtained a robust
and exact implementation that could handle all kinds of polygonal inputs. Qur program
finds the subdivision of the plane that represents the Minkowski sum of two given polygonal
sets and reports the boundary cases where edges or vertices are “semi-free”. We compared
the efficiency of the algorithms on several inputs. The experimental results imply that
if the Minkowski sum is complex compared to the input polygons the arrangement union
algorithm gives good results, but if the output is likely to be simpler, the incremental union
algorithm is very efficient. If we cannot predict the complexity of a Minkowski sum, the
divide-and-conquer algorithm is a good choice, since in the experiments it mostly results
in running times that were between the running times of the other two algorithms and in
many cases closer to the faster one.

Furthermore, we measured the effect of the decomposition method on the efficiency of
the overall process. We implemented over a dozen of decomposition algorithms, among them
triangulations, optimal decompositions for different criteria, approximations and heuristics.
We examined several criteria that affect the running time of the Minkowski-sum algorithm.
The most effective optimization is minimizing the number of convex subpolygons. Thus,
triangulations which are widely used in the theoretical literature are not practical for the
Minkowski-sum algorithms. We further found that minimizing the number of subpolygons
is not always sufficient. Since we deal with two polygonal sets that are participating in the
algorithm we found that it is smarter to decompose the polygons simultaneously minimizing
a cost function which takes into account the decomposition of both input set. Optimal
decompositions for this function and also simpler cost functions like the overall number
of convex subpolygons were practically too slow. In some cases the decomposition step of
the Minkowski algorithm took more time than the union step. Therefore, we developed

51

52

some heuristics that approximate very well a cost function and run much faster than their
exact counterparts. Allowing Steiner points, the angle “bisector” decomposition gives a
2-approximation for the minimal number of convex subpolygons. The AB decomposition
with simple practical modifications (small-side AB decomposition) is a decomposition that
is easy to implement, very fast to execute and gives excellent results in the Minkowski-sum
algorithm.

We propose several direction for further research:

1. Use the presented scheme and the practical improvement that we proposed with real-
life applications such as motion planning and GIS and examine the effect of different
decompositions for those special types of input data.

2. Use the flexibility of CGAL for applying the Minkowski sum algorithms to input sets
defined by non-linear curves, for (an easy) example sets whose boundary is composed
of line segments and circular arcs.

3. Further improve the AB decomposition algorithms to give better theoretical approx-
imation and better running times.

4. The Minkowski sums of modest-size input sets can be huge. For example, the Minkowski
sum of two polygons with about 100 vertices each can be a polygonal region with
millions of vertices. We are currently looking for algorithms that approximate the
Minkowski sum with fewer edges and vertices. We are specifically looking for conser-
vative approximations (that contain the exact Minkwoski sum) as this is desirable in
certain applications such as robot motion planning and assembly planning.

5. We tested the efficiency of the Minkowski-sum algorithm with different convex de-
composition methods, but the algorithm will still give a correct answer if we will have
a covering of the input polygons by convex polygons. Can one further improve the
efficiency of the Minkowski sum program using coverings instead of decompositions.

6. We anticipate that our observations regarding the three union algorithms will be
helpful for solving other, similar problems, and in particular for computing the mini-
mization diagram [43] induced by lower envelopes in three-dimensional space. It is a
challenging task to cast our union algorithms in a general software framework from
which the solution for specific problems could be derived with little effort.

Appendix A

Handling Degeneracies in the
Union Algorithms

In Chapter 3 we described the union algorithms that we use to construct the Minkowski sum
of two polygonal sets out of a set R of convex polygons which are the subsums of pairs of
convex subpolygons of the input sets. The result of each union algorithm is a decomposition
of the plane into regions that are inside the union and regions that are outside the union.
In addition we would like to compute the boundary of the union. This boundary does not
always consist of just the edges of the decomposition that separate between inside regions
and outside regions. In some cases we can have a boundary edge or a boundary vertex
that is surrounded by regions that are contained entirely in the union. These features are
not always connected to the ‘regular’ boundary. In robot motion planning, when the union
represents the configuration space obstacle of a polygonal robot moving among polygonal
obstacles, the special features represent a tight passage or a singular placement for the robot
among the obstacles; see for example Figure 1.7 and Figure 3.1. In this setting, a point on
the boundary of the union is called a semi-free location. In this appendix we will detail the
classification of the special features for the arrangement and incremental union algorithms
that we introduced in Chapter 3. We use the notation set up in Chapter 3.

We believe that the technical details that we describe here can be useful in solving de-
generate cases in other problems such as computing the minimization diagram representing
the lower envelope of surfaces in three dimensions.

A.1 Handling Degeneracies in the Arrangement Union Al-
gorithm

Recall that in the arrangement algorithm we are constructing the arrangement A(R) of
the polygons of R. The union of the polygons of R, Union(R), can be represented by a

53

54

Figure A.1: Example of the inside count calculation: the arrangement of R = {ry, 7y, r3} is
drawn in the figure. BC(e3) = 2 because it is on the directed boundary of 75 and r3. BC(e;)
= 0 because it doesn’t lie on a directed boundary of a polygon of R. The inside count of f; is 1
since f is contained in r1. Therefore, when we traverse from f; to fs through the halfedges e;
and ey we get: IC(fz) = IC(f1) — BC(e1) + BC(ez) =1 —0+2 = 3. The face f; is indeed
contained in the three polygons of R.

subset of the features of A(R). Therefore, we would like to compute for each feature in the
underlying arrangement (face, edge or vertex) whether it is inside the union or not. To do
this we keep information in the halfedges and apply an update operation after each insertion
of a polygon into the arrangement. After inserting all the polygons of R, we traverse the
arrangement once and mark the features that are in the union.

We keep for each halfedge e an integer value boundary count, denoted BC(e), which
counts for each (directed) halfedge in the underlying arrangement on how many bound-
aries of polygons in R it lies. For a polygon r € R with vertices vy, v2,..., Vs, given in
counterclockwise order, r’s directed boundary is the following sequence of directed edges:
V1U%, U308, - . . , Uk, 10k, Uk, U1 (these directed edges are not yet halfedges of the arrange-
ment). We consider a halfedge e of the arrangement to be on the boundary of r if its
direction is the same as the direction of the directed boundary of r. Each halfedge e is
initialized with BC(e) := 0. After a new polygon r is inserted into the arrangement we
increment the boundary count for all the halfedges on its boundary.

In the final traversal phase we visit the faces of A(R) in a BFS order (a face is reached
through one of its neighbors). We keep for each face f its inside count, denoted IC(f),
which is the number of polygons of R in which it lies. We start from the unbounded face
whose instde count is zero.

55

If the faces fi and f, are neighbors sharing an edge which is represented by two halfedges
e1 and ey (twin(e;) = ez) then fy lies in the same set of polygons that f; lies minus the
polygons that we leave by moving from e; to es plus the polygons that we enter by crossing
this edge. We get the following crossing rule:

Lemma A.1.1 IC(f;) = IC(f1) — BC(e1) + BC(e3).

See Figure A.1 for an example.

A face f of the arrangement is inside Union(R) if and only if IC(f) > 0 (it lies in at least
one of the polygons of R). By applying the equation of Lemma A.1.1 during the traversal
phase we can compute the inside count for all the faces of A(R).

Next, we would like to know which edges are on the boundary of the union. Trivially we
would check for each edge e its two incident faces. If one of those faces is inside the union
and the other is not then we would mark e to be on the boundary of the union. But this is
insufficient since, as mentioned earlier, there are edges that are on the boundary of one or
more polygons of R but are not contained in any of these polygons. Such an edge is on the
boundary of the union but the faces on its sides are both inside the union (in some cases
such an edge might not be connected to the rest of the boundary of the union). We refer
to such an edge as a semi-free edge.

Lemma A.1.2 Let e be an edge in A(R) represented by the halfedge e, then e is semi-free
if and only if [IC(face(e1)) — BC(e1)] = 0.

Lemma A.1.2 says that if a halfedge e; is on the boundary of BC(e;) polygons in R that
contain face(e;) then e; is on the boundary of Union(R) if and only if the inside count of
face(eq) is the same as BC(e1). The halfedge e; is contained in (or on the boundary of) all
the polygons that contain face(e;). Also, all the polygons of R that e; is on their directed
boundary surely contain face(e;). Therefore for every halfedge we get IC(face(e1)) >
BC(e1). If IC(face(e1)) > BC(e1) then we have a polygon r € R that contains face(e;)
but does not have e; on its boundary. In this case e; is contained in the interior of r. When
there is no such polygon, we get IC(face(e;)) = BC(e1) and then e; is on the boundary of
Union(R). This observation works for the regular cases as well as the “tight passage” cases.

Finally, we should check the vertices. A vertex is on the boundary of Union(R) if it is
a source or a target vertex of an edge that is on the boundary of Union(R), or it can be
disconnected from the rest of the boundary as explained above. We should know for each
pair (v, f) of a vertex v and an incident face f on how many boundaries of polygons of R
that contain f, v lies. Let’s call this number the slice count of (v, f). Since each vertex
can have many incident faces, the most appropriate place to keep this information is the
halfedge on the boundary of f that is targeted at v. Note that there is exactly one halfedge
e(v,7) for which face(e(, 7)) = f and target(e(, s)) = v. We denote the slice count of the
pair (v, f) by SC(e(y,7)). Therefore, we get the following lemma:

56

Lemma A.1.3 v is semi-free if and only if there is a face f such that [IC(face(e(y,p))) —
SC(e(v,f))] =0.

We maintain the slice count during the insertion of polygons of R into the map: If e;
and ey are adjacent halfedges on the boundary of a polygon in R, sharing a vertex v, we
increase SC(e) for each halfedge e that lies clockwise between e; and e; around v, and such
that target(e) = v.

The following schema summarizes the details given in this section. Beside the regular
pointers and data, the features of the arrangement contain the following information:

feature | property | type description

face IC integer | inside count
inside Boolean | is inside Union(R)

halfedge | BC integer | boundary count
SC integer | slice count

boundary | Boolean | is on the boundary of Union(R)

vertex boundary | Boolean | is on the boundary of Union(R)

Algorithm ARRANGEMENTUNION(R)

Input: A set R = {ry,rs,...} of convex polygons

Output: The Arrangement A(R) in which the faces of the union have their inside property
set to true and the edges and vertices on its boundary have their boundary property set to
true.

1. for j <+ 1 to size(R) do

2. A.nsert(rj, BE) // insert the edges of r; into the arrangement
BE is an ordered list of the halfedges of A on the directed boundary of r;. BE; is the
ith item of BE.

3. for i< 1 to size(BE) do

a. BC(BE;) + BC(BE;) + 1

5. foreach halfedge h around the vertex target(BE;) do

6. if h is clockwise between BE; and BE;;; then SC(h) <~ SC(h)+1
7. end for

8. end for

9. Traverse A in BFS order and calculate IC(f) for each face f using BC(e) of the
haldeges

10. foreach face f in A do

57

11. if IC(f) > 0 then inside(f) < true

12. foreach halfedge e in A do

13. if IC(face(e)) = BC(e) then boundary(e) < true

14. foreach halfedge e in A do

15. if IC(face(e)) = SC(target(e)) then boundary(target(e)) < true

16. return A

Complexity Analysis

In line 2 we insert a polygon into the arrangement. In lines 3-7 we traverse the arrange-
ment features of the inserted polygons, namely the halfedges of its directed boundary and
the edges that it intersects (lines 5-6). The time we spend on the additional traversal is
proportional to the insertion time. If the set R is randomly ordered then we get a total
arrangement construction time of O(I + klogk) (see Appendix B). The traversal in BFS
order in line 9 can be carried out in O(I + k) time using the adjacency pointers of the
arrangement. In the next lines (10-15) we visit each face once and each halfedge twice. The
total time complexity of the algorithm is therefore O(I 4 klogk). We use O(I + k) space
for storing the arrangement.

A.2 Handling Degeneracies in the Incremental Union Algo-
rithm

In the incremental algorithm we also insert one polygon of R at a time. However, the
coloring procedure is executed after each insertion of a polygon into the map. We keep
for each face f a boolean value inside(f) that is set if f C Union(R). For each halfedge
or vertex we keep a boolean value boundary that is set if they are on the boundary of
Union(R). For each halfedge e we have an additional boolean value mark(e) that is set if e
is on the directed boundary of a polygon of R. After inserting a polygon r into the map?,
we set mark(e) for all the edges that are on r’s directed boundary.

Let P be an empty planar map. For each polygon r; of R we perform two steps: (i)
insert r; into the planar map P;_; obtaining the map P/, and (ii) remove map features of
P! that do not contribute to the union boundary. The result is the planar map P;.

To find all the redundant features of P; it suffices to check only the features of P/ in (or
on the boundary of) »;.

!The implementation of the incremental union algorithm uses an extension of the planar map class that
supports intersections.

58

We denote the set of halfedges of P; on the directed boundary of r; by BE(r;). For
every halfedge e € BE(r;) we set mark(e). By using the incidence pointers of the map we
can traverse all the faces, halfedges and vertices that are inside r;. We denote them by
Faces(r;), Halfedges(r;) and Vertices(r;) accordingly. First, we set inside(f) for each face
f in Faces(r;). We can also remove the features Halfedges(r;) and Vertices(r;) since they
are contained inside a polygon of the union and do not contribute to the union’s boundary.
Therefore, it remains to count carefully on BE(r;).

We need to distinguish edges and vertices of the boundary of »; that contribute to the
union boundary (in this stage the union refers to the union of the first ¢ polygons of R).
Let e be an edge of P; on the boundary of r;. We denote the directed halfedge that has the
interior of r; on its left by e; and its twin by e;. Thus e; € BE(r;). The following lemma
is trivial:

Lemma A.2.1 If inside(face(e1)) # inside(face(ez)) then e is on the boundary.

In such a case we do not remove e from the map and we set boundary(e) because it is on
the boundary of the union of the polygons inserted so far.

In the rest of the cases an edge e has faces that are inside the union on both its sides. If
it has been first inserted to the map when we inserted r; then it can be removed since both
its sides were contained in the union before inserting r;. If e was part of P;_; then it is
possible that e is on the boundary of two (or more) polygons of R but it is not contained in
the union. We can identify it by checking whether the halfedges e; and ey on e have both
mark(e;) and mark(ez) set. Therefore,

Lemma A.2.2 In the map P}, if inside(face(e1)) = inside(face(ez)) and mark(ez) is
set then e 1is on the boundary.

Finally, we want to identify the vertices on the boundary. Vertices that are endpoints
of edges of the boundary of the union are kept with their incident edges. The other vertices
that we will keep are those that were not first inserted when we insert r;. A vertex v was
not first inserted with r; if its degree in P; is greater than two. A boundary vertex that is
not connected to other parts of the boundary (see an example in Figure 3.1) will have its
degree in P! greater than two and none of its incident halfedges on the boundary (i.e. the
halfedges do not satisfy the terms of Lemmas A.2.1 and A.2.2)%

The whole process can be carried out by traversing once all the features of the map
P! that are inside or on the boundary of r;. After marking the faces and removing the
redundant halfedges we get the planar map P; which will be used by the next iteration of
the algorithm.

2Qur planar map representation cannot handle vertices that are not connected to halfedges. Therefore,
if a vertex is found to be on the boundary but none of its incident halfedges are on the boundary then we
keep a halfedge from BE(r;) with it. The halfedge that we keep will not be part of the resulting union.

59

The following schema summarizes the details of this section. Beside the regular pointers
and data, the features of the planar map contain the following information:

feature | property | type description

face inside Boolean | is inside Union(R)

halfedge | mark Boolean | is part of a directed boundary of a polygon
boundary | Boolean | is on the boundary of a partial union

vertex boundary | Boolean | is on the boundary of a partial union

Algorithm INCREMENTALUNION(R)

Input: A set R = {ry,rs,...} of convex polygons
Output: The planar map P representing Union(R).

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

P + empty map
for j < 1 to size(R) do

P.insert(rj, BE) // insert the edges of r; into the arrangement
BE is an ordered list of the halfedges of A on the directed boundary of r;. BE; is the
ith item of BE.

for i < 1 to size(BE) do
mark(BE;) < true
for i < 1 to size(BE) do
if degree(target(BE;)) > 2 then boundary(target(BE;)) < true
foreach halfedge e of P inside r; do
P.remove(e)
let f be the face of P inside r;
inside(f) < true
for i < 1 to size(BE) do
let DoRemove < true
if inside(face(BE;)) <> inside(face(twin(BE;))) then
DoRemove + false
if mark(twin(BE;)) then

DoRemove + false

60

18. if boundary(target(BE;)) and degree(target(BE;)) = 1 then
19. DoRemove + false
20. if DoRemove then P .remove(BE;) else boundary(BE;) <+ true

21. end for
22. end for

23. return P

Complexity Analysis

In each step we insert a polygon r; into the map (line 3) and traverse the halfedges that
we added additional O(1) times (lines 4-7 and 12-21). In lines 8-9 we remove the edges
that are inside r;. Since every edge is removed only once, we can charge each removal of an
edge to an edge of the arrangement A(R) and therefore we have O(I + k) removals. Using
Mulmuley’s dynamic search structure [39] we can give an upper bound of O(k?log? k) for
the expected time of the construction. As mentioned in Chapter 3 this bound is worse than
that of the arrangement union algorithm but in practice the incremental union algorithm
often performs much better than the arrangement algorithm. We use O(J + k) space for
the planar map.

Appendix B

Proof of Theorem 3.2.1:
Construction Time of
Arrangements of Convex Polygons

Given a set R of convex polygons we wish to construct the arrangement A(R). To do
this efficiently we construct the trapezoidal decomposition H(R) induced by the edges of
R by a randomized incremental algorithm. H(R) is a refinement of A(R) having the same
asymptotic complexity. The running time of the algorithm presented in Section 3.2 is
O(I + klogk) where k is the number of edges of the polygons in R and I is the number of
intersections among the edges of the polygons of R.

We follow the notation of Mulmuley [39]. Each polygon of R can be decomposed into two
z-monotone chains. Let N = {sy, s3,..., .} be the set of n z-monotone chains composing
the polygons of R, with a total of @ segments. Let & be the number of intersections between
pairs of chains from N. We will randomly permute N and insert one chain at a time. Assume
51, 82,...,8n is a random permutation. We will construct H(N) incrementally storing the
result and the intermediate decomposition in a doubly connected edge list (DCEL).

Let N* = {s1,53,...,s;} and H(N?) be the trapezoidal decomposition of N*. We
will add s;;1 to the decomposition to get H(N?t!). Let’s assume that we are given the
trapezoid in H(N?) that contains the leftmost endpoint of s;,;. We can insert the chain
s;4+1 by visiting all the trapezoids of H(N’) that intersect s;11. We can traverse the faces
of H(N?) that intersect s;1; by the adjacency pointers of the DCEL. Traversing a face f
along s;41 takes O(T(f) + m(sit+1, f)) time where T'(f) is the complexity of the face f in
H(N?%) and m(s;;1, f)) is the number of segments of the chain s;;; that are inside f. We
need to split every such traversed face by vertical lines from intersection points of s;; with
the upper and lower sides of f and from endpoints of segments of s;,; inside f. The overall
traversal and splitting procedure takes O(|s;11] + >_;T(f)) for all the faces f € H(NY)

such that f N s;; # 0. To get H(N*T!) we should contract the vertical attachments in

61

62

H(N?) that are intersected by s;;;. Contracting a vertical attachment merges the faces
adjacent to it into one face. The vertical attachment that was contracted now ends at
its intersection with s;1;. The merging takes O(1) time for each contracted attachment.
Hence, the overall insertion step will take O(|s;41| + -, T'(f)) for all the faces f € H(NY)
such that fNs;11 # 0.

We also need to locate the face of H(N?) in which the leftmost endpoint of s;.; lies.
We maintain a conflict list L(f) for every face of H(N*®). L(f) will contain all the leftmost
endpoints of the chains of N \ N*. We denote the number of points in L(f) by I(f). With
these lists we can determine in which face an endpoint of a chain lies in O(1). To maintain
the conflict lists we have to pay O(I(f)) time for every face that we change during the
insertion. That gives a total insertion time for s;41 of O(|sit1] + >-/[T(f) + I(f)]) for all
the faces f € H(N?) such that fNs;y1 # 0.

The cost of inserting the (¢ +1)st chain can be rewritten as O(|s;11|+ 32 [T(g) + {(9)])
where g ranges over all trapezoids in H(N""'l) adjacent to s;;;. Each chain in N*t! is
equally likely to be involved in the (i + 1)st insertion. Hence, this conditional expected cost

Ciy1= Z {|31+1|+Z

GENH’I

is proportional to

where g ranges over all trapezoids in H(N**!) adjacent to s;;;. Each trapezoid is adjacent
to at most four chains in N**1. We denote the number of segments in the chains of N**!
by m;1+1 and the number of intersections between them by x;1;. We get

< e + YT + Yl

Cit1
where g ranges over all trapezoids in H(N*t1).

ZT O(|H(N**1)|) and therefore ZT(g) =O(Kit1 + Tit1) -

g
where |H(N**t1!)| is the complexity of H(Nit1).
The conflict lists in H(N**!) contain all the leftmost endpoints that were not yet in-

serted. Therefore:
Z llg)=n—1.
g

Thus we get
Kiy1 + N4 +n—1
i+1

C:L'_|_1:O() .

Let 0 < j < n be a fixed integer. For any fixed intersection v between chains of N let
I, be a 0 — 1 random variable such that I, = 1 if and only if v occurs in A(N7Y). Clearly

63

k; = . I, where v ranges over all intersections among chains of N. v occurs in A(N7?) if and
only if both chains that cause this intersection are in N7. This happens with probability
O(j?/n?). The expected value of I, is O(j%/n?). Therefore, by linearity of the expectation
we get k; = O(kj%/n?).

We also define a random variable I; to count the number of segments that the ith chain
contributes to NJ. I, = |s;| when s; € N7 and 0 otherwise. s; is in N7 with probability
j/m and therefore the expected value of I; is |s;|j/n. Clearly m; = > I;. By linearity of
expectation we get 1; = O(7j/n).

Therefore the expected value of C;y is (we set j : =i+ 1):

njz/nz—l—ﬁj/n—l—n—j—l—l

O(;

)

The expected cost of the whole algorithm is then

] 2 — . s 1 ETL ﬁTL TL1 n TL1
)P RAGRRC/LEREE RRSENTEA o I oI ok L o I o g

i=1 J

=O0(k+7n+nlogn)

Using this algorithm we can incrementally construct the arrangement of the polygons of
R by randomly permuting the polygons in R and then inserting them as pairs of monotone
chains. After each insertion we can update the additional data that is used for the calcula-
tion of the union of R (see Appendix A). Let k& be the number of edges of polygons of R
and I be the number of intersections among them. Clearly the number of polygons in R is

O(k) then the overall time complexity will be O(I + klogk).

64

Appendix C

Polygons Decomposition
Minimizing the Mixed Objective
Function

In Section 4.3.2 we developed a mixed objective function for the decomposition of the
two input polygons to the Minkowski sum computation. In this Appendix we describe an
algorithm based on the optimal convex decomposition of Keil [30] for decomposing the input
polygons simultaneously minimizing the mixed objective function®
Steiner points.

. Here we do not allow

The running time of the arrangement union algorithm is O(I 4 klogk), where k is the
number of edges of the polygons in R and I is the overall number of intersections between
(edges of) polygons in R (see Section 3.2). The value of k depends on the complexity of
the convex decompositions of P and). Hence, we want to keep this complexity small.
Furthermore, we want to reduce the value of I. Intuitively, we want each edge of R to
intersect as few polygons of R as possible. If we consider the standard rigid-motion invariant
measure g on lines in the plane [41] and use L(C) to denote the set of lines intersecting a
set C, then for any polygon R;j, u(L(R;;)) is the perimeter of R;;. This suggests that we
want to minimize the total lengths of the diagonals in the convex decompositions of P and
). But we want to minimize the two criteria simultaneously, and let the decomposition of
one polygon govern the decomposition of the other.

First we recall the notation of Section 4.3.2. Given two simple polygons P and @
with m and n vertices respectively. Let Dpg be a decomposition of P and @ into convex
subpolygons. Let P;, Ps, ..., P;, be the convex subpolygons into which P is decomposed.
Let wp, be the perimeter of P;. Let mp denote the perimeter of P and Ap denote the sum of

!The algorithm described here was proposed to us by Pankaj K. Agarwal.

65

66

the lengths of the diagonals in P. Similarly define Q1,Q2, ..., Qky, mq;, 7@ and Ag. Then
C(DP,Q) = kQ(2AP + ’7'l'p) + kp(2AQ + 7TQ).

The function ¢(Dpg) is a cost function of a simultaneous convex decomposition of P and
Q. Let ¢* = minp,, ¢(Dp,g). We present an algorithm that finds a decomposition that
meets this minimum.

We define an auxiliary cost function é(P,a), which is the minimum total length of
diagonals in a convex decomposition of P into at most a convex polygons. Then

¢t = rzlibn[b(%(P, a) + 7p) + a(2¢(Q, b) + mg)].
Since the number of convex subpolygons in any minimal convex decomposition of a simple
polygon is at most twice the number of the reflex vertices in it, the values a and b are at
most 2rp and 2rqg respectively, where rp (resp. rg) is the number of reflex vertices in P
(resp. Q). Assuming that we know the decompositions of P and @ that achieve é¢(P, a) and
¢(Q, b), respectively, for every a and b, we can compute ¢* and find the decomposition in
O(rprq) time.

The single issue that we need to resolve is how to compute é(P,a). In the following
section we describe a dynamic-programing algorithm to compute the minimum length de-
composition of a polygon (based on [30]) and in Section C.2 we describe how to modify this
algorithm for computing é(P, a).

C.1 Minimum Length Decomposition

Let vy, v, ..., Um be the vertices of P given in clockwise order. We call a pair (¢, 7) valid if
v; is visible from v; and at least one of the two vertices is a reflex vertex. If two vertices
are visible from each other and they are not a valid pair then they must both be convex. A
diagonal that connects two convex vertices is redundant in any optimal convex decomposi-
tion because it can be removed and the two convex subpolygons on its sides can be merged
into a convex polygon. Therefore, for the construction of an optimal decomposition, we can
consider only the diagonals that connect two vertices that are a valid pair. For a valid pair
(4,7), let P;; be the polygonal chain from vertex v; to vj. Py, = P is also a valid chain. Let
d(¢, 7) be the length of the diagonal (%, j).

Let f(Z,7) denote the cost of the minimum length decomposition of P;j; f(¢,7) only
counts the length of diagonals added. For a convex decomposition of F;;, let C;; be the
base convex polygon that contains the edge (¢, 7). Let (¢,k) and (I,) be the first and the
last edges of Cj;; see Figure C.1. The pair (¢, k) should be a valid pair unless £ = 7 + 1.
Similarly, the pair (I, 7) should be a valid pair unless [= j — 1.

We define a function F(¢,j; k,1) as follows: F(¢,j; k,[) is the cost of a minimum weight
decomposition under the constraints that (¢, k) is the first edge of C;; and (I, j) is the last

67

Uy

Figure C.1: The base subpolygon C;; of P;; with (%, k) as its first edge and (I, j) as its last
edge

edge of C;;. If k # i+ 1, then (%, k) has to be a valid pair, and a similar condition holds for
the pair (I,).

If the angle (7,1, k) or (I, 7,%) is greater than 180°, we set F'(7, j; k,) to infinity, as it is
not a valid convex decomposition. Then

£(i,5) = min F (i, j; k, 1)

We need to compute F(3, j; k,) for at most m?r?% pairs because if i is reflex (convex), then
k is any (resp. reflex) vertex. The same condition holds for [and j.

We can compute the values of F' using the following recursive formula:

where the minimum is taken over all vertices g such that (g,!) is a valid pair (or g =1—1)
and the angle (g,!,7) < 180°. The recurrence uses a minimum decomposition of P;; along
with a minimum decomposition of P; for which the first edge of Cj is (¢, k) and the last
edge is (g,!). g is chosen only if the polygon C;; can merge with the triangle Tj;;. Since
both Tj;; and Cj; are convex it is sufficient to verify that the angles (g,, j), (5,4, k) < 180°.
See Figure C.2 for an illustration.

To complete the algorithm we first need to find all valid pairs and then compute
F(i,j; k1) for them. The result of the algorithm will be f(1,m). We will compute
F(i,7; k,1) in ascending order of the difference j — ¢ using Formula C.1.

Theorem C.1.1 The minimum length convex decomposition of P can be computed in
O(m?r%) time.

68

Figure C.2: The recurrence: we compute F(¢,j; k,!) using a minimum decomposition of P;
along with a minimum decomposition of P; (shaded) for which the first edge of Cj is (4, k)
and the last edge is (g,!). The triangle Tj;; can merge with the base subpolygon Cj;.

Proof: For each pair (%, j) we can compute whether v; is visible from v; in O(m) time. A
potentially valid pair is a pair (¢, 7) for which at least one of v; or v; is reflex. Computing
visibility for all potentially valid pairs will therefore take O(m?2rp). Sorting all valid pairs in
ascending order of the difference between the indices will take an additional O(mrp logm)
time.

For a fixed quadruple i, j, k, and [, let g(¢, 7, k,1) denote the index of g that minimizes
the recurrence C.1. For a fixed triple ¢,k, and I, g(3, j, k, [) increases monotonically with j
because as we increase j, the angle (j,,%) can only decrease and more pairs (g,!) become
relevant; see Figure C.3. When we use the recurrence C.1 we should only compute the
minimum over all relevant g’s that are greater than g(z, j/, k,[) where j’ is the largest index
for which (¢,7') and (I,) are valid pairs and j' < j. Thus, the amortized time spent in
computing each F(i,7;k,1) is O(1). The overall running time of the algorithm is therefore
O(m?r%). O

C.2 Constrained Minimum Length Decomposition

We slightly change the above algorithm to compute é(P,a). We define F(s,¢t,7;k,1) to
be the minimum length convex decomposition of P;; into at most s convex subpolygons,
under the constraint that (2, k) is the first edge of the base polygon C;; and that (I,) is
the last edge of C;;. If the angle (j,¢,k) or (I, 7,4) is greater than 180° or if P;; cannot

69

Figure C.3: When j increases the angle (j,1,¢) decreases and more valid pairs (g,!) become
relevant

be decomposed into at most s convex subpolygons, we set the cost to infinity. We define
f(s,1,) to be the cost of any convex decomposition of P;; with at most s subpolygons.

The recurrence is now given by:
F(s,t,7;k,0)=4d(l,7)+ m<in{f(u, [,j)+ minF(s —u,1,l;k,9)}, (C.2)
u<s g9

where the minimum is taken over all vertices g such that (g,!) is a valid pair (or g =1—1)
and the angle (g,1,7) < 180°.

Theorem C.2.1 The minimum length convexr decomposition of P into at most s subpoly-
gons (for every 1 < s < 2rp,) can be computed in O(m?r}y) time.

Proof: We use the arguments from the proof of Theorem C.1.1. We now compute O(m?r3)
entries. The monotonicity condition described above still holds, i.e., for a fixed quadruple
s, 1, k, 1, the value of g increases monotonically with j. So each entry can be computed in
O(rp) amortized time since s < 2rp, giving a total of O(m?r}) time. O

70

Theorem C.2.2 A decomposition Dpg of the polygons P and () that minimizes the mized
function ¢(Dpq) can be computed in time O(m*rp 4 n’rg).

Proof: Using the above algorithm we can compute é(P,a) = f(a,1,m) for P for every
a < 2rp in O(m?r}y) time and é(Q,b) = f(b,1,n) for Q for every b < 2rg in O(nzré). We
need an additional O(rprg) time to compute ¢*, which is subsumed by the other factors of
the running time. |

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[10]

[11]

The CGAL User Manual, Version 2.0, 1999. http://www.cs.ruu.nl/CGAL.

P. K. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 49-119. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 1999.

H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Naher, S. Schirra, and C. Uhrig.
Approximate motion planning and the complexity of the boundary of the union of
simple geometric figures. Algorithmica, 8:391-406, 1992.

B. Aronov and S. Fortune. Average-case ray shooting and minimum weight triangula-
tions. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 203-211, 1997.

M. Austern. Generic Programming and the STL — Using and Extending the C++
Standard Template Library. Addison-Wesley, 1999.

A. H. Barrera. Computing the Minkowski sum of monotone polygons. In Abstracts
12th FEuropean Workshop Comput. Geom., pages 113-116, Miinster, Germany, 1996.

A. H. Barrera. Finding an o(n? logn) algorithm is sometimes hard. In Proc. 8th Canad.
Conf. Comput. Geom., pages 289-294. Carleton University Press, Ottawa, Canada,
1996.

M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 22, pages 413-428. CRC Press LLC,
Boca Raton, FL, 1997.

B. Chazelle. The polygon containment problem. In F. P. Preparata, editor, Compu-
tational Geometry, volume 1 of Adv. Comput. Res., pages 1-33. JAI Press, London,
England, 1983.

B. Chagzelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, edi-
tor, Computational Geometry, pages 63—133. North-Holland, Amsterdam, Netherlands,
1985.

M. de Berg and A. van der Stappen. On the fatness of minkowski sums. Technical
Report UU-CS-1999-39, Dept. of Computer Science, Utrecht University, 1999.

71

72

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[13] G. Elber and M.-S. Kim, editors. Special Issue of Computer Aided Design: Offsets,
Sweeps and Minkowski Sums, volume 31. 1999.

[14] D. Eppstein. Approximating the minimum weight Steiner triangulation. Discrete
Comput. Geom., 11:163-191, 1994.

[15] E. Ezra and E. Flato. Generating random polygons. In preparation, 2000.

[16] A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On the design of
CGAL, the Computational Geometry Algorithms Library. Technical Report MPI-1-98-
1-007, MPI Inform., 1998. To appear in Software— Practice and Experience.

[17] E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and im-
plementation of planar maps in CGAL. In J. Vitter and C. Zaroliagis, edi-
tors, Proceedings of the 3rd Workshop on Algorithm Engineering, volume 1148 of
Lecture Notes Comput. Sci., pages 154-168. Springer-Verlag, 1999. Full version:
http://www.math.tau.ac.il/~flato/WaeHtml/index.htm.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[19] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 21, pages 389-412. CRC Press LLC,
Boca Raton, FL, 1997.

[20] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for assembly
planning: The motion space approach. Algorithmica, 26:577-601, 2000.

21] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the motion of a
g g
polygon in a polygonal environment. Discrete Comput. Geom., 16:121-134, 1996.

[22] D. Halperin and R. H. Wilson. Assembly partitioning along simple paths: the case of
multiple translations. Advanced Robotics, 11:127-145, 1997.

[23] I. Hanniel. The design and implementation of planar arrangements of curves in CGAL.
Master’s thesis, Dept. Comput. Sci., Tel-Aviv Univ., 2000. Forthcoming.

[24] S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity
of a single face of a Minkowski sum. In Proc. 7th Canad. Conf. Comput. Geom., pages
91-96, 1995.

[25] E. Hartquist, J. Menon, K. Suresh, H. Voelcker, and J. Zagajac. A computing strategy
for applications involving offsets, sweeps, and Minkowski operations. Comput. Aided
Design, 31(4):175-183, 1999. Special Issue on Offsets, Sweeps and Minkowski Sums.

73

[26] G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing the
maximum degree. In Proc. 8rd Scand. Workshop Algorithm Theory, volume 621 of
Lecture Notes Comput. Sci., pages 258-271. Springer-Verlag, 1992.

[27] A. Kaul, M. A. O’Connor, and V. Srinivasan. Computing Minkowski sums of regular
polygons. In Proc. 3rd Canad. Conf. Comput. Geom., pages 74-77, 1991.

[28] L. E. Kavraki. Computation of configuration-space obstacles using the Fast Fourier
Transform. IEEFE Trans. Robot. Autom., 11:408-413, 1995.

[29] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete Comput.
Geom., 1:59-71, 1986.

[30] J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput.,
14:799-817, 1985.

[31] J. M. Keil and J.-R. Sack. Minimum decompositions of polygonal objects. In G. T. Tou-
ssaint, editor, Computational Geometry, pages 197-216. North-Holland, Amsterdam,
Netherlands, 1985.

[32] J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple
polygons. In Proc. 10th Canad. Conf. Comput. Geom., 1998.

[33] M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amster-
dam, 1999.

[34] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

[35] D. Leven and M. Sharir. Planning a purely translational motion for a convex object in
two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom.,
2:9-31, 1987.

[36] K. Mehlhorn, S. Naher, C. Uhrig, and M. Seel. The LEDA User Manual, Version 4.0.
Max-Planck-Insitut fiir Informatik, 66123 Saarbriicken, Germany, 1999.

[37] K. Melhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999.

[38] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253—
280, 1990.

[39] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

[40] R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence
of translations. Discrete Comput. Geom., 3:123-136, 1988.

74

[41] L. Santal6. Integral Probability and Geometric Probability, volume 1 of Encyclopedia
of Mathematics and its Applications. Addison-Wesley, 1979.

[42] S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 597-632. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 1999.

[43] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York, 1995.

[44] A. Stepanov and M. Lee. The standard template library, Oct. 1995.
http://www.cs.rpi.edu/ musser/doc.ps.

[45] M. van Kreveld. Twelve computational geometry problems from cartographic general-

ization. Manuscript. Presented at the Dagstuhl meeting on Computational Geometry.
March, 1999.

[46] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 35, pages 6563-668. CRC
Press LLC, Boca Raton, FL, 1997.

