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Abstract

An arrangement of a set S of triangles in space is the division of space into
maximal connected regions, each being the intersection of some subset of
S. Arrangements have been studied extensively in computational geometry,
both combinatorially and algorithmically. Arrangements are useful for solv-
ing many “real world” problems. For example, the problem of translational
motion planning for a robot in 3-space (under the assumptions, which we
shall soon relax, that the shape of the robot and the obstacles consist of
triangles). The configuration space of the problem, that is, the space of all
possible positions for the robot, can be represented as an arrangement of tri-
angles. The arrangement can be viewed as a graph G = (V, E), where each
node corresponds to a three-dimensional cell and two nodes are connected if
the robot can pass from one cell to another without passing through other
cells or triangles. The problem becomes finding the cell that contains the
starting point and the cell that contains the destination point and then find-
ing a path in the graph between the two corresponding nodes. Alas, planning
motion inside a cell might be very complicated since the cell itself might be
complex. The arrangement can be refined by adding planar facets. The re-
fined arrangement is called a decomposition, and in the case where we add
vertical facets it is called a vertical decomposition. If cells in the decomposi-
tion are simple enough the motion planning problems becomes a simple path
finding problem on a graph.

Arrangements and decompositions of triangles in three-dimensional space
have drawn special attention, since surfaces can be approximated with polyg-
onal surfaces which in turn are triangulated. Thus we can relax the assump-
tion we have made above about the shape of the robot and the obstacles.

This work deals with vertical decompositions of n triangles in three-
dimensional space. We describe a new decomposition scheme for triangles
in three-dimensional space which in most cases produces less cells than the
standard vertical decomposition. A cell in this decomposition might have
complexity O(n), however each of the cells is convex. We show by experi-
ments that in practice our new scheme is more favorable than the standard
vertical decomposition.

We give a deterministic output-sensitive algorithm for computing the
standard decomposition that runs in O(nlog®n + Vlogn), where V is the
complexity of the decomposition. This is a significant improvement over the
best previously known algorithm whose running time is O(n?logn+V logn).



We also give a deterministic output-sensitive algorithm for computing the
new decomposition we describe that runs in O(nlog®n + V logn), where V
is the complexity of the decomposition.

We implemented the two algorithms and ran them on a series of scenes.
We ran programs that use decompositions for their calculations and tried
them on the output of the two decompositions. Our results show that pro-
grams usually benefit from the new decomposition we propose here. Our
algorithms make use of a dynamic point location data structure. By using a
trivial point location in restricted number of places, the algorithms become
very simple and effective (in particular they perform only a space sweep, and
all the computations are done in two dimensions on the sweep plane).

We also show how to extend these algorithms to the case of a vertical
decomposition of polyhedral surfaces. We implemented these extensions as
well.
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Chapter 1

Introduction

The study of arrangements of curves or surfaces is an important area of
research in computational geometry. This is due to the fact that many
geometric problems in diverse areas can be reduced to problems involving
arrangements.

A collection S of n surfaces decomposes the Euclidean space IR? into
open cells of dimension d (also called d-faces) and into relatively open faces
of dimension k, for 0 < k < d. Each face or cell is a maximal connected
portion of the intersection of some subset Sy of S which does not meet any
other surface in S\Sy. The resulting collection of cells form a partition of IR
known as the arrangement A(S) of S. The combinatorial complexity of the
arrangement is defined to be the total number of cells of all dimensions of
A(S). The simplest example of an arrangement is when S is a set of lines in
the plane; such an arrangement is shown in Figure 1.1. For additional basic
terminology related to arrangements, the reader is referred to [4, 23, 32, 33,
49]

The surfaces in S are usually assumed to have constant description com-
plezity, such as the graphs of (possibly partially defined) low-degree algebraic
functions, whose domains of definition are semi-algebraic sets defined by a
constant number of polynomial equalities and inequalities of constant maxi-
mum degree.

Arrangements of triangles in IR* have drawn special attention, since sur-
faces can be approximated with polygonal surfaces which in turn are trian-
gulated. This thesis deals with arrangements of triangles in IR*.

A classical example of a problem that reduces to the study of arrange-
ments is the motion planning problem for a robot. In this example, the robot

7
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O-face
1-face

Figure 1.1: An arrangement of lines in the plane

is moving among obstacles. For simplicity assume that the robot is a point
in R? and the obstacles are triangles. The robot can move freely in space,
but it cannot cross through the triangles. The robot is initially positioned
in some location in space and it is given a target which it should reach.
One way to find a collision free path for the robot, from the initial location
to the target, is to decompose the space into cells, and construct a graph
G = (V, E) where each node represents a cell, and two nodes are connected
with an edge if the robot can move between the cells they represent without
crossing another cell, or a triangle. Motion planning becomes a simple path
finding on a graph, from the node corresponding to the cell that contains
the source point, to the node that contains the target point. In the study of
robot motion planning, GG is called a Connectivity Graph as it captures the
connectivity of the free space.

Notice, however, that we still need to plan how the robot moves inside
cells. These cells can be very complex and planning a motion inside them
might not be trivial at all. For most algorithmic uses a raw arrangement
is an unwieldy structure. The difficulty is that cells in an arrangement can
have very complex topologies, so navigating around them is difficult. What
we often want is a further refinement of the cells into convex pieces that are
each homeomorphic to a ball. Ideally, the number of cells after the refine-



ment should be proportional to the overall complexity of the arrangement.
For arrangements of hyperplanes the well-known bottom vertex triangula-
tion [19] meets this criterion. For more general arrangements such refined
decompositions are more difficult to find.

The simplest way to decompose such an arrangement is to compute the
bottom vertex triangulation of the arrangement of the planes supporting the
triangles. The resulting decomposition has size ©(n?), which is optimal in
the worst case. In many applications, however, the actual complexity of the
arrangement of triangles is much smaller. So the challenge is to obtain a
decomposition whose size is sensitive to the complexity of the arrangement
of the triangles.

Such a complexity-sensitive decomposition was given by Aronov and Sharir
[5]: their Slicing Theorem states that an arrangement of n triangles in space
can be decomposed into O(n?a(n) + K) tetrahedra, where K is the com-
plexity of the arrangement. This result is close to optimal: Q(K) is clearly a
lower bound on any decomposition, and Chazelle [11] shows that there are ar-
rangements of complexity O(n) such that any decomposition into convex cells
has size (n?). (The triangles in Chazelle’s example form the boundary of a
simple polytope.) The Slicing Theorem obtains a decomposition by adding
vertical walls for each of the triangle boundary edges, one after the other. The
wall of an edge e is obtained by “flooding” the zone of e in an arrangement
on the vertical plane H (e) containing e; this arrangement is defined by inter-
sections of H(e) with the triangles and added walls. After adding the walls
one is left with convex cells that can easily be decomposed into tetrahedra.
The Slicing Theorem decomposition has the unpleasant characteristic that
it depends on the order in which triangle boundary edges are treated. Thus
the tetrahedra in the decomposition are not defined “locally”, and it is not
canonical in the sense of Chazelle and Friedman [13]. This means that the
decomposition is not very well suited for randomized incremental algorithms.
It also makes it difficult to compute the decomposition efficiently.

A decomposition which does not have this problem is the following [18,
21, 40, 41]. This decomposition is also obtained by erecting vertical walls.
This time the wall for edge e simply consists of those points in H(e) that
can be connected to e with a vertical segment that does not cross any of
the triangles in 7. Secondly, walls are erected from the intersection edges
between pairs of triangles to produce a finer decomposition. Observe that
the wall erected from an edge is not obstructed by other walls, so the decom-
position does not depend on the order in which the edges are treated. We
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call this decomposition the vertical decomposition for T. Note that cells in
the vertical decomposition need not be convex; in fact, they need not even
be simply connected. However, the decomposition can easily be refined into
a subdivision in which each cell is convex.

For a long time the best known bound on the maximum combinato-
rial complexity of the vertical decomposition of an arrangement of n “well-
behaved” algebraic surfaces (see, e.g., [49] for a precise definition) in IR* for
fixed d was O(n?¢33(n)) [12], where 3(n) is a slowly growing function of n,
depending also on d and on the degree of the given surfaces. (Notice that
the maximum complexity of the underlying arrangement is ©(n?).) Recently,
Koltun improved this bound for fixed d > 4 to O(n??=**¢) by showing that
the maximum complexity of the vertical decomposition of an arrangement
of n fixed-degree algebraic surfaces or surface patches in four dimensions is
O(n**€) [36].

In R? it is easy to show that the maximum complexity of the vertical de-
composition of an arrangement of well-behaved surfaces is O(n?),(n)) where
Ag(n) is a near-linear function related to Davenport-Schinzel sequences [49].
Namely, in R?, the maximum complexity of the vertical decomposition is
very close to that of the underlying arrangement. For arrangements of tri-
angles, which are the focus of our thesis, de Berg et al. showed that the
maximum complexity of the vertical decomposition is the same as that of
the arrangement, that is ©(n?) [21]. They also showed that the complexity
of the vertical decomposition in the case of triangles is O(n?T¢ + K) where
K is the complexity of the arrangement; the near-quadratic overhead term
is close to optimal as there are arrangements with linear complexity whose
vertical decomposition has quadratic complexity. For more combinatorial
bounds on the complexity of the vertical decomposition of arrangements, see
[4, 32, 49].

In this thesis we present a new refinement, and compare it to the standard
vertical decomposition studied in [21]. We call the decomposition which
was studied in [21] the full decomposition. The full decomposition produces
convex cells of constant complexity each. The decomposition we present
here, which we call the partial decomposition, produces convex cells that
might have ©(n) complexity. The partial decomposition is similar to the
two-dimensional partial vertical decomposition discussed in [34]. Here we
extend vertical facets (walls) from some of the features of the arrangement
to get convex cells that might have ©(n) complexity.

The algorithm described in [21] to compute the decomposition of triangles
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in R? runs in O(n%logn + V logn) time, where V is the complexity of the
decomposition. The algorithm was extended to compute the vertical decom-
position of arrangements of n algebraic surface patches of constant maximum
degree in IR? in time O(n)\,(n)logn +V logn), where V' is the combinatorial
complexity of the vertical decomposition, A\,(n) is a near-linear function re-
lated to Davenport-Schinzel sequences, and ¢ is a constant that depends on
the degree of the surface patches and their boundaries.

The overhead of the algorithm is the time we always need, irrespective of
the complexity of the decomposition. The overhead of the algorithm in [21]
is O(n*logn). An algorithm that achieves a sub-quadratic overhead time
was shown in [21]. This algorithm uses multi-level data structures (for ray
shooting and similar problems) [2, 3, 20]. It also uses a standard trick [22, 42]
of “guessing” the output size, which is necessary to determine the amount
of preprocessing to be spent. This algorithm is, however, substantially more
complicated than the algorithm mentioned above, and the savings are small.
This algorithm runs in time O(min(n*/>*<V*> n?logn) 4+ Vlogn), for any
€ > 0, where V' is the combinatorial complexity of the vertical decomposition.
The latter algorithm is faster for V = O(n?/?).

In this thesis we present algorithms for constructing the full decomposi-
tion and the partial decomposition which run in O(nlog®n + V logn) where
V' is the complexity of the output decomposition. These algorithms signif-
icantly improve the overhead for computing such decompositions while still
being fairly simple. One non-trivial component that our new algorithm re-
quires is a data structure for dynamic point location. In our implementation
we substitute this component by a naive method which is applied exactly
(and only) n times.

The algorithms we implemented have only one step (a space sweep), in
contrast with the algorithm presented in [21] which has three steps (build-
ing lower and upper envelopes, a space sweep and building two dimensional
arrangements). An algorithm which has only one step is more easy to imple-
ment, more easy to debug.

The algorithms we present make use of dynamic planar point location.
Planar point location is a fundamental geometric searching problem and has
been extensively studied. Given a subdivision S of the plane into polygonal
regions, we want to perform on-line queries that ask for the region of S con-
taining a given query point. In the static case, where S is fixed, there are
optimal techniques that achieve O(logn) query time using O(nlogn) prepro-
cessing time and O(n) space [24, 35, 48], where n is the size of S. Research on



12 CHAPTER 1. INTRODUCTION

dynamic algorithms for geometric problems has received increasing attention
in the last years. See [6, 7, 14, 15, 17, 28, 44] for important results in the
subject, and [16] for a survey on the subject.

Goodrich and Tamassia [27, 29] show how to dynamically maintain a
monotone subdivision so as to achieve O(log?n) query time, O(logn) time
for vertex insertion and deletion, and O(logn + k) time for the insertion and
deletion of a monotone chain of k£ edges. Their methods are based on the
maintenance of two interlaced spanning trees, one for the subdivision and
one for its graph-theoretic dual, to answer queries. Queries are performed
by using a centroid decomposition of the dual tree to drive searches in the
primal tree. Goodrich and Tamassia dynamized this approach using the
edge-ordered dynamic tree data structure of Eppstein et al. [25], which is an
extension of the link-cut trees data structure of Sleator and Tarjan [25, 51].

We use this result for implementing point location during the space sweep.
The point location is done on the arrangement induced by triangles and walls
on the sweep plane. This arrangement changes during the sweep and the
point location data structure is updated respectively in O(logn) time per
update. When we handle an event during the sweep we do a point location
query to locate the face in which the event takes place. This query takes
O(log® n) time, whereas we can locate the face with our own data structure
in O(logn) time for most of the events. However, our data structure needs
prior information on the triangles that participate in the event, therefore it
is useless when we encounter a new triangle during the sweep. In such cases
we do a query on the point location data structure. Overall these queries
require O(nlog®n) time. The sweep itself takes O(V logn) where V is the
complexity of the output. And the algorithm runs in O(nlog®n + V logn)
time.

We have also implemented the two algorithms for the two types of vertical
decompositions. Implementors of geometric algorithms and data structures
encounter several difficulties. Geometric algorithms are usually described as-
suming an infinite-precision real arithmetic model of computation. In this
model, arithmetic operations, assignments and comparisons on real num-
bers take constant time. A program implemented using a naive substitu-
tion of floating-point arithmetic for real arithmetic can fail, since geometric
primitives depend on sign-evaluation and may not be reliable if evaluated
approximately. In [39], an example is given where using a floating point im-
plementation of the orientation predicate causes a convex hull algorithm to
give a wrong result. In many cases the program will go into an infinite loop
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or crash. For geometric algorithms that are restricted to rational computa-
tion (e.g., orientation and lexicographical comparison of input points), the
infinite-precision real model can be realized using multi-precision integer or
rational software packages (e.g. Gmpz [30] and LEDA’s rational type [37]).
Given a constant bound on the input bit length the predicates take O(1)
time to compute. However, the underlying constant may be very large.

A strategy to reduce the cost of exact computation is the use of floating
point filters, which is a general name for a variety of adaptive techniques in
which expressions are evaluated with floating point arithmetic, together with
a bound on the error of the computation. Exact computation is used only
when the result of the floating point computation is insufficient. There are
many implementations of such filters, some are specifically tailored for a given
predicate (e.g. [50] and the predicates in LEDA’s rational kernel [37, 39])
and some are more general and can be used for evaluating general expressions
(e.g. [26] and LEDA’s real number type [9, 37, 39]). Implementations that
evaluate the error bound at compile-time are called static filters [26] and
those that evaluate the error at run-time are called dynamic filters.

The two decompositions mentioned above, the full and the partial decom-
position were implemented as part of the thesis work. We have compared the
time it took to construct each of the two decomposition. As expected, con-
structing the partial decomposition was much faster than constructing the
full decomposition. We have also run two programs that employ the decom-
positions. One that finds a free path between two points in the space, and
one that calculates the volume of the cells in the decomposition (a means
to check the correctness of the program). We compared the time it took
each program to compute on the partial decomposition and on the full de-
composition. Most of the times the programs ran faster when the input was
the partial decomposition. This result means that having a small number
of cells compensates for their complexity. However, there were scenes where
the programs ran faster on the full decomposition.

The rest of the thesis is organized as follows. In Chapter 2 we introduce
the basic assumptions and terminology that are used throughout the thesis.
The vertical decomposition schemes are introduced in Chapter 3. In Chap-
ter 4 we describe the algorithms to compute the decompositions described in
Chapter 3. A discussion of the implementation of these algorithm is given
in Chapter 5. In Chapter 6 we give results of several tests we ran on the
two decompositions and discuss these results. We also extend these two al-
gorithms to compute the vertical decomposition of polyhedral surfaces. This
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extension is given in Chapter 7. Concluding remarks and suggestions for
future directions are given in Chapter 8.



Chapter 2

Preliminaries

2.1 Two Dimensions

A point p € IR? is above (below) a point ¢ € IR? if the segment pg is vertical
and p is above (below) ¢, namely has a higher (smaller) y coordinate.

Let C' = {¢1, ¢g, ..., ¢, } be a collection of Jordan arcs in the zy-plane, such
that each arc is z-monotone (i.e., every line parallel to the y-axis intersects an
arc in at most one point). For defining the lower (upper) envelope we regard
each curve ¢; in C as the graph of a continuous univariate function ¢;(x)
defined on an interval. The lower envelope ¥ of the collection C'is the point-
wise minimum of these functions: ¥(z) = mine¢;(z), where the minimum is
taken over all functions defined in x. Similarly, the upper envelope of the
collection C' is defined as the point-wise maximum of these functions. See
Figure 2.1 for an illustration of the lower envelope of a collection of line
segments. Let S be a set of arcs, and let A(S) denote the arrangement
induced by S, namely, the subdivision of IR? into cells of dimensions 0,1 and
2, induced by the arcs in S. We call cells of dimension 0 vertices. A vertex
is either an arc endpoint (an outer vertez), or an intersection of two arcs (an
inner verter). We assume that the arcs are in general position, that is, no
arc intersects another arc at its endpoint. See Figure 2.1 for an illustration.
In this example v; is an inner vertex and vy is an outer vertex.

We refer to an arc by edge. An segment is a maximal connected portion
of an arc not intersecting any other arc in S. A face is a maximal connected
region of the plane not intersecting an edge or a vertex.

15
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Figure 2.1: A set of line segments, and (in bold line) its lower envelope; v,
is an inner vertex, v, is an outer vertex

2.2 Three Dimensions

We refer to the positive z direction as up, and to the positive y direction as
right.

Let T' = {t,t3, ..., t, } be a collection of n (possibly intersecting) triangles
in R®.

We use the following terminology: a triangle has three boundary edges
which meet at the triangle’s corners. We say that a corner is before another
corner if it has a lower x coordinate, or if it has the same x coordinate and
a lower y value. The corner of a triangle that is before the other corners is
called the first corner. The corner having the other corners before it is called
the last corner. The third corner is called the middle corner.

We say that the middle corner bounds the triangle from the left (right)
if every point in the intersection of the triangle with a line parallel to the
y-axis that passes through the middle point, has a bigger (smaller) y value
than the middle point.

The intersection of two triangles is called intersection edge.

Two points p, ¢ € R? are vertically visible with respect to T if the segment
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Pq connecting them is vertical and the relative interior of pg does not intersect
any triangle in 7'. Usually the set 7" is clear from the context and we just
say that p and ¢ are vertically visible.

This definition is extended to objects other than points as follows: two
sets P, () C IR? are vertically visible if there are points p € P, ¢ €  that are
vertically visible.

If two sets P, Q) are vertically visible we define their vertical distance, as
the length of the shortest segment pg p € P, q € (), such that pq is vertical.

2.2.1 General Position

Let A(T) denote the arrangement induced by T, namely, the subdivision of
R? into cells of dimensions 0,1,2 and 3 induced by the triangles in 7.
We make the same general position assumption as in [5]:

1. No triangle is parallel to the z-axis.

2. At most three triangles intersect at a point.

3. No two boundary edges intersect.

4. No corner of one triangle lies on another triangle.

5. No boundary edge of one triangle intersects the intersection of two
additional triangles.

6. No line parallel to the z-axis intersects three boundary edges.

7. No line parallel to the z-axis intersects a vertex of one triangle and a
boundary edge of another triangle.

8. No line parallel to the z-axis intersects a boundary edge of one triangle
and an intersection of a boundary edge of another triangle with a third
triangle.

2.2.2 Vertical Walls

Let the vertical wall extended from a three-dimensional segment s, denoted
W (s, T), be defined as follows: W (s,T) = {p € R : p and s are vertically
visible}. In other words, W (s, T) is the union of all the vertical segments
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of maximal length that have a point of s as an endpoint and whose interior
does not intersect any triangle in 7". Note that some of these segments can
be rays.

Let T" be a collection of n triangles and m vertical walls as defined in
the previous section. Let the vertical wall extended from a three-dimensional
point p, denoted W (p,T"), be defined as follows: W(p,T") = {q¢ € R? : ¢
and p can be connected by an arc that is contained in a plane parallel to
the yz-plane which does not intersect any feature in 7'}. In other words,
W(p,T") is a vertical flooding of faces containing p in their interior or on
their boundary on the arrangement obtained from intersecting 7" with the
vertical plane orthogonal to the z-axis and passing through p.

Also define the left vertical wall extended from a three-dimensional point
p, as Wi(p,T") = {g € R* : ¢ € W(p,T') and q, < p,}. That is, the part of
the wall that is to the left of p. Similarly the right vertical wall is defined as
W,(p,T") ={qeR*: ¢ € W(p,T') and ¢, > p,}.



Chapter 3

Vertical Decompositions

In this chapter we present two variants of vertical decompositions of an ar-
rangement of triangles in three-dimensional space. The first is the well-known
standard vertical decomposition. This decomposition is so refined that every
cell in it has constant descriptive complexity, and it is in fact a trapezoidal
prism. An algorithm for computing it was presented in [21]. The second
decomposition is in a sense more economical, with fewer cells, some of which
may, however, be rather complex. A cell in the second novel decomposition
is guaranteed to be convex, but may have ©(n) complexity, where n is the
number of triangles. Nevertheless, since each cell in the decomposition of the
second type is convex, it is still fairly easy to manipulate it. For example
planning a free motion for our point robot between source and target inside
such a cell is trivial.

We call the first decomposition (the more refined one) the full decompo-
sitton, and the second decomposition the partial decomposition.

To the best of our knowledge, the partial decomposition for arrangement
of triangles has not been studied before. Our motivation to study it comes
from a similar two-dimensional decomposition studied in [34, 1] which proved
to be efficient in practice.

3.1 Preliminaries
Let T = {t1,t,...t,} be a collection of n triangles in IR®>. To simplify the
description of the decompositions we assume that the triangles are inside a

bounding simplex, and in general position as defined in Section 2.2.1.

19
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3.2 The Full Decomposition

Consider the decomposition F'D'(T') obtained from the arrangement A(7T) by
erecting a wall W (b, T') from every boundary edge b, and a wall W (i, T') from
every intersection edge ¢. Cells in this decomposition need not be convex;
in fact, they need not even be simply connected. Consider for example the
scene shown in Figure 3.1. In this scene a horizontal triangle intersects
another triangle. Figure 3.2 shows a cell created by this refinement from the
arrangement obtained from the scene in Figure 3.1. Here vertical walls have
been erected from triangle boundary edges and intersection edges. The cell
is a cylinder containing a cylindrical hole. If there is a bounding box the cell
is bounded by the ceiling of that box, otherwise it is infinite. The grey area
in the upper triangle is the part of the bounding box that contributes to the
cell’s ceiling. The grey area in the lower triangle is the part of the horizontal
triangle that contributes to the cell’s floor.

AN

Figure 3.1: A(T)

However, the decomposition can easily be refined into a convex subdivi-
sion FD(T) where each cell has constant complexity, without increasing the
asymptotic complexity of the subdivision.

We consider each triangle to be two-sided, and let ¢; denote the side
of ¢; facing downward and ¢ be the side of ¢; facing upward. We define a
two-dimensional arrangement of segments for the upper side of each triangle
t7. The arrangement is defined by a set %(¢.) consisting of two types of
segments: intersections of ¢; with other triangles of 7" and boundary pieces of
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Figure 3.2: A cell in A(T") which is not simply connected

walls W(e, T') (for boundary edges e of triangles in 7', or intersection edges
i between two triangles in T') that lie on ¢;. Denote this arrangement as
A(tF). Segments in A(t]") of the second type, in other words, are each the
contributions of ¢; to the lower envelope that bounds some wall W (e, T') from
below. Every face of every A(t;) represents a vertical cylindrical cell that has
the same zy-projection as that face, and that has a unique triangle bounding
it on the top and a unique triangle bounding it on the bottom (which is ;). A
face of A(t) may still be rather complex: it need not be simply connected,
and it may have a large number of edges on its boundary. Consider the
projection of A(#]") onto the xy-plane. We extend a y-vertical segment from
each vertex of the projected arrangement upward and downward until it
reaches another segment, or the boundary of the projection of ¢;. In other
words, we compute a trapezoidal decomposition of the arrangement. The
added segments are projected back to t; to obtain a refinement of A(t;")
into trapezoids. Finally, we extend each of these newly added segments
in the z-direction into vertical walls inside the respective three-dimensional
cells. We call these walls yz walls. Adding these yz walls obtains the full
decomposition.
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3.3 The Partial Decomposition

Consider the decomposition PD'(T) obtained from the arrangement A(7") by
erecting a wall W (b, T') from every boundary edge b. Cells in this decompo-
sition need not be convex nor be simply connected.

Consider for example the scene shown in Figure 3.1. In this scene a
horizontal triangle intersects another triangle. Figure 3.3 shows a cell created
by this refinement of the arrangement depicted in Figure 3.1. Here vertical
walls have been erected from triangle edges. The cell is a cylinder containing
internal walls. If there is a bounding box the cell is bounded by the ceiling of
that box, otherwise it is infinite. The grey area in the upper triangle is the
part of the bounding box that contributes to the cell’s ceiling. The grey area
in the lower triangle is the part of the horizontal triangle that contributes to
the cell’s floor.

Figure 3.3: A face in A(T') which is not simply connected

However, the decomposition can easily be refined into a subdivision PD(T)
where each cell is convex.

We erect vertical walls W (e, PD'(T')) from first corners of triangles and
from last corners of triangles. These walls split the cell into two parts, sepa-
rated by a wall parallel to the xz-plane that contains the corner. Such a wall
is shaped as the face that results from the intersection of a plane parallel to
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the zz-plane with the cell that contains the corner. In the partial decompo-
sition such an intersection is always convex. We also erect left vertical walls
Wi(e, PD'(T)) from middle corners that bound triangles from the left, and
right vertical walls W,.(c, PD'(T)) from middle corners that bound triangles
from the right. We also erect a vertical wall W (p, PD'(T)) from points of
intersection between a boundary edge of some triangle and another triangle.
We refer to this wall erection as flooding. A flood wall is shaped as the face
that results from the intersection of a plane parallel to the zz-plane with the
cell that contains the point that defines the flooding.

The complexity of the partial decomposition can be ©(n?) as the follow-
ing example, suggested to us by Boris Aronov, shows. Consider the scene
described in Figure 3.4 where n/3 triangles o = {a, ..., ay,/3} intersect each
other to form a convex ceiling, n/3 triangles 5 = {3, ..., B3} lie beneath
the ceiling such that the projections of these triangles on the xy-plane do not
intersect, and n/3, long and skinny triangles v = {71, ..., Yn/3} parallel to the
x-axis that stab the triangles in 3.

There are 6(n?) intersections, each between a boundary edge of a trian-
gle in § and a triangle in v. We arrange the triangles in 3 such that all
these intersection points have distinct z-coordinates. Each of these intersec-
tion points induces a flood wall with complexity 0(n), since it meets all the
triangles in a. Thus the total complexity of all the flood wall is 8(n?).

Figure 3.5 shows two dimensional arrangements obtained by intersect-
ing the scene described above and planes parallel to the yz plane that pass
through different = values.

Lemma 3.1 After flooding, the resulting cells of the partial vertical decom-
Position are cCONver.

Proof. It suffices to show that after the flooding there is no point of local
non-convexity on a the boundary of any cell in the resulting decomposition.
The first step of the partial decomposition eliminated the non-convexity at
triangle boundary edges, as we erected vertical walls from them. However,
it introduced new “exposed” edges that are the vertical boundary edges of
the vertical walls. The flooding takes care of exactly these exposed edges
by adding new faces through them. Finally we note that there are no new
exposed edges on the boundary of flood faces since by the definition of the
flooding process all the edges on the boundary of the flood faces are deter-
mined by existing faces of the decomposition. m
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Figure 3.4: Partial vertical decomposition where the floods have total com-
plexity ©(n?)
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Figure 3.5: The arrangement induced on vertical planes at different = values.
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Chapter 4

Vertical Decomposition
Algorithms

In this chapter we present algorithms to compute the two variants of vertical
decompositions introduced in the previous chapter.

4.1 QOutput Representation

We represent a vertical decomposition by a graph G. The nodes in G cor-
respond to the cells (vertical prisms) of the decomposition. With each node
we store an explicit description of the prism it represents. There is an edge
between two prisms if they share a vertical wall. Thus we get a complete
“network” that allows us to navigate from one point in a cell of the arrange-
ment A(T) to any other point in that cell. We cannot, however, go from one
cell in A(T) to an adjacent cell, because G only stores connections through
vertical walls, not through triangles.

We attach the following information to each node v, thus providing a full
description of the cell C,:

1. A list of triangles that contribute to the cell’s ceiling.
2. A list of triangles that contribute to the cell’s floor.
3. A list of walls that bound the cell from the right.

4. A list of walls that bound the cell from the left.

27
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5. Two walls parallel to the yz-plane that bound the cell between them.

6. A list of pointers to the neighbor cells of C,.

4.2 The Partial Decomposition

We construct the partial decomposition by performing a space sweep. We
sweep a plane P, parallel to the yz-plane from © = —oo to x = co. The goal
of the sweep is to erect the walls that refine A(T), as described in Section 3.3,
and create the data structure that represents the decomposition, as described
in Section 4.1.

Denote the arrangement induced by the intersection of the triangle set T’
with the sweep plane P,, by A!. Also denote the decomposition induced by
the intersection of the triangle set 7" and the set of walls W extended from
each boundary edge, with the sweep plane, by A,.

Note that A, is a two-dimensional arrangement on a plane parallel to the
yz-plane. Recall that ‘up’ means the positive z direction, and ‘right’ means
the positive y direction.

We say that A,, is before (after) A,, if 1 < xo (71 > ).

The decomposition A, changes continuously as the plane A, sweeps along
space, however its combinatorial structure changes only at a finite number
of events:

1. A vertex may appear (disappear).
2. An edge may appear (disappear).

3. A face may appear (disappear).

Since we are interested in the vertical decomposition of the arrangement
we will also keep track of the vertical visibilities between vertices of A,.
So we shall have another type of event:

4. An outer vertex is vertically visible with another vertex (either inner
or outer).

The case where two inner vertices vertically see each other is not men-
tioned here since it is the concern of the full decomposition alone.

During the sweep we maintain a dynamic point location structure de-
scribed in [27] on the arrangement A,. We also keep our own data structure
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to represent A,. Recall that A, is already a decomposition of A’. All the
faces in A, are convex. We represent a face of A, by (see Figure 4.1):

1. A chain of ceiling triangles.
2. A chain of floor triangles.

3. A witness for the right boundary of the face, which is either the inter-
section of the upper and lower chains, or an endpoint of some edge.

4. Similarly, a witness for the left boundary of the face.

TS

A facein A, ) .
In bold lines, the witnesses
for the right boundary.
! |
|
—* —o
|
In bold lines, the triangles In bold line, the witness
that form the ceiling. for the left boundary.

.

In bold lines the triangles
that form the floor.

Figure 4.1: A face in A,

Maintaining the dynamic point location data structure during the sweep
is done in O(logn) per update. In order to maintain our data structure
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during the sweep we need to create, delete, split and merge faces. Creating
(deleting) a face is done simply by initializing (deleting) the data structure
used to represent its two chains. Splitting a face f into f; and f5 is done
by splitting its chains and copying the appropriate witnesses to f; and fs.
Splitting the chains can be done in O(logn) time using, for example, red-
black trees [52] or skiplists [45] or any other balanced structure. Notice
that skiplist is a randomized structure, hence these operations can be done
in expected time O(logn). Merging two faces f; and f, into one face f is
done similarly by joining their chains and copying the appropriate witnesses.
Joining the chains can be done in O(logn) using the structures mentioned
above. See [21] for more information.

We maintain all the events in a priority queue (), ordered by increasing
x-coordinate. The operations we perform on () are insert an event, delete an
event, and fetch the next event, that is fetch the event with minimum z-value
(we delete each event after it has been fetched and handled). We also need to
perform a membership check of an event in the queue, to avoid inserting the
same event several times. Such a queue can be implemented so that the time
for each operation is O(logm), where m is the maximum number of events
held simultaneously in the queue [43]. To each event we insert into the queue,
we attach the local geometric and combinatorial information relevant to that
event.

The sweep we describe here is different than the one described in [21].
The algorithm described here gives a better overhead and runs in O(n log? n+
V'logn) time, where V' is the complexity of the decomposition. We first make
some observations about the events during the sweep and then we prove that
our sweep is correct.

We start the sweep by inserting events where new edges appear and events
where edges disappear (these events occur on first and last corners of trian-
gles). We also insert events where the sweep plane reaches middle corners
of triangles. The latter events do not change the combinatorial description
of the arrangement A, on the sweep plane P,. It only changes a boundary
edge of some triangle, which affects the way an outer vertex “moves” on the
sweep plane.

As we sweep we discover more events and insert them into the queue. See
Appendix A for a full list of the events and how they are detected.

When we come to handle an event we first have to find the faces that
are changed in the event. Finding these faces can be done in O(logn) if
we have some combinatorial information, such as triangles that appear on
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the boundary of these faces. When such information is not available (which
is only in the case for events where the sweep reaches a first corner of some
triangle) we use a (dynamic) point-location query which takes O(log” n) time.

Notice that a boundary edge can appear only as a right witness or as a
left witness of a face. This is obvious from the way we build A, and from the
way we hold the description of a face f in A,. In order to detect events where
two boundary edges are vertically visible we check if the right boundary wall
is vertically visible with the left boundary wall.

Notice that the left witness of a face can intersect only the leftmost trian-
gle in the ceiling triangle chain or the leftmost triangle in the floor triangle
chain. This is true because before the left witness intersects another triangle
in the upper (or lower) chain an event where the left witness is vertically visi-
ble with some intersection edge must be encountered. Also, the right witness
of a face can intersect only the rightmost triangle in the ceiling triangle chain
or the rightmost triangle in the floor triangle chain. In order to detect events
where a boundary edge intersects a triangle we check if the right witness
intersects the rightmost triangle of the lower chain, or the rightmost triangle
of the upper chain. We also check if the left witness intersects the leftmost
triangle in the upper chain, or the leftmost triangle in the lower chain. Recall
that one boundary edge appears once as a left witness of one cell and once
as a right witness of another. Therefore these checks are applied to it twice,
once as a right witness and once as a left witness.

Notice that the left witness of a face can be vertically visible only with the
leftmost intersection edge in the ceiling triangle chain or with the leftmost
intersection edge in the floor triangle chain. Also the right witness of a
face can be vertically visible only with the rightmost intersection edge in
the ceiling triangle chain or with the rightmost intersection edge in the floor
triangle chain. In order to detect events where a vertical visibility occurs
between a boundary edge and an intersection edge we check if the right
witness is vertically visibly with one of the rightmost intersection edges in
one of the chains, or if the left witness is vertically visibly with one of the
leftmost intersection edges in one of the chains.

Notice that because of the general position assumption before a face dis-
appears it is reduced to a face with a total of three triangles in both of its
chains, and no boundary edges as witnesses, or to a face with a total of two
triangles in both of its chains. In order to detect events where three triangles
intersect we check for an intersection of three triangles that appear in faces
that have a total of three triangles in both of its chains and no boundary



32 CHAPTER 4. VERTICAL DECOMPOSITION ALGORITHMS

edges as witnesses.

All these checks can be performed in O(logn) time. These checks detect
potential events. We add events that were detected to the queue, with the
x-coordinate of the event. We say potential because when we come to handle
an event of vertical visibility, we may find that this vertical visibility is ob-
scured by another triangle in a manner that we were unable to predict when
the event was inserted into the queue. Therefore, we distinguish between
two types of events: actual events, which are either events of intersections,
events that occur at corners of triangles or events that indeed correspond to
a vertical visibility, and false events, which are potential vertical visibilities
that are discovered to be obscured when handled.

Lemma 4.1 The set of events that is computed during the sweep contains the
set of wisibilities between boundary edges, the set of visibilities between bound-
ary edges and intersection edges, the set of intersections between boundary
edges and triangles and the set of intersections between three triangles.

Proof. First we claim that no vertical visibility between a two boundary
edges is missed by our algorithm. The reason is that before a pair of boundary
edges become vertically visible, they must become witnesses for some face f of
A,. This is similar to a basic argument in the Bentley-Ottmann algorithm for
finding intersections of line segments [8, 43]. The same argument is applied to
events of vertical visibility between a boundary edge and an intersection edge,
where the boundary edge and the intersection edge must become adjacent
in the same face f of A, before becoming vertically visible and to events of
intersection of a boundary edge with a triangle, where the boundary edge
and the triangle must become adjacent in the same face before intersecting;
and to events of intersection of three triangles where the three triangles must
contribute to the ceiling chain and to the floor chain of some face f in A,,
before they intersect. m

Lemma 4.2 The false events can be efficiently distinguished from the actual
events. Fach false event can be charged to an actual event, and no actual
event gets charged more than a constant number of times this way.

Proof. Notice that events of intersections cannot be obscured and once they
are detected they are actual events. Once we handle a vertical visibility
event it is easy to determine whether it is actual or false by checking whether
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the features involved in this event (boundary edges, intersection edges or
triangles) belong to the same face and are adjacent in that face. The event
is actual if and only if the features are in relative position as they were when
the event was detected. That is, the topology of the arrangement is such
that the event occurs as forecasted when it was detected. We charge each
false event ¢’ to the actual event ¢ that has “spawned” it. Every vertical
visibility event is added to the queue only at actual events; a false event does
not create new events. Since no event creates more than a constant number
of additional events, no actual event will be charged more than a constant
number of times for false events. m

Lemma 4.3 The space sweep algorithm described above runs in time O(nlog® n+
Elogn), where E is the number of events and n is the number of triangles.

Proof. We have shown that every event can be handled with a constant
number of operations on some triangle chains (the full list of the event and
how to handle them is given in Appendix B), and on the priority queue. We
have shown that finding the faces that change in the event takes O(logn),
except for the n events of first corners, which take O(log” n) each. Thus every
event takes O(logn) time, except for n events which take O(log®n) each, and
the whole sweep runs in O(nlog®n + Elogn) time. m

Notice that a face of A, is an intersection of some three-dimensional
cell with the sweep plane. The intersection of the sweep plane P, with a
cell consists of at most one face. However, since we allow the cells to be
complicated, a single three-dimensional cell might intersect different sweep
planes with faces which are different in their combinatorial structure.

During the sweep we gather the cell’s information, i.e. the triangles that
contribute to its floor and ceiling, and the vertical walls that bound it. For
example, when a triangle is added to the ceiling chain or the floor chain we
also add its contribution to the description of the cell.

When we gathered all the information regarding a cell, we write it to the
output. This happens at events where we gather the information about the
feature of the cell that has the largest z-value. A feature with the largest x-
value may be of two types. Either the face that represented the cell on A, has
disappeared, or we erected a wall during a flooding process. In the first case,
the description of the cell is complete and the structure representing the face
is deleted. In the latter case, where we flood a face, the wall erected during
the flood is added to the description of the cell and then the description
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is complete. The face structure is not deleted, but it is set to represent a
different new cell. The flood is added to the description of the new cell as
well.

Notice that the wall erected during the flood is the intersection of the
cell with the sweep plane P,. This intersection is equivalent to the face
corresponding to the the cell. Therefore creating the description of the wall
is trivial. The description added to the cell is simply the = value at which the
flood occurred. This is sufficient to describe the flood since the cell already
contains a description of its upper and lower boundaries and its boundaries
on the positive and negative y directions (on the left and right).

Generally, we flood a face before we split it, before we join it with another
face, or when the sweep plane reaches the middle corner of its left (right)
witness. More specifically, we flood a face in these cases:

1. A new edge appears inside the face.
2. An edge disappears.

3. The sweep has reached a corner of the triangle that is the left boundary
of the face, and the triangle lies to the left of the corner.

4. The sweep has reached a corner of the triangle that is the right bound-
ary of the face, and the triangle lies to the right of the corner.

5. A boundary edge e of some triangle ¢; intersects a triangle ¢; which
contributes to the upper (lower) chain of the face.

When two faces become neighbors, that is, two faces are separated by a
vertical wall (erected from a boundary edge, or erected during a flood), we
keep the information of this neighborhood, either by adding the description
of the wall and a pointer to the face that lies behind it, or by adding an edge
in the graph that represents the output between the two nodes that represent
the neighboring cells.

Lemma 4.4 Given a set of triangles T, the algorithm described above con-
structs the partial decomposition PD(T).

Proof. Cells that are the output of the algorithm described above have
boundaries that consists of triangles, walls erected from boundary edges and
walls erected during a flood.
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Recall that every face f in A, is an intersection of some cell with the
sweep plane P,.

Edges that result from the intersection of triangles with the sweep plane
P, can appear only on the boundary of a face f in A,. Therefore triangles
can appear only on the boundary of cells.

The intersection of a boundary edge e with the sweep plane P, results
in an outer vertex in A,. An outer vertex can appear only as a witness
for the left boundary or the right boundary of a face. This is equivalent to
erecting a wall from the boundary edge e, which means that walls erected
from boundary edges can appear only on the boundary of cells.

The flooding process described in Section 3.3 takes place in a decompo-
sition where vertical walls have been erected from boundary edges. Such a
flood corresponds to flooding a face in A,. The algorithm floods faces in
events mentioned in Section 3.3. Each of these floods is a vertical wall that
splits the cylinder represented by the face into two cells. Therefore walls
erected in the flood process appear on the boundary of cells. m

Theorem 4.5 The partial decomposition can be computed in O(n log®n +
klogn) time, where k is the complezity of the output.

Proof. In the algorithm we have shown, it takes O(logn) time to handle an
event which is not a first corner of a triangle (without flooding and without
adding new features to cells’ description). First corners of triangles can be
handled in O(log®n) time each. We denote the overall complexity of flood
walls by ¢ which may be ©(n?) in the worst case: There are at most O(n?)
flood events and handling each takes at most O(n) time. As mentioned
earlier the overall complexity of all the flood faces can be ©(n?) in the worst
case. We also denote the number of events by £. The sweep takes (nlog?n+
Elogn + ¢ + k) time to complete.

Since every event during the sweep induces at least one feature in the
output representation, and since every feature of the flood contributes a
constant number of features in the output representation, we conclude that
the algorithm runs in O(nlog®n + klogn), where k is the complexity of the
output. m
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4.3 The Full Decomposition

We construct the full decomposition by performing a similar space sweep.
We sweep a plane P, parallel to the yz-plane from x = —o0 to £ = co. The
goal of the sweep is to erect the walls that refine the A(T'), as described in
Section 3.2, and create the data structure that represents the decomposition,
as described in Section 4.1.

Denote the arrangement induced by the intersection of the triangle set T'
with the sweep plane P,, by A’. Also denote the decomposition induced by
the intersection of the triangle set 7" and the set of walls W extended from
each boundary edge, with the sweep plane, by A,.

Asin the description of the partial decomposition, here as well, the decom-
position A, changes continuously along the sweep, however its combinatorial
structure changes only at a finite number of events.

1. A vertex may appear (disappear).
2. An edge may appear (disappear).
3. A face may appear (disappear).

4. An outer vertex is vertically visible from a vertex (either inner or outer).

Since the full decomposition erects walls from intersection edges, we
shall have another type of event, that was not needed in the partial
decomposition algorithm:

5. Two inner vertices are vertically visible.

As in the algorithm for the partial decomposition described in Section 4.2
we maintain a data structure to represent A,, and a dynamic data structure
that answers point-location queries. The data structures are the same as was
described for the partial decomposition.

Maintaining the dynamic point location data structure and our data
structure during the sweep is done as it is done during the sweep for the
partial decomposition. As in the partial decomposition we start the sweep
by inserting into a queue events that occur on triangle corners. And we dis-
cover more events and insert them into the queue as described for the partial
decomposition algorithm in Section 4.2.

Since the full decomposition erects walls from intersection edge we need
to gather information on these walls during the weep. In order to do so we
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need to keep track of vertical visibilities between intersection edges. This
is done as in [21]. Whenever a new vertex v is created on the floor chain
of f (the operations for a new vertex on the ceiling chain are symmetric),
we look for its “neighbors” in the ceiling chain of f (mark them as u; and
ug), that is, we look for the two vertices of the ceiling of f whose projection
onto the y-axis lie nearest to the projection of v onto the y-axis, where
(u1)y < (v)y < (u2)y. Each vertex w in the ceiling chain and in the floor chain
represents an intersection edge e(w). Since we have attached to each vertex
some additional information, we can compare e(v) with each of e(u;) and
e(uz) to see if their projections onto the xy-plane intersect. If they intersect,
we have detected a potential visibility between two intersection edges; we
add this event to the queue, with the x-coordinate of the intersection point.
We say potential because when we come to handle this event, we may find
that this “vertical visibility” is obscured by another triangle in a manner
that we were unable to predict when the event was inserted into the queue.
Therefore, we distinguish between two types of events: actual events, which
are either events of intersections, events that occur at corners of triangles or
events that indeed correspond to a vertical visibility, and false events, which
are potential vertical visibilities that are discovered to be obscured when
handled.

When we handle an actual event that correspond to vertical visibility of
a pair of vertices u and v on the ceiling and floor chains, respectively, each
of u and v now have new neighbors on the opposite chain, so we check these
new neighbors for additional potential events as above.

The proofs of Lemmas 4.6 and 4.7 are straightforward extensions of the
proofs of Lemmas 4.1 and 4.2, we therefore omit them here.

Lemma 4.6 The set of events that is computed during the sweep contains
the set of wvisibilities between boundary edges, the set of wvisibilities between
boundary edges and intersection edges, the set of visibilities between two in-
tersection edges, the set of intersections between boundary edges and triangles
and the set of intersections between three triangles.

Lemma 4.7 The false events can be efficiently distinguished from the actual
events. Fach false event can be charged to an actual event, and no actual
event gets charged more than a constant number of times this way.

Lemma 4.8 The space sweep algorithm described above runs in time O(n log® n+
Elogn), where E is the number of events and n is the number of triangles.
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Proof. We have shown that every event can be handled with a constant
number of operations on some triangle chains (the full list of the event and
how to handle them appears in Appendix B), and on the priority queue. We
have shown that finding the faces that change in the event takes O(logn),
except for the n events of first corners, which take O(log®n). Thus every
event takes O(logn) time, except for n events which take O(log®n), and the
whole sweep runs in O(nlog”n + Elogn) time. m

Recall that a face of A, is an intersection of some three-dimensional cell
with the sweep plane. The intersection of the sweep plane A, with a cell
consists of at most one face.

When we handle events during the sweep we add cells (and their descrip-
tion) to the output data structure. We gather the description of the cell from
the description we maintain for the face. In order to do so we need to refine
the faces.

Consider a face f. Erect a vertical segment from each vertex in the floor
chain and from each vertex in the ceiling chain. We obtain a subdivision of
the face into trapezoids. We call each of these trapezoids a sub-face. Consider
Figure 4.2 for an illustration of a decomposition of a face into sub-faces.

Figure 4.2: A decomposition of a face into sub-faces

When we handle an event during the sweep, we create a cell for each
sub-face that has ended, or changed. We also set the cell description to
be the information gathered in the sub-face. Figure 4.3 illustrates a case
where three sub-faces are replaced with three different sub-faces in an event
of vertical visibility of two intersection edges. In this example sub-faces A,
B and C, are replaced by A’, B" and C’. Notice that the sub-face D remains
unchanged.

When two sub-faces become neighbors, that is, two sub-faces are sepa-
rated by a vertical wall parallel to the zz-plane (erected from a boundary
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Figure 4.3: Two sub-faces are replaced by two other sub-faces in an event of
vertical visibility

edge or from an intersection edge) or two sub-faces are separated by a wall
parallel to the yz-plane (as happens when one sub-face replaces another sub-
face), we keep this information in the face, we also add the information about
the two neighboring cells represented by the faces to the output.

Lemma 4.9 For a given set T of triangles the algorithm described above
produces the full decomposition FD(T).

Proof. Cells that are the output of the algorithm described above have
boundaries that consists of triangles, walls erected from boundary edges,
walls parallel to the yz-pane erected from intersection edges and walls parallel
to the xz-plane erected from points in which events took place.

Recall that every face f in A, is an intersection of some cell with the
sweep plane P,.

Edges that result from the intersection of triangles with the sweep plane
P, can appear only on the boundary of a face f in A,. Therefore triangles
can appear only on the boundary of cells.

The intersection of a boundary edge e with the sweep plane P, results in
an outer vertex in A,. An outer vertex can appear only as a witness for a
left boundary of a face or a right boundary of a face. This is equivalent to
erecting a wall from the boundary edge e, which means that walls erected
from boundary edges can appear only on the boundary of cells.

Notice that the walls parallel to the yz-plane are erected only inside sub-
faces that contain the point in which the event took place. This separation
of sub-faces is equivalent to erecting these walls after walls parallel to the zz-
plane have been erected from boundary edges and intersection edges. These
walls are equivalent to the yz walls described in Section 3.2. m
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Theorem 4.10 The full decomposition can be computed in O(n log®n +
klogn) time, where k is the complezity of the output.

Proof. In the algorithm we have shown, it takes O(logn) time to handle an
event which is not a first corner of a triangle. First corners of triangles can be
handled in O(log?n) time each. The whole sweep takes (nlog®n + Flogn)
time to complete, where F is the number of events.

Clearly the algorithm we have shown runs in O(nlog®n + Elogn + k).

Since every event during the sweep induces at least one feature in the
output representation, we conclude that the algorithm runs in O(n log®n +
klogn), where k is the complexity of the output. m



Chapter 5

Implementation Detalils

We implemented the algorithms for constructing partial decomposition and
the full decomposition. The two implementations were written in C++.
Since there is much similarity between the two algorithms some of the code
in their implementations is the same, and most of the rest has some small
modifications. Most of the code describes how events are handled during the
sweep, and since except for the event of intersection edges which are vertically
visible, all other events appear on both algorithms they have almost the same
number of source lines - approximately 16000. 5000 of which describe how
events are handled during the sweep. 2000 lines describe how additional
events for the case of polyhedral surfaces are handled. 2000 lines describe
how to detect the events.

We use the kernel layer of the CGAL library [10], which provides us with
basic classes such as point, line, segment and triangle. The type of numbers
we use was left as a parameter that can be decided in compilation time.
We use the LEDA library [38] which provides rational numbers, a class that
represents an exact value of a rational number and allows operations on it.

5.1 Exact Computation

LEDA’s rational numbers class represents a rational by maintaining a nu-
merator and a denominator, which are multi-precision integers. Operations
on LEDA’s rational might double the bit-length of the numerator and the
denominator. Having a big numerator or denominator induces more process-
ing time for the computation of operations. LEDA, therefore, introduced a
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“normalize” function which divides the numerator and denominator by the
largest common denominator and by that reduces the bit-length of the num-
bers. In practice, however, division by the largest common denominator does
not reduce the bit-length significantly. In theory, the worst case might be
that every operation doubles the bit-length of the number. We can assume an
adversary that perturbs the input to choose numbers so results of operations
we perform cannot be “normalize”.

The time it takes to calculate an operation on two LEDA rationals is
proportional to the bit-length of the numerator and the denominator. This
introduces a new consideration in analyzing the running time of an algorithm.
More “complex” numbers take more time to calculate.

We say that a number is of depth 1 if it is a number that comes from the
input of the algorithm. We say that a number is of depth-(n + m) if it is a
result of an operation on two numbers of depths n and m. Notice that the
bit length of the representation of a number of depth i is ©(2!). The depth
of an algorithm is the maximum depth of the numbers it uses. An algorithm
with greater depth will generate numbers with higher bit-lengths, and thus
will take more time compute.

5.1.1 The Depth of the Algorithms

The implementation of the partial decomposition uses 11 number types:
1. The coordinates of corners of triangles.
2. The coordinates of endpoints of intersection edges.

3. The coordinates of the event point where two boundary edges are ver-
tically visible.

4. The coordinates of the event point where an intersection edge and a
boundary edge are vertically visible.

5. The coordinates of the event point where three triangles intersect.
6. The coordinates of a feature of a vertical wall W (p, T"), where the

feature comes from a boundary edge, and the point p is a corner of a
triangle.
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The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from a boundary edge, and the point p is the event point
where two boundary edges are vertically visible.

. The coordinates of a feature of a vertical wall W (p,T"), where the

feature comes from a boundary edge, and the point p is the event point
where a boundary edge and an intersection edge are vertically visible.

. The coordinates of a feature of a vertical wall W (p,T"), where the

feature comes from a boundary edge, and the point p is the event point
where three triangles intersect.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from an intersection edge, and the point p is a corner of
a triangle.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from an intersection edge, and the point p is the event
point where two boundary edges are vertically visible.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from an intersection edge, and the point p is the event
point where a boundary edge and an intersection edge are vertically
visible.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from an intersection edge, and the point p is the event
point where three triangles intersect.

The implementation of the full decomposition uses 3 additional number
types:

The coordinates of the event point where two intersection edges are
vertically visible.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from a boundary edge, and the point p is the event point
where two intersection edges are vertically visible.

The coordinates of a feature of a vertical wall W(p,T"), where the
feature comes from an intersection edge, and the point p is the event
point where two intersection edges are vertically visible.



44 CHAPTER 5. IMPLEMENTATION DETAILS

The depth of calculation of points that are a result of events where two
intersection edges are vertically visible is very large. Hence the full decom-
position is more prone to robustness problems with imprecise arithmetic or
to more time-consuming calculations when using exact arithmetic. Further-
more, programs that use the full decomposition suffer from the same problem.
We leave the exact determination of the depth of the algorithm for future
work.

5.2 General Position and Perturbation

We assume the triangles are in general position as detailed in Section 2.2.1.

A scheme was proposed in [47, 46] for the perturbation of polyhedral
surfaces. At first, vertices of each polyhedral surface are perturbed so that
degeneracies are removed inside any single surface. Then polyhedral sur-
faces are perturbed so that degeneracies are removed globally. Eventually, a
coordinate system is chosen so degeneracies of vertical visibility are removed.

This scheme runs in O(n log*n + nDK 2) expected time and requires
O(nlogn + nK?) working storage, where n is the number of triangles, D
and K are parameters that might be as large as n in the worst case, but are
often small constants in practice. See [47, 46] for more details.

We used this scheme to ensure that the scenes in our tests were in general
position.

5.3 Output Representation

As mentioned earlier, we represent the decomposition as a graph. Each node
v represents a three-dimensional cell C, in the arrangement. Two nodes v, u
are connected if C, and C,, share a vertical wall.

Define ‘up’ as the positive z direction, and ‘right’ as the positive y direc-
tion.

A node v contains a full description of the cell C, which includes:

1. A list of triangles that contribute to the cell’s ceiling.
2. A list of triangles that contribute to the cell’s floor.

3. A list of walls that bound the cell from the right.
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4. A list of walls that bound the cell from the left.
5. Two walls parallel to the yz-plane that bound the cell between them.

6. A list of pointers to the neighbor cells of C,,.

5.4 Program Checking

In order to verify that our programs run correctly we used two checking
schemes. The first scheme checks that the cells’ volumes sum up correctly.
The second scheme checks that the neighborhood connections are correct.

5.4.1 Cell Check

The convexity of each cell is guaranteed because we represent the cell by the
intersection of half-spaces. In order to check that the cells have the correct
volumes we calculate each cell’s volume, sum the volumes for all the cells
inside a bounding box and compare it to the volume of the bounding box.
We use exact arithmetic to make this procedure meaningful.

For convenience of calculation we define an artificial bounding floor below
the cell. Then we calculate the volume between the ceiling of the cell and
the artificial floor. We also calculate the volume between the floor of the cell
and the artificial floor. The difference between these two volumes is the cell’s
volume. For each cell we calculate the two volumes by partitioning them into
triangular prisms.

5.4.2 Neighbor Check

In order to check that the neighborhood connections we calculated are correct
we check for each pair of cells if they are neighbors, and compare the result
we calculated with the output of the decomposition.

Define the crossing boundary of a cell as all the points that lie on the
boundary of the cell and do not lie on any triangle in 7. Also, define the
intersection between the crossing boundary of two cells as the border between
the two cells.

In order to calculate if two cells are neighbors we look for a point that
lies on the border between the two cells.
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Chapter 6

Results

6.1 Complexity of Decompositions

We tested both the partial and the full decomposition on eight input scenes,
which are depicted in the following figures. All out tests were done on a com-
puter with a Celeron 400Mhz CPU and 512 MByte RAM. Our experiments
show that the partial decomposition proves itself more efficient in solving two
problems we tested.

Figure 6.1: Test case 1
Test case 1 consists of two sets of n/2 triangles each (Figure 6.1). The

triangles are laid in a grid so each triangle in one set intersects the n/2 tri-
angles of the other set, Thus the scene has ©(n?) intersections. The partial
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Figure 6.2: Test case 2
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Figure 6.3: Test case 3
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Figure 6.4: Test case 4
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Figure 6.5: Test case 5
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Figure 6.7: Test case 7
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Figure 6.8: Test case 8
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decomposition should perform better in a scene which has a lot of intersec-
tions. However, since the triangles are laid in a grid the cells of the partial
decomposition are much bigger than the cells of the full decomposition.

Test case 2 consists of a “ring” of triangles (Figure 6.2). The partial
decomposition creates a few large cells in the middle of the ring. The partial
decomposition is expected to perform better than the full decomposition
because of these large cells.

Test case 3 (Figure 6.3) consists of two big triangles, whose intersection
is then intersected by n — 2 triangles. The intersections of boundary edges
with the two big triangles creates floods in the partial decomposition which
do not exist in the full decomposition. These floods cause one cell of the full
decomposition to be divided among many cells in the partial decomposition,
although the number of cells will be smaller in the partial decomposition.

Test case 4 demonstrates the worst case complexity of the partial decom-
position (Figure 6.4). This case was described before in Section 3.3. The
full decomposition has a better complexity, although it has more cells. Ap-
plications using a vertical decomposition performed better with the partial
decomposition.

Test case 5 (Figure 6.5) consists of pyramids built recursively inside pyra-
mids.

Test case 6 (Figure 6.6) consists of a scene where an intersection of three
triangles is vertically visible with another intersection of other three triangles.

Test case 7 (Figure 6.7) consists of a scene where quadruples of trian-
gles are laid one above the other. None of the triangles are intersecting, but
boundary edge are vertically visible. This scene shows that the partial de-
composition is more economical than the full decomposition even in a scene
with no intersections. The savings in this case would come from the way
vertical visibility of boundary edges are handled. Recall that the full decom-
position erects a wall W (p, T") from every event point p, in addition to walls
erected from every boundary edge, every intersection edge and every triangle
corner. The partial decomposition erects walls only from boundary edges,
triangle corners and intersection points. This means that in an event where
two boundary edges are vertically visible the full decomposition erects a wall
which the partial decomposition does not, thus splitting a cell. Consider, for
example, event 31 shown in Figure B.2. Here faces 2 and 12 are contained
in different cells in the full decomposition, but in the same cell in the partial
decomposition.

Test case 8 (Figure 6.8) consists of a “stack” of triangles laid one above
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the other. None of the triangles are intersecting, and each boundary edge is
vertically visible with only two other boundary edges, one from below and
one from above. This scene shows that the partial decomposition is more
economical than the full decomposition even in a scene with no intersections
and little vertical visibility between edges. The savings in this case would
come from the way middle corners of triangles are handled. In the full decom-
position we erect a wall W (p, T") from every corner of each triangle, whereas
in the partial decomposition we erect a wall W (p,T") from the first corner
and the last corner of every triangle and half a wall W;(p, T") or W,.(p,T")
from the middle point of every triangle. The full decomposition adds half a
wall at such event that the partial decomposition does not.

For each scene we computed the complexity of each decomposition. In
the full decomposition we simply counted the number of cells. Since each
cell in the full vertical decomposition has constant complexity it is sufficient
to count the number of cells to know the complexity of the arrangement up
to a small constant factor. In the partial vertical decomposition we counted
the complexity of all the floors and ceilings and all the vertical walls. We
counted the total complexity of all floors and ceilings by summing up the
number of triangles in the floor and ceiling of all the cells. We write this as
>, ic; where ¢; is the number of cells that have a total of ¢ triangles in their
floor and ceiling.

Similarly we counted the total complexity of all vertical walls by counting
the number of vertical walls in each cell, and then summing up these numbers.
We write this as ) . iw; where w; is the number of cells that have a total of i
vertical walls. Note that this notation is simply a compact way to write how
many cells have a certain number of walls or ceilings.

The results in Tables 6.1 and 6.2 indicate that the partial decomposition
is more economical than the full decomposition. One may suspect that be-
cause we invest less time in preprocessing, using the decomposition to solve
problems will be more costly. We next show by experiments on two differ-
ent problems that this is not the case. The opposite is true: the partial
decomposition proves itself more efficient in solving these problems.

6.2 Calculating Volumes

As mentioned in Section 5.4, we have computed the volume of the arrange-
ment in order to see that the decomposition is correct. The time it took to
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Scene| Time to | Time to | # of cells | # of cells | Complx. Complx.
No. | complete | complete |in full de- | in partial | of walls of  floors

full de- | partial comp. decomp. and ceil-
comp. decomp. ings
(In sec.) (In sec.)
1 452 346 2630 1210 1%174 + 2*898 +
2%615 + 3%254 +
3*348 + 4*58
4*¥71 +
5*2
2 42809 42426 230 131 0*4 + 2%94 +
1*19 + 3*30 +
2%63 + 4%5 +
3*34 + 5*2
4*9 +
5*2
3 7595 4985 6050 2803 0*196 + 2%1471 +
1%472 + 3*1064 +
2%1550 + | 4*268
3*530 +
4*55
4 149069 127070 2356 1170 0*27 + 2*753 +
1*247 + 3*347 +
2*498 + 4*50 +
3*332 + 5%4 +
4*63 + 6*4 +
5%2 + 7*12
*1

Table 6.1: Complexity of vertical decompositions, scenes 1 — 4
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Scene| Time to | Time to | # of cells | # of cells | Complx. Complx.
No. | complete | complete in full de- | in partial | of walls of floors

full de- | partial comp. decomp. and ceil-
comp. decomp. ings
(In sec.) (In sec.)
5 208259 144687 768 294 0*27 + 2*126 +
1%90 + 3*106 +
2%145 + 4*47 +
3*28 + 5%14 +
4*4 6*1
6 4350 3743 110 59 1*2 4+ 2*53 +
2*30 + 3*5 +
3*17 + 4*1
4*9 +
5*1
7 2068 942 7922 2971 2%322 + 2*%2971
3*881 +
4*1383 +
5*237 +
6*148
8 1967 1963 2096 1199 2*601 + 2*1199
3*300 +
4*298

Table 6.2: Complexity of vertical decompositions, scenes 5 — 8
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Scene No. | Full Decomposition | Partial Decomposition
1 7263 2720
2 149242 144784
3 346307 150133
4 740395 754799
bt 308520 421512
6 130904 182949
7 347463 360315
8 603 568

Table 6.3: Time in seconds to compute the volume of all the cells in the
decompositions

calculate these volumes is given in Table 6.3.

In order to calculate the volume of a cell we defined some artificial floor.
We calculated the volume between the floor of the cell and the artificial floor,
and the volume of the ceiling of the cell and the artificial floor. The volume of
the cell is the difference between the two volumes. This way gives advantage
to the partial decomposition since we do not overlay the map of the ceiling
with the map of the floor. This overlay produces more complex numbers (as
explained in Section 5.1.1). On the other hand the partial decomposition, as
opposed to the full decomposition, needs to partition the ceiling (floor) to
cylinders that have constant description. This partitioning is very expensive
since we need to find the corners and edges that appear in the ceiling (floor).
It is possible that adding more information to the output representation, such
as the event points at which the cell’s boundary was created, would improve
the partial decomposition.

Notice that although all of the scenes had less cells in the partial decom-
position, most of them had a considerable amount of complex cells (cells with
a large number of triangles in the ceiling, floor or in the walls) and indeed
in most of the scenes computing the volumes took roughly the same time
using both decompositions (with the full decomposition being even slightly
superior). The only exceptions are scenes 1 and 3 where the partial decompo-
sition was significantly faster. Indeed the cells in the partial decomposition
of scenes 1 and 3 are not very complex, in the sense that they do not have
many triangles in their ceiling, floor and walls.
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6.3 Finding a Free Path

We also performed a test in which we chose two points in IR? and calculated
a path between those two points that does not intersect any triangle.

The points were chosen randomly from some bounding box that contain
all the triangles in the scene. We searched for the starting node and the
target node by checking for each cell if the points are contained in it.

Most of the computation time is spent on finding the nodes in the graph
that contain the two points. We find these cells by checking every cell if
it contains one of the points. Recall that the description of a cell actually
consists of half spaces, when the cell is the intersection of them. Checking if
a cell contains a a point is done by checking if the point is contained in each
of these half spaces. Since the partial decomposition produces less cells, it
is often the case that it takes less time to locate the relevant cells, although
they are more complex.

In some cases, the full decomposition was faster than the partial decom-
position. This is because the search terminates when the two cells are found.
If the cells we search for are in the beginning of the full decomposition cell
list, it would be found sooner.

The case of the third scene is very interesting. With the full decompo-
sition it took, on the average, 5.68 milliseconds to compute a path between
two randomly chosen points; we chose ten random pairs, and the average
number of cells crossed by a path was 14.2. With the partial decomposi-
tion it took, on the average, 0.79 milliseconds to compute a path between
two randomly chosen points; we chose ten random pairs, and the average
number of cells crossed by a path was 17.9. The reason there are more cells
in the path the partial decomposition found is the flooding done during the
partial decomposition. In the full decomposition we flood only the sub-faces
that have changed during the event, whereas in the partial decomposition we
flood the whole face. Although there are more cells in the path of the partial
decomposition on average, it takes less time to compute since it takes less
time to locate the source cell and the destination cell.

In scenes 2, 6 and 8, computing a path between two random points in the
partial decomposition was slower (on average) than computing a path be-
tween the same points in the full decomposition. In these scenes the number
of cells the full decomposition produced was less than twice the number of
cells the partial decomposition produced. The time “gained” by going over
fewer cells was less than the time “lost” on going over more complex cells.
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Full Partial
Vertical Vertical
Decomposition Decomposition
Test | Average | Average Average | Average
No. | # of time to # of time to
cells in calculate cells in calculate
path the path path the path
1 12.3 0.86 9 0.29
2 4.4 0.012 3.7 0.012
3 14.2 5.68 17.9 0.79
4 6.3 1.00 4.8 0.392
5 4.2 0.286 3 0.0065
6 4.2 0.0125 3.4 0.0313
7 7 12.39 4.9 3.471
8 33.4 0.083 33.4 0.1021

Table 6.4: Average time in seconds to compute ten paths between ten pairs

of point




Chapter 7

Arrangement of Polyhedral
Surfaces

We also extended the algorithms to produce the partial vertical decomposi-
tion and the full vertical decomposition of arrangements of polyhedral sur-
faces. The extension works for (possibly self intersecting) polyhedral surfaces
that do not have holes. See Figure 7.1 for an illustration of a polyhedral sur-
face of the type that we consider.

Figure 7.1: An arrangement of polyhedral surfaces
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7.1 Additional Degeneracies

In addition to the general position assumption for triangles we also rule out
the following degeneracies when dealing with polyhedral surfaces:

1. No more than two triangles can share a boundary edge.

2. Two triangles can share a corner, unless their interiors intersect.

7.2 Events During the Sweep

The space sweep, which gives the partial decomposition and the first refine-
ment of the full decomposition, is not changed. The only modification is that
there are more event types.

Five kinds of events are added to those already mentioned in Section 4.2.

1. A polyhedral line may appear (disappear).
2. A polyhedral line may change its combinatorial structure.

3. The sweep plane reaches an intersection between the common boundary
edge of two triangles and another triangle.

4. The sweep plane reaches the vertical visibility between two boundary
edges where one of the edges is common to two triangles.

5. The sweep plane reaches the vertical visibility between the common
boundary edge of two triangles and an intersection of two other trian-
gles.

The first two kinds of events occur when the sweep plane reaches a corner
that is shared by two or more triangles. In the case where the corner is the
first corner of all triangles a polygonal line will appear on the sweep plane.
In the case where the corner is the last corner of all triangles a polygonal line
will disappear from the sweep plane. Otherwise (the corner is a first corner
for some triangles, last corner for some triangles and middle corner for some
triangles), a polygonal line on the sweep plane will change its combinatorial
structure.

The code we wrote for arrangements of triangles that handles events where
two boundary edges are vertically visible, and the code for events where a
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boundary edge and an intersection between two triangles are vertically visibly
is general enough to support the case where one or two of the boundary edges
are common to two triangles.

In other events the support for boundary edges common to two triangles
is not as trivial and causes a great deal of complication to the code. To
simplify our code we distinguished between 16 events.

We also distinguish between two types of boundary edges common to
two triangles. We call a boundary edge common to two triangles which are
vertically visible a non xy-monotone boundary edge. We call a boundary edge
common to two triangles which are not vertically visible an zy-monotone
boundary edge.

Appendix C lists the events related to polyhedral surfaces and how to
detect them. Appendix D describes how we handle events of decomposition
of polyhedral surfaces.

Handling each of these new events takes O(logn) time, except for events
where the sweep plane reaches a corner that is common to more than one
triangle.

When the sweep plane reaches a corner that is common to more than one
triangle polylines can appear, disappear and change combinatorial structure.
Handling these events is done by computing the vertical decomposition of
the arrangement of segments that intersect the sweep plane after the event
occurs. In this decomposition we extend a line from each outer vertex.

Each face in this arrangement then becomes a face on A,. Determining
which faces are neighbors is easy given the decomposition we computed.

Handling such an event can take Q(nlogn) time in the worst case. Since
there are at most O(n) such events, the sweep can take O(Flogn + n x
nlogn) in the worst case, where F is the number of events on the sweep.
However, each feature in the two dimensional decomposition we compute
in these events, becomes a feature of the three-dimensional decomposition.
We deduce that handling the events during the sweep takes O(klogn) time,
where k is the complexity of the output.

Theorem 7.1 The partial decomposition of polyhedral surfaces takes O(nlog® n+
klogn) time to compute, where k is the complexity of the output.

Proof. We have shown that it takes O(n log” n+klogn) to handle the events
of the sweep. We have also shown in Section 4.2 that the total time spent
on flooding is O (k). m
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Theorem 7.2 The full decomposition of polyhedral surfaces takes O(nlog® n+
klogn) time to compute, where k is the complexity of the output.

Proof. We have shown that it takes O(klogn) to handle the events of the
sweep. It follows that the full decomposition can be computed in O(n log® n+
klogn) time. m
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Conclusions

We have proposed a new vertical decomposition scheme for arrangement of
triangles. The decomposition is more economical in the sense that it results
in fewer cells than the standard vertical decomposition. We have also shown
better ways to compute the vertical decompositions with only near-linear
overhead complexity improving significantly over the best previously known
algorithms. This way is also faster to run and easier to program since it
does not need the first and the third steps suggested in [21]. Dropping these
steps simplifies the implementation and hence increases the robustness of the
program.

We have also shown that although the partial vertical decomposition re-
sults in more complex cells, two applications that use vertical decompositions
do not suffer and usually benefit from replacing the standard vertical decom-
position with the partial vertical decomposition.

Then, we extended the decompositions to polyhedral surfaces. This result
is important because it allows to compute decompositions of polygons and
polyhedra other than triangles, by triangulating the objects and computing
the decomposition of the surfaces. Furthermore, it allows to compute an
approximation of decompositions of general objects by approximating the
objects with polyhedra and computing the decomposition of these polyhedra.

We propose several directions for future research:

1. Extend the algorithms we proposed to deal with algebraic, possibly not
xy-monotone, surfaces and bodies. At least one new event type should
be introduced in this case, the event where the interiors of two surfaces
intersect. Event types that are used for arrangements of triangles are
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relatively easy to convert since when we handle them we make assump-
tions only on their topological positions, and when we detect them we
use a small set of functions.

. Extend the algorithms we proposed to be more robust, so that they

will not rely on a perturbation of the input [47, 46].

We can, for example, regard a degeneracy as more than one event
happening at the same point. The algorithm can then handle these
events in some arbitrary order. The output will contain cells with zero
volume.

It would also be interesting to try to perturb the input as we sweep.
When we reach x with the sweep plane, corners with lower x values
are fixed, whereas corners with higher x values are loose and can be
perturbed. In this case we should keep for each loose corner a sphere
in which the corner can be perturbed without changing the topology
of the decomposition. Each event in the sweep implies a restriction on
spheres of corners that belong to triangles that participate in the event.

. Search for a better output representation so the programs using the par-

tial decomposition will be more efficient. In this work our orientation
was improving motion planning for a robot. Other programs (such
as the volume calculations) might not gain the most from using the
partial decomposition this way. It is very likely that if we add more
information to the output representation it will be more efficient for
some programs. For example, adding a map to each cell that describes
its ceiling.

. Reduce the overhead of the algorithms. We use a dynamic point loca-

tion data structure to locate the face in which the event of a first corner
occur. However a weaker data structure might be just as good. For
example a data structure that dynamicly locates the lowest segment
above a given point.
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Detecting Events

Event 0 is the event where a middle corner of a triangle is reached. In
this event the combinatorial structure of the arrangement is not change. In
event 10 a new triangle appears and in even 20 a triangle disappears. See
Figure A.1. These events occur at corners of triangles and are trivial to
detect. See Figure A.1.

Events 31, 32, 41, 42, 51, 52, 61 and 62 are all events where two boundary
edges are vertically visible. This type of events occur on features of the
vertical walls erected from the two boundary edges. All events occur on
an outer vertex of the lower (upper) envelope. See Figures A.2 and A.3
for an illustration. The distinction between these events is based on the
relative position of the two boundary edges and the triangles they bound.
Consider for example event 31 (Figure A.2). Denote the intersection of the
upper triangle with the sweep plane as ¢;. Denote the intersection of the
lower triangle with the sweep plane as ¢;. We name the segments in the this
figure after the triangles that induced them. Denote the intersection of the
boundary edge [; of the upper triangle with the sweep plane as e;. Denote
the intersection of the boundary edge /; of the upper triangle with the sweep
plane as e;. t; is to the right of e;. t; is to the right of e;. e; is to the right
of e; before the event, and e; is to the left of e; after the event. Hence the
event is event 31.

Events 71, 72, 81, 82, 91, 92, 101 and 102 are all events where a boundary
edge intersects a triangle. See Figures A.4 and A.5. This type of events also
occur on features of the vertical wall in the three-dimensional decomposition
erected from the boundary edge. These events occur in points on the bound-
ary edge, where the segment erected from that point has a zero length, that
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event 10 - appearence of an edge.

event 20 - disappearence of an edge.

Figure A.1: Appearance/disappearance of an edge
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Figure A.2: Vertical visibility of two vertices
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Figure A.3: Vertical visibility of two vertices
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Figure A.4: Appearance of an edge

Events 201, 202, 211, 212, 221, 222, 231 and 232 are all events where a
boundary edge and an intersection of two triangle are vertically visible. See
Figures A.6 and A.7. This type of events occur on features of the vertical
wall erected from the boundary edge. All these events occur on an inner
vertex of the lower (upper) envelope.

Events 241 and 242 are events where three triangles intersect. See Fig-
ure A.8. This type of event is detected during the sweep. Whenever we
obtain, during the sweep, a face which is bounded by three edges we check
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Figure A.5: Disappearance of an edge
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Figure A.6: A boundary edge and an intersection are vertically visible
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Figure A.7: A boundary edge and an intersection are vertically visible

if the triangles corresponding to those edges intersect in one point.




72

APPENDIX A. DETECTING EVENTS

event 241

event 242

Figure A.8: Three triangles intersect



Appendix B

Handling Events

Since we divided the event types into so many subtypes handling each event
is trivial.

event 10 - appearence of an edge.

event 20 - disappearence of an edge.

Figure B.1: Faces in events 10 and 20
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Events 10 and 20 are handled by creating a new face structure, or de-
stroying a face structure respectively.

A 111 A A \
el e AT
\1¢\ —_— E—— I ‘.\
' B ) B 11 B
event 31 event 41
A A [ A
|
\A\; el \3?1 V2 > ?\1; 12
3Bf 172 —»> ﬂB/o 12 —8" g
event 42
event 32
Figure B.2: Faces in events 31,32,41 and 42
%1: 3 /A‘/lz 13 }1‘# 3 13
| | | | |
2 1Teg 1“8 2“? 1211.8\
event 51 event 61
*\vB\ ! B
B B 211 3 12 1,
2 1 12\1\ | I
/¢ I 3 I 13 ! —_— A I
A . | E— |
A event 62
event 52

Figure B.3: Faces in events 51,52,61 and 62

Figure B.2 illustrates how we handle events 31, 32, 41 and 42, and Fig-
ure B.3 how we handle events 51, 52, 61 and 62. Event 31 is handled by
deleting face 1, and creating face 11. The right wall of face 11 is set to be
the left wall of face 1. The left wall of face 11 is set to be the right wall of
face 1. The ceiling of face 11 is set to be the right most triangle in the ceiling
chain of face 2. The floor of face 11 is set to be the triangle that contains
the lower edge that generated this event. The witness for the right wall of
face 2 is changed to be the witness of the right wall of face 1 to create face
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12. The witness for the left wall of face 3 is changed to be the witness of the
left wall of face 1 to create face 13.

Events 32, 41, 42, 51, 52, 61 and 62 are handled similarly to event 31, by
swapping the witnesses for the right/left wall and the left/right wall of face
1 to create face 11. The witness for the left/right wall of face 2 is changed
to create face 12. The witness for the right/left wall of face 3 is changed to

create face 13.
4
pe y >2<./
' 13 3 o 13 ><a
5 11 Y 15 1 15 . 11

event 81

- 1
' 13 14,

I 15 3
1 ; 114 13 %? 5 12U
2 ?F 12

event 72

Figure B.4: Faces in events 71,72,81 and 82

Figure B.4 illustrates how we handle events 71, 72, 81 and 82, and Fig-
ure B.5 how we handle events 91, 92, 101 and 102. Event 71 is handled
by splitting face 1 into faces 11 and 15. face 11 is the left part of face 1
and face 15 is the right part of face 1. We create face 14. Its ceiling is the
“penetrated” edge and its floor is the “penetrating” edge. We also set its
left witness to be the left endpoint of the “penetrating” edge, and the right
witness to null. We set the witness of the left wall of face 3 to null in order
to create face 13. We merge face 2 and face 4 to create face 12.

Events 72, 81 and 82 are handled similarly by splitting face 1 into face 11
and face 15. Creating face 14. Changing the witness of the left wall of face
3 to create face 13. Joining face 2 and face 4 to create face 12.

Event 91 is handled by merging face 5 and face 1 to create face 11. We
split face 2 to create face 12 and face 14. face 12 is the left part of face 2,
and face 14 is the right part of face 2. We change the witness of the left wall
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event 91
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event 92
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Figure B.5: Faces in events 91,92,101 and 102

of face 3 to be the left endpoint of the “penetrating” edge in order to create

face 13.

Events 92, 101 and 102 are handled similarly by merging face 5 and face
1 to create face 11. Splitting face 2 to create face 12 and face 14. Changing

the witness of the left wall of face 3 to create face 13.

event 201

event 202

event 211

JE—

event 212

11

L 12

Figure B.6: Faces in events 201,202,211 and 212

Figure B.6 illustrates how we handle events 201, 202, 211 and 212, and
Figure B.7 illustrates how we handle events 221, 222, 231 and 232. Event
201 is handled by adding the left edge of the intersection, e, to the ceiling
of face 1 to create face 11, and removing this edge from the ceiling of face 2
to create face 12. Events 202, 211, 212, 221, 222, 231 and 232 are handled
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Figure B.7: Faces in events 221,222,231 and 232

similarly by adding and removing an intersection to faces.

Event 241 is handled by adding e; to the ceiling chain of face 1 from the
left, to create face 11. We remove ey from the ceiling chain of face 2 to create
face 12. We add ey to the ceiling chain of face 3 from the left to create face
13. We remove ¢; from the floor chain of face 4 to create face 14. We add e;
to the floor chain of face 5 between e; and e3 to create face 15. We remove e,
from the floor chain of face 6 to create face 16. We destroy face 7, and create
face 17 whose ceiling chain consists of e5 and whose floor chain consists of e;
and es.

Event 241 is handled similarly. See Figure B.8 for illustrations.
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Figure B.8: Faces in events 241 and 242



Appendix C

Detecting Polyhedral Surfaces
Events

Events 73, 74, 83, 84, 93, 94, 103 and 104 are all events where a non xy-
monotone boundary edge intersects a triangle. This type of events occur on
features of the vertical wall in the three-dimensional decomposition erected
from the edge. See Figures C.1 and C.2

ST
o

— = 7 o

event 84

event 74

Figure C.1: Non xy-monotone boundary edge intersects a triangle

Events 111, 112, 113 and 114 are all events where an xy-monotone bound-
ary edge which is common to two triangles, ¢; and t,, intersect another tri-
angle t. Before each of these events ¢; intersect £, and ¢, does not intersect
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-
%%\ P S S

Figure C.2: Non xy-monotone edge boundary intersects a triangle

t. After each of these events t; does not intersect ¢, and ¢, intersects ¢. This
type of events occur on features of the vertical wall in the three-dimensional
decomposition erected from the edge. See Figure C.3.

L N X L]
event 111 event 113
s D

S
event 112 event 114

Figure C.3: xy-monotone boundary edge intersects a triangle

Events 121 and 124 are events where an xy-monotone boundary edge
common to two triangles, ¢; and %,, intersect a triangle ¢, when both of the
triangle don’t intersect ¢ before the event, and both of them intersect ¢ after
the event.

Events 122 and 123 are events where an xy-monotone boundary edge
common to two triangles, ¢; and %,, intersect a triangle ¢, when both of the
triangle intersect ¢ before the event, and both of them don’t intersect ¢ after



the event.

These types of events occur on features of the vertical wall in the three-
dimensional decomposition erected from the edge. See Figure C.4.

T

event 121

S N

event 122

=
o

—

event 123

-

event 124

Figure C.4: xy-monotone boundary edge intersects a triangle

Events 400, 410 and 420 occur at corners common to two or more triangles
and are trivial to detect. Event 410 is an event where a polygonal line appears
on the sweep plane. Event 420 is an event where a polygonal line disappears
on the sweep plane. Event 400 is an event where neither event 410 nor 420

occur. See Figure C.5.
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/

(=)

event 410 - appearence of edges.

(o5 — {5

event 420 - disappearence of edges.

Figure C.5: Appearance/disappearance of a polygonal line
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Handling Polyhedral Surfaces
Events

Again, since we divided the event types into so many sub-types handling
each event is trivial.

Event 73 is handled by splitting face 1 into face 11 and face 16. Face 11
is the left part of face 1 and face 16 is the right part of face 1.

We create face 12. Its ceiling is the “penetrated” edge and its floor is the
upper “penetrating” edge. We also set its left witness to be the left endpoint
of the “penetrating” edge, and the right witness to null. We create face 17.
Its ceiling consists of the upper “penetrating” edge and the “penetrated”
edge. Its floor is the lower “penetrating” edge. We also set its left witness to
be the left endpoint of the “penetrating” edge, and the right witness to null.
We change the left witness of face 4 to null, and add the “penetrated” edge
to its floor from the left to create face 14. We set the witness of the left wall
of face 5 to null in order to create face 15. We merge face 2 and face 3 to
create face 13. Events 74, 83 and 84 are handled similarly. See Figure D.1
for a description of these events.

Event 93 is handled by merging face 1 and face 6 to create face 11. We
split face 3 to create face 12 and face 13. Face 12 is the left part of face 2,
and face 13 is the right part of face 2. We change the witness of the left wall
of face 5 to the left endpoint of the “penetrating” edge in order to create
face 15. We change the left witness of face 4 to be the left endpoint of the
“penetrating” edge and remove the “penetrated” edge from its floor to create
face 14. We destroy face 7. Events 94, 103 and 104 are handled similarly.
See Figure D.2 for a description of these events.
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Figure D.1: Faces in events 73, 74, 83, and 84
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Figure D.2: Faces in events 93, 94, 103 and 104
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Event 111 is handled by merging face 1 and face 2 to create face 11.
We create face 12. Its ceiling is the “penetrated” edge. Its floor is the left
“penetrating” edge. Its left witness is set to null, and its right witness is set
to the right endpoint of the left “penetrating” edge. We change the witness
of the left wall of face 3 to the left endpoint of the right “penetrating” edge
in order to create face 13. We split face 4 to create face 14 and face 15. Face
14 is the right part of face 4 and face 15 is the left part of face 4. We change
the right witness of face 6 to null in order to create face 16. We destroy
face 5. Events 112, 113 and 114 are handled similarly. See Figure D.3 for a
description of these events.

12
Yoo 11 11
6 3 16 13 13 11 16
15 2 i
4 |14 4 15
event 111 event 113
5
4 14 15 4 15, 14
3 6 13 16
| = 6! 3 16 13
2 ' 1 11 . - s 1
1, 2
event 112
event 114

Figure D.3: Faces in events 111, 112, 113 and 114

Event 121 is handled by merging face 1 and face 2 to create face 11. We
change the witness of the right wall of face 3 to null in order to create face
12. We split face 4 into faces 14 and 13. Face 14 is the left part of face 4 and
face 13 is the right part of face 4. We also add the left “penetrating” edge
to the ceiling of face 14, from the right, and we add the right “penetrating”
edge to the ceiling of face 13, from the left. We change the witness of the
left wall of face 5 to null in order to create face 15. We create face 16. Its
floor is the left “penetrating” edge. Its ceiling is the “penetrated” edge. Its
right witness is set to null, and its left witness is the right endpoint of the left
“penetrating” edge. We create face 17. Its floor is the right “penetrating”
edge. Its ceiling is the “penetrated” edge. Its left witness is set to null, and
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its right witness is the left endpoint of the right “penetrating” edge. Events
122, 123 and 124 are handled similarly. See Figure D.4 for a description of
these events.

1 2
4 _— 15 m
event 123
5 event 121 16
! 13
1
2 g\./ % . 12
4 —_— 15 11
! 3
event 124
event 122

Figure D.4: Faces in events 121, 122, 123 and 124

Recall that event 410 is the event where one or more polygonal lines ap-
pear on the sweep plane because a first corner of some triangles have been
reached. To handle event 410 we find the segments that result from inter-
section the sweep plane with the new appearing triangles. We compute the
arrangement of these segments, and refine it by erecting a vertical segment
from each outer vertex. We get a subdivision of face 1 into possibly many
faces. We call the leftmost face face 11, and the rightmost face, face 12. We
copy the left part of face 1 to face 11, and the right part of face 1 to facel2.
We also figure out which faces are neighbors, from the arrangement on the
sweep plane.

Recall that event 420 is the event where a polygonal line disappears from
the sweep plane because a last corner of some triangles have been reached.
We handle event 420 by destroying all the faces that have a disappearing
triangle as their floor or as their ceiling. We also destroy all the faces whose
left witness, or right witness are disappearing triangles. We mark the leftmost
face whose right witness is a disappearing triangle as face 1, and the rightmost
face whose left witness is a disappearing triangle as face 2. We merge face 1
and face 2 to get face 11.

See Figure D.5 for an illustration of these events.

Recall that event 400 is the event where triangle corners have been reached
but not all of the corners are first corners, and not all of the corners are last
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event 410

event 420

event 400

Figure D.5: Faces in events 410 and 420




88  APPENDIX D. HANDLING POLYHEDRAL SURFACES EVENTS

corners. We destroy faces whose ceiling, floor or one of their witness triangles
have reached a corner in this event. We find the segments on the sweep plane.
These segments results from triangles that the sweep plane has reached their
first corner, and from triangles that the sweep plane has reached their second
corner. We conclude by computing the arrangement of these segments.
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