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ABSTRACT

Visibility methods are often based on the existence of large con-
vex occluders. We present an algorithm that for a given simple
non-convex polygon P finds an approximate inner-cover by large
convex polygons. The algorithm is based on an initial partitioning
of P into a set C of disjoint convex polygons which are an exact
tessellation of P . The algorithm then builds a set of large convex
polygons contained in P by constructing the convex hulls of sub-
sets of C. We discuss different strategies for selecting the subsets
and we claim that in most cases our algorithm produces an effective
approximation of P .
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1 INTRODUCTION

Visibility methods use occlusion culling algorithms to remove hid-
den portions of the scene before the actual rendering [7]. Many
visibility methods are based on the existence of large occluders
[8, 9, 13, 19]. Some methods either preselect or even synthesize the
occluders to increase their performance [4, 11, 15, 16]. Effective
occluders should be convex and as large as possible. Larger oc-
cluders have larger shadow volumes and thus occlude more [8, 9].
Moreover, when the occluder is convex, it is rather easy to test
whether a given object resides in its shadow volume [8, 9]. It is
also desirable to have only a handful of occluders since the effi-
ciency of occlusion culling algorithms is directly dependent on the
number of occluders. This calls for algorithms that approximate a
given shape by a small number of large convex shapes.

c©-Notice

For a conservative occlusion culling the occluders have to be ap-
proximated by inner (i.e., contained) shapes. This guarantees that
the occlusion cast by the approximated shape never falsely occludes
a visible shape. The fact that it might misclassify an occluded ob-
ject is not harmful since these visibility culling algorithms generate
a potentially visible set (PVS) rather than an exact set. The PVS is
then fed to a hidden surface removal algorithm which resolves the
exact visibility.

Andújar et al. [1] have presented an algorithm that for a given
object O finds a set of inner convex objects. This algorithm gener-
ates only axis-aligned bounding boxes. A similar approach is taken
by Leblanc and Poulin [17] to generate a large convex occluder
contained inside a given polygonal mesh. Methods which apply oc-
cluder fusion also aim at large and convex occluders which make
them more effective.

Driven by visibility problems, we present a novel algorithm for
covering a given polygon by a few convex, large polygons. In other
words, given an input polygon P , the algorithm generates a set
of polygons that satisfies the following requirements: (i) the set
is small, (ii) each polygon in the set is convex, (iii) each polygon
in the set is as large as possible, and (iv) each polygon in the set is
contained within P . Moreover, our algorithm can generate a partial
cover for a pre-specified percentage of the polygon. We show in the
sequel that this ability of the algorithm can dramatically reduce the
number of polygons in the covering set.

Our algorithm starts by simplifying the non-convex polygon to
facilitate the generation of a partial covering. Then, the polygon is
decomposed into a number of small pieces, which form the building
blocks of the inner-cover. By combining subsets of these building
blocks a covering set is found. Finally, polygons in the covering
set are enlarged to form an inner-cover consisting of large convex
parts.

In Section 2 we start by formally defining the problem and some
necessary terminology. We give an overview of the algorithm in
Section 3 and describe the details of the algorithm in Sections 4 and
5. We show some results in Section 6 and conclude in Section 7.

2 PRELIMINARIES

Let P be a simple polygon. We seek to generate a set of possi-
bly overlapping, convex polygons that satisfy a few requirements
described below. Hereafter we give some formal definitions and
elaborate on our goals.

Partition: A set {P1, P2 · · ·Pk} of polygons is a partition of P if
∀i = 1 · · · k Pi ⊂ P , ∪k

i=1Pi = P and Pi ∩ Pj = ∅ ∀i 
= j.
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Cover: A set {P1, P2 · · ·Pk} of polygons is a cover of P if
∀i = 1 · · · k Pi ⊂ P , ∪k

i=1Pi = P . Here, unlike in the case of
partition, the polygons need not be disjoint.

Inner cover: Given 0 ≤ p ≤ 1, a set {P1, P2 · · ·Pk} of
polygons is a p-inner cover of P if ∀i = 1 · · · k Pi ⊂ P ,
area(P ) ≥ area(∪k

i=1Pi) ≥ p ∗ area(P ). In other words, not
only the polygons need not be disjoint, but also their union may
only partially cover P .

Coverage ratio: The ratio between the area of the union of
polygons in the inner-cover of P and the area of P .

Convex partition/Cover/Inner-cover: A set {P1, P2 · · ·Pk} of
polygons which is a partition, cover or inner-cover, respectively, is
called convex if ∀i = 1 · · · k, Pi is convex.

Reflex (concave) vertex: A vertex v of P is called reflex if its
internal angle is larger than Π (see Figure 1(a)).

Convex vertex: A vertex v of P is called convex if its internal
angle is less than or equal to Π.

Non-convex polygon: A polygon with at least one reflex vertex.

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) The non-convex polygon is partitioned by two line
segments around a reflex vertex. (b) Partitioning around all reflex
vertices. (c) The arrangement. (d) The face with the largest po-
tential defined by the sum of lengths of its extended edges. (e) A
convex inner-cover. (f) An axis-aligned partial cover.

There are various papers dealing with convex partitions of poly-
gons [2, 12, 14]. Others handle covers; in particular, rectilinear
covers [18]. We are not aware, however, of any previous work deal-
ing with inner-covers using general convex polygons, which is our
goal.

Given a polygon P we aim at generating a convex inner cover
of P (i.e., each polygon in the set is convex and entirely contained
within P ), having a few additional requirements: (i) the inner-cover
should consist of a small number of polygons, (ii) the inner-cover
should cover as much area of P as possible and (iii) each poly-
gon Pi in the cover should be as large as possible. In other words,
we strive to maximize the coverage ratio, minimize the cardinality
of the covering set, and maximize the area of each polygon in the
cover.

There are two alternatives to make this problem well defined.
One alternative is to let the user specify a lower bound on the cov-
erage ratio (e.g., at least 90% of the polygon’s area should be cov-
ered), and aim at minimizing the cardinality of the covering set.
The other alternative is to impose a limit on the number of poly-

gons in the inner-cover (e.g., no more than four polygons should be
used), and aim at maximizing the coverage ratio. In both cases, an
additional requirement is to maximize the size of each polygon in
the set.

An optimal solution to this problem is hard. Just finding the
largest inner convex polygon in P is quite involved and has a com-
plexity of O(n9logn), where n is the number of vertices of P [6].
Thus, even in the special case (of the second alternative) when the
given limit is 1, the problem cannot be solved optimally in any rea-
sonable amount of time. The general cover problem that we are
pursuing is harder. In fact, it was proven in [10] that finding the
minimum cover is an NP–complete problem.

Therefore, we present in this paper heuristics to solve the prob-
lem. We show that in practice our algorithm is effective and gener-
ates good inner-covers.

Finally, we do not direct our efforts at axis-aligned covers, but
rather at a general convex inner-cover (as in Figure 1(e)). Fig-
ure 1(f) illustrates the reason. Trying to cover a given polygon with
axis-aligned rectangles is quite limited in the general case.

3 OVERVIEW

Let P be a simple non-convex polygon. The method proposed in
this paper is based on a few observations:

• The line that coincides with an edge of polygon P at a reflex
vertex, cuts the corresponding reflex angle into two convex
angles. This is so because supposing the reflex angle is α, the
above cutting line divides α into two angles: Π and α−Π. As
a consequence, using edge extensions as cutting lines reduces
the total number of reflex angles.

• The largest convex polygon contained in a given polygon P
must be adjacent to at least one reflex vertex, if any exist [6].

• Typically, the edges of a large convex polygon contained
within a given polygon P , coincide with the edges of P . We
will later show that this is not always the case.

Thus, a sensible strategy would be to construct inner large con-
vex polygons by combining smaller polygons whose edges coincide
with the edges of P . In particular, we first generate a partition of P ,
using extensions of the edges adjacent to the reflex vertices as cut-
ting lines. By the above observations, these are reasonable cutting
lines (see Figure 1(a)).

By applying similar partitions around all reflex vertices of P , a
partition of P is generated (see Figure 1(b)). We can view this de-
composition of P as an arrangement [3] induced by the above cut-
ting lines. An arrangement is a partition of P into faces – the convex
regions, segments between line crossings, and vertices where lines
meet (see Figure 1(c)).

The elements of the arrangement are the building blocks we use
for constructing a cover of P consisting of large convex polygons.
The idea is to build convex hulls of subsets of the partition. If these
convex hulls are contained within P , they become candidates for
participating in the inner-cover of P .

A major question is how to select good candidate subsets. Ob-
viously an exhaustive search would be exponential. We developed
various heuristics to quickly select effective subsets. In the next
section we describe the various stages of the algorithm, while in
Section 5 we focus on the heuristics for selecting subsets.
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4 INNER-COVER GENERATION

This section describes our algorithm for generating an inner-cover
for a given polygon P . The algorithm consists of five stages:
simplification, generating the cutting segments, constructing an ar-
rangement, producing the cover, and improving the cover.

Simplification

The input polygon is first simplified in order to decrease its number
of vertices, and consequently, its number of reflex vertices. This
results in a major speed-up in the later stages. The simplification
is conservative in the sense that the resulting polygon is contained
within the original polygon.

Each vertex is associated with a triangle formed with its two inci-
dent neighbors. The simplification is done by iteratively removing
vertices associated with triangles having small areas. A vertex is
removed if its associated triangle is contained within P and a pre-
specified threshold has not been reached. As a result of the simpli-
fication, many reflex vertices are eliminated. When the threshold is
set to 100%, only collinear vertices are removed, and the polygon’s
outline is not affected. Typically, the simplification removes only
the details of the polygon.

Generating the cutting line segments

This stage transforms the polygon into a collection of segments.
The line segments are defined as the inner extensions in both direc-
tions of the edges of P , which have an endpoint at a reflex vertex of
P . Each of these cutting segments induces a partition that turns the
reflex vertex into convex vertices in the sub-polygons generated by
this partition, as observed in Section 3.

By applying all the partitions around each reflex vertex of P we
generate the convex partition of P . Figure 2(a) shows the maximal
segments. The actual extraction of the convex partition is done in
the next stage.

Constructing an arrangement

This stage takes as input the segments constructed during the pre-
vious stage, and generates the convex partition they induce. This is
done by constructing an arrangement of the above line segments.

Given a finite set L of lines in the plane, the line arrangement
A(L) is the decomposition of the plane into connected open cells of
dimensions 0, 1, 2 induced by L [3]. In particular, the set L induces
a subdivision of the plane that consists of vertices, edges, and faces
(0, 1 and 2-dimensional cells, respectively). The complexity of an
arrangement is the total number of vertices, edges, and faces of the
arrangement - θ(n2) in the worst case - where n is the number of
lines.

The faces of the arrangement are always convex, and are the
building blocks for the next stages. Before being fed as input to
the next stage, the faces are sorted. Various sorting criteria are pos-
sible and will be discussed in Section 5.

Producing the cover

The faces of the arrangement that were generated in the previous
stages, are used for constructing an inner-cover of P . The idea is to
build convex hulls around selected subsets of faces which are within
P . These convex hulls are the candidates for the inner-cover.

(a) (b) (c)

(d) (e) (f)

Figure 2: Illustration of the algorithm: (a) Initially, the original
polygon is decomposed into nine faces sorted by area. Then Face 1
is added to the cover. (b) Faces 2 and 3 are combined with polygon
1. (c)-(d) Faces 4 and 5 are added as new polygons. (e) Face 6
is combined with polygon 4. (f) The final cover, after faces 7-9 are
processed. Face 7 is combined with polygon 1-2-3, face 8 is already
covered so it is skipped, and face 9 is combined with polygon 4-6.

P is a polygon with n vertices and n edges. The number of faces
in the arrangement is quadratic in the size of P because it is created
by at most 2n lines (and typically has over a dozen of pieces). We
are looking for effective subsets and obviously an exhaustive search
cannot be used. We developed different heuristics to quickly select
such subsets, as will be discussed in Section 5.

The inner-cover is built incrementally in a greedy fashion. Start-
ing with an empty cover, the algorithm examines each face in as-
cending order (see Section 5.2), and tries to find an existing polygon
in the cover that this face can be combined with. This is done by
forming the convex hull of the face and the polygon, and checking
whether this convex hull is entirely contained in P . If so, the cover
is updated. If no such polygon is found, a new polygon containing
only this face is added to the cover. This is repeated until either the
desired coverage ratio is reached or until the number of polygons in
the cover exceeds a given bound.

Figure 2 illustrates the above procedure for a coverage ratio of
100%. Observe that the order of the faces influences the resulting
cover. The choice depends on the strategy used. (We describe pos-
sible strategies below.)

Enlargement

This stage is required in order to get large convex polygons in the
inner-cover. It tries to enlarge each polygon in the cover so that it
will remains entirely contained in the original polygon.

Enlargement is done using a technique similar to that of the pre-
vious stage. For each polygon in the cover, we maintain a prior-
ity queue of faces that are candidates for being combined with the
polygon. First, the queue contains the faces adjacent to the poly-
gon, sorted by their areas in descending order. We try to combine
each candidate face with the polygon. If the combined polygon is
contained within the original polygon, we update the cover, and add
all the faces adjacent to the combined face to the priority queue.

Before the enlargement, the cover consists of overlapping parts
consisting of disjoint sets of faces, while after they are not disjoint.
It should be noted that we had to build the cover first and then en-
large the polygons within it. It might seem that it could be done in
one stage, where each face, in turn, is combined with every poly-
gon in the cover that can be combined with it (and not just the first
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one). Though in this case the algorithm would yield larger poly-
gons earlier, these polygons would lose their flexibility to combine
with more faces in the sequence. Furthermore, the algorithm would
have tried to enlarge a polygon by combining it only with faces that
considered after the polygon is created, and not with all the possi-
ble faces. Given that larger faces are examined first, this would be
a major drawback. Therefore, one stage would not result in a cover
whose polygons are as large as possible.

5 HEURISTICS STRATEGIES

Since a face can often be combined with more than one polygon
(as shown in Figure 2(f)), the choice depends on the strategy used.
Possible strategies are described in Section 5.1. In addition, the
order in which the faces are visited also affects the resulting cover.
Possible orders are discussed in Section 5.2.

5.1 Cover Strategies
We have experimented with different strategies for choosing a poly-
gon. These strategies include:

• The largest polygon.

• The smallest polygon.

• The largest adjacent polygon to the face, and as a secondary
preference, the largest.

• As above, but as a secondary preference, the smallest.

• Random selection.

Choosing the largest polygon may be advantageous since the
combined polygon is likely to be large and consequently a larger
portion of the original polygon will be covered. Furthermore, the fi-
nal cover will consist of large polygons, satisfying our requirement.
On the other hand, smaller polygons may be good candidates, since
it is more likely that they can be combined with new faces. This
stems from the fact that the resulting convex hulls are smaller, and
thus more likely to be contained in the original polygon.

The motivation for preferring polygons that are adjacent to the
face is similar to that of choosing smaller polygons, namely the
size of the convex hulls increases slowly.

Choosing the polygons randomly did not demonstrate good re-
sults. This strategy was, however, helpful for comparisons.

5.2 Face order
There are several possibilities for ordering the faces to be examined
by the algorithm. It should be clear by now that it is important
that the faces are ordered by dominance. In most occlusion culling
applications a coverage ratio of 100% is not necessary. Moreover,
our first requirement demands that the number of polygons in the
cover is relatively small. Thus, there is no need to examine all the
faces but only some of them, until the desired cover is achieved.
Therefore, the following two properties are desirable:

• The coverage ratio increases rapidly with each iteration,
thereby reaching the threshold quickly.

• The polygons in the cover can be combined (in future iter-
ations) with more faces, thereby minimizing the number of
polygons in the final cover.

Cover Strategies
Face adjacent adjacent
Orders largest smallest random & large & small

size 3 (66%) 2 (60%) 3 (66%) 3 (66%) 2 (60%)
potential 3 (57%) 3 (57%) 3 (57%) 3 (57%) 3 (57%)
random 3 (57%) 3 (57%) 3 (57%) 3 (57%) 3 (57%)

Table 1: Various covers for the polygon in Figure 3(a). Each en-
try contains the number of polygons in the cover and the average
coverage ratio of a polygon in the cover after the enlargement.

These requirements motivated us to experiment with several ap-
proaches for sorting the faces. Sorting by area satisfies the first
requirement since larger faces are examined first. Sorting by poten-
tial tries to meet the second requirement. The potential of a face is
defined as a function of the lengths of the cutting segments, incident
to the face such as the maximal length, the average length and the
sum of lengths. The potential reflects the face’s possibility of being
combined with other faces. In our experiments we used the sum of
length as the potential function (See Figure 1(d)). We have tried to
use several functions, and the experiments have shown that none of
these functions outperforms a random order.

Therefore, our default strategy is to sort by area. As a conse-
quence, the smallest faces which have the least impact on the cov-
erage ratio, appear last and are seldom examined by the algorithm.
This results in a major speed-up of the algorithm.

6 IMPLEMENTATION AND RESULTS

We implemented the inner-cover algorithm presented in this paper
and developed an interactive application to test it. The user can set
the coverage ratio and the limit on the number of polygons, as well
as choosing the cover strategy and face order. Our implementation
was developed using the CGAL library of geometric algorithm [5].
In particular we used the planar maps and arrangements package.

We carried out many experiments testing the efficiency of var-
ious strategies on a variety of polygons. Surprisingly, we found
that all the cover strategies, with the exception of random selection,
produced comparable results. Even when there were differences
in the initial covers, after performing the enlargement stage, these
differences diminished. This was apparent even when the random
selection strategy was used.

Though the results usually do not differ, the various strategies
have a minor implication on the running time of the algorithm. Giv-
ing priority to smaller polygons or to neighbors of the face generally
accelerates the execution time.

To evaluate the quality of the cover, we counted the number of
polygons in the cover and calculated the size of each polygon with
respect to the size of the original polygon.

Table 1 illustrates the results obtained using different cover
strategies and different face orders for the polygon in Figure 3(a).
As can be seen, in most cases, the resulting cover consists of three
polygons whose average coverage ratio is 59%. Two strategies give
better results when the faces are ordered by size: preferring the
smallest and preferring adjacent and then the smallest. These cov-
ers consist of two polygons whose average coverage ratio is 60%.

We generate randomly few hundreds of general polygons and
we measure the distribution of the input polygons according to the
number of polygons in the resultant inner cover. The input polygons
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(a) (b)

(c) (d)

Figure 3: Two inner-covers with coverage ratio of 95%. (a) The
original polygon. (b)-(c) The two polygons that compose the inner-
cover when the smallest first strategy is used. (b)-(d) The three
polygons that compose the inner-cover when the largest first strat-
egy is used. In both cases the faces are ordered by size.

had size (number of vertices) of n=10 and n=20. The most (75%)
of the polygons with n=10 had 2-3 relfex vertices. Others had up
to 5 reflex vertices. Among the polygons with n=20, 80% had 5-7
reflex vertices. Table 2 details the results of these executions for
different required coverage ratio. Figure 5 and Figure 6 illustrate
some of these resultant inner covers.

Usually, our algorithm yields effective inner-covers. There are,
however, special cases where our strategy does not result in an op-
timal cover in terms of the number of the polygons in the cover.
One such example is shown in Figure 4, where a cover with 86% is
sought. Our algorithm generates two polygons (Figure 4(b)) while
the optimal inner-cover contains only one polygon (Figure 4(c)). It
should be noted, however, that our algorithm yields a coverage ratio
of 100%, and for that it is optimal.

7 CONCLUSIONS

We have presented in this paper an algorithm for generating the con-
vex inner-cover of a given polygon. This problem is motivated by
occlusion culling algorithms which require that effective occluders
be few, convex and large.

Our algorithm is based on first generating an arrangement by
eliminating the reflex vertices of the given polygon. Obviously,
the number of (convex) faces in the arrangement depends on the
number of its reflex vertices. These faces are then used to construct
an initial cover that is later optimized to yield a small number of
large convex pieces that cover the polygon well.

We have implemented our algorithm and run it on a large num-
ber of polygons. We have shown that although our algorithm does
not guarantee to produce the optimal cover it generates an effective
inner-covers in the sense that typically, the non-convex polygon is
covered by less than k convex pieces, where k is the number of
reflex vertices in the non-convex polygon.
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