
TEL-AVIV UNIVERSITYRAYMOND AND BEVERLY SACKLERFACULTY OF EXACT SCIENCESSCHOOL OF MATHEMATICAL SCIENCESRobust and E�cient Construction ofPlanar Minkowski SumsThesis submitted in partial ful�llment of the requirements for the M.Sc. degree inthe Department of Computer Science, Tel-Aviv UniversitybyEyal FlatoThe research work for this thesis has been carried out at Tel-Aviv Universityunder the supervision of Prof. Dan HalperinAugust 2000

2 I deeply thank Prof. Dan Halperin for supervising this research and contributing manyuseful ideas.I thanks Pankaj K. Agarwal for discussions and valuable comments on this work. Ialso wish to thank Iddo Hanniel, Sigal Raab, Oren Nechushtan, Eti Ezra, Eli Pecker, SarielHar-Peled and Michal Ozery for helpful discussions concerning the problems studied in thisthesis. I wish to thank the whole CGAL team and especially CGAL members in Tel-AvivUniversity.

Contents1 Introduction 51.1 Fundamental Complexity Bounds . 51.2 Related Work . 71.3 The CGAL Library . 101.4 Thesis Outline . 112 Preliminaries 152.1 Planar Arrangements . 152.2 Vertical Decomposition . 172.2.1 Robot Motion Planning . 172.3 Planar Maps and Arrangements in CGAL 183 Minkowski Sum Algorithms 233.1 Minkowski Sum of Two Convex Polygons 243.2 Polygons Union Algorithms . 253.2.1 Arrangement Algorithm . 253.2.2 Incremental Union Algorithm . 263.2.3 Divide and Conquer Algorithm . 273.3 Input Sets . 273.4 Experiments . 283.4.1 Test Platform and Frame Program 283.4.2 Results . 313.4.3 Order of Insertion . 343

44 Polygon Decomposition 374.1 The Decomposition Algorithms . 394.1.1 Triangulation . 394.1.2 Convex Decomposition without Steiner Points 404.1.3 Convex Decomposition with Steiner Points 404.2 A First Round of Experiments . 414.3 Revisiting the More E�cient Algorithms . 444.3.1 Nonoptimality of Min-Convex Decompositions 444.3.2 Mixed Objective Functions . 454.3.3 Improving the AB and KD methods 485 Conclusions 51A Handling Degeneracies in the Union Algorithms 53A.1 Handling Degeneracies in the Arrangement Union Algorithm 53A.2 Handling Degeneracies in the Incremental Union Algorithm 57B Proof of Theorem 3.2.1: Construction Time of Arrangements of ConvexPolygons 61C Polygons Decomposition Minimizing the Mixed Objective Function 65C.1 Minimum Length Decomposition . 66C.2 Constrained Minimum Length Decomposition 68

Chapter 1IntroductionGiven two sets P and Q in IR2, their Minkowski sum (or vector sum), denoted by P �Q,is the set fp+ q j p 2 P; q 2 Qg. Minkowski sums are used in a wide range of applications,including robot motion planning [34], assembly planning [20], and computer-aided designand manufacturing (CAD/CAM) [13].Consider for example an obstacle P and a robot Q that moves by translation. We canchoose a reference point r rigidly attached to Q and suppose that Q is placed such that thereference point coincides with the origin. If we let Q0 denote a copy of Q rotated by 180�,then P � Q0 is the locus of placements of the point r where P \ Q 6= ;. In the study ofmotion planning this sum is called a con�guration space obstacle because Q collides with Pwhen translated along a path � exactly when the point r, moved along �, intersects P �Q0.See Figure 1.1.1.1 Fundamental Complexity BoundsMotivated by these applications, there has been much work on obtaining sharp bounds onthe size of the Minkowski sum of two sets in two and three dimensions, and on developingfast algorithms for computing Minkowski sums. It is well known that if P is a polygonal setwith m vertices and Q is another polygonal set with n vertices, then P �Q is a portion ofthe arrangement of O(mn) segments, where each segment is the Minkowski sum of a vertexof P and an edge of Q, or vice-versa. Therefore the size of P � Q is O(m2n2) and it canbe computed within that time; this bound is tight in the worst case [27] (see Figure 1.2).If both P and Q are convex, then P � Q is a convex polygon with at most m + n vertices(see Figure 1.3), and it can be computed in O(m+ n) time [34].If only P is convex, then a result of Kedem et al. [29] implies that P � Q has �(mn)vertices (see Figure 1.4). Their proof relies on special properties of a set of pseudodiscs. Wesay that a collection of planar regions each bounded by a closed Jordan curve is a collection5

6
Figure 1.1: Robot and obstacles: a reference point is rigidly attached to the robot on theleft-hand side. The con�guration space obstacles and a free translational path for the robot onthe right-hand side.
Figure 1.2: Fork input: P and Q are polygons with m and n vertices respectively each havinghorizontal and vertical teeth. The complexity of P �Q is �(m2n2).
Figure 1.3: Convex input: P and Q are convex polygons with m and n vertices. The complexityof P � Q is �(m+ n).

7
Figure 1.4: Comb input: P is a convex polygon with m vertices and Q is a comb-like polygonwith n vertices. The complexity of P �Q is �(mn).of pseudodiscs, if the boundary curves of every pair in the collection intersect at mosttwice. Kedem et al. [29] prove that the number of intersection points (namely vertices onthe boundary where two curves intersect) on the union boundary of n pseudodiscs is O(n).If P , Q1 and Q2 are convex polygons then P �Q1 and P �Q2 are proved to be pseudodiscs.Q can be decomposed into O(n) convex subpolygons such that P � Q = SP � Qi. Theboundary of this union includes O(n) intersection points among the subsums P � Qi anda total of O(mn) vertices. Such a Minkowski sum can be computed in O(mn log(mn))time [35].1.2 Related WorkMore Complexity BoundsIn the previous section we presented the well known combinatorial bounds on the size of theMinkowski sum of polygonal sets. In motion-planning applications, one is often interested incomputing only a single connected component of the complement of P�Q [40]. Har-Peled etal. [24] showed that the complexity of a single face of the complement of P�Q is �(mn�(n))in the worst case wherem and n are the number of vertices of P and Q respectively (withoutloss of generality n < m), and �(�) is the functional inverse of Ackermann's function [43].Barrera [6] showed that the Minkowski sum of two monotone polygons can be computedin O(n2 logn) time for two polygons with a total of n edges. He also proved that computingthe Minkowski sum of two polygons is at least as hard as sorting X + Y [7]. Sorting X+ Yis the problem of sorting the set of numbers fx + yjx 2 X; y 2 Y g for two sets X , Y of nnumbers each. The best known time bound for solving this problem is O(n2 logn) and itis an open problem whether it can be improved. There is a set of other problems that are\sorting X + Y hard" (for example: the polygon containment problem for two rectilinearlyconvex polygons1).De Berg and van der Stappen [11] report on results concerning the relation between the1A polygon is rectilinearly convex if its intersection with any horizontal or vertical line is connected.

8fatness of the Minkowski sum of two sets and the fatness of the sets. The fatness of anobject is determined by the emptiest ball centered inside the object and not fully containingit in its interior. Using this measure they show that the fatness of A�B is at least as largeas min(fatness(A); fatness(B)), where A and B are connected closed and bounded sets inRd.Discrete ApproximationsHartquist et al. [25] suggest a computing strategy for applications that use o�sets, sweepsand Minkowski operations based on the ray-representation method. This method involvesclipping a given input to a grid of rays and applying the mathematical de�nitions andoperators (such as Minkowski sum) on the resulting discrete set. The authors aim to solvemotion planning, process-modeling and visualization problems and they present a hardwaredesign for those applications.Kavraki [28] uses the Fast Fourier Transform (FFT) algorithm on the bitmaps of a robotand obstacles to �nd the corresponding con�guration-space obstacles for the robot translat-ing among the obstacles. This method approximates the con�guration space obstacles. Themethod is inherently parallel and can bene�t from existing experience and special hardwarefor computing the FFT.ApplicationsThe translational robot motion problem planning is a convenient case study for Minkowskisum algorithms, and therefore detailed and given as an example in the rest of this thesis.There are many more applications in which the Minkowski sum operation is a useful tool.Some examples are listed here.The following problem arises in mechanical assembly planning. An assembly is a col-lection of non-overlapping rigid parts. Given an assembly, identify a subassembly (i.e., asubset of the parts) that can be removed as a rigid object without colliding with the rest ofthe assembly. This is the assembly partitioning problem. A simple instance of the problemis where the given parts P1; P2; : : : ; Pn are polygons in the plane, and we would like to �nda removal path consisting of two consecutive translations that will separate a subset of theparts from the rest of them (notice that �nding the subset is part of the problem).Halperin and Wilson [22] use Minkowski sums to compute the con�guration space ob-stacle Pij = Pi��Pj for every ordered pair of parts (Pi; Pj) using the origin as the commonreference point for all the parts. For a point q in the plane, if q 2 Pij then if Pj is placedwith its reference point in q it will collide with Pi. Therefore, a path through q cannotbe used to separate a subset of parts that contains Pj but not Pi. In the arrangement Aof all the sums Pij , every face introduces a set of constrains of the form: \Pj cannot bemoved through this face without Pi" (according to the Minkowski sums Pij in which it iscontained). Given a path in the plane we de�ne a directed graph G = G() whose nodes

9Figure 1.5: Minimal distance separationcorrespond to the parts P1; P2; : : : ; Pn. There is a directed edge in G between the nodescorresponding to Pi and Pj if such a constraint appears in one of the faces of A that areintersected by . It is easily veri�ed that if G is not strongly connected then there is asubassembly that can be removed along and this subassembly is a strongly connectedsubgraph of G. In [22] an O(n2N6) algorithm is given to solve this problem (where N isthe total number of vertices in the input).The approach described above makes extensive use of planar Minkowski sums, andtherefore calls for an e�cient construction of such sums.Geographic Information Systems (GIS) are increasingly studied in computational geom-etry. There are some problems in GIS that are closely related to our work. One of themis the bu�er searching problem in which we would like to �nd geographic features thatare within a given bu�er distance from a polygonal feature. Boolean operations on planarobjects are frequently used in GIS and therefore have e�cient implementations in manygeographic systems. Instead of measuring the distance between each feature and the querypolygon, we can execute the bu�er searching by �rst computing the Minkowski sum of acircle and the query polygon. Then, we intersect the resulting planar subdivision with thegeographic database. The latter is a boolean operation that can be carried out e�ciently.The following question was posed by Marc van Kreveld as a cartographic generalizationproblem [45]: Given two polygons �nd the minimum length translation of one polygonrelative to the other that will make the two polygons interior disjoint; see Figure 1.5.Assuming that in their original placement P and Q intersect and that the reference pointof Q is at the origin O, it is not di�cult to see that the minimum translation of Q relativeto P is described by the point on the boundary of P �Q0 which is closest to O where Q0 isa copy of Q rotated 180�.Given two polygons P and Q in the plane, another widely studied problem is to �ndwhether P can be contained inside Q. This problem is known as the polygon containmentproblem [9]. If we restrict it to a translational problem (namely the orientation of P is�xed) it can be solved as follows: consider the complement of Q as an obstacle for the robotP and try to place P such that it does not penetrate the obstacle. Practically, let B be thebounding box of Q and let Q = B nQ. The free placements for P inside Q can be found bycomputing P 0 �Q were P 0 is P rotated by 180�. See Figure 1.6 for an example.

10
Figure 1.6: Polygon containment: the input polygons P and Q are displayed on the left-handside, P 0�Q is in the middle, and a possible placement for P inside Q is on the right-hand side.Three and Higher DimensionsIn planar motion planning, if beside translating we allow the robot to rotate then thecon�guration space is 3-dimensional [21]. For a given rotation angle �0 the Minkowski sumP�0 � Q, where P�0 is P rotated by �0 degrees, is the translational con�guration-spaceobstacle for the robot in a �xed rotation angle. The entire con�guration space includesbeside the translational axis, a rotation axis �. Each horizontal slice of this space (theplane � = �0) contains the sum P�0 � Q. This observation is used in several approximatesolutions to motion planning problems; see, e.g., [3] and [34, Section 6.5.1].The Minkowski operations in higher dimensions are de�ned similarly. A summary of theknown results on computing the Minkowski sum of two sets in three and higher dimensionscan be found in a recent survey by Agarwal and Sharir [2].This thesis is concerned with the 2-dimensional case where both the input and the resultare planar.1.3 The CGAL LibraryWe devised and implemented a package for computing the Minkowski sum of two polygo-nal sets based on the CGAL software library [1, 16]. CGAL | Computational GeometryAlgorithms Library | is a software library developed by several research groups in Europeand Israel. The package supplies a robust, e�cient, and exible implementation of com-putational geometry algorithms and data structures. CGAL consist of the kernel whichsupplies geometric primitives and data types, the basic library which contains a large collec-tion of basic algorithms and data structures (for example triangulations, planar maps), anda support library for I/O, debugging and visualization. CGAL is developed following thegeneric programming paradigm known from the Standard Template Library (STL) for C++[5, 44]. Our Minkowski-sum package employs CGAL's planar maps [17] and arrangements[23] packages and follows CGAL's look-and-feel of generic programming (planar maps andarrangements are subdivisions induced by geometric objects; see Chapter 2 for details).

11
Figure 1.7: Tight passage: the desired target placement for the small polygon is inside the innerroom de�ned by the larger polygon (left-hand side). In the con�guration space (right-hand side)the only possible path to achieve this target passes through the line segment emanating intothe hole in the sum.We are currently using our software to solve translational motion planning problems inthe plane. We are able to compute collision-free paths even in environments cluttered withobstacles, where the robot could only reach a destination placement by moving throughtight passages, practically moving in contact with the obstacle boundaries. See Figure 1.7for an example. This is in contrast with most existing motion planning software for whichtight or narrow passages constitute a signi�cant hurdle.The CGAL library provides a robust implementation of basic geometric structures (e.g.,planar maps) that can handle degenerate inputs (without assuming \general position").Furthermore, we are able to choose di�erent number types and geometric predicates to beused by the implementation. In our implementation we use rational numbers and �ltered ge-ometric predicates from LEDA| the library of e�cient data structures and algorithms [37].Transforming a geometric algorithm from theory to practical implementation raises sev-eral issues (like arithmetic precision and the treatment of degenerate inputs) which wecollectively refer to as robustness issues. Our implementation handles robustness issues byapplying exact number types and oating point �lters and by directly handling degenerateinput. We refer the reader to recent surveys on this topic [42, 46] for further information.1.4 Thesis OutlineThe thesis presents a general scheme for computing the Minkowski sum of two polygonalsets and describes the di�erent steps of the computation. We describe the software package

12which implements those steps and report on experimental results.Computing the Minkowski sum of two polygonal sets P and Q can be done as follows:(1) decompose P and Q into s and t convex subpolygons respectively, (2) compute theMinkowski sum of each pair of subpolygons of P and Q resulting in the set R of s � tsubsums, and (3) construct the union of those subsums; the result is represented as aplanar map.In the next chapter we introduce some related basic de�nitions and algorithms in com-putational geometry. We present the concept of an arrangement of curves, the verticaldecomposition of an arrangement and point location algorithms. We then describe theimplementation of those data structures and algorithms in CGAL.In Chapter 3 we concentrate on the last steps in the computation of a Minkowski sumof two polygonal sets. Based on the decomposition of the input polygonal sets into convexsubpolygons, after describing how to compute the Minkowski sum of two convex polygons,we present three algorithms for computing the union of the set of Minkowski subsums. The�rst is the arrangement algorithm, in which we construct the arrangement induced by theedges of the polygons in R. Then we traverse the arrangement and mark each face, edgeand vertex as inside the union, on its boundary or outside the union. The construction ofthe arrangement takes randomized expected time O(I + k logk) (where k is the numberof edges in R and I is the overall number of intersections between (edges of) polygons inR). The traversal stage takes O(I + k) time. The second algorithm is the incrementalunion algorithm, in which we maintain the partial union in a planar map by inserting thepolygons of R one after the other. After each insertion we remove the redundant edgesfrom the map. We could only give a naive bound on the running time of this algorithm,which in the worst case is higher than the worst-case running time of the arrangementalgorithm. Practically however the incremental union algorithm works much better thanthe arrangement algorithm on most problem instances. The third algorithm is the divide-and-conquer algorithm. This algorithm is a combination of both previous algorithms. Firstwe use the incremental union algorithm to compute t maps representing the Minkowskisums of P and each convex subpolygon of Q. Then we compute the union of pairs ofmaps using the arrangement algorithm, obtaining t=2 new maps. We continue to computeunion of pairs of intermediate maps log t times until we end up with one map describingthe Minkowski sum of P and Q. We report on our experiments with these three algorithmsas well as on other factors that can a�ect the computation such as the order of insertion ofsubsums.In the theoretical study of Minkowski sum computation (e.g., [29]), the choice of decom-position is often irrelevant (as long as we decompose the polygons into convex subpolygons)because it does not a�ect the worst-case asymptotic running time of the algorithms. Inpractice however, di�erent decompositions can induce a large di�erence in running time ofthe Minkowski sum algorithms. In Chapter 4 we examine di�erent methods for decompos-ing polygons by their suitability for e�cient construction of Minkowski sums. We study andexperiment with various well-known decompositions as well as with several new decomposi-

13tion schemes. We report on our experiments with the various decompositions and di�erentinput polygons. Among our �ndings are that in general: (i) triangulations are too costly(although they can be produced quickly, they considerably slow down the Minkowski-sumcomputation), (ii) what constitutes a good decomposition for one of the input polygonsdepends on the other input polygon | consequently, we develop a procedure for simultane-ously decomposing the two polygons such that a \mixed" objective function is minimized,(iii) there are optimal decomposition algorithms that signi�cantly expedite the Minkowski-sum computation, but the decomposition itself is expensive to compute | in such casessimple heuristics that approximate the optimal decomposition perform very well.We give concluding remarks and suggest directions for further research in Chapter 5.

14

Chapter 2PreliminariesIn this chapter we present some of the tools and terminology that we will be using through-out the thesis.2.1 Planar ArrangementsAn arrangement of curves in the plane is the subdivision of the plane induced by thesecurves. Consider, for example, the arrangement induced by a collection of n line segmentsin the plane. The line segments partition the plane into vertices, edges and faces. A vertexis an endpoint of a segment or an intersection point of two (or more) segments, an edge is amaximal connected portion of an original segment that does not meet any vertex, and a faceis a maximal connected region of the plane not meeting any edge or vertex; see Figure 2.1for an illustration. Such an arrangement has at most O(n2) vertices, edges and faces, andthis bound is tight. The features of the arrangement are also called cells. A vertex is a0-dimensional cell, an edge is a 1-dimensional cell and a face is a 2-dimensional cell. Asubcell of a k-dimensional cell c1 is a (k� 1)-dimensional cell c2 that is on the boundary ofc1. If c2 is a subcell of c1 then c1 and c2 are considered incident.Let � be a collection of n curves in the plane, and let A(�) be the arrangement of�. Given another curve � we de�ne the zone of � to be the set of faces of A(�) that areintersected by � (Figure 2.2). If the curves of � are x-monotone Jordan arcs such thateach pair intersects in at most s points then the complexity of the zone of a curve � whichintersects any curve of � in at most some constant number of points is �(�s+2(n)), where�s(n) is the maximum length of a Davenport-Shinzel sequence of order s on n symbols [43].This result implies that for arrangements of line segments, the complexity of the zone ofanother segment is �(n�(n)) where �(�) is the extremely slowly growing functional inverseof Ackermann's function.Arrangements are also de�ned for higher dimensional objects. See [2, 19] for more15

16
EdgeVertex FaceFigure 2.1: A vertex, an edge and a face in an arrangement of segments

Figure 2.2: An arrangement of segments. The shaded area is the zone of the segment in boldline.

17
Figure 2.3: An arrangement of segments on the left-hand side and its vertical decompositionon the right-hand sidedetails on arrangements in two and higher dimensions and other important substructures(e.g., envelopes) of them. However, in this work we will focus on planar arrangements.2.2 Vertical DecompositionLet S be a set of n line segments in the plane. In the previous section we de�ned the arrange-ment A(S) of S. A(S) is a subdivision of the plane into regions that can, unfortunately,have complex shapes. Hence, it is convenient to further re�ne this subdivision. The verticaldecomposition (also known as the trapezoidal decomposition) is a planar subdivision D suchthat from each vertex of A(S) we extend a vertical attachment. Each vertical attachmentextends upwards and downwards until it hits another edge or vertex of A(S) and if no suchfeature exists, then it extends to in�nity (Figure 2.3). D is a re�nement of the originalsubdivision A(S): every face of D lies completely in one face of A(S). The faces of D arecalled vertical trapezoids even though they can also be triangles or unbounded trapezoids.Let I be the number of intersection points among the segments of S then the complexity ofA(S) is O(I+n). The complexity of the subdivision D is O(I+n) and it can be constructedin expected O(I + n logn) time using a randomized incremental algorithm [39]. During anincremental construction of D we can also build a search structure such that the trapezoidin which a query point lies can be found in expected O(logn) time. This operation is calledpoint location. In Section 2.3 we briey describe three di�erent strategies to answer a pointlocation query in arrangements and planar maps as they are implemented in CGAL.2.2.1 Robot Motion PlanningVertical decompositions are commonly used in theory and practice. They are used tosimplify the subdivision induced by an arrangement of curves with a fairly low overheadin time and storage. The ability to get a simple and e�cient search structure on the

18
Figure 2.4: Robot and obstacles: on the left-hand side the workspace which includes the robot(on the bottom left) and the obstacles and on the right-hand side the con�guration-spaceobstaclesvertical decomposition is another reason for its popularity. One of the applications ofvertical decomposition is robot motion planning which is relevant to this work. We describemethods for constructing the Minkowski sum of polygonal sets. Planning a motion of apolygonal robot translating among polygonal obstacles (Figure 2.4) can be carried out asfollows: (i) First, �x a reference point r on the robot and construct the con�guration-spaceobstacles C by computing the Minkowski sum of the robot rotated by 180� and the obstacles(Figure 2.4). (ii) Plan a path in the free portion FP of the con�guration space. Moving ralong the computed path while the robot is rigidly attached to r gives a collision free motionplan for the robot in the workspace. We discuss the �rst step in detail in the sequel. Thesecond step can be easily accomplished using a trapezoidal decomposition as we explainnext.Let C0 be the trapezoidal decomposition of FP . We would like to compute a path in FPfor a point from pstart to pgoal. If pstart and pgoal lie in the same trapezoid we can simplymove along a straight line segment between them. Otherwise, we construct a road mapthrough the free space. We set a node in the center of each free trapezoid and in the centerof each of its vertical walls. We connect each node in the center of a trapezoid with all thenodes on the trapezoid's boundary. This gives us a planar graph embedded entirely in FP(Figure 2.5) . Constructing the road map and �nding a path in it from the trapezoid thatcontains pstart to the trapezoid that contains pgoal is easily achieved in time linear in thecomplexity of the road map, after the trapezoidal decomposition had been constructed.2.3 Planar Maps and Arrangements in CGALCGAL | Computational Geometry Algorithms Library | is a software library developedby several research groups in Europe and Israel. The library provides a robust, e�cient, and

19
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 2.5: Road map constructed using a vertical decomposition of the free spaceexible implementation of computational geometry algorithms and data structures [1, 16].The planar-map [17] and arrangement software packages are part of CGAL's basic library.Given a set S of non-intersecting x-monotone curves in the plane, the planar-map pack-age contains data structures and algorithms to dynamically maintain the planar subdivisioninduced by the curves of S. Furthermore, the planar-map package allows for exibility inchoosing the curve type and supports the use of robust number types for computations. Thepackage does not assume general position, namely it handles degenerate inputs. Beside theinsertion and removal operations, it supports several useful services: traversal of the mapfeatures, point location and trapezoidal decomposition. These capabilities are implementedas follows (the full details are given in [17] and [23]):Geometric Traits The geometric traits class is an abstract interface of predicates andfunctions that wraps the access of an algorithm to the geometric (rather than combi-natorial) inner representation. In the planar-map package the traits class is de�nedas the minimal geometric interface which will enable a construction and handling ofa geometric map. The traits class de�nes the basic objects of the map: the point andthe x-monotone curve. In addition it de�nes predicates for comparing points, access-ing curves' endpoints, comparing points and curves (e.g., whether a point is above,below or on a given curve), and comparing curves (e.g., compare the y-coordinate oftwo curves at a given x-coordinate). The traits class implicitly de�nes the geometricrepresentation and robustness handling methods.Doubly Connected Edge List (DCEL) The DCEL [12, Chapter 2] is the fundamen-tal data structure used by the planar map. This representation belongs to a familyof edge-based data structures in which each edge is represented as a pair of oppo-site halfedges. Each halfedge e points to its source and target vertices: source(e)

20
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������������
����������������
����������������

����������������
����������������
����������������

���������
���������
���������
���������

��

��

��
��

��

��
��
��
��

��

��

��

�� ~esource(~e) target(~e)twin(~e)Figure 2.6: Source and target vertices, and twin halfedges in a face with a holeand target(e), to its twin (opposite) halfedge: twin(e), to the next and previoushalfedges on the Connected Component of the Boundary (CCB) of its face: next(e)and previous(e), and to the face on its left: face(e). Each face f points to a halfedgeon its outer boundary (if it exists) and to a list of holes: outer (f) and holes(f). Eachvertex v points to a halfedge from it: halfedge(v). See an example of a DCEL inFigure 2.6. We can use the bidirectional pointers (previous and next) to traverse aCCB of a face , to jump to neighboring faces (twin pointer) and to explore all thefaces and halfedges that are incident to a vertex. The implementation enables keepingextra data in each feature of the DCEL.Topological Layer and Geometric Layer The topological layer is responsible for main-taining the combinatorial data by using the DCEL as the storage class. We can updatethe map by using insert, remove and split operations. The topological layer also en-ables us to traverse the features of the planar map by combinatorial connectivity usinga set of iterators: (i) halfedges around vertex iterator, (ii) connected component ofthe boundary of a face (CCB) iterator, (iii) holes iterator. The geometric layer is anembedding of the topological layer in the plane using the geometric traits. The topo-logical layer can also be used for non-planar subdivisions (e.g., terrains, subdivisionson a sphere).Point Location Strategy The planar map package supports point location queries. Us-ing the point location as a strategy1 enables the users to implement their own pointlocation algorithms. The planar-map package supplies three point location strategies:(i) a naive algorithm | goes over all the edges in the map to �nd the location of1The use of \strategy" here refers to the strategy pattern [18].

21the query point; (ii) an e�cient algorithm | Mulmuley's randomized incrementalalgorithm that uses a vertical decomposition and a search structure to answer a pointlocation query in expected O(log2 n) time [38] (we get an additional logarithmic factorover the regular trapezoidal decomposition because here the search structure is fullydynamic); and (iii) a \walk" algorithm that is an improvement over the naive one; it�nds the point's location by walking along a ray from \in�nity" towards the querypoint, traversing only the zone of this ray rather than the entire map.The arrangement package [23] uses the same technology but handles curves that are notnecessarily x-monotone and that are allowed to intersect. The arrangement class keeps ahierarchy graph by which we can get the original curve from which a halfedge in the mapwas created.We use the planar maps of CGAL along with the implementation of rational numbersfrom LEDA2 | the Library of E�cient Data-structures and Algorithms [36, 37]. LEDAprovides a set of algorithms and data structures from graph theory and computational geom-etry. The library includes an implementation of exact number types (e.g., rational numbers,real numbers). LEDA's rational number holds two varying length integers: a numeratorand a denominator to represents an exact rational. In addition, it includes a oating pointapproximation (oating-point �lter) to save computing time by resorting to expensive com-putation only when the correct answer cannot be determined with the approximation only.LEDA also provides a graphic user interface for interactive applications.
2http://www.mpi-sb.mpg.de/LEDA/leda.html

22

Chapter 3Minkowski Sum AlgorithmsWe devised and implemented three algorithms for computing the Minkowski sum of twopolygonal sets based on the CGAL software library [1, 16]. Our main goal was to produce arobust and exact implementation. This goal was achieved by employing the CGAL planarmap package (described in Chapter 2) while using exact number types.The input to our algorithms are two polygonal sets P and Q, with m and n verticesrespectively. P and Q are sets of simple polygons that are not necessarily pairwise disjoint.All our algorithms consist of the following three steps:Step 1: Decompose P into the convex subpolygons P1; P2; : : : ; Ps and Q into the convexsubpolygons Q1; Q2; : : : ; Qt. The number of vertices of a polygon X is denoted by jX j.Step 2: For each i 2 [1::s] and for each j 2 [1::t] compute the Minkowski subsum Pi � Qjwhich we denote by Rij. We denote by R the set fRij j i 2 [1::s]; j 2 [1::t]g.Step 3: Construct the union of all the polygons in R, computed in Step 2; the output isrepresented as a planar map.We discovered that the choice of the decomposition in Step 1 can have a dramatic e�ecton the running time of the Minkowski-sum algorithms. We postpone the discussion ofthe decomposition process to Chapter 4. We can assume, for this chapter, that the inputpolygonal sets are decomposed into convex subpolygons. Throughout the experiments thatwe describe in this chapter we use the same decomposition which has proved very e�cientfor our purposes. It is based on a heuristic method proposed in [10] which we have slightlyimproved and we refer to as the small-side angle-bisector decomposition; for details seeChapter 4.In the next section we describe the computation of the Minkowski sum of two convexpolygon (Step 2). We survey the polygons union algorithms (Step 3) that we implemented inSection 3.2. The input sets on which we performed the experiments are listed in Section 3.3and experimental comparison between the algorithms is given in Section 3.4.23

243.1 Minkowski Sum of Two Convex PolygonsThe second phase of the Minkowski-sum computation is constructing the subsums Rij :=Pi �Qj . We review a simple, well-known linear-time algorithm to compute this Minkowskisum [12, Chapter 13]1.Given two convex polygons P and Q withm and n vertices respectively, we will computeP �Q. For a given direction ~d an extreme point in direction ~d on P �Q is the vector sum ofextreme points in direction ~d on P and Q. For a convex polygon, if we change the direction ~din a counterclockwise manner then we get a sequence of extreme points that contains all thevertices of the polygon ordered exactly as they are ordered on the polygon's counterclockwiseboundary. The following algorithm scans the directions in counterclockwise order and usesthe above observation to simultaneously traverse both polygons and �nd extreme points ineach direction.1. Let v1; : : : ; vm and w1; : : : ; wn be the vertices of P andQ, ordered in counter-clockwiseorder, with v1 and w1 being the vertices with smallest y-coordinate (and smallest x-coordinate in case of ties)2. i 1; j 13. vm+1 v1; wn+1 w14. repeat5. Add vi + wj as a vertex to P � Q6. if angle(vivi+1) < angle(wjwj+1) then i i+ 17. else if angle(vivi+1) > angle(wjwj+1) then j j + 18. else i i+ 1; j j + 19. if i > m+ 1 then i m+ 110. if j > n+ 1 then j n+ 111. until i = m+ 1 and j = n+ 1We use the notation angle(ab) to denote the angle that the vector ab makes with thepositive x-axis.This algorithm runs in linear time O(m + n), because at each iteration of the loop inlines 4 { 11 either i or j are incremented. The vertices of P �Q are vector sums of pairs ofvertices from P and Q that are extreme at a common direction. Since the input polygonsare convex the angle test ensures that all extreme pairs are found.1The algorithm as it appears in the book might run into an in�nite loop. The algorithm that we presentcontains the necessary �xes.

253.2 Polygons Union AlgorithmsThe Minkowski sum of P and Q is the union of the polygons in R. Let k denote the overallnumber of edges of the polygons in R, and let I denote the overall number of intersectionsbetween (edges of) polygons in R. We present three di�erent algorithms for performingStep 3, computing the union of the polygons in R, which we refer to as the arrangementalgorithm, the incremental union algorithm and the divide-and-conquer algorithm.3.2.1 Arrangement AlgorithmThe algorithm constructs the arrangement A(R) induced by the polygons in R (we referto this arrangement as the underlying arrangement of the Minkowski sum) by adding the(boundaries of the) polygons of R one by one in a random order and by maintaining thevertical decomposition of the arrangement of the polygons added so far. Each polygon ischosen with equal probability at each step. Once we have constructed the arrangement,we traverse all its cells (vertices, edges or faces) and we mark a cell as belonging to theMinkowski sum if it is contained inside at least one polygon of R.Theorem 3.2.1 The construction of A(R) takes randomized expected time O(I + k logk).Proof: See Appendix B. 2The traversal stage takesO(I+k) time. The number of vertices in R is k = O(mn) there-fore the expected construction time using the arrangement algorithm is O(I+mn log(mn))and the traversal stage takes O(I +mn).As mentioned earlier, a distinctive feature of our work is our ability to handle degenerateinput such as \tight passages" (Figure 1.7). To do this we need to pay special attention tovarious \boundary conditions".Let Union(R) be the union of the polygons of R. Union(R) can be represented by asubset of the features of the arrangement A(R). Therefore, we would like to compute foreach feature in the underlying arrangement (face, edge or vertex) whether it is inside theunion or not.During the insertion of polygons into the arrangement we count for each halfedge onhow many boundaries of polygons of R it lies. Using this count we can �nd for each facein how many polygons it is contained by traversing the arrangement once in a breadth-�rstmanner. Then, a face is inside the union if and only if it lies in at least one of the polygonsof R.Next, we would like to know which edges are on the boundary of the union. Trivially wewould check for each edge e its two incident faces. If one of those faces is inside the unionand the other is not then we would mark e to be on the boundary of the union. But this

26
Figure 3.1: Semi-free vertex: the small polygon can �t into the cavity in the larger polygon(left-hand side) as indicated by a singular point in the middle of the Minkowski sum of the largerpolygon with a copy of the small one rotated by 180� (right-hand side)is insu�cient since there are edges that are on the boundary of one or more polygons of Rbut are not contained in any of those polygons (in motion planning such an edge representsa tight passage for the robot through the obstacles | see Figure 1.7). This edge is on theboundary of the union but the faces on its sides are both inside the union (in some casessuch an edge might not be connected to the rest of the boundary of the union). We refer tosuch an edge as a semi-free edge. If the number of polygons that contain a halfedge on theirboundary equals to the number of polygons that contain the face bounded by this halfedgein the arrangement then we mark this halfedge to be on the boundary.Finally, we should check the vertices. A vertex is on the boundary of Union(R) if itis a target or a source vertex of an edge that is on the boundary of Union(R), or it canbe disconnected from the rest of the boundary (in motion planning it is a semi-free vertexwhich represents a location in which a robot can be placed but from which it cannot movein any direction | see Figure 3.1). We provide the full technical details of this process inAppendix A.1.3.2.2 Incremental Union AlgorithmIn this algorithm we incrementally construct the union of the polygons in R by adding thepolygons one after the other in random order. We maintain the planar map representingthe partial union of polygons in R. For each r 2 R we insert the edges of r into themap and then remove redundant edges from the map. Redundant edges are edges that arecompletely contained in (at least) one of the polygons of R inserted so far. We do thisusing the \coloring" procedure described below. All the operations of this procedure canbe carried out e�ciently using the planar map package. We could only give a naive boundon the running time of this algorithm, which in the worst case is higher than the worst-caserunning time of the arrangement algorithm. Practically however the incremental unionalgorithm works much better than the arrangement algorithm on most problem instances.To compute the exact union and boundary we should identify in each insertion step

27of the incremental algorithm what features are redundant and can therefore be removed.While the arrangement algorithm uses a post-processing stage, in this algorithm we executea coloring procedure after each insertion of a polygon into the map. After the insertion ofa polygon r, the coloring procedure marks all the faces that are contained in r to be insidethe union. In addition we can remove all the edges and vertices that lie completely insider since they do not contribute to the union any more. A special treatment should be givento the edges and vertices on the boundary of r. Some of those edges may be a part of theboundary of the partial union as they separate between a face that is inside the union anda face outside the union. Again, as in the arrangement algorithm we have cases in whichan edge (or a vertex) is surrounded by faces that are in the partial union but the edge (orthe vertex) is on the union's boundary.We can remove an edge from the boundary of r if it does not overlap with part of theunion's boundary before we added r and both its adjacent faces are inside the union. Avertex that is on the boundary of r can be removed if it was �rst inserted with r and all thefaces that are adjacent to it are inside the union. The full details of the coloring procedureare explained in Appendix A.2.3.2.3 Divide and Conquer AlgorithmWhile the incremental algorithm removes the redundant edges from the union map, thearrangement algorithm handles all the edges of the polygons of R during the entire process.On the other hand, with the incremental algorithm we may have very complex faces in ourplanar map. Handling these faces is highly time consuming (we discuss these issues in Sec-tion 3.4.2). The divide-and-conquer algorithm is a combination of both previous algorithms,attempting to overcome the shortcomings of both. First we use the incremental union al-gorithm to compute the Minkowski sums of P and Qj for each 1 � j � t. This results int polygonal sets (each represented as a planar map) S1; : : : ; St, where Sj 's complexity isO(njQj j) [29]. In the second stage we compute the union of pairs of maps from S1; : : : ; Stusing the arrangement algorithm, obtaining t=2 new maps. We continue to compute unionof pairs of maps log t times until we end up with one map describing the Minkowski sum ofP and Q.This algorithm is just one way of applying a divide-and-conquer scheme for computingthe union of polygons. We found this method e�cient because it balances the use of theprevious two union algorithms.3.3 Input SetsThe input data we used is described in Table 3.1 and in Figures 3.2 through 3.10. TheMinkowski sum of a comb and a convex polygon has complexity �(mn) (see Figure 3.2),while the fork input results in �(m2n2) Minkowski sum complexity (see Figure 3.4). The

28 input name description �gurecomb P is a `comb' with (m�3)=2 teeth, and Q is a convexpolygon with n vertices, of which n� 2 lie on the topboundary Figure 3.2star P and Q are star-shaped polygons Figure 3.3fork P and Q each consists of two orthogonal sets of`teeth' such that their Minkowski sum has �(n2m2)complexity Figure 3.4random P and Q are random looking polygons [15] Figure 3.5concave chain P and Q consist of concave chains with m � 1 andn� 1 vertices, respectively Figure 3.6mixed chain P consists of chains of di�erent type of vertices: con-vex vertices, concave vertices and comb-like vertices(alternating from concave to convex repeatedly), Q isa star-shaped polygon Figure 3.7knife P is shaped as a long triangle with short and evencomb teeth along its base and Q consists of horizontaland vertical teeth Figure 3.8countriesborders This is real-life data consisting of the polygonal de-scription of the borders of several countries across theworld Figure 3.9robot andobstacles Q is a star-shaped robot and P consist of triangularobstacles which are randomly placed inside a square Figure 3.10Table 3.1: Input datarest of the input data results in Minkowski sum complexity that is between �(m+ n) and�(m2n2). The `intermediate' inputs (star, random, countries) are interesting in that thereare many di�erent ways to decompose them into convex subpolygons | this is the topic ofthe next chapter.3.4 ExperimentsWe present experimental results of applying the algorithms described in Section 3.2 to thecollection of input pairs of polygonal sets that are listed in the previous section.3.4.1 Test Platform and Frame ProgramOur implementation of the Minkowski sum package is based on the CGAL (version 2.0) andLEDA (version 4.0) libraries. Our package works with Linux (g++ compiler) as well as with

29
Figure 3.2: Comb input on the left-hand side and the Minkowski sum on the right-hand side

Figure 3.3: Star input
Figure 3.4: Fork input

Figure 3.5: Random looking polygons input

30
Figure 3.6: Concave chains input
Figure 3.7: Mixed chain inputFigure 3.8: Knife input

Figure 3.9: Countries borders input

31
Figure 3.10: Robot and obstacles inputWinNT (Visual C++ 6.0 compiler). The tests were performed under WinNT workstationon a 500 MHz PentiumIII machine with 128 Mb of RAM.We implemented an interactive program (Figure 3.11) which constructs Minkowski sums,computes con�guration space obstacles, and solves polygon containment and polygon sepa-ration problems. The software also enables to choose the decomposition method and unionalgorithm and presents the resulting Minkowski sum and underlying arrangement. Thesoftware is available from http://www.math.tau.ac.il/~flato/.We measured the running times for the various algorithms with di�erent input data.3.4.2 ResultsThe results of running the three union algorithms are presented in Figure 3.12. We cansee that for polygonal sets for which the Minkowski sum is complex (e.g., the fork input)the arrangement algorithm performs better. When the sum's complexity is relatively small(e.g., the star input) the incremental algorithm has the best running times. The divide-and-conquer algorithm's performance is mostly between the other two algorithms and is likelyto be closer to the best algorithm.The complexity of the Minkowski sum varies for the di�erent input data. For the twoinput sets P and Q we denote by VPQ the total number of vertices in the arrangement ofthe polygons of R, andMPQ the number of vertices on the boundary of P �Q. Figure 3.13presents the ratio CPQ = MPQVPQ . From comparing this ratio to the running times of the threealgorithms (Figure 3.12) it is clear that for small CPQ the incremental algorithm performsbest but as the ratio grows the arrangement algorithm overtakes so that for inputs like thefork and comb it performs better than the other algorithms. The incremental algorithmmaintains the union of the polygons of R removing redundant edges and vertices. SmallerCPQ indicates that there are many vertices and edges in the arrangement of R that donot contribute to the boundary of the Minkowski sum. Handling those features during theunion process (as the arrangement algorithm does) is therefore costly. When CPQ is large,

32

Figure 3.11: The Minkowski-sum application | a screenshot

33
Figure 3.12: Running times in seconds for computing the Minkowski sum of di�erent input datawith all three union algorithms. The sizes of P and Q are in parenthesis.
Figure 3.13: CPQ: the ratio between the number of vertices in the Minkowski sum of di�erentinput data compared with the number of vertices of the underlying arrangement. The valuesVPQ are in parenthesis. We measured CPQ for the same inputs we used to produce the resultsin Figure 3.12.

34
Figure 3.14: Covered fork: input sets on the left-hand side (the �rst set includes the larger forkpolygon and a long vertical triangle and the second set includes the smaller fork polygon and along horizontal triangle), the Minkowski sum in the middle, and the underlying arrangement onthe right-hand sideremoving the unnecessary edges and vertices almost does not help and in the extreme casesresults in poor running times. Removing the redundant edges from the map sometimesresults in very complex faces. In our implementation of the planar map handling thesecomplex faces can take longer time. Such complex faces are likely to be created when theMinkowski sum is relatively complex (large CPQ).3.4.3 Order of InsertionAnother factor that a�ects the running time of the union algorithms is the order in whichthe polygons of R are inserted into the planar map. Consider for example the coveredfork input data (suggested to us by R. Wenger). It consists of two fork polygons whoseMinkowski sum has complexity �(m2n2) and two long triangles whose Minkowski sum isa large hexagon that covers (contains) the grid created by the sum of the fork polygons.Therefore, The Minkowski sum in this case has �(m + n) vertices while the underlyingarrangement has �(m2n2) vertices. See Figure 3.14. If we use the incremental algorithmand insert the large hexagon �rst, we can avoid handling the (complex) grid-like planarmap and we get output-sensitive running time. This example shows that an algorithm thatinserts the subsum polygons of R in random order cannot be output sensitive.If we insert the polygons of R into the map in descending order of fatness (we use here avery simple measure of fatness | the area divided by the diameter squared) we will get thedesired output-sensitivity e�ect in this special case. The results are given in Figure 3.15.This permutation, however, does not always result in better running times. Consider forexample Figure 3.16 where all the thinner polygons of R are intersecting the fatter polygons.We can see in the results that for this input (fat grid) the union time when using the fatnesspermutation is about two times slower than when using a random permutation.

35

Figure 3.15: Running times in seconds for computing the Minkowski sum of di�erent input datausing the incremental algorithm with both random and fatness permutations on the polygonsof R. The sizes of P and Q are in parenthesis.
Figure 3.16: Fat grid input

36

Chapter 4Polygon DecompositionIn this chapter we examine di�erent methods for decomposing polygons by their suitabil-ity for e�cient construction of Minkowski sums. We study and experiment with variouswell-known decompositions as well as with several new decomposition schemes. Some ofthe presented algorithms are optimal while others approximate an optimal solution or usevarious heuristics.In the theoretical study of Minkowski-sum computation (e.g., [29]), the choice of decom-position is often irrelevant (as long as we decompose the polygons into convex subpolygons)because it does not a�ect the worst-case asymptotic running time of the algorithms. Inpractice however, di�erent decompositions can induce a large di�erence in running time ofthe Minkowski-sum algorithms (see Figure 4.1 for an example). The decomposition can af-fect the running time of algorithms for computing Minkowski sums in several ways: some ofthem are global to all algorithms that decompose the input polygons into convex polygons,while some others are speci�c to certain algorithms or even to speci�c implementations. Weexamine these various factors and report our �ndings below.Polygon decomposition has been extensively studied in computational geometry; it isbeyond the scope of this thesis to give a survey of results in this area and we refer the readerto the survey papers by Keil [33] and Bern [8], and the references therein. As we proceed,we will provide details on speci�c decomposition methods that we will be using.We apply several optimization criteria to the decompositions that we employ. In the con-text of Minkowski sums, it is natural to look for decompositions that minimize the numberof convex subpolygons. As we show in the sequel, we are also interested in decompositionswith minimal maximum vertex degree of the decomposition graph, as well as several othercriteria.We report on our experiments with the various decompositions and di�erent input poly-gons. As mentioned in the Introduction, among our �ndings are that in general: (i) tri-angulations are too costly, (ii) what constitutes a good decomposition for one of the inputpolygons depends on the other input polygon | consequently, we develop a procedure for37

38 P 's decompositionnaive triang. min �d2i triang. min convex�d2i 754 530 192# of convex subpolygons in P 33 33 6time (mSec) to compute P �Q 2133 1603 120Figure 4.1: Di�erent decomposition methods applied to the polygon P (leftmost in the �gure),from left to right: naive triangulation, minimum �d2i triangulation and minimum convex decom-position (the details are given in Section 4.1). We can see in the table for each decompositionthe sum of squares of degrees, the number of convex subpolygons, and the time in millisecondsto compute the Minkowski sum of the polygon with a small convex polygon, Q, with 4 vertices.simultaneously decomposing the two polygons such that a \mixed" objective function isminimized, (iii) there are optimal decomposition algorithms that signi�cantly expedite theMinkowski-sum computation, but the decomposition itself is expensive to compute | insuch cases simple heuristics that approximate the optimal decomposition perform very well.In the next section we describe the di�erent decomposition algorithms we have imple-mented. We present a �rst set of experimental results in Section 4.2 and �lter out themethods that turn out to be ine�cient. In Section 4.3 we focus on the decompositionschemes that are not only fast to compute but also help to compute the Minkowski sume�ciently.We use the notation from Chapter 3. For simplicity of the exposition we assume herethat the input data for the Minkowski algorithm are two simple polygons P and Q. In prac-tice we use the same decomposition schemes that are presented here for general polygonalsets, mostly without changing them at all. However this is not always possible. For example,Keil's optimal minimum convex decomposition algorithm will not work on polygons withholes1. Furthermore, the problem of decomposing a polygon with holes to convex subpoly-gons is proven to be NP-Hard whether Steiner points are allowed or not; see [31]. Otheralgorithms that we use (e.g., AB algorithm) can be applied to general polygons withoutchanges. We discuss these decomposition algorithms in the following sections.1In such cases we can apply a �rst decomposition step that connects the holes to the outer boundary andthen use the algorithm on the simple subpolygons. This is a practical huristic that does not guarantee anoptimal solution.

394.1 The Decomposition AlgorithmsWe briey describe here the di�erent algorithms that we have implemented for decomposingthe input polygons into convex subpolygons. We used both decomposition with or withoutSteiner points. Some of the techniques are optimal and some use heuristics to optimizecertain objective functions. The running time of the decomposition stage is signi�cant onlywhen we search for the optimal solution and use dynamic programming; in all other casesthe running time of this stage is negligible even when we implemented a naive solution.Therefore we only mention the running time for the `heavy' decomposition algorithms. Inwhat follows P is a polygon with n vertices p1; : : : ; pn, r of which are reex.4.1.1 TriangulationGreedy triangulation. This procedure searches for a pair of vertices pi; pj such thatthe segment pipj is a diagonal, namely it lies inside the polygon. It adds such a diagonal,splits the polygon into two subpolygons by this diagonal, and triangulates each subpolygonrecursively. The procedure stops when the polygon becomes a triangle. See Figure 4.1 foran illustration.In some of the following decompositions we are concerned with the degrees of vertices inthe decomposition (namely the number of diagonals incident to a vertex). Our motivationfor considering the degree comes from an observation on the way our planar map structuresperform in practice: we noted that the existence of high degree vertices makes maintainingthe maps slower. The DCEL structure that is used for maintaining the planar map has,from each vertex, a pointer to one of its incident halfedges. We can traverse the halfedgesaround a vertex by using the adjacency pointers of the halfedges. If a vertex vi has d incidenthalfedges then �nding the location of a new edge around vi will take O(d) traversal steps.To avoid the overhead of a search structure for each vertex the planar-maps implementationdoes not include such a structure. Therefore, since we build the planar map incrementally,if the degree of vi in the �nal map is di then we performed �di1 O(i) = O(d2i) traversalsteps on this vertex. Trying to minimize this time over all the vertices we can either tryto minimize the maximum degree or the sum of squares of degrees, �d2i . Now, high degreevertices in the decomposition result in high degree vertices in the underlying arrangement,and therefore we try to avoid them. We can apply the same minimization criteria to thevertices of the decomposition.Optimal triangulation | minimizing the maximum degree. Using dynamic pro-grammingwe compute a triangulation of the polygon where the maximumdegree of a vertexMAX(di) is minimal. The algorithm is described in [26], and runs in O(n3) time.Optimal triangulation | minimizing �d2i . We adapted the minimal-maximum-degreealgorithm to �nd the triangulation with minimum�d2i where di is the degree of vertex vi ofthe polygon. See Figure 4.1. In the min-maxdegree triangulation the dynamic programmingscheme apply recursively the triangulation algorithm on smaller parts of the polygon and

40
Figure 4.2: From left to right: Slab decomposition, angle bisector (AB) decomposition, andKD decompositioncomputes the maximum degree over all the returned triangulations. The modi�cation thatis used to give the minimum �d2i is done only in the �nal step. We compute the sum ofsquares of degrees instead of maximum degree. Since both �d2i and MAX(di) are globalproperties of the decomposition that can be updated in constant time at each step of thedynamic programming algorithm | the rest of the algorithm and its analysis remain thesame.4.1.2 Convex Decomposition without Steiner PointsGreedy convex decomposition. The same as the greedy triangulation algorithm exceptthat it stops as soon as the polygon does not have a reex vertex.Minimum number of convex subpolygons (min-convex). We apply the algorithmof Keil [30] which computes a decomposition of a polygon into the minimum number ofconvex subpolygons without introducing new vertices (Steiner points). The running time ofthe algorithm is O(r2n logn). This algorithm uses dynamic programming. See Figure 4.1.This result was recently improved to O(n+ r2minfr2; ng) [32].Minimum �d2i convex decomposition. We modi�ed Keil's algorithm so that it willcompute decompositions that minimize �d2i , the sum of squares of vertex degree. Like themodi�cation of the min-max degree triangulation, in this case we also modify the dynamicprogramming scheme by simply replacing the cost function of the decomposition. Insteadof computing the number of polygons (as the original min-convex decomposition algorithmdoes) we compute a di�erent global property, namely the sum of squares of degrees. Wecan compute �d2i in constant time given the values �d2i of the decompositions of two sub-polygons.4.1.3 Convex Decomposition with Steiner PointsSlab decomposition. Given a direction ~e, from each reex vertex of the polygon we extenda segment in directions ~e and �~e inside the polygon until it hits the polygon boundary. Theresult is a decomposition of the polygon into convex slabs. If ~e is vertical then this is the

41well-known vertical decomposition of the polygon. See Figure 4.2. The obvious advantageof this decomposition is its simplicity.Angle \bisector" decomposition (AB). In this algorithm we extend the internal angle\bisector" from each reex vertex until we �rst hit the polygon's boundary or a diagonalthat we have already extended from another vertex2. See Figure 4.2. This decomposition(suggested by Chazelle and Dobkin [10]) gives a 2-approximation to the optimal convexdecomposition: If P has r reex vertices then every decomposition of P must include atleast dr=2e+ 1 subpolygons, since every reex vertex should be eliminated by at least onediagonal incident to it and each diagonal can eliminate at most 2 reex vertices. The ABdecomposition method extends one diagonal from each reex vertex until P is decomposedinto at most r + 1 convex subpolygons.KD decomposition. This algorithm is inspired by the KD-tree method to partition a setof points in the plane [12]. First we divide the polygon by extending vertical rays inside thepolygon from a reex vertex horizontally in the middle (the number of vertices to the leftof a vertex v, namely having smaller x-coordinate than v's, is denoted vl and the number ofvertices to the right of v is denoted vr. We look for a reex vertex v for which maxfvl; vrgis minimal). Then we divide each of the subpolygons by extending an horizontal line from avertex vertically in the middle. We continue dividing the subpolygons that way (alternatingbetween horizontal and vertical division) until no reex vertices remain. See Figure 4.2. Bythis method we try to lower the stabbing number of the subdivision (namely, the maximumnumber of subpolygons in the subdivision intersected by any line) | see the discussion inSection 4.3.2 below. The decomposition is similar to the quad-tree based approximationalgorithms for computing the minimum-length Steiner triangulations [14].4.2 A First Round of ExperimentsWe present experimental results of applying the decompositions described in the previoussection to a collection of input pairs of polygons. We summarize the results and drawconclusions that lead us to focus on a smaller set of decomposition methods (which westudy further in the next section). The implementation and test platform details are givenin Chapter 3.We ran the union algorithms (arrangement and incremental-union) with all nine decom-position methods on the input data described in Section 3.3. The running times for thecomputation of the Minkowski sum for four input examples are summarized in Figures 4.3through 4.6.It is obvious from the experimental results that triangulations result in poor union2It is not necessary to compute exactly the direction of the angle bisector, it su�ce to �nd a segmentthat will eliminate the reex vertex from which it is extended. Let v be a reex vertex and let u (w) bethe previous (resp. next) vertex on the boundary of the polygon then a segment at the direction �!uv + �!wvdivides the angle \uvw into two angles with less than 180� each.

42
Figure 4.3: Star input: The input (on the left-hand side) consists of two star-shaped polygons.The underlying arrangement of the Minkowski sum is shown in the middle. Running times inseconds for di�erent decomposition methods (for two star polygons with 20 vertices each) arepresented in the graph on the right-hand side.
Figure 4.4: Border input: The input (an example on the left-hand side) consists of a border ofa country and a star shaped polygon. The Minkowski sum is shown in the middle, and runningtimes in seconds for di�erent decomposition methods (for the border of Israel with 50 verticesand a star shaped polygon with 15 vertices) are shown in the graph on the right-hand side.
Figure 4.5: Random polygons input: The input (an example on the left-hand side) consists oftwo random looking polygons. The Minkowski sum is shown in the middle, and running times inseconds for di�erent decomposition methods (for two random looking polygons with 30 verticeseach) are shown in the graph on the right-hand side.

43
Figure 4.6: Fork input: The input (on the left-hand side) consists of two orthogonal forkpolygons. The Minkowski sum is shown in the middle, and running times in seconds for di�erentdecomposition methods (for two fork polygons with 8 teeth each) are shown in the graph onthe right-hand side.running times (the left three pairs of columns in the histograms of Figures 4.3 through 4.6).By triangulating the polygons, we create (n � 1)(m � 1) hexagons in R with potentially
(m2n2) intersections between the edges of these polygons. We get those poor resultssince the performance of the union algorithms strongly depends on the number of verticesin the arrangement of the hexagon edges. Minimizing the maximum degree or the sumof squares of degrees in a triangulation is a slow computation that results in better unionperformance (compared to the naive triangulation) but is still much worse than other simpleconvex-decomposition techniques.In most cases the arrangement union algorithm runs much slower than the incrementalunion approach. By removing redundant edges from the partial sum during the insertionof polygons, we reduce the number of intersections of new polygons and the current planarmap features. The fork input is an exception since the complexity of the union is roughlythe same as the complexity of the underlying arrangement and the edges that we removein the incremental algorithm do not signi�cantly reduce the complexity of the planar map;see Figure 4.6. More details on the comparison between the arrangement union algorithmand the incremental union algorithm are given in Chapter 3.The min-convex algorithm almost always gives the best union computation time butconstructing this optimal decomposition may be expensive | see Figure 4.7. Minimizingthe sum of squares of degrees in a convex decomposition rarely results in a decompositionthat is di�erent from the min-convex decomposition.This �rst round of experiments helped us to �lter out ine�cient methods. In the nextsection we focus on the better decomposition algorithms (i.e., minimum convex, slab, angle\bisector", KD), we further study them and attempt to improve their performance.

44
Figure 4.7: When using the min-convex decomposition the union computation time is thesmallest but it becomes ine�cient when considering the decomposition time as well (runningtimes in seconds for two star polygons with 100 vertices each)4.3 Revisiting the More E�cient AlgorithmsIn this section we focus our attention on the algorithms that were found to be e�cient inthe �rst round of experiments. As already mentioned, we measure e�ciency by combiningthe running times of the decomposition step together with the union step. We present anexperiment that shows that, contrary to the impression that the �rst round of results maygive, minimizing the number of convex subpolygons in the decomposition does not alwayslead to better Minkowski-sum computation time.We also show in this section that in certain instances the decision how to decomposethe input polygon P may change depending on the other polygon Q, namely for the sameP and di�erent Q's we should decompose P di�erently based on properties of the otherpolygon. This leads us to propose a \mixed" objective function for the simultaneous optimaldecomposition of the two input polygons. We present an optimization procedure for thismixed function. Finally, we take the two most e�ective decomposition algorithms (AB andKD) | not only are they e�cient, they are also very simple and therefore easy to modify| and we try to improve them by adding various heuristics.4.3.1 Nonoptimality of Min-Convex DecompositionsMinimizing the number of convex parts of P and Q can be expensive to compute, butit does not always yield the best running time of the Minkowski-sum construction. Insome cases other factors are important as well. Consider for example the knife input data.P is a long triangle with j teeth along its base and Q is composed of horizontal and

45j + 1 long decomposition j + 2 short decompositionnumber of vertices 23448 9379running time (sec) 71.7 25.6Figure 4.8: Knife input: The input polygons are on the left-hand side. Two types of decompo-sitions of P (enlarged) are shown second left: on top, j + 2 subpolygons with short diagonalslength, and below minimum convex decomposition with j +1 subpolygons with long diagonals.Third from the left is the Minkowski sum of P and Q. The underlying arrangement (usingthe short decomposition of P) is shown on the right-hand side. The table below presents thenumber of vertices in the underlying arrangement and the running time for both decompositions(P has 20 teeth and 42 vertices and Q has 34 vertices).vertical teeth. See Figure 4.8. P can be decomposed into j + 1 convex parts by extendingdiagonals from the teeth in the base to the apex of the polygon. Alternatively, we candecompose it into j + 2 convex subpolygons with short diagonals (this is the \minimallength AB" decomposition described below in Section 4.3.3). If we �x the decompositionof Q, the latter decomposition of P results in considerably faster Minkowski-sum runningtime, despite having more subpolygons, because the Minkowski sum of the long subpolygonsin the �rst decomposition with the subpolygons of Q results in many intersections betweenthe edges of polygons in R. In the �rst decomposition we have j+1 long subpolygons whilein the latter we have j + 2 subpolygons when only one of them is a \long" subpolygon andthe rest are j + 1 small subpolygons.We can also see a similar behavior in real-life data. Computing the Minkowski sumof the countries borders with star polygons mostly worked faster while using the KD-decomposition than with the AB technique; the KD decomposition always generates atleast as many subpolygons as the AB decomposition.4.3.2 Mixed Objective FunctionsGood decomposition techniques that handle P and Q separately might not be su�cientbecause what constitutes a good decomposition of P depends on Q. We measured therunning time for computing the Minkowski sum of a knife polygon P (Figure 4.8 | theknife polygon is second left) and a random polygon Q (Figure 3.5). We scaled Q di�erentlyin each test. We �xed the decomposition of Q and decomposed the knife polygon P oncewith the short j + 2 \minimal length AB" decomposition and then with the long j + 1minimum convex decomposition. The results are presented in Figure 4.9. We can see that

46
Figure 4.9: Minkowski sum of a knife, P , with 22 vertices and a random polygon, Q, with 40vertices using the arrangement union algorithm. On the left-hand side the underlying arrange-ment of the sum with the smallest random polygon and on the right-hand side the underlyingarrangement of the sum with the largest random polygon. As Q grows, the number of ver-tices I in the underlying arrangement is dropping from (about) 15000 to 5000 for the \long"decomposition of P , and from 10000 to 8000 for the \short" decomposition.for smallQ's the short decomposition of the knife P with more subpolygons performs betterbut as Q grows the long decomposition of P with fewer subpolygons wins.These experiments imply that a more careful strategy would be to simultaneously de-compose the two input polygons, or at least take into consideration properties of one polygonwhen decomposing the other.The running time of the arrangement union algorithm is O(I + k logk), where k is thenumber of edges of the polygons in R and I is the overall number of intersections between(edges of) polygons in R (see Section 3.2). The value of k depends on the complexity ofthe convex decompositions of P and Q. Hence, we want to keep this complexity small. Itis harder to optimize the value of I . Intuitively, we want each edge of R to intersect asfew polygons of R as possible. If we consider the standard rigid-motion invariant measure� on lines in the plane [41] and use L(C) to denote the set of lines intersecting a setC, then for any polygon Rij , �(L(Rij)) is the perimeter of Rij . This suggests that wewant to minimize the total lengths of the diagonals in the convex decompositions of P andQ. (Aronov and Fortune [4] use this approach to show that minimizing the length of atriangulation can decrease the complexity of the average case ray shooting query.) But wewant to minimize the two criteria simultaneously, and let the decomposition of one polygongovern the decomposition of the other.We can see supporting experimental results for segments in Figure 4.10. In these exper-iments we randomly chose a set T of points inside a square in R2 and connected pairs ofthem by a set S of random segments (for each segment we randomly chose its two endpointsfrom T). Then we measured the average number of intersections per segment as a function

47
Figure 4.10: Average number of intersections per segment as a function of the average segmentlength. The con�guration contains 125 randomly chosen points in a square [0; 1000]� [0; 1000]in R2 and 500 randomly chosen segments connecting pairs of these points.of the average length of a segment. To get di�erent average length of the segments, at eachround we chose each segment by taking the longest (or shortest) segment out of l randomlychosen segments, where l is a small integer varying between 1 and 15. The average numberof intersections is IjSj where I is the total number of intersections in the arrangement A(S).We performed 5 experiments for each value of l between 1 and 15, each plotted point inthe graph in Figure 4.10 represents such an experiment. The values of l are not shown inthe graph | it was used to generate sets of segments with di�erent average lengths. Inthe case of the arrangement A(R) of the polygons of R we have O(mn) endpoints and ksegments, where min(m;n) � k � 6mn. For the presented results we took jSj = 4jT j. Asthe results show, the intersection count per segment grows linearly (or close to linearly)with the average length of a segment.Therefore, we assume that the expected number of intersection of a segment in thearrangement A(R) of the polygons of R is proportional to the total length of edges of A(R)which we denote by �A(R). The intuition behind the mixed objective function which wepropose next, is that minimizing �A(R) will lead to minimizing I .Let P1; P2; :::; PkP be the convex subpolygons into which P is decomposed. Let �Pi bethe perimeter of Pi. Similarly de�ne Q1; Q2; :::; QkQ and �Qj . If �Rij is the perimeter of Rij(the Minkowski sum of Pi and Qj) then�Rij = �Pi + �QjSumming over all (i; j) we get�A(R) = �ij�Rij = �ij(�Pi + �Qj) = kQ(�i�Pi) + kP (�j�Qj)

48Let �P denote the perimeter of P and �P denote the sum of the lengths of the diagonalsin P . Similarly de�ne �Q and �Q. Let DP;Q be the decomposition of P and Q. Thenc(DP;Q) = �A(R) = kQ(2�P + �P) + kP (2�Q + �Q):The function c(DP;Q) is a cost function of a simultaneous convex decomposition of P andQ. Our empirical results showed that this cost function approximates the running timeof the arrangement algorithm. We want to �nd a decomposition that minimizes this costfunction. Let c� = minDP;Q c(DP;Q).If we do not allow Steiner points, we can modify the dynamic-programming algorithmby Keil [30] to compute c� in O(n2r4P + m2r4Q) as follows. We de�ne an auxiliary costfunction ĉ(P; i), which is the minimum total length of diagonals in a convex decompositionof P into at most i convex polygons. Thenc� = mini;j [j(2ĉ(P; i) + �P) + i(2ĉ(Q; j) + �Q)]:Since the number of convex subpolygons in any minimal convex decomposition of a simplepolygon is at most twice the number of the reex vertices in it, the values i and j areat most 2rP and 2rQ, respectively, where rP (resp. rQ) is the number of reex vertices inP (resp. Q). One can compute ĉ(P; i) by modifying Keil's algorithm [30] | the modi�edalgorithm as well as the algorithm for computing c� are described in detail in Appendix C.Since the running time of this procedure is too high to be practical, we did not implementit nor did we make any serious attempt to improve the running time. We regard thisalgorithm as a �rst step towards developing e�cient algorithms for approximating mixedobjective functions.If we allow Steiner points, then it is an open question whether an optimal decomposi-tion can be computed in polynomial time. Currently, we do not even have a constant-factorapproximation algorithm. The di�culty arises because unlike the minimum-size decompo-sition for which an optimal algorithm is known [10], no constant-factor approximation isknown for minimum-length convex decomposition of a simple polygon if Steiner points areallowed [31].4.3.3 Improving the AB and KD methodsIt seems from most of the tests that in general the AB and KD decomposition algorithmswork better than the other heuristics. We next describe our attempts to improve thesealgorithms.Minimal length angle \bisector" decomposition. In each step we handle one reexvertex. For a reex vertex we look for one or two diagonals that will eliminate it. Wechoose the shortest combination among the eliminators we have found. As we can see inFigure 4.12, the minimal length AB decomposition performs better than the naive AB eventhough it generally creates more subpolygons.

49While the AB decomposition performs very well, in some cases (concave chains, countriesborders) the KD algorithmperforms better. We developed the KD-decomposition techniqueaiming to minimize the stabbing number of the decomposition of the input polygons (whichin turn, as discussed above, we expect to reduce the overall number I of intersections in theunderlying arrangement A(R) of the polygons of R). This method however often generatestoo many convex parts. We tried to combine these two algorithms as follows.Angle \bisector" and KD decomposition (AB+KD). In this algorithm we extend a\bisector" from each reex vertex that both its neighbors are convex vertices. We apply theKD decomposition algorithm for the remaining non-convex polygons. By this method weaim to lower the stabbing number without creating redundant convex polygons in the sec-tions of the polygons that are not bounded by concave chains). We tested these algorithmson polygons with di�erent number of convex vertices, vertices in concave chains and \toothvertices". We can see from the results in Figure 4.11 that AB+KD performs best whenthe numbers of vertices in concave chains and tooth vertices are the same. When there aremore tooth vertices than vertices in concave chains, then the AB decomposition performsbetter.Next, we tried to further decrease the number of convex subpolygons generated by thedecomposition algorithm. Instead of emanating a diagonal from any reex vertex, we �rsttested whether we can eliminate two reex vertices with one diagonal (let's call such adiagonal a 2-reex eliminator). All the methods listed below generate at most the samenumber of subpolygons generated by the AB algorithm but practically the number is likelyto be smaller.Improved angle \bisector" decomposition. For a reex vertex, we look for 2-reexeliminators. If we cannot �nd such a diagonal we continue as in the standard AB algorithm.Reex angle \bisector" decomposition. In this method we work harder trying to �nd2-reex eliminator diagonals. In each step we go over all reex vertices trying to �nd aneliminator. When there are no more 2-reex eliminators, we continue with the standardAB algorithm on the rest of the reex vertices.Small side angle \bisector" decomposition. As in the reex AB decomposition, weare looking for 2-reex eliminators. Such an eliminator decomposes the polygon into twoparts, one on each of its side. Among the candidate eliminators we choose the one that hasthe minimal number of reex vertices on one of its sides. Vertices on di�erent sides of theadded diagonal cannot be connected by another diagonal because it will intersect the addeddiagonal. By choosing this diagonal we are trying to \block" the minimal number of reexvertices from being connected (and eliminated) by another 2-reex eliminator diagonal.Experimental results are shown in Figure 4.12. These latter improvements to the ABdecomposition seem to have the largest e�ect on the union running time, while keepingthe decomposition method very simple to understand and implement. Note that the smallside AB heuristic results in 20% faster union time than the improved AB and reex ABdecompositions, and 50% faster than the standard angle \bisector" method.

50
Figure 4.11: Running times in seconds for computing the Minkowski sum of the chain inputusing AB, KD, and AB+KD decompositions
Figure 4.12: Average union running times in seconds for star inputs with the improved decom-position algorithms

Chapter 5ConclusionsWe presented a general scheme for computing the Minkowski sum of polygonal sets. Weconcentrated on improving the e�ciency of this scheme by attacking its two main steps:polygon decomposition and computing the union of polygons.We implemented three union algorithmswhich overcome all possible degeneracies. Usingexact number types and special handling for geometric degeneracies we obtained a robustand exact implementation that could handle all kinds of polygonal inputs. Our program�nds the subdivision of the plane that represents the Minkowski sum of two given polygonalsets and reports the boundary cases where edges or vertices are \semi-free". We comparedthe e�ciency of the algorithms on several inputs. The experimental results imply thatif the Minkowski sum is complex compared to the input polygons the arrangement unionalgorithm gives good results, but if the output is likely to be simpler, the incremental unionalgorithm is very e�cient. If we cannot predict the complexity of a Minkowski sum, thedivide-and-conquer algorithm is a good choice, since in the experiments it mostly resultsin running times that were between the running times of the other two algorithms and inmany cases closer to the faster one.Furthermore, we measured the e�ect of the decomposition method on the e�ciency ofthe overall process. We implemented over a dozen of decomposition algorithms, among themtriangulations, optimal decompositions for di�erent criteria, approximations and heuristics.We examined several criteria that a�ect the running time of the Minkowski-sum algorithm.The most e�ective optimization is minimizing the number of convex subpolygons. Thus,triangulations which are widely used in the theoretical literature are not practical for theMinkowski-sum algorithms. We further found that minimizing the number of subpolygonsis not always su�cient. Since we deal with two polygonal sets that are participating in thealgorithmwe found that it is smarter to decompose the polygons simultaneously minimizinga cost function which takes into account the decomposition of both input set. Optimaldecompositions for this function and also simpler cost functions like the overall numberof convex subpolygons were practically too slow. In some cases the decomposition step ofthe Minkowski algorithm took more time than the union step. Therefore, we developed51

52some heuristics that approximate very well a cost function and run much faster than theirexact counterparts. Allowing Steiner points, the angle \bisector" decomposition gives a2-approximation for the minimal number of convex subpolygons. The AB decompositionwith simple practical modi�cations (small-side AB decomposition) is a decomposition thatis easy to implement, very fast to execute and gives excellent results in the Minkowski-sumalgorithm.We propose several direction for further research:1. Use the presented scheme and the practical improvement that we proposed with real-life applications such as motion planning and GIS and examine the e�ect of di�erentdecompositions for those special types of input data.2. Use the exibility of CGAL for applying the Minkowski sum algorithms to input setsde�ned by non-linear curves, for (an easy) example sets whose boundary is composedof line segments and circular arcs.3. Further improve the AB decomposition algorithms to give better theoretical approx-imation and better running times.4. The Minkowski sums of modest-size input sets can be huge. For example, the Minkowskisum of two polygons with about 100 vertices each can be a polygonal region withmillions of vertices. We are currently looking for algorithms that approximate theMinkowski sum with fewer edges and vertices. We are speci�cally looking for conser-vative approximations (that contain the exact Minkwoski sum) as this is desirable incertain applications such as robot motion planning and assembly planning.5. We tested the e�ciency of the Minkowski-sum algorithm with di�erent convex de-composition methods, but the algorithm will still give a correct answer if we will havea covering of the input polygons by convex polygons. Can one further improve thee�ciency of the Minkowski sum program using coverings instead of decompositions.6. We anticipate that our observations regarding the three union algorithms will behelpful for solving other, similar problems, and in particular for computing the mini-mization diagram [43] induced by lower envelopes in three-dimensional space. It is achallenging task to cast our union algorithms in a general software framework fromwhich the solution for speci�c problems could be derived with little e�ort.

Appendix AHandling Degeneracies in theUnion AlgorithmsIn Chapter 3 we described the union algorithms that we use to construct the Minkowski sumof two polygonal sets out of a set R of convex polygons which are the subsums of pairs ofconvex subpolygons of the input sets. The result of each union algorithm is a decompositionof the plane into regions that are inside the union and regions that are outside the union.In addition we would like to compute the boundary of the union. This boundary does notalways consist of just the edges of the decomposition that separate between inside regionsand outside regions. In some cases we can have a boundary edge or a boundary vertexthat is surrounded by regions that are contained entirely in the union. These features arenot always connected to the `regular' boundary. In robot motion planning, when the unionrepresents the con�guration space obstacle of a polygonal robot moving among polygonalobstacles, the special features represent a tight passage or a singular placement for the robotamong the obstacles; see for example Figure 1.7 and Figure 3.1. In this setting, a point onthe boundary of the union is called a semi-free location. In this appendix we will detail theclassi�cation of the special features for the arrangement and incremental union algorithmsthat we introduced in Chapter 3. We use the notation set up in Chapter 3.We believe that the technical details that we describe here can be useful in solving de-generate cases in other problems such as computing the minimization diagram representingthe lower envelope of surfaces in three dimensions.A.1 Handling Degeneracies in the Arrangement Union Al-gorithmRecall that in the arrangement algorithm we are constructing the arrangement A(R) ofthe polygons of R. The union of the polygons of R, Union(R), can be represented by a53

54 e2 f2r2r1 f1 e1 r3
Figure A.1: Example of the inside count calculation: the arrangement of R = fr1; r2; r3g isdrawn in the �gure. BC(e2) = 2 because it is on the directed boundary of r2 and r3. BC(e1)= 0 because it doesn't lie on a directed boundary of a polygon of R. The inside count of f1 is 1since f1 is contained in r1. Therefore, when we traverse from f1 to f2 through the halfedges e1and e2 we get: IC(f2) = IC(f1)�BC(e1) +BC(e2) = 1� 0 + 2 = 3. The face f2 is indeedcontained in the three polygons of R.subset of the features of A(R). Therefore, we would like to compute for each feature in theunderlying arrangement (face, edge or vertex) whether it is inside the union or not. To dothis we keep information in the halfedges and apply an update operation after each insertionof a polygon into the arrangement. After inserting all the polygons of R, we traverse thearrangement once and mark the features that are in the union.We keep for each halfedge e an integer value boundary count, denoted BC(e), whichcounts for each (directed) halfedge in the underlying arrangement on how many bound-aries of polygons in R it lies. For a polygon r 2 R with vertices v1; v2; : : : ; vkr given incounterclockwise order, r's directed boundary is the following sequence of directed edges:��!v1v2;��!v2v3; : : : ;�����!vkr�1vkr ;���!vkrv1 (these directed edges are not yet halfedges of the arrange-ment). We consider a halfedge e of the arrangement to be on the boundary of r if itsdirection is the same as the direction of the directed boundary of r. Each halfedge e isinitialized with BC(e) := 0. After a new polygon r is inserted into the arrangement weincrement the boundary count for all the halfedges on its boundary.In the �nal traversal phase we visit the faces of A(R) in a BFS order (a face is reachedthrough one of its neighbors). We keep for each face f its inside count, denoted IC(f),which is the number of polygons of R in which it lies. We start from the unbounded facewhose inside count is zero.

55If the faces f1 and f2 are neighbors sharing an edge which is represented by two halfedgese1 and e2 (twin(e1) = e2) then f2 lies in the same set of polygons that f1 lies minus thepolygons that we leave by moving from e1 to e2 plus the polygons that we enter by crossingthis edge. We get the following crossing rule:Lemma A.1.1 IC(f2) = IC(f1)�BC(e1) + BC(e2).See Figure A.1 for an example.A face f of the arrangement is inside Union(R) if and only if IC(f) > 0 (it lies in at leastone of the polygons of R). By applying the equation of Lemma A.1.1 during the traversalphase we can compute the inside count for all the faces of A(R).Next, we would like to know which edges are on the boundary of the union. Trivially wewould check for each edge e its two incident faces. If one of those faces is inside the unionand the other is not then we would mark e to be on the boundary of the union. But this isinsu�cient since, as mentioned earlier, there are edges that are on the boundary of one ormore polygons of R but are not contained in any of these polygons. Such an edge is on theboundary of the union but the faces on its sides are both inside the union (in some casessuch an edge might not be connected to the rest of the boundary of the union). We referto such an edge as a semi-free edge.Lemma A.1.2 Let e be an edge in A(R) represented by the halfedge e1, then e is semi-freeif and only if [IC(face(e1))� BC(e1)] = 0.Lemma A.1.2 says that if a halfedge e1 is on the boundary of BC(e1) polygons in R thatcontain face(e1) then e1 is on the boundary of Union(R) if and only if the inside count offace(e1) is the same as BC(e1). The halfedge e1 is contained in (or on the boundary of) allthe polygons that contain face(e1). Also, all the polygons of R that e1 is on their directedboundary surely contain face(e1). Therefore for every halfedge we get IC(face(e1)) �BC(e1). If IC(face(e1)) > BC(e1) then we have a polygon r 2 R that contains face(e1)but does not have e1 on its boundary. In this case e1 is contained in the interior of r. Whenthere is no such polygon, we get IC(face(e1)) = BC(e1) and then e1 is on the boundary ofUnion(R). This observation works for the regular cases as well as the \tight passage" cases.Finally, we should check the vertices. A vertex is on the boundary of Union(R) if it isa source or a target vertex of an edge that is on the boundary of Union(R), or it can bedisconnected from the rest of the boundary as explained above. We should know for eachpair (v; f) of a vertex v and an incident face f on how many boundaries of polygons of Rthat contain f , v lies. Let's call this number the slice count of (v; f). Since each vertexcan have many incident faces, the most appropriate place to keep this information is thehalfedge on the boundary of f that is targeted at v. Note that there is exactly one halfedgee(v;f) for which face(e(v;f)) = f and target(e(v;f)) = v. We denote the slice count of thepair (v; f) by SC(e(v;f)). Therefore, we get the following lemma:

56Lemma A.1.3 v is semi-free if and only if there is a face f such that [IC(face(e(v;f)))�SC(e(v;f))] = 0.We maintain the slice count during the insertion of polygons of R into the map: If e1and e2 are adjacent halfedges on the boundary of a polygon in R, sharing a vertex v, weincrease SC(e) for each halfedge e that lies clockwise between e1 and e2 around v, and suchthat target(e) = v.The following schema summarizes the details given in this section. Beside the regularpointers and data, the features of the arrangement contain the following information:feature property type descriptionface IC integer inside countinside Boolean is inside Union(R)halfedge BC integer boundary countSC integer slice countboundary Boolean is on the boundary of Union(R)vertex boundary Boolean is on the boundary of Union(R)Algorithm ArrangementUnion(R)Input: A set R = fr1; r2; : : :g of convex polygonsOutput: The Arrangement A(R) in which the faces of the union have their inside propertyset to true and the edges and vertices on its boundary have their boundary property set totrue.1. for j 1 to size(R) do2. A.insert(rj, BE) // insert the edges of rj into the arrangementBE is an ordered list of the halfedges of A on the directed boundary of rj . BEi is theith item of BE.3. for i 1 to size(BE) do4. BC(BEi) BC(BEi) + 15. foreach halfedge h around the vertex target(BEi) do6. if h is clockwise between BEi and BEi+1 then SC(h) SC(h) + 17. end for8. end for9. Traverse A in BFS order and calculate IC(f) for each face f using BC(e) of thehaldeges10. foreach face f in A do

5711. if IC(f) > 0 then inside(f) true12. foreach halfedge e in A do13. if IC(face(e)) = BC(e) then boundary(e) true14. foreach halfedge e in A do15. if IC(face(e)) = SC(target(e)) then boundary(target(e)) true16. return AComplexity AnalysisIn line 2 we insert a polygon into the arrangement. In lines 3{7 we traverse the arrange-ment features of the inserted polygons, namely the halfedges of its directed boundary andthe edges that it intersects (lines 5{6). The time we spend on the additional traversal isproportional to the insertion time. If the set R is randomly ordered then we get a totalarrangement construction time of O(I + k logk) (see Appendix B). The traversal in BFSorder in line 9 can be carried out in O(I + k) time using the adjacency pointers of thearrangement. In the next lines (10{15) we visit each face once and each halfedge twice. Thetotal time complexity of the algorithm is therefore O(I + k logk). We use O(I + k) spacefor storing the arrangement.A.2 Handling Degeneracies in the Incremental Union Algo-rithmIn the incremental algorithm we also insert one polygon of R at a time. However, thecoloring procedure is executed after each insertion of a polygon into the map. We keepfor each face f a boolean value inside(f) that is set if f � Union(R). For each halfedgeor vertex we keep a boolean value boundary that is set if they are on the boundary ofUnion(R). For each halfedge e we have an additional boolean value mark(e) that is set if eis on the directed boundary of a polygon of R. After inserting a polygon r into the map1,we set mark(e) for all the edges that are on r's directed boundary.Let P0 be an empty planar map. For each polygon ri of R we perform two steps: (i)insert ri into the planar map Pi�1 obtaining the map P 0i, and (ii) remove map features ofP 0i that do not contribute to the union boundary. The result is the planar map Pi.To �nd all the redundant features of P 0i it su�ces to check only the features of P 0i in (oron the boundary of) ri.1The implementation of the incremental union algorithm uses an extension of the planar map class thatsupports intersections.

58 We denote the set of halfedges of P 0i on the directed boundary of ri by BE(ri). Forevery halfedge e 2 BE(ri) we set mark(e). By using the incidence pointers of the map wecan traverse all the faces, halfedges and vertices that are inside ri. We denote them byFaces(ri), Halfedges(ri) and Vertices(ri) accordingly. First, we set inside(f) for each facef in Faces(ri). We can also remove the features Halfedges(ri) and Vertices(ri) since theyare contained inside a polygon of the union and do not contribute to the union's boundary.Therefore, it remains to count carefully on BE(ri).We need to distinguish edges and vertices of the boundary of ri that contribute to theunion boundary (in this stage the union refers to the union of the �rst i polygons of R).Let e be an edge of P 0i on the boundary of ri. We denote the directed halfedge that has theinterior of ri on its left by e1 and its twin by e2. Thus e1 2 BE(ri). The following lemmais trivial:Lemma A.2.1 If inside(face(e1)) 6= inside(face(e2)) then e is on the boundary.In such a case we do not remove e from the map and we set boundary(e) because it is onthe boundary of the union of the polygons inserted so far.In the rest of the cases an edge e has faces that are inside the union on both its sides. Ifit has been �rst inserted to the map when we inserted ri then it can be removed since bothits sides were contained in the union before inserting ri. If e was part of Pi�1 then it ispossible that e is on the boundary of two (or more) polygons of R but it is not contained inthe union. We can identify it by checking whether the halfedges e1 and e2 on e have bothmark(e1) and mark(e2) set. Therefore,Lemma A.2.2 In the map P 0i, if inside(face(e1)) = inside(face(e2)) and mark(e2) isset then e is on the boundary.Finally, we want to identify the vertices on the boundary. Vertices that are endpointsof edges of the boundary of the union are kept with their incident edges. The other verticesthat we will keep are those that were not �rst inserted when we insert ri. A vertex v wasnot �rst inserted with ri if its degree in P 0i is greater than two. A boundary vertex that isnot connected to other parts of the boundary (see an example in Figure 3.1) will have itsdegree in P 0i greater than two and none of its incident halfedges on the boundary (i.e. thehalfedges do not satisfy the terms of Lemmas A.2.1 and A.2.2)2.The whole process can be carried out by traversing once all the features of the mapP 0i that are inside or on the boundary of ri. After marking the faces and removing theredundant halfedges we get the planar map Pi which will be used by the next iteration ofthe algorithm.2Our planar map representation cannot handle vertices that are not connected to halfedges. Therefore,if a vertex is found to be on the boundary but none of its incident halfedges are on the boundary then wekeep a halfedge from BE(ri) with it. The halfedge that we keep will not be part of the resulting union.

59The following schema summarizes the details of this section. Beside the regular pointersand data, the features of the planar map contain the following information:feature property type descriptionface inside Boolean is inside Union(R)halfedge mark Boolean is part of a directed boundary of a polygonboundary Boolean is on the boundary of a partial unionvertex boundary Boolean is on the boundary of a partial unionAlgorithm IncrementalUnion(R)Input: A set R = fr1; r2; : : :g of convex polygonsOutput: The planar map P representing Union(R).1. P empty map2. for j 1 to size(R) do3. P .insert(rj, BE) // insert the edges of rj into the arrangementBE is an ordered list of the halfedges of A on the directed boundary of rj . BEi is theith item of BE.4. for i 1 to size(BE) do5. mark(BEi) true6. for i 1 to size(BE) do7. if degree(target(BEi)) > 2 then boundary(target(BEi)) true8. foreach halfedge e of P inside rj do9. P .remove(e)10. let f be the face of P inside rj11. inside(f) true12. for i 1 to size(BE) do13. let DoRemove true14. if inside(face(BEi)) <> inside(face(twin(BEi))) then15. DoRemove false16. if mark(twin(BEi)) then17. DoRemove false

6018. if boundary(target(BEi)) and degree(target(BEi)) = 1 then19. DoRemove false20. if DoRemove then P .remove(BEi) else boundary(BEi) true21. end for22. end for23. return PComplexity AnalysisIn each step we insert a polygon rj into the map (line 3) and traverse the halfedges thatwe added additional O(1) times (lines 4{7 and 12{21). In lines 8{9 we remove the edgesthat are inside rj . Since every edge is removed only once, we can charge each removal of anedge to an edge of the arrangement A(R) and therefore we have O(I + k) removals. UsingMulmuley's dynamic search structure [39] we can give an upper bound of O(k2 log2 k) forthe expected time of the construction. As mentioned in Chapter 3 this bound is worse thanthat of the arrangement union algorithm but in practice the incremental union algorithmoften performs much better than the arrangement algorithm. We use O(I + k) space forthe planar map.

Appendix BProof of Theorem 3.2.1:Construction Time ofArrangements of Convex PolygonsGiven a set R of convex polygons we wish to construct the arrangement A(R). To dothis e�ciently we construct the trapezoidal decomposition H(R) induced by the edges ofR by a randomized incremental algorithm. H(R) is a re�nement of A(R) having the sameasymptotic complexity. The running time of the algorithm presented in Section 3.2 isO(I + k log k) where k is the number of edges of the polygons in R and I is the number ofintersections among the edges of the polygons of R.We follow the notation of Mulmuley [39]. Each polygon of R can be decomposed into twox-monotone chains. Let N = fs1; s2; : : : ; sng be the set of n x-monotone chains composingthe polygons of R, with a total of n segments. Let � be the number of intersections betweenpairs of chains fromN . We will randomly permuteN and insert one chain at a time. Assumes1; s2; : : : ; sn is a random permutation. We will construct H(N) incrementally storing theresult and the intermediate decomposition in a doubly connected edge list (DCEL).Let N i = fs1; s2; : : : ; sig and H(N i) be the trapezoidal decomposition of N i. Wewill add si+1 to the decomposition to get H(N i+1). Let's assume that we are given thetrapezoid in H(N i) that contains the leftmost endpoint of si+1. We can insert the chainsi+1 by visiting all the trapezoids of H(N i) that intersect si+1. We can traverse the facesof H(N i) that intersect si+1 by the adjacency pointers of the DCEL. Traversing a face falong si+1 takes O(T (f) +m(si+1; f)) time where T (f) is the complexity of the face f inH(N i) and m(si+1; f)) is the number of segments of the chain si+1 that are inside f . Weneed to split every such traversed face by vertical lines from intersection points of si+1 withthe upper and lower sides of f and from endpoints of segments of si+1 inside f . The overalltraversal and splitting procedure takes O(jsi+1j +Pf T (f)) for all the faces f 2 H(N i)such that f \ si+1 6= ;. To get H(N i+1) we should contract the vertical attachments in61

62H(N i) that are intersected by si+1. Contracting a vertical attachment merges the facesadjacent to it into one face. The vertical attachment that was contracted now ends atits intersection with si+1. The merging takes O(1) time for each contracted attachment.Hence, the overall insertion step will take O(jsi+1j+Pf T (f)) for all the faces f 2 H(N i)such that f \ si+1 6= ;.We also need to locate the face of H(N i) in which the leftmost endpoint of si+1 lies.We maintain a conict list L(f) for every face of H(N i). L(f) will contain all the leftmostendpoints of the chains of N nN i. We denote the number of points in L(f) by l(f). Withthese lists we can determine in which face an endpoint of a chain lies in O(1). To maintainthe conict lists we have to pay O(l(f)) time for every face that we change during theinsertion. That gives a total insertion time for si+1 of O(jsi+1j +Pf [T (f) + l(f)]) for allthe faces f 2 H(N i) such that f \ si+1 6= ;.The cost of inserting the (i+1)st chain can be rewritten as O(jsi+1j+Pg[T (g)+ l(g)])where g ranges over all trapezoids in H(N i+1) adjacent to si+1. Each chain in N i+1 isequally likely to be involved in the (i+1)st insertion. Hence, this conditional expected costis proportional to Ci+1 = 1i+ 1 Xs2N i+1fjsi+1j+Xg [T (g) + l(g)]gwhere g ranges over all trapezoids in H(N i+1) adjacent to si+1. Each trapezoid is adjacentto at most four chains in N i+1. We denote the number of segments in the chains of N i+1by ni+1 and the number of intersections between them by �i+1. We getCi+1 � 4i+ 1fni+1 +Xg T (g) +Xg l(g)gwhere g ranges over all trapezoids in H(N i+1).Xg T (g) = O(jH(N i+1)j) and therefore Xg T (g) = O(�i+1 + ni+1) .where jH(N i+1)j is the complexity of H(N i+1).The conict lists in H(N i+1) contain all the leftmost endpoints that were not yet in-serted. Therefore: Xg l(g) = n � i .Thus we get Ci+1 = O(�i+1 + ni+1 + n � ii+ 1) .Let 0 < j � n be a �xed integer. For any �xed intersection v between chains of N letIv be a 0 � 1 random variable such that Iv = 1 if and only if v occurs in A(N j). Clearly

63�j =P Iv where v ranges over all intersections among chains ofN . v occurs in A(N j) if andonly if both chains that cause this intersection are in N j . This happens with probabilityO(j2=n2). The expected value of Iv is O(j2=n2). Therefore, by linearity of the expectationwe get �j = O(�j2=n2).We also de�ne a random variable Ii to count the number of segments that the ith chaincontributes to N j. Ii = jsij when si 2 N j and 0 otherwise. si is in N j with probabilityj=n and therefore the expected value of Ii is jsijj=n. Clearly nj = P Ii. By linearity ofexpectation we get nj = O(nj=n).Therefore the expected value of Ci+1 is (we set j := i+ 1):O(�j2=n2 + nj=n+ n� j + 1j)The expected cost of the whole algorithm is thenO(nXj=1 �j2=n2 + nj=n+ n � j + 1j) = O(�n2 nXj=1 j + nn nXj=1 1 + n nXj=1 1j � nXj=1 1 + nXj=1 1j) == O(�+ n + n logn)Using this algorithm we can incrementally construct the arrangement of the polygons ofR by randomly permuting the polygons in R and then inserting them as pairs of monotonechains. After each insertion we can update the additional data that is used for the calcula-tion of the union of R (see Appendix A). Let k be the number of edges of polygons of Rand I be the number of intersections among them. Clearly the number of polygons in R isO(k) then the overall time complexity will be O(I + k log k).

64

Appendix CPolygons DecompositionMinimizing the Mixed ObjectiveFunctionIn Section 4.3.2 we developed a mixed objective function for the decomposition of thetwo input polygons to the Minkowski sum computation. In this Appendix we describe analgorithm based on the optimal convex decomposition of Keil [30] for decomposing the inputpolygons simultaneously minimizing the mixed objective function1. Here we do not allowSteiner points.The running time of the arrangement union algorithm is O(I + k logk), where k is thenumber of edges of the polygons in R and I is the overall number of intersections between(edges of) polygons in R (see Section 3.2). The value of k depends on the complexity ofthe convex decompositions of P and Q. Hence, we want to keep this complexity small.Furthermore, we want to reduce the value of I . Intuitively, we want each edge of R tointersect as few polygons of R as possible. If we consider the standard rigid-motion invariantmeasure � on lines in the plane [41] and use L(C) to denote the set of lines intersecting aset C, then for any polygon Rij, �(L(Rij)) is the perimeter of Rij. This suggests that wewant to minimize the total lengths of the diagonals in the convex decompositions of P andQ. But we want to minimize the two criteria simultaneously, and let the decomposition ofone polygon govern the decomposition of the other.First we recall the notation of Section 4.3.2. Given two simple polygons P and Qwith m and n vertices respectively. Let DP;Q be a decomposition of P and Q into convexsubpolygons. Let P1; P2; :::; PkP be the convex subpolygons into which P is decomposed.Let �Pi be the perimeter of Pi. Let �P denote the perimeter of P and �P denote the sum of1The algorithm described here was proposed to us by Pankaj K. Agarwal.65

66the lengths of the diagonals in P . Similarly de�ne Q1; Q2; :::; QkQ, �Qj , �Q and �Q. Thenc(DP;Q) = kQ(2�P + �P) + kP (2�Q + �Q):The function c(DP;Q) is a cost function of a simultaneous convex decomposition of P andQ. Let c� = minDP;Q c(DP;Q). We present an algorithm that �nds a decomposition thatmeets this minimum.We de�ne an auxiliary cost function ĉ(P; a), which is the minimum total length ofdiagonals in a convex decomposition of P into at most a convex polygons. Thenc� = mina;b [b(2ĉ(P; a) + �P) + a(2ĉ(Q; b) + �Q)]:Since the number of convex subpolygons in any minimal convex decomposition of a simplepolygon is at most twice the number of the reex vertices in it, the values a and b are atmost 2rP and 2rQ respectively, where rP (resp. rQ) is the number of reex vertices in P(resp. Q). Assuming that we know the decompositions of P and Q that achieve ĉ(P; a) andĉ(Q; b), respectively, for every a and b, we can compute c� and �nd the decomposition inO(rPrQ) time.The single issue that we need to resolve is how to compute ĉ(P; a). In the followingsection we describe a dynamic-programing algorithm to compute the minimum length de-composition of a polygon (based on [30]) and in Section C.2 we describe how to modify thisalgorithm for computing ĉ(P; a).C.1 Minimum Length DecompositionLet v1; v2; : : : ; vm be the vertices of P given in clockwise order. We call a pair (i; j) valid ifvi is visible from vj and at least one of the two vertices is a reex vertex. If two verticesare visible from each other and they are not a valid pair then they must both be convex. Adiagonal that connects two convex vertices is redundant in any optimal convex decomposi-tion because it can be removed and the two convex subpolygons on its sides can be mergedinto a convex polygon. Therefore, for the construction of an optimal decomposition, we canconsider only the diagonals that connect two vertices that are a valid pair. For a valid pair(i; j), let Pij be the polygonal chain from vertex vi to vj . P1n = P is also a valid chain. Letd(i; j) be the length of the diagonal (i; j).Let f(i; j) denote the cost of the minimum length decomposition of Pij ; f(i; j) onlycounts the length of diagonals added. For a convex decomposition of Pij , let Cij be thebase convex polygon that contains the edge (i; j). Let (i; k) and (l; j) be the �rst and thelast edges of Cij ; see Figure C.1. The pair (i; k) should be a valid pair unless k = i + 1.Similarly, the pair (l; j) should be a valid pair unless l = j � 1.We de�ne a function F (i; j; k; l) as follows: F (i; j; k; l) is the cost of a minimum weightdecomposition under the constraints that (i; k) is the �rst edge of Cij and (l; j) is the last

67
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

vk vlCij vjviFigure C.1: The base subpolygon Cij of Pij with (i; k) as its �rst edge and (l; j) as its lastedgeedge of Cij . If k 6= i+1, then (i; k) has to be a valid pair, and a similar condition holds forthe pair (l; j).If the angle (j; i; k) or (l; j; i) is greater than 180�, we set F (i; j; k; l) to in�nity, as it isnot a valid convex decomposition. Thenf(i; j) = mink;l F (i; j; k; l)We need to compute F (i; j; k; l) for at most m2r2P pairs because if i is reex (convex), thenk is any (resp. reex) vertex. The same condition holds for l and j.We can compute the values of F using the following recursive formula:F (i; j; k; l) = d(l; j)+ f(l; j) + ming F (i; l; k; g) ; (C.1)where the minimum is taken over all vertices g such that (g; l) is a valid pair (or g = l� 1)and the angle (g; l; j) � 180�. The recurrence uses a minimum decomposition of Plj alongwith a minimum decomposition of Pil for which the �rst edge of Cil is (i; k) and the lastedge is (g; l). g is chosen only if the polygon Cil can merge with the triangle Tilj . Sinceboth Tilj and Cil are convex it is su�cient to verify that the angles (g; l; j); (j; i; k)� 180�.See Figure C.2 for an illustration.To complete the algorithm we �rst need to �nd all valid pairs and then computeF (i; j; k; l) for them. The result of the algorithm will be f(1; m). We will computeF (i; j; k; l) in ascending order of the di�erence j � i using Formula C.1.Theorem C.1.1 The minimum length convex decomposition of P can be computed inO(m2r2P) time.

68 vlvg
vjvivk

Figure C.2: The recurrence: we compute F (i; j; k; l) using a minimum decomposition of Pljalong with a minimum decomposition of Pil (shaded) for which the �rst edge of Cil is (i; k)and the last edge is (g; l). The triangle Tilj can merge with the base subpolygon Cil.Proof: For each pair (i; j) we can compute whether vi is visible from vj in O(m) time. Apotentially valid pair is a pair (i; j) for which at least one of vi or vj is reex. Computingvisibility for all potentially valid pairs will therefore take O(m2rP). Sorting all valid pairs inascending order of the di�erence between the indices will take an additional O(mrP logm)time.For a �xed quadruple i, j, k, and l, let g(i; j; k; l) denote the index of g that minimizesthe recurrence C.1. For a �xed triple i,k, and l, g(i; j; k; l) increases monotonically with jbecause as we increase j, the angle (j; l; i) can only decrease and more pairs (g; l) becomerelevant; see Figure C.3. When we use the recurrence C.1 we should only compute theminimum over all relevant g's that are greater than g(i; j0; k; l) where j 0 is the largest indexfor which (i; j 0) and (l; j 0) are valid pairs and j 0 < j. Thus, the amortized time spent incomputing each F (i; j; k; l) is O(1). The overall running time of the algorithm is thereforeO(m2r2P). 2C.2 Constrained Minimum Length DecompositionWe slightly change the above algorithm to compute ĉ(P; a). We de�ne F (s; i; j; k; l) tobe the minimum length convex decomposition of Pij into at most s convex subpolygons,under the constraint that (i; k) is the �rst edge of the base polygon Cij and that (l; j) isthe last edge of Cij . If the angle (j; i; k) or (l; j; i) is greater than 180� or if Pij cannot

69
vi vj0

vk vj
vlvg

Figure C.3: When j increases the angle (j; l; i) decreases and more valid pairs (g; l) becomerelevantbe decomposed into at most s convex subpolygons, we set the cost to in�nity. We de�nef(s; i; j) to be the cost of any convex decomposition of Pij with at most s subpolygons.The recurrence is now given by:F (s; i; j; k; l) = d(l; j) + minu�s ff(u; l; j)+ ming F (s � u; i; l; k; g)g ; (C.2)where the minimum is taken over all vertices g such that (g; l) is a valid pair (or g = l� 1)and the angle (g; l; j)� 180�.Theorem C.2.1 The minimum length convex decomposition of P into at most s subpoly-gons (for every 1 � s � 2rp) can be computed in O(m2r4P) time.Proof: We use the arguments from the proof of Theorem C.1.1. We now computeO(m2r3P)entries. The monotonicity condition described above still holds, i.e., for a �xed quadruples, i, k, l, the value of g increases monotonically with j. So each entry can be computed inO(rP) amortized time since s � 2rP , giving a total of O(m2r4P) time. 2

70Theorem C.2.2 A decomposition DPQ of the polygons P and Q that minimizes the mixedfunction c(DPQ) can be computed in time O(m2r4P + n2r4Q).Proof: Using the above algorithm we can compute ĉ(P; a) = f(a; 1; m) for P for everya � 2rP in O(m2r4P) time and ĉ(Q; b) = f(b; 1; n) for Q for every b � 2rQ in O(n2r4Q). Weneed an additional O(rP rQ) time to compute c�, which is subsumed by the other factors ofthe running time. 2

Bibliography[1] The CGAL User Manual, Version 2.0, 1999. http://www.cs.ruu.nl/CGAL.[2] P. K. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors,Handbook of Computational Geometry, pages 49{119. Elsevier Science Publishers B.V.North-Holland, Amsterdam, 1999.[3] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. N�aher, S. Schirra, and C. Uhrig.Approximate motion planning and the complexity of the boundary of the union ofsimple geometric �gures. Algorithmica, 8:391{406, 1992.[4] B. Aronov and S. Fortune. Average-case ray shooting and minimum weight triangula-tions. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 203{211, 1997.[5] M. Austern. Generic Programming and the STL | Using and Extending the C++Standard Template Library. Addison-Wesley, 1999.[6] A. H. Barrera. Computing the Minkowski sum of monotone polygons. In Abstracts12th European Workshop Comput. Geom., pages 113{116, M�unster, Germany, 1996.[7] A. H. Barrera. Finding an o(n2 logn) algorithm is sometimes hard. In Proc. 8th Canad.Conf. Comput. Geom., pages 289{294. Carleton University Press, Ottawa, Canada,1996.[8] M. Bern. Triangulations. In J. E. Goodman and J. O'Rourke, editors, Handbook ofDiscrete and Computational Geometry, chapter 22, pages 413{428. CRC Press LLC,Boca Raton, FL, 1997.[9] B. Chazelle. The polygon containment problem. In F. P. Preparata, editor, Compu-tational Geometry, volume 1 of Adv. Comput. Res., pages 1{33. JAI Press, London,England, 1983.[10] B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Toussaint, edi-tor, Computational Geometry, pages 63{133. North-Holland, Amsterdam, Netherlands,1985.[11] M. de Berg and A. van der Stappen. On the fatness of minkowski sums. TechnicalReport UU-CS-1999-39, Dept. of Computer Science, Utrecht University, 1999.71

72[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-ometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.[13] G. Elber and M.-S. Kim, editors. Special Issue of Computer Aided Design: O�sets,Sweeps and Minkowski Sums, volume 31. 1999.[14] D. Eppstein. Approximating the minimum weight Steiner triangulation. DiscreteComput. Geom., 11:163{191, 1994.[15] E. Ezra and E. Flato. Generating random polygons. In preparation, 2000.[16] A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Sch�onherr. On the design ofCGAL, the Computational Geometry Algorithms Library. Technical Report MPI-I-98-1-007, MPI Inform., 1998. To appear in Software|Practice and Experience.[17] E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and im-plementation of planar maps in CGAL. In J. Vitter and C. Zaroliagis, edi-tors, Proceedings of the 3rd Workshop on Algorithm Engineering, volume 1148 ofLecture Notes Comput. Sci., pages 154{168. Springer-Verlag, 1999. Full version:http://www.math.tau.ac.il/�ato/WaeHtml/index.htm.[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns | Elements ofReusable Object-Oriented Software. Addison-Wesley, 1995.[19] D. Halperin. Arrangements. In J. E. Goodman and J. O'Rourke, editors, Handbook ofDiscrete and Computational Geometry, chapter 21, pages 389{412. CRC Press LLC,Boca Raton, FL, 1997.[20] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for assemblyplanning: The motion space approach. Algorithmica, 26:577{601, 2000.[21] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the motion of apolygon in a polygonal environment. Discrete Comput. Geom., 16:121{134, 1996.[22] D. Halperin and R. H. Wilson. Assembly partitioning along simple paths: the case ofmultiple translations. Advanced Robotics, 11:127{145, 1997.[23] I. Hanniel. The design and implementation of planar arrangements of curves in CGAL.Master's thesis, Dept. Comput. Sci., Tel-Aviv Univ., 2000. Forthcoming.[24] S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexityof a single face of a Minkowski sum. In Proc. 7th Canad. Conf. Comput. Geom., pages91{96, 1995.[25] E. Hartquist, J. Menon, K. Suresh, H. Voelcker, and J. Zagajac. A computing strategyfor applications involving o�sets, sweeps, and Minkowski operations. Comput. AidedDesign, 31(4):175{183, 1999. Special Issue on O�sets, Sweeps and Minkowski Sums.

73[26] G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing themaximum degree. In Proc. 3rd Scand. Workshop Algorithm Theory, volume 621 ofLecture Notes Comput. Sci., pages 258{271. Springer-Verlag, 1992.[27] A. Kaul, M. A. O'Connor, and V. Srinivasan. Computing Minkowski sums of regularpolygons. In Proc. 3rd Canad. Conf. Comput. Geom., pages 74{77, 1991.[28] L. E. Kavraki. Computation of con�guration-space obstacles using the Fast FourierTransform. IEEE Trans. Robot. Autom., 11:408{413, 1995.[29] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regionsand collision-free translational motion amidst polygonal obstacles. Discrete Comput.Geom., 1:59{71, 1986.[30] J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput.,14:799{817, 1985.[31] J. M. Keil and J.-R. Sack. Minimumdecompositions of polygonal objects. In G. T. Tou-ssaint, editor, Computational Geometry, pages 197{216. North-Holland, Amsterdam,Netherlands, 1985.[32] J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simplepolygons. In Proc. 10th Canad. Conf. Comput. Geom., 1998.[33] M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbookof Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amster-dam, 1999.[34] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.[35] D. Leven and M. Sharir. Planning a purely translational motion for a convex object intwo-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom.,2:9{31, 1987.[36] K. Mehlhorn, S. N�aher, C. Uhrig, and M. Seel. The LEDA User Manual, Version 4.0.Max-Planck-Insitut f�ur Informatik, 66123 Saarbr�ucken, Germany, 1999.[37] K. Melhorn and S. N�aher. The LEDA Platform of Combinatorial and Geometric Com-puting. Cambridge University Press, 1999.[38] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253{280, 1990.[39] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-rithms. Prentice Hall, Englewood Cli�s, NJ, 1994.[40] R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequenceof translations. Discrete Comput. Geom., 3:123{136, 1988.

74[41] L. Santal�o. Integral Probability and Geometric Probability, volume 1 of Encyclopediaof Mathematics and its Applications. Addison-Wesley, 1979.[42] S. Schirra. Robustness and precision issues in geometric computation. In J.-R. Sackand J. Urrutia, editors, Handbook of Computational Geometry, pages 597{632. ElsevierScience Publishers B.V. North-Holland, Amsterdam, 1999.[43] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their GeometricApplications. Cambridge University Press, New York, 1995.[44] A. Stepanov and M. Lee. The standard template library, Oct. 1995.http://www.cs.rpi.edu/~musser/doc.ps.[45] M. van Kreveld. Twelve computational geometry problems from cartographic general-ization. Manuscript. Presented at the Dagstuhl meeting on Computational Geometry.March, 1999.[46] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors,Handbook of Discrete and Computational Geometry, chapter 35, pages 653{668. CRCPress LLC, Boca Raton, FL, 1997.

