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Abstract

Lower envelopes are fundamental structures in computational geometry that have many
applications, such as computing general Voronoi diagrams and performing hidden surface
removal in computer graphics. We present a generic, robust and efficient implementation
of the divide-and-conquer algorithm for computing the envelopes of surfaces in R

3. To
the best of our knowledge, this is the first exact implementation that computes envelopes
in three-dimensional space. Our implementation is based on Cgal (the Computational
Geometry Algorithms Library) and is designated as a Cgal package. The separation of
topology and geometry in our solution allows for the reuse of the algorithm with different
families of surfaces, provided that a small set of geometric objects and operations on them
is supplied. We used our algorithm to compute the lower and upper envelope for several
types of surfaces. Exact arithmetic is typically slower than floating-point arithmetic, espe-
cially when higher order surfaces are involved. Since our implementation follows the exact
geometric computation paradigm, we minimize the number of geometric operations, and by
that significantly improve the performance of the algorithm in practice. Our experiments
show interesting phenomena in the behavior of the divide-and-conquer algorithm and the
combinatorics of lower envelopes of random surfaces.
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Chapter 1

Introduction

Let S = {s1, . . . , sn} be a collection of n (hyper)surface patches in R
d. Let x1, . . . , xd

denote the axes of R
d, and assume that each si is monotone in x1, . . . , xd−1, namely every

line parallel to the xd-axis intersects si in at most one point. Regard each surface patch si

in S as the graph of a partially defined (d − 1)-variate function si(x̄). The lower envelope
ES of S is the pointwise minimum of these functions: ES(x̄) = min si(x̄), x̄ ∈ R

d−1, where
the minimum is taken over all functions defined at x̄. Similarly, the upper envelope of S is
the pointwise maximum of these functions.

The minimization diagram MS of S is the subdivision of R
d−1 into maximal connected

cells such that ES is attained by a fixed subset of functions over the interior of each cell.
The minimization diagram is the subdivision of R

d−1 obtained by the projection of the
lower envelope of S in the xd direction. In the same manner, the maximization diagram of
S is the subdivision of R

d−1 induced by the upper envelope of S.

Many efforts have been invested in recent years on solving two-dimensional geometric
problems in practice [1, 67]. Some work has been done on three-dimensional problems
also, but it was mainly concentrated on selective problem, namely problems in which the
numerical data of the output is a subset of the data in the input, as opposed to constructive
problems, where new numerical data (such as intersection points of geometric objects) is
to be computed for the output. Computing envelopes is of course a constructive problem.

In this thesis we present an exact and generic implementation of the divide-and-conquer
algorithm for constructing the envelope of surface patches in R

3. Our solution is complete
in the sense that it handles all degenerate cases, and at the same time it is efficient. To the
best of our knowledge, this is the first implementation of this kind. Our implementation is
based on the Cgal library and is designated as a Cgal package. The problem of computing
the envelope is somewhat two-and-a-half dimensional, since the input is three-dimensional,
but the output is naturally represented as a two-dimensional object, the minimization
diagram. We use the Cgal two-dimensional arrangement package for the representation
of the minimization diagram. We believe that computing envelopes in three-space is an
important step toward solving practical problems in R

3.

The separation of topology and geometry in our solution allows for the reuse of the
algorithm with different families of surfaces, provided that a small set of geometric objects

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: The minimization diagram of two triangulated surfaces with approx-

imately 16,000 triangles. The triangulated surfaces input files were taken from

http://www.cs.duke.edu/∼edels/Tubes/.

and operations on them is supplied. We used our algorithm to compute the lower or upper
envelope of sets of triangles, of sets of spheres and of sets of quadratic surfaces.

Our implementation follows the exact geometric computation paradigm. Exact arith-
metic is typically slower than floating-point arithmetic, especially when higher order sur-
faces are involved. One of the main contributions of our work is minimizing the number of
geometric operations, and by that significantly improving the performance of the algorithm
in practice.

Our experiments show interesting phenomena in the behavior of the divide-and-conquer
algorithm and the combinatorics of lower envelopes of random surfaces. In particular, they
show that on some input sets the algorithm performs better than the worst-case bound,
and the combinatorial size of the envelope is typically asymptotic much smaller than the
worst-case bound. We hope that our work will motivate more theoretical research in this
direction.

A paper describing the work of this thesis [53] will be presented at the 14th Annual
European Symposium on Algorithms (ESA 2006).

Our code is available at http://www.acm.org/jea/repository/esa06/esa2006.html.

Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we review the background
and related work on envelopes, as well as some preliminaries on the implementation of
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geometric algorithms. In Chapter 3 we describe the divide-and-conquer algorithm for
computing envelopes and give an overview of our solution. The traits class, which is a
very significant component of our design is described in Chapter 4. Chapter 5 surveys
the major algorithmic details, among them are the methods we use to reduce the amount
of geometric computations and improve the performance of the algorithm. In Chapter 6
we briefly describe the work on envelopes of quadric surfaces. We present experimental
results and discuss the practical performance of the algorithm in Chapter 7. In Chapter 8
we conclude the thesis and suggest directions for future work.
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Chapter 2

Background

Before computing a geometric structure, one wishes to know its size. We begin this chapter
with a brief review of the combinatorial complexity of envelopes in two, three and d-
dimensions. We then present several applications of envelopes in three or more dimensions.
Next, we describe some of the known algorithms for computing envelopes in three-space.
Finally, we review related practical aspects. For simplicity, and since lower and upper
envelopes are symmetric structures, we consider in this chapter only lower envelopes.

2.1 Combinatorial Complexity of Envelopes

The complexity of the lower envelope of a set of surfaces is defined as the complexity of its
minimization diagram. Note that the minimization diagram might include features that
do not appear in the arrangement of these surfaces. For example, in the lower envelope
of a set of triangles in R

3, the projection of edges of two triangles may intersect in the
minimization diagram, although the triangles do not intersect in three-space. We review
the combinatorial complexity of envelopes in two, three and d-dimensions.

Two-dimensional envelopes

The complexity of the lower envelope of n lines in the plane is Θ(n). The maximum
combinatorial complexity of the lower envelope of n x-monotone Jordan arcs in the plane
such that each pair intersects in at most s points, for some fixed constant s, is Θ(λs+2(n)).
The function λs(n) is the maximum length of a Davenport-Schinzel sequence of order s on
n symbols, and it is almost linear in n for any fixed s [62]. For example, for a set of line
segments k = 1, and the combinatorial complexity of their lower envelope is Θ(λ3(n)) =
Θ(nα(n)), where α(n) is the extremely slowly growing inverse of Ackermann’s function.
If the curves are unbounded, then the maximum complexity of their lower envelope is
Θ(λs(n)).

11



12 CHAPTER 2. BACKGROUND

Three-dimensional envelopes

The maximum combinatorial complexity of the lower envelope of n triangles in R
3 is

Θ(n2α(n)) [58]. If the triangles are pairwise disjoint the maximum complexity is Θ(n2).
Let S be a set of n surface patches in R

3 which satisfy the following assumptions:

1. Each surface patch is contained in an algebraic surface of constant maximum degree.

2. The vertical projection of each surface patch onto the xy-plane is a planar region
bounded by a constant number of algebraic arcs of constant maximum degree.

3. Every three surface patches meet in at most s points.

4. Every surface patch is monotone in x,y (from now on we call it xy-monotone), namely
every line parallel to the z-axis intersects the surface patch in at most one point.

The combinatorial complexity of the lower envelope of S is O(n2+ε), for any ε > 0, where
the constant of proportionality depends on ε and some surface-specific constants [39, 61].

d-dimensional envelopes

The maximum combinatorial complexity of the lower envelope of n hyperplanes in R
d is

Θ(nbd/2c) by the Upper Bound Theorem [50]. The maximum combinatorial complexity of
the lower envelope of n (d − 1)-simplices in R

d is Θ(nd−1α(n)) [24]. The combinatorial
complexity of the lower envelope of n surface patches in R

d, which satisfy assumptions
similar to the assumptions made on surface patches in R

3, is O(nd−1+ε), for any ε > 0, where
the constant of proportionality depends on ε, d and some surface-specific constants [61].

2.2 Applications

We describe here several applications of lower envelopes. For more applications see [5, 62].

2.2.1 Hidden Surface Removal

In computer graphics one wants to compute the view of a collection of objects in three-
dimensional space as seen from a certain viewpoint. The problem of determining which
parts of each object are visible and which parts are hidden is called hidden surface re-
moval [19, 33]. There are two types of algorithms for hidden surface removal: image space
algorithms and object space algorithms. The former are algorithms which compute the
image of the scene pixel by pixel, determining for each pixel the visible object there. Such
algorithms are, for example, the z-buffer and the painter’s algorithms. The latter type of
algorithms compute a combinatorial representation of the viewing plane, called the visi-
bility map. This is the subdivision of the viewing plane into maximal connected regions
where a single object can be seen or no object is seen. The problem of computing the visi-
bility map of objects in three-dimensional space is equivalent to the problem of computing



2.2. APPLICATIONS 13

the minimization diagram of three-dimensional surfaces. Image space algorithms, such as
the z-buffer algorithm, tend to be faster in practice, because they can be implemented
in hardware. However, object space algorithms have some advantages over image space
algorithms. For example, image space algorithms create a view for the scene for a specific
resolution. When one wants to print the view of a scene on a paper instead of rendering
it on the computer screen much higher resolution is needed, and processing the visibility
map directly can result in higher quality pictures.

2.2.2 Voronoi Diagrams

Let S = {s1, . . . , sn} be a set of n pairwise-disjoint convex objects in R
d and let ρ be a

metric on R
d. The Voronoi diagram of S with respect to the metric ρ is a partition of

d-space into maximally connected cells, each of which consists of the points closer to one
particular object than to any others. Every Voronoi diagram in R

d can be seen as the
minimization diagram of surfaces in R

d+1. Let fi : R
d −→ R be the function defined by

fi(x) = ρ(x, si). The Voronoi cell of si is {p ∈ R
d|fi(p) ≤ fj(p),∀j 6= i}. Thus, the Voronoi

diagram of the objects s1, . . . , sn is exactly the minimization diagram of the graphs of the
functions f1, . . . , fn, namely the projection of their lower envelope, as was observed by
Edelsbrunner and Seidel [25].

2.2.3 Hausdorff Distance

Let A = {a1, . . . , au} and B = {b1, . . . , bv} be two point sets in R
d, and let ρ be an Lp

metric on R
d, for some 1 ≤ p ≤ ∞. The Hausdorff distance between A and B is defined as

H(A,B) = max{h(A,B), h(B,A)},

where
h(A,B) = max

a∈A
min
b∈B

ρ(a, b).

The minimum Hausdorff distance under translation between A and B is defined to be

D(A,B) = min
x

H(A,B ⊕ x),

where B ⊕ x = {b + x | b ∈ B}. The minimum Hausdorff distance between two point
sets under translation has been proposed as a measure of the degree to which the two sets
resemble each other, and is thus a useful construct in pattern recognition. The value of x
minimizing D gives the translation of B under which it most resembles A.
The Voronoi surface of a set S of points in R

d is defined as d(x) = minq∈S ρ(q, x). We
next explain how D(A,B) can be viewed as the minimum point of the upper envelope
of a set of Voronoi surfaces. For each point ai ∈ A, let Si = {ai − b | b ∈ B}, and for
each point bi ∈ B, let Su+i = {a − bi | a ∈ A}. Let di(x) denote the Voronoi surface of
Si, for i = 1, . . . , u + v, and E∗(x) denote the upper envelope of d1(x), . . . , du+v(x). Then
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h(A,B ⊕ x) = max1≤i≤u di(x) and h(B ⊕ x,A) = maxu<i≤u+v di(x). Hence

D(A,B) = min
x

E∗(x),

that is D(A,B) is the lowest point on the upper envelope of u + v Voronoi surfaces. For
more details on Hausdorff distance and Voronoi surfaces see [62].

2.2.4 Plane Transversals in Three-Space

Let C = {C1, . . . , Cn} be a collection of n compact convex sets in R
3. A plane p is a

transversal of C if it intersects every set in C. In the dual space, where each non-vertical
plane z = ax + by + d is mapped to a point (a, b, d), and each point (u, v, w) is mapped to
a plane z = −ux − vy + w, the space of all plane transversals of C, denoted T (C), is the
region enclosed between a lower envelope and an upper envelope of two sets of functions.
A plane z = ax + by + d intersects a compact convex set C if and only if it is parallel to
and lies between two parallel planes, one of which is tangent to C from below, and the
other is tangent to C from above, that is fC(a, b) ≤ d ≤ gC(a, b), where fC(a, b), gC(a, b)
are defined such that the plane z = ax + by + fC(a, b) (z = ax + by + gC(a, b)) is tangent
to C from below (above). Thus, in the dual space, T (C) is

{(a, b, d) | max
C∈C

fC(a, b) ≤ d ≤ min
C∈C

gC(a, b)}.

That is, in the dual space, T (C) is the region consisting of all points that lie below the
lower envelope of the functions gCi

(a, b), i = 1, . . . , n and above the upper envelope of
the functions fCi

(a, b), i = 1, . . . , n, also known as the sandwich region of the two sets of
functions.

2.3 Algorithms for Envelopes

We review a few algorithms for computing lower envelopes in three-dimensions. We tried
to pick a variety of algorithms, some of which are more general and the others are more
specifically tailored to special cases. Some of the algorithms were originally formulated in
terms of a hidden surface removal problem, and compute the visibility map. We remind
the reader that this is equivalent to the lower envelope problem (see Section 2.2.1).

We postpone the detailed description of the divide-and-conquer algorithm by Agarwal
et al. [4] to Chapter 3. The running-time of this algorithm is O(n2+ε), for any ε > 0,
which is based on their result that the combinatorial complexity of the overlay of two
minimization diagrams of two collections of a total of n surface patches is also O(n2+ε),
for any ε > 0.
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2.3.1 A Randomized Incremental Algorithm

We review the randomized incremental algorithm presented by Boissonnat and Dobrindt [15].
The algorithm is an on-line algorithm, in which the expected cost of inserting the n-th sur-
face patch is O(log n

∑n
r=1 τ(r)/r2), where τ(r) is the expected size of an intermediate

result for r surface patches. Since τ(r) is bounded by O(r2+ε), for any ε > 0, the insertion
time of the n-th surface patch is O(n1+ε), and the construction time of the lower envelope
is O(n2+ε), for any ε > 0. In the case of triangles, τ(r) can be Θ(r2α(r)) in the worst
case, and the construction time of the lower envelope is bounded in the worst case by
O(n2α(n) log n).

The algorithm applies to surface patches of fixed maximum algebraic degree, but for
simplicity, we describe it here for a set S of n triangles in R

3, which are not vertical. To
simplify the description of the algorithm we assume that the plane z = ∞ is a triangle in
S and is inserted first. The triangles are inserted one after the other, and the algorithm
maintains the vertical decomposition of the current lower envelope as well as the adjacency
relationships of the prisms (cylindrical cells) in the decomposition. The vertical decompo-
sition of a three-dimensional arrangement of triangles is defined as follows. First vertical
walls are created on every arrangement edge by extending vertical rays upwards and down-
wards from every point on the edge until they hit another arrangement feature, or extend
to infinity. These walls are called primary walls. This process creates cylindrical cells
which may have complicated shape. Then each floor of a cell is decomposed using a two-
dimensional vertical decomposition, and the new edges are extended to three-dimensional
walls inside the cell. These walls are called secondary walls. The vertical decomposition of
the lower envelope is defined by the portion of the entire vertical decomposition that lies
below the lower envelope. The algorithm uses an influence graph [16], which is a rooted,
directed acyclic graph that allows to find efficiently the prisms (of the current lower enve-
lope decomposition) that are intersected by a new triangle. Let t be a new triangle that
is added to the current lower envelope E ′, and let DE ′ be the decomposition of E ′. Denote
by E the lower envelope after inserting t, and by DE its decomposition. The insertion of t
is performed by a location phase and an update phase:

Location Using the influence graph, all the prisms whose interior is intersected by t are
located. If no such prism exists, t is not part of the lower envelope, and the algorithm
can skip the update phase, and move on to the next triangle.

Update The algorithm first constructs all the prisms of DE whose ceiling is not supported
by t. For each prism of DE ′ that was located in the location phase, the portion of it
that appears on E is subdivided by t into a constant number of sub-prisms. Some
of these sub-prisms may share a wall (which is a part of a secondary wall) that has
to be removed, and the prisms have to be merged to obtain the decomposition of E .
The adjacency information and the influence graph can be easily updated.

It remains to compute the prisms of DE whose ceiling is supported by t. The union
of these prisms is computed using the adjacency graph. This union is not connected
in general, and each of its connected components corresponds to a face of the lower
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envelope E that is supported by t. The decomposition of all these faces results in the
prisms of DE . Note that the removal of portions of primary walls may cause problems
if these portions stopped some of the secondary walls, since these secondary walls will
have to be extended. Thus, a prism of DE ′ can be divided into an unbounded number
of parts, each corresponds to a different prism of DE . This requires careful update of
the influence graph, since the randomized analysis applies when the out degree of a
node in the graph is bounded. To overcome this difficulty, the algorithm introduces
a special node for each face of E that is supported by t. For a special node F , all the
relevant prisms of DE ′ are connected to it. This node is a root of a secondary influence
graph, which is a result of applying a planar randomized incremental algorithm for
trapezoidal decomposition on the face represented by F .

2.3.2 A Quasi Output-Sensitive Algorithm

We review the randomized algorithm of Mulmuley [55] for computing the visibility map
of non-intersecting polygons in R

3. The expected running time of the algorithm is a sum
of weights associated with all intersections of projected edges of the polygons, where the
weight of an intersection decreases as the number of objects hiding it increases. This
method is not output sensitive, but it is “quasi output sensitive”, since the largest weight
belongs to the intersection points which are not hidden by any object, namely the vertices
of the visibility map. The algorithm can be extended to intersecting polygons [56].

Let N be a set of n non-intersecting polygons. Denote by H(N ) the trapezoidal
decomposition of the visibility map of the polygons of N . The algorithm constructs H(N )
incrementally by adding the polygons one at a time, in random order. For 1 ≤ i ≤ n, let
N i denote the set of the first i polygons in this addition sequence. At the i-th step, the
algorithm maintains H(N i) and in addition:

• For each trapezoid f ∈ H(N i), a list of polygons in N \N i that are in conflict with
f . A polygon p ∈ N \ N i is in conflict with f if the polygons in N i do not hide p
completely within f .

• For every polygon in N \ N i, a list of trapezoids in conflict with it.

The addition of the (i + 1)-st polygon, denoted by s, is carried out as follows:

1. All the trapezoids that are in conflict with s are considered. For such a trapezoid
f , s can be seen over all f , or f can split by the projection of the boundary of s.
In the latter case, the partition of f should be further refined into trapezoids. The
relevant conflict lists are updated as necessary. Denote the resulting planar partition
by H1(N i+1).

2. Vertical edges of H(N i) (which are part of the trapezoidal decomposition) may be
intersected by the projected visible boundary of s, which was inserted to the structure
in the previous step. Only one part of it is relevant to H(N i+1) and is retained; the
other part is removed. Thus, several trapezoids may merge into one trapezoid (with
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a unique visible polygon). The relevant conflict lists are merged accordingly. Denote
the resulting planar partition by H2(N i+1).

3. Denote by R the region formed by the union of all trapezoids of H2(N i+1) labelled
with s. In general, this region can have several components, each may have a com-
plicated shape. R can contain edges that were visible in H(N i) but are hidden by s,
thus, not visible in H(N i+1). Such edges should be removed, and R should be rede-
composed into trapezoids. This is done by applying the trapezoidal decomposition
algorithm to the set of segments on the boundary of R. A point location structure
for the trapezoidal decomposition of R is also obtained. This structure is used for
building the conflict lists of the new trapezoids within R based on the conflict lists
of the old trapezoids. The resulting partition is the desired partition H(N i+1).

2.3.3 Output-Sensitive Algorithms

Obtaining output sensitive algorithms that compute envelopes is a major challenge. Such
algorithms exist for special cases only. We review two output-sensitive algorithms for
computing envelopes in three-space. In the first algorithm a depth order on the input
objects is assumed and the efficiency relies on certain property of the union of projected
objects. The second algorithm is applicable to polyhedral objects only.

Efficient Hidden Surface Removal for Objects with Small Union Size

Let S be a set of n non-intersecting objects in R
3, and assume that they are ordered by

depth from the viewing point. We review the algorithm presented by Katz et al. [47] for
computing the visibility map for S. The algorithm runs in time O((U(n) + k) log2 n), and
uses O(U(n) log n) working storage, where k is the complexity of the output map and U(n)
is a super-additive bound on the maximal complexity of the union of the projections on
the viewing plane of any n objects. The efficiency of the algorithm shows up when U(n)
is small (that is subquadratic), for example:

• For spheres (or disks) one has U(n) = O(n), and the technique yields an algorithm
to compute the visibility map in time O((n + k) log2 n).

• For horizontal “fat” triangles, where each internal angle is at least some fixed θ, one
has U(n) = O(n log log n), and the algorithm runs in time O((n log log n + k) log2 n).

As a first step, the method sorts the objects by depth order and stores them in the leafs
of a balanced binary tree T , the nearest object in the leftmost leaf. Note that the objects
stored in the subtree rooted at node δ can be hidden only by objects that are stored in
the tree to the left of δ. The algorithm performs two traversals on the tree, to compute for
each node δ two planar maps:

• Uδ — the union of the projections of the objects in the subtree Tδ of T rooted at δ.
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• Vδ — the subset of Uδ consisting of the projections of the visible portions (with
respect to the whole scene) of the objects in the subtree Tδ, i.e., the portions of the
objects in the subtree Tδ not hidden by any nearer object (stored in T to the left of
δ).

In the first traversal of the tree Uδ is computed for all nodes δ of T . This traversal
is done in bottom-up manner, starting from the leaves, and going up level by level until
reaching the root. For a leaf δ, Uδ is simply the projection of the object stored in that leaf.
For a non-leaf node δ, Uδ = Ulson(δ) ∪Urson(δ), where lson(δ) and rson(δ) denote the left and
right children of δ respectively.

In the second traversal of T Vδ is computed for all nodes δ of T . This traversal is done
in a top-down manner, starting at the root and working the way down the tree. For the
root of T , Vroot = Uroot, because for every point inside the union of the objects there exists
an object which is visible there. For a node δ other than the root, Vδ is computed using
the following equations:

• Vlson(δ) = Vδ ∩ Ulson(δ), which is the visible part of δ where the objects of lson(δ) are
defined.

• Vrson(δ) = Vδ \ Ulson(δ), which is the portion of Vδ not hidden by other objects stored
to the left of rson(δ).

For each leaf δ, Vδ consists precisely of those parts of the object stored in this leaf that
are visible. So the final step of the algorithm is to properly glue all these regions in the
leaves to a whole visibility map.

In order to achieve the cited working storage bound, one should be careful in the second
traversal, performing it in preorder, and deleting unnecessary maps Vδ after the completion
of the computation of such a map for δ and its two sons.

Efficient Ray Shooting and Hidden Surface Removal

We review the algorithm presented by de Berg et al. [20]. We describe the algorithm for
a set of non-intersecting triangles in space, but it can be extended to any set of non-
intersecting polyhedra. Let S be a set of non-intersecting triangles with n edges in total.
The running time of the algorithm is O(n2/3+εk2/3 +n1+ε) for any ε > 0, where k is the size
of the result visibility map, when using a data structure for ray shooting among curtains
presented in [3]. In [19] the idea is extended to a set of possibly intersecting polyhedra
with n vertices in total, and the algorithm runs in time O(n4/3+ε + n4/5+εk4/5) and uses
O(n4/3+ε + n4/5+εk4/5) storage.

Denote by M the visibility map of the input. The algorithm moves a horizontal sweep-
line from top to bottom over the viewing plane, discovering M “on the fly”, as it advances.
The event queue Q stores event points in order of decreasing y-coordinate. It is initialized
with all the projections of the triangles vertices. When a new vertex of M is discovered,
it is inserted into Q. While sweeping, the algorithm keeps track of the edges of M that
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Figure 2.1: The possible cases for the location of the other endpoint of an edge in the visibility map:

(a) the projection of a vertex of e, (b) the intersection of the projection of e with the projection of

e′, where e′ is below e, and (c) the intersection of the projection of e with the projection of e′, where

e′ is above e, and e′ becomes visible (left) or invisible (right) at the intersection point.

are intersected by the sweep line. These edges are stored in a binary search tree T in the
order of their intersection with the sweep line. For each edge, the triangle that is visible
to its left is also stored.

The handling of an event point v is carried out in the following way. If v is the projection
of a vertex of a triangle, the algorithm checks if it is visible. This is done by searching T to
find the edge of M to the right of v, together with the triangle that is visible to the left of
this edge. It is now possible to check whether v is visible by comparing it to that triangle.
If v is not the projection of a vertex of a triangle, it is a vertex of M, which means that it
is visible. If v is not visible, the handling of the current event is finished.

If v is visible, it is a vertex of the result visibility map, and Q and T should be updated.
This means that the algorithm should compute the other endpoints of those edges of the
visibility map that are incident to v and will be intersected by the sweep-line when it is
advanced. It is possible to ensure that the edges of the triangles that correspond to the
edges of the visibility map are always known. Let a be an edge of the visibility map that
is incident to v and let e be the corresponding triangle edge. The other endpoint w of
a is either the projection of a vertex of e or the intersection of the projection of e with
the projection of other edge e′. In the latter case, either e′ is below e, in which case e
becomes invisible at the intersection point (because it is hidden by the triangles incident
to e′), or e′ is above e, in which case e′ becomes invisible/visible at the intersection point.
Figure 2.1 shows an illustration of all possible cases where the other endpoint can be. In
order to find e′ in both cases, a ray ρ is defined in the following way. Let p be the point
on e whose projection is v. Let f be the triangle that is immediately above p, and let ρ
be the projection onto f of the ray starting at p along e (if there is no such triangle f , ρ
is defined to be the projection of this ray onto a plane which is above all the triangles in
the scene). Then w, the other node of a, is either the projection of a vertex of e or it is
the intersection of the projection of e with the projection of the first edge passing below
ρ. To find ρ, a data structure for ray shooting among the triangles in a fixed direction
is used. To find the first edge passing below ρ a data structure for ray shooting among
curtains is used: each triangle edge defines an (upside-down) curtain, which is the set of
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points hidden by this edge; the desired edge corresponds to the first curtain hit by ρ.
A tradeoff between preprocessing time and query time of the ray shooting data struc-

tures is needed to accomplish a good running time. The structure for ray shooting in a
fixed direction has a better performance than the structure for ray shooting among cur-
tains, which thus dominates the performance of the algorithm. In [3], a data structure
is presented for the ray shooting problem among curtains in R

3 with O(m1+ε) space and
preprocessing time, and O( n√

m
logO(1) n) query time, for a parameter m, n ≤ m ≤ n2.

Choosing m = n2/3k2/3, and plugging the data structure into the algorithm presented
above, yields a running time of O(n2/3+εk2/3 +n1+ε), where k is the output size. Note that
k is not known in advance, therefore an initial value of m should be guessed and updated
as the algorithm proceeds. This is a standard trick, which in the algorithm above does not
affect the asymptotic running-time.

2.4 Implementation

2.4.1 The Gap Between Theory and Practice

Transforming a geometric algorithm into a computer program is not a simple task. An
algorithm implemented from a textbook is susceptible to robustness issues, and thus may
yield incorrect results, enter infinite loops or crash (see, for example, [48, 60]). This is
mainly due to two assumptions that are often made in the theoretical study of geomet-
ric algorithms, which are not realistic in practice. First, the general position assumption
excludes all degenerate input. This assumption facilitates the description and analysis of
algorithms significantly. However, one cannot be sure that real inputs will always be in gen-
eral position (typically the contrary is true). Second, the real Ram model [59] is assumed,
which allows for infinite precision arithmetic operations on real numbers. Moreover, every
operation on a constant number of simple geometric objects is assumed to take constant
time. This is of course not true in computer programs that use finite precision numbers.
When using finite precision arithmetic, round-off errors may cause incorrect results for
geometric operations and lead to unstability of the algorithm. Round-off errors are mostly
problematic when the input is degenerate or near-degenerate.

2.4.2 Exact Geometric Computation

One approach to dealing with robustness problems is exact geometric computation [71].
The goal of exact geometric computation is determining geometric relations exactly. The
geometric relations determine the combinatorial (or topological) part of a geometric struc-
ture, which is often defined by the numerical part. Some geometric problems need only
deal with integer or rational numbers. This is the case, for example, when dealing only
with linear objects that are represented with integer or rational numbers. Special number
types were developed; unbounded integer number-types with exact {+, −, ×} operators
and exact comparisons on them, and exact rational types with exact {+, −, ×, ÷} op-
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erators. Such number types are supported by several libraries, for example, Gmp (Gnu
multi-precision),1 Core2 [46] and Leda3 [51, Chapter 4]. However, rational arithmetic
does not suffice when dealing with non-linear geometric objects, where irrational numbers
are involved. Among the irrational numbers, the class of algebraic numbers, which can
be used when dealing with algebraic curves and surfaces, was mainly studied. The Leda

and Core libraries supply exact algebraic number-types that support the exact operations
{+, −, ×, ÷,

√·} and even k
√· and root-of (to find roots of polynomials). The main dis-

advantage of using exact number-types is the significant running time overhead that they
may incur.

2.4.3 The Cgal Library

Cgal — the Computational Geometry Algorithms Library4 — is a product of a collab-
orative effort of several sites in Europe and Israel aiming to provide a robust, generic
and efficient implementation of computational geometry data structures and algorithms.
It is a software library written in C++ following the generic programming paradigm (see
Section 2.4.6). The library consists of three major parts: (i) the kernel [27, 44], which
consists of constant-size non-modifiable geometric primitive objects, such as points, seg-
ments, and lines, and operations on these objects, (ii) the basic library, which contains
a large collection of basic geometric data structures and algorithms, for example convex
hull, triangulations and two-dimensional arrangements, and (iii) the support library, which
consists of non-geometric support facilities, such as support for number types, I/O and
visualization.

2.4.4 Two-Dimensional Arrangements in Cgal

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane into
zero-dimensional, one-dimensional and two-dimensional cells, called vertices, edges and
faces, respectively induced by the curves in C. Arrangements are ubiquitous in computa-
tional geometry and have many applications; see, for example [5, 37]. Cgal provides a
robust implementation for constructing planar subdivisions of arbitrary bounded curves
and supporting operations and queries on them [30, 41, 42, 66, 67]. This implementation
follows the exact geometric computation approach and has already been used in several
applications [2, 8, 18, 22, 29, 31, 45, 69].

The Cgal Arrangement 2 package,5 which is part of Cgal’s basic library, represents
planar arrangements of bounded curves and provides the interface needed to construct
them, traverse them, maintain them and perform point-location queries on them. Ro-
bustness in this package is achieved both by handling all degenerate cases, and by using

1Gnu’s multi-precision library http://www.swox.com/gmp/.
2http://www.cs.nyu.edu/exact/core pages/intro.html.
3http://www.algorithmic-solutions.com/enleda.htm.
4See the Cgal project homepage: http://www.cgal.org/.
5We describe the Arrangement 2 package of Cgal version 3.2.
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Figure 2.2: An arrangement of line segments with some of the Dcel records that represent it. The

unbounded face f0 has a single connected component that forms a hole inside it, and this hole is

comprised of several faces. The halfedge e is directed from its source vertex v1 to its target vertex

v2. This halfedge, together with its twin e′, correspond to a line segment that connects the points

associated with v1 and v2 and separates the face f1 from f2. The predecessor eprev and successor

enext of e are part of the chain that forms the outer boundary of the face f2. The face f1 has a more

complicated structure as it contains two holes in its interior: one hole consists of two adjacent faces

f3 and f4, while the other hole is comprised of two edges. f1 also contains two isolated vertices u1

and u2 in its interior. The outer boundary of f1 includes a special edge ea with both twin halfedges

pointing to the same face f1, one is successor of the other in the boundary chain. We call such an

edge an “antenna”. The figure has been adapted from the Cgal manual [1].

exact number types. The Arrangement 2 <Traits, Dcel> class is the main class in this
package. The design of this class is guided by the need to separate the topological and
the geometric aspects of the planar subdivision. This separation is realized by the two
template parameters of the class:

• Dcel - a doubly-connected edge list (Dcel for short) data structure which repre-
sents the topological structure of the planar subdivision. The Dcel maintains the
incidence relationships between the vertices, edges and faces of the arrangement.

• Traits - the geometric traits which determine the family of planar curves that form
the arrangements. The traits class defines the types of two-dimensional points and
x-monotone curves, and supports basic geometric predicates on them.

In a Dcel data structure every edge is represented by a pair of directed halfedges, called
twin halfedges, one directed from the left endpoint of the curve to the right endpoint of
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the curve, and the other is directed in the opposite direction. Since a halfedge is directed,
it is possible to define its source vertex and its target vertex. Halfedges are used to connect
vertices and separate faces. Each halfedge contains a pointer to its target vertex as well
as a pointer to the face that lies to its left, which is called its incident face. All the
halfedges that are incident to the same face are connected in circular lists, one that forms
the outer boundary of the face (except for the unbounded face which does not have an
outer boundary), and possibly other circular lists that form inner boundaries, called holes,
of the face. In order to traverse these circular lists, every halfedge stores pointers to the
next and to the previous halfedges in the list. Each face of the arrangement stores one
halfedge of its outer boundary (if the face is bounded). In addition, each face stores a list,
which may be empty, of holes, each represented by one halfedge on the hole, and a list of
isolated vertices that lie inside the face, which may also be empty. A hole inside a face does
not necessarily correspond to a single face — it may have no area, or even be composed of
several connected faces. Figure 2.2 shows an example of a Dcel. For further details and
examples regarding a Dcel data structure see [21, Chapter 2].

The package includes several traits classes that handle linear curves as well as non-
linear curves. The supplied traits classes are: traits classes for line segments, a traits class
that operates on continuous piecewise linear curves, namely polylines, a traits class for
circular arcs, a traits class for general conic arcs, which are bounded segments of algebraic
curves of degree two, and a traits class for arcs of graphs of rational functions. Other
traits classes for the Arrangement 2 package, not included in Cgal are also available. For
example, traits classes for conic curves [11], cubic curves [26] and a special kind of quartic
curves [12] were developed as part of the Exacus project.

The Arrangement 2 package provides implementation for two fundamental algorithmic
procedures, which are common to many applications: the sweep-line algorithm, and the
zone6 computation. Specific algorithms based on these two algorithmic frameworks can be
implemented using visitor classes. Visitor is a design-pattern which represents an operation
to be performed on an object or on the elements of an object structure. Visitors allow the
definition of new operations without changing the classes of the elements on which they
operate [35]. The visitor classes of the sweep-line and zone algorithms receive notifications
of the events handled by the basic procedure and can construct their output structures
accordingly. The package supplies several sweep-line visitors, for example, a visitor for
computing all intersection points induced by a set of curves, a visitor for constructing
the arrangements of these curves, and a visitor for inserting the curves into an existing
arrangement. The overlay of two arrangements is also implemented as a sweep-line visitor
class. The package supplies a visitor to the zone-computation algorithm as well. This
visitor is used in the incremental insertion of an x-monotone curve into an arrangement.
For further information on the sweep-line and zone frameworks and their visitors we refer
the reader to [67].

The Arrangement 2 package is extensively used in our work. In the following chapters

6Given an arrangement A and a curve γ, the zone of γ in A is the set of all arrangement cells of A that
γ crosses.
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we give further details on it, as needed.

2.4.5 Two-Dimensional Envelopes

A divide-and-conquer algorithm which constructs the lower (or upper) envelope of planar
curves was implemented [68]. As mentioned in Section 2.1, the complexity of the lower en-
velope of n “well behaved” curves that intersect in at most s points, for some fixed constant
s, is Θ(λs+2(n)). The divide-and-conquer algorithm runs in time O(λs+2(n) log(n)).

The implementation is an extension to the arrangement package of Cgal (version 3.1),
and has the Cgal look-and-feel. In the implementation, the topological structure of the
envelope is separated from its geometry, thus allowing users to works with any type of
planar curves, provided that they supply some geometric objects and predicates on them.
This implementation is also robust, handling all possible degeneracies.

2.4.6 Generic Programming

The generic programming paradigm [7] aims at generalizing software components in order
to make them easily reusable in a wide variety of situations. The generic software is
designed with concepts, which are abstract sets of requirements on data types. A type that
satisfies all the requirements of a concept is called a model of that concept. A concept
that extends the set of requirements of another concept is a refinement of the latter.
When designing generic software components, one of the main activities is the concept
development — identifying the sets of requirements that are general enough to be met in
many situations, and still restrictive enough to write programs that work efficiently with
all models of the concept.

In C++, class and function templates are particularly effective mechanisms for generic
programming because they make the generalization possible without sacrificing efficiency.
Concepts correspond to template parameters, and models correspond to classes used to
instantiate them. The C++ Standard Template Library (Stl) and the Cgal library make
extensive use of the generic programming paradigm.
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Overview of Our Solution

We devised an exact and generic implementation of the divide-and-conquer algorithm for
constructing the envelope of surface patches in R

3. Our implementation is complete in the
sense that it handles all degenerate cases, and at the same time it is efficient. We opted for
the divide-and-conquer algorithm as the first exact solution for three-dimensional envelopes
for several reasons, the major ones being: (i) it is a very intuitive approach, (ii) there are
good software tools for dealing with two-dimensional arrangements and operations on them,
including the overlay operation — which is a central ingredient in this approach, available
for us, and (iii) it applies to many types of surfaces. Our implementation is based on the
Cgal library, has the Cgal look-and-feel and is designated as a Cgal package.

In the rest of this thesis, to simplify the exposition, we refer to lower envelopes. How-
ever, our code is generic and capable of computing envelopes in any direction, including
upper envelopes.

3.1 The Divide-and-Conquer Algorithm

We are given as input a set F of n bounded surface patches1 in R
3. The first step is to

extract all the xy-monotone2 portions of these surfaces that are relevant to the envelope.
We denote this set by G. Henceforth, we only work on these xy-monotone surfaces in G.
The output of our program is a minimization diagram, represented as a planar arrange-
ment where each arrangement feature (vertex, edge or face) is labelled with the set of
xy-monotone surfaces that attain the minimum over that feature. The label can contain a
single surface, several surfaces, or no surface at all, in which case we call it the no surface

label.

When G consists of a single xy-monotone surface, we construct its minimization diagram
using the projection of its boundary: we insert the projection of its boundary into an

1We restrict ourselves to working with bounded surface patches only since the current implementation of
the Cgal arrangement package that we use to represent the minimization diagram supports only bounded
curves. An extension of the Cgal arrangement package to handle infinite curves is underway.

2A surface is xy-monotone if every line parallel to the z-axis intersects it in at most one point.
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Figure 3.1: The different combinations for sub-features of a feature in the overlay of two arrangements

A1 and A2 (up to a symmetry between the overlaid arrangements A1 and A2). Face f is a sub-face

in each of the overlaid arrangements. Edge e1 is a result of two overlapping edges in A1 and A2.

Edge e2 is a sub-edge in one arrangement, but a part of a face in the other arrangement. Vertex

v1 is the result of two coincident vertices, one from A1 and one from A2. Vertex v2 results from a

vertex in one arrangement splitting an edge of the other arrangement. Vertex v3 is the intersection of

two edges from A1 and A2. Vertex v4 is a vertex of one arrangement lying inside a face of the other

arrangement.

arrangement, then we label all the holes in the unbounded face and all the vertices and
edges with this surface. Finally, we label the other faces, mainly the unbounded face, with
the special label no surface.

When G contains more than one xy-monotone surface, we split G into two sets G1 and
G2 of (roughly) equal size, recursively construct the minimization diagrams M1 and M2

of these sets respectively, and finally merge these two diagrams into the final minimization
diagram M. The merge step is carried out as follows:

• We overlay the two planar arrangements underlying the minimization diagrams M1

and M2 to obtain the arrangement O, where each feature is a maximal connected
portion of the intersection of one feature of M1 and one feature of M2. For example,
a face in O can be a part of one face in M1 and one face in M2, an edge can be a
part of an edge in M1 and a part of a face in M2, and so on. For each feature in
O we keep two pointers to these features in M1 and M2. Figure 3.1 shows all the
possible feature-feature combinations.

• We determine the structure of the minimization diagram over each feature in O, to
obtain the arrangement O′

, which is a refinement of the arrangement underlying M.
We then label each feature of O′

with the correct envelope surfaces. Note that this is
not a trivial step. We should consider here the two relevant features in M1 and M2

and their labels l1 and l2, respectively. If both labels are the no surface label, there
is no surface defined over the current feature, and it should also be labelled by no

surface. If only one of these labels is no surface, and the other represents a non-empty
set of xy-monotone surfaces, we label the current feature with the latter, and we are
done. When both labels represent non-empty sets of xy-monotone surfaces, these
surfaces are defined over the entire current feature f , and their envelope over f is the



3.2. SEPARATION OF GEOMETRY AND TOPOLOGY 27

envelope of G1 ∪ G2 there. Since all the xy-monotone surfaces of one label li overlap
over the current feature f , it is possible to take only one representative surface si

from each label and find the shape of their minimization diagram over f . Here we
should consider the intersection between the representative surfaces s1 and s2, or
more precisely, the projection onto the xy-plane of this intersection, denoted by C,
which may split the current feature, if it is an edge or a face; see Chapters 4 and 5
for more details. We then label all the features of the arrangement of C restricted
to f (where f is considered relatively open) with the correct label, which might
be either one of the labels l1 and l2 or l1 ∪ l2 in case of an overlap.3 A face of
the overlay handled in this step, and hence the arrangement restricted to the face,
can be very complicated, with arbitrary topology (including holes, isolated points
and “antennas”) and unbounded complexity. By preforming a vertical decomposition
on O, it is possible to get simpler faces. A vertical decomposition is a subdivision
of an arrangement where a vertical ray is extended upwards and downwards from
every vertex of the arrangement, until it hits another feature (vertex or edge) of the
arrangement, or extends to infinity. A vertical decomposition creates simple faces,
with constant number of edges on their boundary, and without holes, and at the
same time preserves the asymptotic combinatorial complexity of the arrangement.
Currently, we find dealing with the complicated faces directly preferable. The issue
of vertical decomposition is addressed in Sections 5.4.2 and 7.7.

• We finally apply a cleanup step in order to remove redundant features of O′

and
obtain the minimization diagram M of G. Edges with the same label as their two
incident faces are redundant, and hence should not be part of the final minimization
diagram. We remove such edges and merge the two faces into one face. Also vertices
with degree two, which are labelled with the same surfaces as their two incident edges
might be redundant. We remove those vertices and merge their edges into one edge
if it is geometrically possible to do so, namely the curves represented by the edges
originate from a single projected curve (either the projection of the boundary of an
input surface or the projection of the intersection of two input surfaces).

3.2 Separation of Geometry and Topology

Our algorithm is parameterized with a traits class. The term traits was coined by My-
ers [57] for a concept of a class that should support certain predefined methods, passed
as a parameter to another class template. In our case, the traits class encapsulates the
geometric objects the algorithm operates on, and the predicates and constructions on these
objects used by the algorithm. It serves as the geometric interface to the algorithm. The
algorithm treats the geometric objects in an abstract manner, using only the operations
defined by the traits class. In this manner the algorithm is made generic and independent

3With a slight abuse of notation we use the label li to denote the corresponding set of surfaces.
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of the specific geometry needed to handle a special type of surfaces. By plugging in the
application-specific geometry, the code for the algorithm can be reused.

The set of requirements from a traits class forms a concept.4 The geometric-traits
concept for the envelope algorithm, EnvelopeTraits 3, refines the ArrangementTraits 2

concept for building a two-dimensional arrangement of general bounded curves. The latter
concept, which is described in detail in [66, 67], defines three object types: planar points,
x-monotone curves and general curves, and operations on them. The EnvelopeTraits 3

concept adds to these requirements two more object types: three-dimensional xy-monotone
surfaces and general surfaces, and also operations on them. For a detailed explanation of
the requirements of these concepts see Chapter 4.

A key motivation behind this separation is to allow users to construct envelopes of their
own types of surfaces without requiring any knowledge of the underlying computational-
geometry algorithm and its intricacies. The traits that users have to supply rely on prim-
itive algebraic/numeric operations applied to a small number of geometric objects.

3.3 The use of Two-Dimensional Arrangements

The problem of computing the envelope is somewhat two-and-a-half dimensional, since the
input is three-dimensional, but the output is naturally represented as a two-dimensional
object, the minimization diagram. In our solution we work as much as we can in the
plane, as it is usually easier, and we can use available software. For the representation
of the minimization diagram we use the Cgal Arrangement 2 class with additional in-
formation on every feature — a list of xy-monotone surfaces which attain the envelope
over this feature. The Cgal Arrangement 2 package gives us all we need to represent
the minimization diagram of bounded surfaces, including holes and isolated vertices, to
access this representation and to modify it. For example, we can insert new points and
curves into an arrangement after it was built, remove, split or merge edges, and so on.
The Arrangement 2 package also provides us with a method to overlay two arrangements
and get the result as another arrangement. We use all these methods (and more), but
are still left with a lot of work. Recall that after overlaying two minimization diagrams
in the merge step, we have to determine the structure of the minimization diagram over
each feature. If we work on a face, for example, and have to find the envelope of two xy-
monotone surfaces over it, we find their projected intersection, and want to partition the
face with it. But this projected intersection can cut many other irrelevant features of the
overlaid arrangement. This may increase both the asymptotic complexity and the amount
of geometric computation of the algorithm, so we want to refrain from näıve insertion of
the projected intersection curves (see Section 5.1 for more details). Moreover, we have to
correctly label all the sub-features, which are created after the insertion of the projected
intersection curves, with the envelope surfaces. We can, of course, näıvely compare the
surfaces over each feature. But we can be more careful, exploiting information from the
traits and from the continuity (or discontinuity) of the envelopes that are merged, thus,

4Recall from Section 2.4.6 that a concept is an important component in generic programming.
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Figure 3.2: Lower envelopes of 300 triangles computed by our software.

reducing the number of needed comparisons significantly and greatly saving in algebraic
computation. Section 5.2 describes the labelling step in detail.

The Arrangement 2 package provides many public interface methods intended for the
users of the package. Versions of these methods that are intended for internal use inside
the package are available as well for most tasks. The internal version usually has more
restrictions on its input than the public version of the same operation, and is more suscep-
tible to mistakes regarding the input it receives, which may cause invalid representation of
the arrangement structure. However, the absence of these restrictions on the input usually
implies that geometric operations will be called to find geometric relations. Thus, the
internal version of an operation is more efficient than its public version. In our algorithm
we use the internal version of the arrangement operations whenever the needed geomet-
ric information is available, and by this avoid unnecessary geometric operations and gain
efficiency.

3.4 Available Traits Classes

Recall from Section 2.4.6 that in generic programming, a type that satisfies all the re-
quirements of a concept is a model of that concept. We implemented three models of the
EnvelopeTraits 3 concept, which can be plugged into our generic algorithm implementa-
tion. Our traits classes deal with triangles, spheres or quadrics. See Figures 3.2, 3.3 and 3.4
for examples of envelopes of these types, produced by our implementation.

• Triangles traits class. This traits class extends the two-dimensional arrangement
traits for segments, since the minimization diagram is built from planar segments.
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Figure 3.3: Lower envelopes of 300 spheres computed by our software.

(a) (b)

Figure 3.4: Lower envelope of 96 ellipsoids computed by our software (a), zoomed-in (b).



3.4. AVAILABLE TRAITS CLASSES 31

• Spheres traits class. The minimization diagram of spheres can contain segments of
lines, circles and ellipses, since the intersection of two spheres can be empty, a point
or a circle in three space. This traits class is an extension of the two-dimensional
arrangement conics traits, which deals with segments of algebraic curves of degree
two [64, 65].

• Quadrics traits class. Quadrics are algebraic surfaces of degree at most two. The
minimization diagram of quadrics contains algebraic curves of degree at most four.
Exacus5 [10] is an ongoing project aiming to provide efficient and exact algorithms
for curves and surfaces. This traits class is based on the QuadriX package of Exacus

[9, 12], and is a joint effort with the authors of this package. Chapter 6 is dedicated
to the quadrics traits.

5The Exacus project homepage http://www.mpi-sb.mpg.de/projects/EXACUS/.
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Chapter 4

Traits in Detail

Recall from Section 3.2, that our algorithm is parameterized with a traits class, which serves
as the geometric interface to the algorithm. The traits class encapsulates the geometric
objects the algorithm operates on, and the predicates and constructions on these objects
used by the algorithm. Traits classes are used a lot in Cgal. For example, the convex-hull
algorithm for planar points is parameterized with a traits class, which defines the type of
points used and the needed predicates on them. Another example is the Arrangement 2

class. This class is parameterized with a geometric-traits class, which defines the family
of curves that are handled in the planar subdivision. In this chapter we explain the
requirements of the divide-and-conquer algorithm for computing the envelope of surfaces
from the traits class, and the reasons that these requirements are needed. We also describe
some considerations in the design and implementation.

4.1 The EnvelopeTraits 3 Concept

As mentioned in Section 3.2, the geometric traits concept for the envelope algorithm,
EnvelopeTraits 3, refines the ArrangementTraits 2 concept for building planar arrange-
ments of general bounded curves. We briefly review the ArrangementTraits 2 concept
requirements here. This concept defines three object types: planar points, x-monotone
curves and general curves. It also defines the following operations on them:

1. Compare the x-coordinate of two points.

2. Compare two points lexicographically, first by their x-coordinates, then by their y-
coordinates.

3. Return the left (similarly right) endpoint of an x-monotone curve.

4. Determine whether a weakly x-monotone curve is a vertical segment.

5. Given an x-monotone curve c and a point p that lies in its x-range, determine whether
p lies below, above or on c.

33
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6. Check two curves for equality.

7. Split an x-monotone curve c into two x-monotone sub-curves at a point p lying in
the interior of c.

8. Given two x-monotone curves that share a common endpoint, determine whether
they are mergeable, that is, can be merged into one continuous x-monotone curve of
the type supported by the traits class.

9. Merge two mergeable x-monotone curves.

10. Compute all intersection points and overlapping sections of two x-monotone curves. If
possible compute also the multiplicity of each intersection point.1 Information about
the multiplicity of an intersection point can be used to speed up the construction of
a two-dimensional arrangement [11].

11. Given two x-monotone curves c1 and c2 that share a common left endpoint (similarly,
right endpoint) p, determine whether c1 lies above or below c2 immediately to the
right (to the left) of p, or whether the two curves coincide there.

12. Subdivide a general curve into maximal continuous x-monotone curves and isolated
points.

The EnvelopeTraits 3 concept adds to these requirements two more object types:
three-dimensional xy-monotone surfaces and general surfaces. In practice, these two types
might map to the same object type, or to two different object types. The concept defines
the following operations on these types:

1. Given a general surface, extract maximal continuous xy-monotone patches of the
surface which contribute to its envelope.

2. Construct all the planar curves that form the boundary of the vertical projection of
a given xy-monotone surface onto the xy-plane.

This operation is used at the bottom of the recursion to build the minimization
diagram of a single xy-monotone surface.

3. Construct all the planar curves and points, which compose the projection (onto
the xy-plane) of the intersection between two xy-monotone surfaces s1 and s2. If
possible, indicate, for each projected intersection curve, whether the envelope order2

of s1 and s2 changes when crossing that curve, or not. The envelope order of s1 and s2

indicates whether s1 is below/coincides with/is above s2. This information (referred
to as the intersection type information) is optional — when provided, it is used by

1The multiplicity of intersection point p of two polynomials c1(x) and c2(x) is the least positive k such
that f (k)(p) 6= 0, where f(x) = c1(x) − c2(x).

2We use the term envelope order as it applies equally to lower and upper envelopes.
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Figure 4.1: (a) The spheres s1 and s2 have only one two-dimensional point in their common xy-

definition range. Over this point the algorithm will compare them. (b) The surfaces s1 and s2 will be

compared over the edge c. The example shows why the comparison should be done over the interior

of an x-monotone curve, excluding its endpoints.

the algorithm to determine the envelope order of two xy-monotone surfaces on one
side of their projected intersection curve when their order on the other side of that
curve is known, thus improving the performance of the algorithm, as is explained in
Section 5.2.

Note that this method is used also in situations where the surfaces do not intersect,
and it is the responsibility of this method to indicate this fact, and return the empty
set. This design gives the traits the maximum flexibility in the implementation of
this operation, as sometimes there is an easy and efficient intersection test and the
implementation can immediately return when it identifies that the surfaces do not
intersect.

4. Given two xy-monotone surfaces s1 and s2, and a planar point p, which lies in their
common xy definition range, determine the envelope order of s1 and s2 at the xy-
coordinates of p.

This operation is used by the algorithm to determine the label of a vertex, whose
associated point is p. It is needed only for degenerate cases. See Figure 4.1(a) for an
illustration of a situation where this operation is used.

5. Given two xy-monotone surfaces s1 and s2, and a planar x-monotone curve c, which
is a part of their projected intersection, determine the envelope order of s1 and s2

immediately above (similarly below) the curve c (in the plane). Note that c is a curve
in the plane, and we refer to the region above/below c in the plane, here and in the
description of Operation 6. If c is a vertical curve, we regard the region to its left
(similarly right) as the region above (similarly below) c.

This operation is used by the algorithm to determine the label of a face incident on
c, immediately above (below) it.

6. Given two xy-monotone surfaces s1 and s2, and a planar x-monotone curve c, which
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...

tb

tr

Figure 4.2: The two big triangles tr and tb should be compared over all the filled faces in the overlay.

lies fully in their common xy definition range, such that s1 and s2 do not intersect
over the interior of c, determine the envelope order of s1 and s2 over the interior of c.

This operation is used by the algorithm to determine the label of an edge, whose
x-monotone curve is c, or of a face incident on c, for which Operation 5 cannot be
used. See Figure 4.1(b) for an illustration of a situation where this operation is used.

All the traits operations should be defined as function objects (functors) [7], as is
massively used in the Cgal geometry kernel. The main advantage of functors over regular
methods is the ability to extend the traits geometric objects without the need to redefine
the operations on them (see [44] for an explanation about the Cgal extensible kernel).

4.2 The Caching Traits Classes

The caching traits classes are components that extend a traits class with a caching ability.
There are two possible caches:

1. Projected intersection cache. In the overlaid arrangement, there may be several
features with the same pair of xy-monotone surfaces (one surface from each of the
two envelopes currently being merged), for which the minimization diagram shape is
to be determined (see Figure 4.2). The first step in the process of resolving a feature
is to find the projected intersection of the surface, and this is usually a very costly
operation. Thus, caching these projected intersections can improve performance.

2. Cache for comparison result of two xy-monotone surfaces in some special

cases. If two xy-monotone surfaces do not intersect and the projection of the two of
them onto the xy-plane is convex, then if we know their envelope order over one point
in their xy definition range, this order is valid for all other points in their common
definition range. Suppose that p is a planar point in the common definition range
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of the surfaces, where we know their envelope order. Let p′ be another point, where
we wish to determine the envelope order of the surfaces. If the projection of the two
surfaces onto the xy-plane is convex, then all points of the segment pp′ lie in the
definition range of both surfaces, and the surfaces can change their order over that
segment only if they intersect over it, since we assume they are continuous. So when
they do not intersect, their envelope order over p′ is the same as over p. Note that
this characteristic is not true for general xy-monotone surfaces. The non-intersection
test is carried out using the projected intersection operation, so it makes sense to use
this cache together with intersections cache. Considering the algorithm flow, this is a
natural requirement, since the projected intersection operation for two xy-monotone
surfaces is always computed before any call to a comparison operation between these
two surfaces.

Each cache is implemented in a separate class. From the algorithm point of view, each
caching traits class plays the role of an ordinary traits class. The main advantages of a
separate component for the caching are reusability and modularity. Reusability, since one
can use the caching support on top of any available traits class, and modularity, since one
can choose not to use caching at all in some situations, for example if memory usage is
more costly than recomputing time, or when the caching is built inside a specific traits
class.

When using the projected intersections caching traits class on top of a given traits class,
the latter should be a model of the EnvelopeCachingTraits 3 concept. This concept is a
refinement of the EnvelopeTraits 3 concept with the additional requirement that a pair
of xy-monotone surfaces can be uniquely identified inside the cache.

When using the second caching traits class on top of a given traits class, the latter
should be a model of the EnvelopeCompareCachingTraits 3 concept. This concept is a
refinement of the EnvelopeCachingTraits 3 concept with the following additional opera-
tion requirement: given an xy-monotone surface, check if its projection onto the xy-plane
is convex. This operation is used to check if it is possible to cache comparison results,
where this surface is involved.

4.3 More Design Issues

Working with xy-monotone surfaces instead of with general surfaces that are not necessarily
xy-monotone is more convenient. Some of our methods described in Chapter 5 are valid
only under the assumption that the surfaces are xy-monotone. Yet, this assumption does
not contradict the generality of the algorithm, since at an initial step we extract the relevant
(xy-monotone) portions of the (not necessarily xy-monotone) surfaces.

4.3.1 Minimal Set of Requirements

Making the traits-class concept as tight as possible, by identifying the minimal number
of required methods, is crucial. It can make the whole difference between being able to
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implement a traits class for a specific type of surfaces or not, and may have a major effect
on the efficiency of the algorithm, especially for non-linear objects. This observation has
guided us in our design. Our algorithm does not require the traits class to define any three-
dimensional types except the surface types. The interface with the traits class contains
only the types that are necessary for the input and the output of the algorithm, and a
small set of operations defined on these types. This minimization of the requirements gives
the maximum flexibility to the traits implementation. In situations where it is easy and
helpful, three-dimensional objects can still be defined inside the traits class, and used as
intermediate objects. Three-dimensional data may also be attached to the two-dimensional
objects. However, sometimes the intermediate spatial objects are not needed or not known
in the traits implementation (see, for example, the quadrics traits in Chapter 6) and our
algorithm can still be used to successfully compute the envelope.

4.3.2 Envelope Viewpoint

Our implementation of the divide-and-conquer algorithm is completely independent of the
direction in which the envelope is to be computed. The traits class is responsible for
controlling this direction. The main operations where this independence is manifested are:

1. The different comparisons operations. These operations indicate to the algorithm
which of the two input xy-monotone surfaces appears on the envelope of these two
surfaces over the given query region. This is exactly what the algorithm should know
in order to correctly label the relevant feature.

2. The extraction of xy-monotone surfaces from a general surface. This operation is
defined to return the xy-monotone portions of the surface that are relevant to the
envelope. Thus, computation regarding the other portions of the surface can be
avoided, which is highly desirable, since these portions will not appear on the final
envelope anyway. For example, if we compute the lower envelope of spheres, we can
ignore all the upper hemispheres, since they do not appear on the lower envelope.

All our traits classes support the computation of a lower and an upper envelope. It is also
possible to use our algorithm to compute the envelope seen from a direction that is not
parallel to the z-axis, provided that the traits class correctly implements all operations
with respect to that direction.



Chapter 5

Algorithmic Details

In this chapter we provide more details on our algorithm. First, we explain the process
of handling a face in the overlay of two minimization diagrams in order to determine
its shape in the result minimization diagram. Second, we describe how the features are
labelled with the correct surfaces. We describe the methods (sometimes tricks) we use in
order to minimize the number of geometric/algebraic operations, substituting them with
combinatorial labelling. We continue with a description of some of the degeneracies, and
the way we handle them. We conclude the chapter with a complexity analysis of both time
and working storage, and some ideas for improvement of our work.

In the following sections, we assume that we perform the merge step of two minimization
diagrams M1 and M2 (representing the lower envelopes E1 and E2 respectively) of two sets
of xy-monotone surfaces G1 and G2 respectively. The result of the merge is a minimization
diagram M (representing the lower envelope E) of the set G1 ∪ G2.

5.1 Handling a Face in the Overlay of Two Minimiza-

tion Diagrams

Recall that in the merge step of the algorithm, after we overlay the two minimization
diagrams from the previous recursive step, we have to determine how the envelope looks
over each feature. We call this step resolving the feature. Since a vertex cannot split, and
the resolving of an edge is quite simple, we will describe here only the process of resolving a
face. We have a face f with two xy-monotone surfaces s1 and s2 defined over the entire face.
We wish to compute the envelope of s1 and s2 over f . We do not assume any restrictions on
the size or shape of f . The envelope of s1 and s2 over f is affected only by the intersections
of these surfaces. If we look at the minimization diagram of s1 and s2 restricted to f , it
is affected exactly by the projection of the intersection of s1 and s2. Thus, we reduce to
the problem of partitioning f with these projected intersection. Let us denote by W the
arrangement that we work on; in the beginning of this step, it contains the overlay of M1

and M2, and at the end of this step, it would contain a refinement of the overlay with
projected intersection curves. A simple but dangerous solution is to use the arrangement

39
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Figure 5.1: Given the minimization diagrams shown in (a) and (b), for handling the shaded face in

their overlay (c), one has to split f with the projected intersection segment of tb and tr, shown in

dashed line, which intersects many irrelevant edges of the overlaid arrangement.

interface insertion method as is on W . As already mentioned in Chapter 3, this may result
in a lot of extra computation. The curves of the projected intersections might intersect
many edges outside f , even inside the holes of f ; see Figure 5.1 for an illustration. These
planar intersections outside f are irrelevant to the envelope of s1 and s2 over f , and we wish
to avoid them. We wish to compute intersections only within the boundary of f . We achieve
this goal in the following way. First, we create an empty arrangement arrf , and copy only
the boundary of f there, including the outer boundary, and all the inner boundaries (of the
holes). This step incurs minimal overhead, while making the problem much easier. Then,
we insert the projected intersection curves into arrf in a controlled way: only the parts of
the curves that fall inside f are inserted, the other parts are discarded. The insertion is
based on finding the zone of the inserted curves in the arrangement; see more details in
Section 5.4.2. Eventually, we will need those parts inside W , and not just in arrf , so we
need to know all the changes made to arrf , to repeat them on W . For this task we attach
an observer to arrf . Observer is a design pattern which defines a one-to-many dependency
between objects, such that when one object changes state, all the dependents are notified
and updated automatically [35]. The observer design pattern is used in the Arrangement 2

package for the implementation of the notification mechanism — the arrangement class has
a list of observers, that registered themselves with the arrangement object to be notified
about any change to its structure [67]. Whenever something happens in arrf — a new
vertex is created, an edge of arrf is split, a new edge is created, a face is split, a new hole is
created, and so on — the observer gets the details of the event, and it is possible to mimic
the same actions exactly in the original arrangement, exploiting the geometric information
already computed in arrf without computing it again. In order for this mechanism to work
properly, we maintain cross pointers between the features in arrf and their counterparts
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in the original arrangement.

5.2 The Labelling Step

We invested considerable effort in trying to minimize the amount of algebraic computation
whenever possible, as such computation is usually very costly. This actually means substi-
tuting calls to the different traits-class methods by the propagation of information (in the
form of labels) between incident features. In Section 4.2 we already presented two types of
information caching that can be used to avoid recomputing the projected intersection for
the same pair of xy-monotone surfaces and the envelope order of a pair of xy-monotone
surfaces in a special case. In this section, we concentrate on a careful usage of the different
comparison operations for two xy-monotone surfaces in the general case, which reduces the
number of algebraic operations significantly.

Let O′ be the arrangement, which is created by overlaying the arrangements underlying
M1 and M2, and determining the shape of the minimization diagram over each feature of
the overlay. O′ is a refinement of the arrangement underlying M, the result minimization
diagram. For each feature f of O′ the envelope E is attained by the same set of surfaces
over all points of f . O′ is the input to the labelling step, which determines the correct label
of all the features of O′. For each feature f of O′ we have to decide between two labels
from the two minimization diagrams currently being merged; we say that f is associated
with a decision. A decision can be one of three values: first, when the feature should be
labelled with all the surfaces of the first label, second, when the feature should be labelled
with all the surfaces of the second label and both, when the surfaces of both labels overlap
over the feature. We work with decisions in the labelling step, and after the cleanup step,
we translate the decisions into the relevant labels.

Obviously, in order to make a decision for a feature, we can use one of the three types
of comparison operations described in Section 4.1. However, we can use the following
observations to significantly reduce the number of such operations. These savings are
demonstrated in the experiments reported in Section 7.6.

• No need to compare xy-monotone surfaces over their projected intersection, since
they are equal there. Thus, edges and vertices that coincide with the projected
intersection of the surfaces that are compared over them are associated with the
decision value both.

• Information on intersection type can be used when available, to avoid the comparison
of two xy-monotone surfaces on one side of a curve (which is a part of their projected
intersection) if their envelope order on the other side of that curve is known. Recall
that such information is (optionally) given by the traits operation which constructs
the projected intersection of two xy-monotone surfaces. Similar information is ex-
tremely helpful in constructing two-dimensional arrangements of curves [32].

• Information on the continuity or discontinuity of the two envelopes currently being
merged can be used in order to conclude the decision for a feature from a decision
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on an incident feature. We regard the following as incident features: (i) a face and
an edge on its boundary, (ii) a face and a vertex on its boundary, and (iii) an edge
and its endpoint vertices. In the following section we explain how this information is
used.

Table 7.3 in Chapter 7 demonstrates the significant savings in geometric operations by
the techniques presented in this section. For example, for a set of 1000 random triangles
the total number of comparison operations reduces from 265,211 to 13,620, and for a set
of 1000 random spheres the total number of such operations reduces from 48,842 to 2,457,
which is roughly a saving of 95% in either case.

5.2.1 Using Continuity or Discontinuity Information

We consider the xy-monotone surfaces as graphs of partially defined bivariate continuous
functions, and their envelope as a function defined over the entire xy-plane. In addition,
we consider the boundary of an xy-monotone surface to be part of this surface.

Definition 5.1 Let E be an envelope and M its minimization diagram. Let f and e be
two incident features of M, such that e lies on the boundary of f . We say that E meets f
and e continuously if E restricted to f ∪ e is continuous over e.

Observation 5.2 Let E be an envelope of a set S of surfaces and M its minimization
diagram. Let f and e be two incident features of M, such that e lies on the boundary of
f . E meets f and e continuously if and only if there exists an xy-monotone surface s ∈ S
which appears over f and e on the envelope E.

If s as defined above exists, since it is continuous, E restricted to f and e is also
continuous. If E meets f and e continuously, an xy-monotone surface s, which appears
over f on E is defined on f ’s boundary, thus, over e, and must appear on the envelope over
e because of the envelope’s continuity there.

We use this observation in our implementation to decide where an envelope meets two
incident features continuously. We now explain how we use this information to reduce the
number of geometric comparisons.

Lemma 5.3 Let f be a face of O′ and e be an edge on its boundary. Suppose that:

1. A decision over a face f is known.

2. Both envelopes E1 and E2 meet f and e continuously. Let s1 and s2 be the xy-
monotone surfaces that appear over f and e on these envelopes respectively.

3. e is not part of the projected intersection of the surfaces s1 and s2.

Then the decision made on f is valid also on e.
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Proof: Since the decision over f is known, the envelope order of s1 and s2 over f is known,
even if s1 and s2 were not compared over f directly. Recall that a label on a feature may
contain several surfaces, and as a result, it is possible that another pair of surfaces were
compared over f . But all the surfaces of a label overlap over the feature, thus, the envelope
order of s1 and s2 over f is known. From the continuity of the xy-monotone surfaces, and
the fact that they do not coincide over e, it is clear that the same envelope order is valid
over e. 2

Remark 5.4

1. In order to use Lemma 5.3, the algorithm must know whether e is part of the projected
intersection of s1 and s2. This information is not trivial to extract, but it is available
in the step of resolving the features. We save this information until the labelling is
completed.

2. In the conditions of Lemma 5.3, when e is part of the projected intersection of s1

and s2, e is associated with the decision value both. We mentioned above that the
algorithm does not compare surfaces over their projected intersection, since they are
equal there. If the projected intersection falls inside the resolved face, then the new
features are immediately associated with the decision value both. When the projected
intersection overlaps features on the boundary of this face, they can be associated
with the decision value both only if the conditions of Lemma 5.3 are met.

Observation 5.5 Similar arguments as in the proof of Lemma 5.3 can be used to carry
a decision over from an edge e to an incident face f , and between other types of incident
features.

Sometimes, we can use also the discontinuity information to deduce a decision for a
feature without comparing the relevant surfaces.

Observation 5.6 Let E be a lower envelope and M its minimization diagram. Let f and
e be two incident features of M, such that e lies on the boundary of f . Let sf and se be
representative xy-monotone surfaces of E over f and e respectively. E does not meet f and
e continuously if and only if se lies below sf over e (note that sf is defined over e).

Applying Observation 5.6 to the labelling step we get:

Lemma 5.7 Let f be a face of O′ and e be an edge on its boundary. Assume that the
lower envelope E1 meets f and e continuously, but the lower envelope E2 does not.

1. If E2 is below E1 over f , then E2 is below E1 also over e.

2. If E1 is below E2 over e, then E1 is below E2 also over f .
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Figure 5.2: Applying continuity or discontinuity arguments to carry on a decision between incident

features: (a) the envelope of two triangles r and b, (b) the envelope of one triangle g, (c) the envelope

of r, b and g, (d) the overlaid arrangement before the labelling step. To label face f1 we compare

triangles b and g and find out that g appears on the envelope there. Using Lemma 5.3, we label

all the features on the boundary of f1 with g. To label face f2, where triangles r and g should be

compared, we use Observation 5.5 and edge e1 to conclude that g appears on the envelope, without

actually comparing r and g. Using Lemma 5.3, we label all the features on the boundary of f2 with

g. To label face f3, we use Lemma 5.7 and edge e2 to set the label to g. To summarize, we need

only compare triangles b and g once, and all the other decisions follow.

Proof: Denote by t the xy-monotone surface that appears over f and e on E1, and by sf , se

the xy-monotone surfaces that appear on E2 over f and e respectively. By Observation 5.6,
se is below sf over e.

1. E2 is below E1 over f , thus sf is below t over f , and also over e (sf and t may coincide
over e). Since se is below sf over e, it is below t there too, i.e., E2 is below E1 over e.

2. E1 is below E2 over e, thus t is below se over e. Since se is below sf over e, t is below
sf there too. By the continuity of the xy-monotone surfaces, t is below sf over f ,
i.e., E1 is below E2 over f .

2

Observation 5.8 The arguments of Lemma 5.7 apply similarly to all other incidence re-
lationships.

Figure 5.2 illustrates how the observations above are used in the labelling step.

5.2.2 Implementation Details

We saw that it is possible to carry a decision over from a face to a boundary edge and vice
versa, so the order in which we traverse the faces of the overlaid arrangement and resolve
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them seems important. We wish to traverse the faces in a breadth-first order, moving from
a face to its neighboring faces. The Boost1 graph library [63] is a generic library of graph
algorithms and data structures. The Cgal Arrangement 2 package provides an adaptor of
the arrangement class into a graph, which associates a graph vertex with each arrangement
face, such that two vertices are connected if and only if there is an arrangement edge that
separates the two corresponding faces. We use this adaptor to perform a breadth-first
traversal of the faces.

We already mentioned that in order to decide whether an envelope meets two incident
features continuously, it is possible to check if there exists a common xy-monotone surface
in their labels. This test is automatically interpreted as finding whether the intersection
of two lists of xy-monotone surfaces is non-empty. Operations on such lists are not desir-
able, though, neither from a theoretical point of view nor practically. Since a label may
contain up to n xy-monotone surfaces, we may end up with Θ(n) time test just to save one
geometric comparison. Such a test also poses an additional requirement from the traits
class, to be able to compare two xy-monotone surfaces. Fortunately, there is a better
solution. Using a constant number of Boolean flags for every halfedge and vertex of the
minimization diagram, it is possible to perform the continuity test in constant time, with
minimal overhead, as follows. For every halfedge we keep three types of Boolean flags:
(i) to indicate whether the halfedge and its incident face have a common xy-monotone
surface in their labels, (ii) to indicate the same thing for the halfedge and its target vertex,
and (iii) to indicate the same relation for the halfedge’s target vertex and the halfedge’s
face — note that a halfedge is a natural place to put additional information regarding a
relation between a face and a vertex on its boundary. For an isolated vertex, we keep a
flag to indicate whether the vertex and its containing face share a common xy-monotone
surface in their label. We use the flags of the minimization diagrams M1 and M2 to set
the decisions over the features in the labelling step. After the cleanup step, we use these
flags along with the decisions to update the correct flag values for the features of the result
minimization diagram.

A similar issue arises in the cleanup step, where a test for deciding whether to remove
an edge or a vertex involves a test for equality of labels of incident features. As in the
labelling step, we can avoid comparing labels by maintaining a constant number of Boolean
flags for halfedges and for isolated vertices. These flags indicate the relations between
incident features as does the set of flags described above for performing the continuity test.
However, they have different meanings: the flags described above indicate whether two
incident features have a common xy-monotone surface in their labels, whereas the flags
described here indicate whether the labels of two incident features are equal. For every
halfedge we keep two types of Boolean flags: (i) to indicate whether the halfedge and its
incident face have the same set of xy-monotone surfaces in their labels, and (ii) to indicate
the same thing for the halfedge and its target vertex. The information of equality of labels
between a face and a vertex on its boundary, though needed in some degenerate situations,
can be deduced from the other two flags, as opposed to the continuity test between a face

1Boost C++ Libraries http://www.boost.org
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and a vertex on its boundary. In addition, a flag for an isolated vertex is stored, which
indicates whether the vertex and its containing face have the same label. We use the
flags of the minimization diagrams M1 and M2 together with the decisions made over the
features in the labelling step in order to decide whether a feature is redundant and should
be removed. We also use them to set the correct values of these flags for features of the
result minimization diagram.

5.3 Handling Degeneracies

Our implementation does not assume general position, rather, it handles all types of de-
generate input. Many degeneracies require straightforward handling. In this section we
describe two degeneracies where the handling is less obvious: vertical surfaces and over-
lapping surfaces. We briefly list some other degeneracies and the way of handling them.

5.3.1 Vertical Surfaces

Vertical surfaces are not handled directly by the algorithm, but should be handled inside
the traits class, whenever the family of surfaces supported by the traits includes vertical
surfaces. The main reason is that vertical surfaces are not xy-monotone, and our algorithm
works on xy-monotone surfaces. From the algorithm point of view, vertical surfaces are
treated just like any other general surfaces, where xy-monotone portions need to be supplied
by the traits. So actually, the algorithm treats vertical surfaces as the relevant curves, that
are their envelope. It is the traits’s responsibility to implement the three-dimensional
methods in a way that supports this view.

5.3.2 Overlapping Surfaces

Recall that, as we do not assume general position, the label of each feature in the minimiza-
tion diagram may consist of several xy-monotone surfaces, all of which overlap over the
feature. Our representation of a minimization diagram supports labels containing several
overlapping surfaces. When dealing with overlapping xy-monotone surfaces in the merge
step, the algorithm expects the comparison operations of the traits class to return the
value equal over the relevant feature, in which case the decision value both is set on that
feature, and it is labelled with the union of the two labels whose surfaces were compared.
In order to get the correct shape of the envelope in the step of resolving the features, the
projected-intersection operation of the traits class is expected to return the projection of
the boundary of the overlap region(s).

Our triangles traits class uses a more efficient way of handling overlaps. It does not
compute the intersection between overlapping triangles at all. The important observation
is that the boundary of an overlap region of two triangles consists only of segments that are
part of the triangles boundary. Thus, these segments do not give any new information on
the shape of the minimization diagram. Moreover, handling the projection of the segments
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that bound the overlap region in the resolving process may result in unnecessary geometric
computation. Instead, if the traits discovers that two triangles have the same supporting
plane, the result of the projected-intersection operation is the empty set (note that identical
supporting plane is an indication of an overlap because the projected-intersection operation
is always called for surfaces that have a common xy definition region). In such a case, the
various comparison operations return the value equal without computing and comparing
the z-coordinates of points on the triangles, as is done in the general cases.

Another solution (which is not implemented and we propose for future work) for han-
dling overlapping surfaces avoids comparing xy-monotone surfaces over their overlap region
at the algorithm level. Quite often when using exact geometric computation, comparing
equal numbers is more time consuming than comparing distinct numbers. Thus, this so-
lution may be more efficient. The idea is to give the traits the possibility to mark an
x-monotone curve, which is a part of a projected intersection, as a projected boundary
of an overlap region, and to indicate on which side of that x-monotone curve the overlap
region is located. By checking this indicator, the algorithm can set the decision value both

on the relevant region, without actually comparing the surfaces.

5.3.3 Additional Degeneracies

Many different degenerate situations may arise when the general position assumption is
removed. We point out some of them: more than three or two xy-monotone surfaces may
intersect in a three-dimensional point or curve, the projection of boundary/intersection
curves of several xy-monotone surfaces may intersect at one point or overlap, even when
there is no intersection in three-space, projected curves may be vertical, and many more.
Our algorithm works mainly in the plane. Since the Arrangement 2 package deals with
all possible degeneracies, we are given some degeneracy handling “for free”. For example,
in the overlay of two minimization diagrams, for all the features in the overlay we get the
correct pair of features in the two input diagrams that created it: two coinciding vertices,
two overlapping edges, a vertex lying on an edge, and so on. Another example is the
zone algorithm we use for resolving the faces, which identifies exactly which features are
intersected by a given curve, including intersection at vertices and overlapping segments of
the curves. In addition to the degeneracies dealt by the Arrangement 2 package operations,
our algorithm has some work left to do by itself. For example, when resolving a face in
the overlay, the algorithm inserts projected intersection curves into an arrangement that
contains that face’s boundary. The projected intersection curves may not only cross edges
of the face’s boundary, but may also overlap with boundary edges, and touch boundary
vertices. These are special cases for the labelling step, which follows the step of resolving
the face, since features that coincide with projected intersections are labelled differently
than other boundary features.
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5.4 Complexity Analysis

First, we analyze the complexity of the algorithm in theory (both running time and working
storage), assuming general position. Then, we list issues that come up in our implemen-
tation, usually caused by particularly degenerate situations, which may increase the worst
case running time. We also give ideas for possible improvements of the implementation in
these cases.

5.4.1 Theoretical Analysis

In this section we analyze the combinatorial complexity of the divide-and-conquer algo-
rithm for computing the envelope of surfaces, under the general position assumption. De-
note by T (n) the running time for n input surfaces. T (n) = 2T (n

2
)+M(n), where M(n) is

the cost of the merge step in which a total of n surfaces are involved. We concentrate on
the merge step. As already mentioned in Chapter 2, the combinatorial complexity of the
lower envelope of n “well behaved” surfaces in R

3 is O(n2+ε), for any ε > 0. This means
that each of the two minimization diagrams M1 and M2 that we merge has complexity
O(n2+ε), for any ε > 0.

• Overlaying M1 and M2 is conducted using a sweep-line algorithm in time O((|M1|+
|M2| + |O|) log n), where O is the overlay result. The overlay of two minimization
diagrams of a total of n surfaces is of size O(n2+ε), for any ε > 0 [4] (note that
this result is non-trivial since the overlay of two arrangements of sizes n and m is in
general of size O(mn)). Thus, the overlay step takes O(n2+ε), for any ε > 0.

• Performing a vertical decomposition on O, yields a refinement of O with complexity
that is linear in the complexity of O. This can be done using a sweep-line algorithm
in time O(n2+ε), for any ε > 0.

• Resolving each feature and labelling the sub-features is carried out in constant time,
since each feature is of constant size, and is cut with a constant number of projected
intersection curves, into a constant number of sub-features. Thus, the whole step
takes time O(n2+ε), for any ε > 0.

• In the cleanup step, checking whether an edge (or a vertex) is relevant to the result, or
should be removed from the result, involves only the feature and a constant number
of incident features. Thus, each such decision is carried out in constant time, and
the overall cleanup step takes O(n2+ε) time, for any ε > 0. One possible way to
achieve this running time is to build the result from the relevant curves only using a
sweep-line algorithm.

The merge step takes O(n2+ε) time, for any ε > 0, and thus, the whole algorithm has
this running time bound.

Regarding the working storage used by the algorithm, we should also look at the merge
step. The two minimization diagrams M1 and M2 have complexity O(n2+ε), for any
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Figure 5.3: Example where the näıve representation of the minimization diagram can be of size

Θ(n3). n
2 surfaces overlap over the shaded region. The remaining n

2 surfaces form a grid below the

overlap region in three-dimensions, dividing the two-dimensional overlap region into Θ(n2) sub-regions,

each with a surface list of size n
2 .

ε > 0, and so has their overlay. Performing a vertical decomposition does not increase
the asymptotic complexity of the arrangement. After inserting all the relevant parts of
the projected intersections, the arrangement size does not increase asymptotically. The
cleanup step can only reduce the working storage. Thus, the total amount of memory used
in the merge step, and in the whole algorithm is O(n2+ε), for any ε > 0.

5.4.2 Implementation Issues and Possible Improvements

In this section we describe some implementation details that may affect the worst case
running time of the algorithm, together with ideas for improvements.

1. Complexity of the minimization diagram allowing many overlaps. In the
current näıve representation of a minimization diagram, each feature contains a list
of surfaces that appear on the envelope over its region. Each such list can be of size
Θ(n), in case of overlaps. This means that the overall complexity of the minimization
diagram, including all these lists, may be of size O(n3+ε). See Figure 5.3 for an
example, where the representation is of size Θ(n3). This can, of course, lead to
worsening of the algorithm running time and working storage.

A possible solution is to gather all the surfaces of a list in one label object, and point
from each feature onto one such label object. Every label object will point to one
surface, or to two other label objects (that unite into one label in a recursion step).
Every label should also contain a pointer to one representative surface, to be quickly
accessible when needed, and to be used in the process of determining the shape of a
face in the minimization diagram. Now, every feature of the arrangement contains a
constant size additional information. The total number of labels created throughout
the algorithm is O(n2+ε), each of which adds constant storage to the overall storage.
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Thus, we gain a representation for envelope of size O(n2+ε), for any ε > 0, which is
worst-case near optimal.

2. Resolving a complex face vs. vertical decomposition. In theory, we only
have to deal with constant size faces, because a preliminary vertical decomposition
is performed on the arrangement. In practice, it seems better to deal with the
complicated faces instead (see experimental results and discussion in Section 7.7).
However, working with large size faces, which may contain many holes, affects the
worst case running time in the current implementation.

Let f be a face of the overlaid arrangement, and hf the number of its holes. Recall
that the first step in the resolving process is to copy f into an empty arrangement.
This is done in time O(|f |). Then, a constant number of x-monotone curves and
points (which form the projected intersection of two surfaces) are inserted into this
arrangement. Each of these curves may intersect every edge of f a constant number
of times, and f may split into O(|f |) sub-faces. The current implementation uses
the available zone algorithm, provided by Cgal’s Arrangement 2 package. The zone
algorithm identifies all the arrangement features that are crossed by the inserted
curve. The zone is computed by locating the left endpoint of the query x-monotone
curve and then “walking” along the curve towards the right endpoint, keeping track
of the vertices, edges and faces crossed on the way [67]. Whenever the inserted curve
enters the face, the whole face boundary is scanned to find the next intersection,
with no history saved for that traversal. Thus, this implementation runs in time
O(|f |2), in the specific case of our use, even when the face contains no holes at
all. We implemented another version of the zone algorithm which runs in time
O(|f |(hf + log |f |)), hf is the number of holes in f . The main improvement in this
implementation is the maintenance of a sorted set of two-dimensional intersections
computed already. The first time the x-monotone curve enters a specific face, all
its boundary edges are traversed and the intersections with them are found and
inserted into the set, sorted from left to right. When the x-monotone curve re-enters
a previously traversed face, the next intersection point with the boundary of the
face can be determined in constant time using the sorted set. Thus the boundary of
every face is traversed only once. The multiplicative hf comes from relocating the
holes in the appropriate face, when a face splits into two sub-faces. However, this
improvement is still not sufficient for getting the theoretical bound.

A possible solution for this problem is to use a variation of the sweep-line algorithm for
this task, which runs in time O(|f | log |f |). With this solution, the step of determining
the shape of all features and labelling them takes O(n2+ε), for any ε > 0, preserving
the theoretical asymptotic bound.

We remark that resolving a complex face as conducted in the current implementation
does not affect the working storage of the algorithm, only its running time. The
copied arrangement of a face f has size O(|f |), and is destroyed after the handling
of that face. Furthermore, every feature is associated with a constant amount of
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Figure 5.4: Problematic situations when an edge is removed from the arrangement. The removed

edge is shown in a dashed line. (a-i),(a-ii) two faces merge, (b) the outer boundary of a face splits,

creating a new hole inside the face, and (c) an inner boundary of a face splits into two separate holes.

additional data that help in the handling of the face and in the labelling of the
relevant features (disregarding the labels’ sizes as explained before). Hence, the
working storage used is O(n2+ε), for any ε > 0, as well.

3. Cleanup. As described in Section 5.4.1, the cleanup step should take O(n2+ε) time.
In our current implementation, we maintain a valid arrangement after every edge
removal. A single edge removal can take more than constant time, and this time can
even be linear in the arrangement size. This may result in worsening the asymptotic
running time of the cleanup step, and in turn of the whole algorithm. To understand
why, recall from Section 2.4.4 that the topology of the arrangement is maintained in
a Dcel data structure. Every halfedge in a Dcel contains a pointer to its incident
face, and every halfedge that is part of an inner boundary contains a pointer to the
hole it belongs to. When an edge is removed there are few problematic situations:

(a) Two faces may merge into one face. In the current implementation, one face
becomes the merged face and the other is removed. As a result the face pointer
of all the halfedges of the removed face should be updated. In addition, all the
holes and isolated vertices of the removed face should be inserted into the new
face. Figures 5.4(a-i) and 5.4(a-ii) show illustrations of two situations where two
faces merge when removing an edge.

(b) The outer boundary of a face may split into two parts, creating a new hole inside
the face; see Figure 5.4(b) for an illustration of this situation. The hole pointer
of all the halfedges of the new hole should be updated.

(c) An inner boundary of a face may split into two parts, creating a new hole inside
the face; see Figure 5.4(c) for an illustration of this situation. The hole pointer
of all the halfedges of the new hole should be updated.
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A possible solution is to do all the expensive updates of the Dcel data in bulks,
instead of after every single removal. First, deal with edges that cause two adjacent
faces to merge — but create a full face of the result, merging all the possible faces,
and only then update the halfedge’s face and hole data, once for each face in the
result. Second, deal with the connected components of the boundary — but split
every connected component to all the holes it should split into, before updating the
relevant data of the halfedges. In this way, every halfedge is updated at most twice,
and the total cost of the removal step is as desired.

In practice, all the cleanup steps during the recursion take a small percentage of the
total algorithm time, for all the input sets that we tested (see Section 7.5), so it
seems reasonable to use a näıve solution here.



Chapter 6

Envelopes of Quadrics

The work reported in this chapter was conducted jointly with Eric Berberich from Max-Planck-Institut

für Informatik (MPII).

Quadratic surfaces (quadrics) in three-space are defined as the set of roots of trivariate
quadratic polynomials. Quadrics are at the front of research on robust three-dimensional
geometric modelling. For recent results in the computational study of quadrics see [12, 23,
36, 49, 54, 70]. For a given set of quadrics, Berberich et al. [12] presented an exact, complete
and efficient implementation of computing the two-dimensional arrangement induced by
their intersection curves on the surface of each quadric. The main difficulty in computing
arrangements of quadrics exactly is that irrational algebraic numbers are involved, even
when the quadrics are defined by rational coefficients. In Section 6.1 we provide more
details on the work of Berberich et al. One of the results of this work was a quadrics
model for the ArrangementTraits 2 concept, to be used with the Cgal Arrangement 2

package. In Section 6.2 we describe the extension of this model to the EnvelopeTraits 3

model. The latter work was conducted together with the author of [12]. Figure 6.1 shows
an example of the minimization diagram of ellipsoids computed by our program, where
curves with degree four can be seen.

6.1 Background and Terminology

In this section we briefly describe the work of Berberich et al. [12]. Let Q = {q1, ... qn}
be a set of n quadrics. The intersection curves q1 ∩ qi, 2 ≤ i ≤ n induce a two-dimensional
arrangement on the surface of q1. The algorithm for constructing this arrangement is
based on the cylindrical algebraic decomposition method. The intersection curves as well
as the silhouette of q1 are projected onto the xy-plane. The projection onto the xy-plane
of intersection curves of pairs of quadrics are called cut-curves; the projections onto the
xy-plane of the silhouettes of the quadrics are called silhouette-curves. Cut-curves are
bivariate polynomial with algebraic degree at most four, whereas silhouette-curves are
bivariate polynomials with algebraic degree at most two. The topology of all curves and
all pairs of curves are analyzed in a y-per-x view. This means looking at the vertical line
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Figure 6.1: Lower envelope of 7 ellipsoids computed by our software, where curves with degree four

can be seen.

x = x0 and considering how the arcs of the curves evolve when moving x0 along the x-axis.
When considering one curve, there is only a finite number of events where the number
and relative position of the arcs of the curve changes. These events are x-extreme points,
singularities and vertical asymptotes. For a pair of curves, the number and relative position
of the arcs of both curves changes at a finite number of events, which are the intersection
points of the two curves as well as the critical events of each curve separately. A curve and
a curve pair are analyzed over each of their relevant x-critical points, and over the intervals
between two successive such points. Each curve is split at its event points (and points co-
vertical to them) into segments which are x-monotone and smooth. The arrangement is
built from these segments. In this method the representation of a planar point is as follows.
The x-coordinate is represented explicitly and the y-coordinate is represented implicitly
by a curve and the index of the curve arc on which the point lies.

In the projection of the three-dimensional curves onto the xy-plane, the spatial infor-
mation is lost. Branches of curves on the upper and on the lower part of q1 may intersect
in the projection, even when a three-dimensional intersection does not exist. A method
is given to regain this information, by first cutting a cut-curve of q1 and qi into segments
that belong completely to the upper or to the lower part of q1, and then determining to
which part each such segment belongs. For more details see [12].

6.2 Implementation of the Traits Operations

The work of [12] has led to a quadrics model for the ArrangementTraits 2 concept. We
describe here only the extension of this model to a model of the EnvelopeTraits 3 concept.

Recall that we have to define two additional types, and few operations involving these
types. The two types, which represent general surfaces and xy-monotone surfaces, are
both mapped to the same quadric type. This may be surprising at first, since a quadric in
general is not xy-monotone, but it is only an implementation detail to simplify matters.
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All the operations that work on xy-monotone surfaces consider the quadric object as the
appropriate lower or upper part of that quadric.

We now describe the implementation of the EnvelopeTraits 3 concept operations for
quadrics.

1. Extract xy-monotone surfaces from a general surface.
This operation is trivial according to our type choice.

2. Construct the planar curves that form the boundary of the vertical projection of an
xy-monotone surface onto the xy-plane.
This operation returns all the segments of the silhouette-curve of the input quadric.

3. Construct the planar curves that form the projection onto the xy-plane of the inter-
section between two xy-monotone surfaces.
This operation is carried out as follows: First, find the cut-curve of the two full
quadrics. Then, find only the segments of the cut-curve, which lie on both quadrics
lower (upper) part, when computing the lower (upper) envelope. For the second task,
the cut-curve is cut into segments in its intersection points with the silhouette-curve
of the first quadric as well as with the silhouette-curve of the second quadric. Each
of these segments belongs completely to the lower or to the upper part of each of the
two quadrics. It remains to check for every segment to which part of the first quadric
and to which part of the second quadric it belongs, and return only the segments
that belong to the desired part of both quadrics.

4. Compare two xy-monotone surfaces s1 and s2 immediately above (below) a given two-
dimensional x-monotone curve c, which is part of their projected intersection.
This operation is implemented as follows: A point p = (x0, y0), with rational coordi-
nates x0 and y0 is chosen in the x-range of the x-monotone curve c above (below) c,
such that the vertical segment starting at p and ending on c does not intersect the
silhouette-curve of s1, the silhouette-curve of s2 or any other part of the cut-curve of
s1 and s2. These conditions imply that the surfaces s1 and s2 are defined over p, and
comparing them over p gives the desired result. The comparison is conducted by sub-
stituting the coordinates of p in both quadrics’ equations, to get quadratic equations
for the z-coordinate, solving these equations to find the appropriate z-coordinate of
the point that belongs to the lower (or upper) part of the quadrics, and comparing
the z-coordinates of the two quadrics to find their envelope order.

5. Compare two xy-monotone surfaces s1 and s2 over the interior of a given two-
dimensional x-monotone curve c.
This operation is implemented in the following manner: A point p, with rational
x-coordinate in the x-range of c is chosen, such that p satisfies one of the following:

(a) p lies on c, and its y-coordinate is a rational number, or an algebraic number
with degree not greater than two.
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(b) p’s y-coordinate is a rational number, and p lies above (below) c, such that the
vertical segment starting at p and ending on c does not intersect the silhouette-
curve of s1, the silhouette-curve of s2 or the cut-curve of s1 and s2. The latter
condition ensures that both s1 and s2 are defined over p, and their envelope
order over p equals their envelope order over c.

When c is a segment of the silhouette-curve of s1 or s2, it is easy to find a point that
satisfies Condition 5a. Thus, if it is hard to find a point p that satisfies Condition 5a,
it is always possible to choose a point p that satisfies Condition 5b. After comput-
ing p, the comparison of the surfaces over it is done in the same way described in
Operation 4.

6. Compare two xy-monotone surfaces s1 and s2 over a given two-dimensional point p.
The implementation of this operation is the most complicated, since when two sur-
faces are to be compared over a point, there is no guarantee that a nearby point p′

exists, which has “nicer” coordinates, and comparing the surfaces over p′ gives the
same answer as comparing them over p. On the contrary, since this method is used by
the algorithm only in degenerate situations, most of the times, a “nice” point p′ will
not exist. This observation forces the implementation of this operation to exactly
compare the surfaces over p, the coordinates of which may have higher algebraic
complexity than the points considered in the previous operations. Fortunately, in
the case of the divide-and-conquer algorithm for computing the envelope of surfaces,
there are mitigating circumstances — some assumptions can be made on the given
point p, so it is not necessary to implement the method for all possible input points.
Considering all the possible cases in the merge step where the comparison method
over a point is invoked leads to the important observation that due to the exploitation
of the continuity of the envelopes to carry a decision over between incident features
(see Chapter 5), the method is invoked only when the point p is an isolated point
(of a curve) or it lies on a silhouette-curve. This observation actually means that
the algebraic complexity of p is not the highest that is possible in the process of the
algorithm. The x-coordinate of p may be of algebraic degree up to eight, whereas
in the general case, it may be of size sixteen. The y-coordinate of p may be found
by solving a quadratic equation, whereas in the general case, there may be a need
to solve a polynomial of degree four. The implementation of the current operation
finds the x and y coordinates of p and uses them to compare the quadrics over p as is
done in the previous operations. When the x-coordinate of p is an algebraic number
of degree between three and eight, finding the x-coordinate of p involves using the
root-of operator of the algebraic number type that is used (from the library of Core

or Leda). The comparison of the quadrics’ z-coordinates in this case involves high-
degree algebraic numbers and is the most expensive part of the operation, especially,
when the numbers are equal.

The quadrics traits class was successfully implemented and used with input sets con-
sisting of up to 1000 ellipsoids. See Chapter 7 for experimental results. We remark that
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we used only ellipsoids in the input sets and not other types of quadrics, since the current
implementation of the minimization diagram data structure, and of the envelope algorithm
support only bounded curves and surfaces. Work is underway to extend the implementa-
tion to unbounded objects as well. More details on the quadrics traits class can be found
in [13].
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Chapter 7

Experimental Results

In this chapter we present experimental results that demonstrate the performance of our
algorithm and show its behavior on various input sets. In Section 7.1 we describe the input
sets that we used. In Section 7.2 we present the running-time of the algorithm on various
input sets and of varying size. Section 7.3 examines the size of the lower envelope of some
of our inputs. We give statistics on the running time, output size and process details of
different large input sets in Section 7.4, and in Section 7.5 the breakdown of the running
time is shown. In Section 7.6 we show the influence of saving algebraic computation on the
performance of our algorithm. In Section 7.7 we discuss the issue of performing vertical
decomposition in practice. We summarize the results in Section 7.8.

The running times reported in this chapter were obtained on a 3 GHz Pentium IV
machine with 2 Gb of Ram, running under Linux. The software was compiled using the
Gnu C++ compiler (g++ version 3.3.2). We use Cgal version 3.2. For the exact rational
number-type we use Gmp version 4.1.4. We use Core version 1.7 for exact algebraic
numbers, and the Exacus internal version for the quadrics traits implementation. We
also use the libraries of Boost Graph (version 1.31) for the breadth-first search graph
algorithm, and Qt (version 3.3.4) for visualization.

Whenever a result is presented for triangles, it is the average over thirty input sets.
Whenever a result is presented for spheres/ellipsoids it is the average over ten input sets.

7.1 Input Sets

We describe here the input sets that we used in the experiments; some of them are illus-
trated in Figure 7.1.

• rnd triangles n n triangles, each of which was generated by choosing the coordi-
nates of its three vertices uniformly at random as integers in the cube [0, 10000]3.

• rnd small p triangles n n triangles, each of which was generated by first choos-
ing the coordinates of one corner of the triangle uniformly at random in the cube

59
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: Some input files: (a) rnd triangles 100, (b) rnd small 0.5 triangles 100, (c)

grid triangles disjoint 6, (d) grid triangles intersect 6, (e) rnd spheres 100, and (f)

rnd small spheres 100.

[0, 10000]3, then choosing two random points in the sphere with radius p ∗ 10000
around this point. All the vertex coordinates are integers.

• grid triangles disjoint n n narrow, long, pairwise disjoint triangles, half of which
lie on the plane z = 0, and the other half lie on the plane z = 1. The projections
of these triangles on the xy-plane form an arrangement of size Θ(n2), and the lower
envelope is of size Θ(n2).

• grid triangles intersect n n narrow, long triangles, each of which intersects with
exactly half of the triangles. The projections of these triangles is as in the above
example, and the lower envelope is of size Θ(n2).

• rnd small spheres n n spheres, where the centers were chosen with integer coor-
dinates uniformly at random in the range [−1000, 1000]3, and the integer radii were
chosen uniformly at random in the range [1, 250].

• rnd spheres n n spheres, where the centers were chosen with integer coordinates
uniformly at random in the range [−1000, 1000]3, and the integer radii were chosen
uniformly at random in the range [1, 500].



7.1. INPUT SETS 61

• rnd ellipsoids n n ellipsoids, each of which was generated by choosing ten random
coefficients of the quadratic equation

Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2 + Gx + Hy + Kz + L = 0

and checking whether an ellipsoid was created. All coefficient are ten-bit integers.
Let X = (x, y, z, 1) and Q be the symmetric 4 × 4 matrix:

Q =









2A B C G
B 2D E H
C E 2F K
G H K 2L









.

Then the quadratic equation above can be rewritten as XT QX = 0. Let Qu denote
the upper left 3×3 matrix of Q. The quadric type that is represented by the equation
is determined by IQ, the inertia1 of Q, and IQu

, the inertia of Qu; see [43] for more
information. The quadratic equation represents an ellipsoid if IQ = (3, 1, 0) and
IQu

= (3, 0, 0).

7.1.1 Degenerate Input Sets

In addition to the input sets described above, we used a few degenerate input sets in some
of the experiments:

• degenerate triangles n a set of n triangles in the cube [0, 10000]3 with degenera-
cies. The set is composed of 20% pairs of triangles with one common vertex, 20%
pairs of triangles with one common edge, 20% pairs of triangles where one vertex of
the first triangle touches the interior of one edge of the second triangles, 20% pairs
of triangles where one vertex of the first triangle touches the interior of the second
triangle and 20% pairs of overlapping triangles.

• degenerate spheres n a set of n spheres with degeneracies. The set is composed
of pairs of spheres; 50% are pairs of tangent spheres that touch from the outside,
where their projection is two tangent circles, and the other 50% are pairs of spheres
that are tangent in their lowest point (one spheres inside the other). For each pair of
spheres, the center of the first sphere was chosen with integer coordinates uniformly
at random in the range [−1000, 1000]3, and the integer radius was chosen uniformly
at random in the range [1, 500]. The second sphere in each pair was calculated from
the first one.

1The inertia IA of a matrix A is defined as the triple containing the numbers of positive, negative and
zero eigenvalues of A.
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7.2 Running Time Behavior

We measured the running time of our algorithm on various types of examples, to investigate
the behavior of the algorithm in practice. The results are shown in Figures 7.2 and 7.3.
Our results show that the algorithm performs better than the worst-case estimate on some
inputs sets. On the grid-like inputs, it obviously cannot run in sub-quadratic time, which
is the size of the output.

In Figure 7.4 we show the results of comparing the running time for the triangles
input, with two geometric kernels.2 The first one is a kernel which uses an exact rational
number type. The second kernel uses arithmetic filters based on interval arithmetic [17]
on the same exact rational number type: only when the filter fails, in degenerate or near
degenerate situations, the exact computation is invoked. When the input file contains no
degeneracies, it is expected that using an arithmetic filter will improve the performance,
since the computation of the filter is less expensive than the exact computation. However,
when there are too many filter failures, the running time may be slower than directly
conducting exact computation, because of the redundant tests. On our input sets, both
the random and the grid-like, there are not many degenerate situations during the running
of the algorithm. It can be seen that using the filtered kernel reduces the running time for
these input sets by approximately a factor of two.

7.3 Size of the Output

We give statistics of the output size for various types of examples, to investigate the
behavior of the size of the lower envelope in practice. Figures 7.5 and 7.6 relate to the
rnd triangles n input sets. It can be seen that the size of the minimization diagram and
the number of triangles that appear on it is roughly3 Θ(n2/3). Figures 7.7 and 7.8 show
results for other input sets, which are sub-linear in the input size as well.

7.4 Comparing Different Input Sets

In Figure 7.9 we report on the running time of the algorithm and the size of the mini-
mization diagram for the rnd small p trianlges 1000 input sets, for different values of
p. The effect of the input triangles’ size can be seen. As could be expected, the running
time increases as the size of the triangles increases. This is because smaller triangles have
less interactions with each other, both in the two-dimensional projection and in three-
dimensions, than bigger triangles do. Thus, the algorithm has much work to do when

2Recall from Section 2.4.3 that a geometric kernel defines constant size geometric objects and operations
on them. A geometric kernel also encapsulates the number type that is used for numerical operations on
the data.

3This bound of roughly Θ(n2/3) is inspired by recent results of Alon et al. [6] for the size of the outer
face in the arrangement of random segments in the plane. It seems that some of their results extend to
3D implying this bound.
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Figure 7.2: The running time of computing the envelope of different input sets for different input sizes:

(a) rnd triangles n, (b) rnd small 0.3 triangles n, (c) rnd small 0.5 triangles n, (d)

grid triangles disjoint n, (e) grid triangles intersect n, and (f) rnd small spheres n.
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Figure 7.3: The running time of computing the envelope of different input sets for different input

sizes: (a) rnd spheres n, (b) rnd ellipsoids n.
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Figure 7.5: (a) the number of vertices in the minimization diagram of random triangles for different

input sizes, (b) the number of vertices powered to 1.5.
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Figure 7.6: The number of vertices in the minimization diagram of random triangles as a function

of the number of triangles that appear on the lower envelope.
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Figure 7.7: The number of vertices in the minimization diagram of the rnd small spheres input

sets (on the left) and rnd spheres input sets (on the right) for different input sizes.
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for different input sizes.
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Figure 7.9: (a) The running time of our algorithm on rnd small p triangles 1000 input sets for

different values of p. (b) The minimization diagram size for rnd small p triangles 1000 input sets

for different values of p.

the triangles are bigger. The graph of the output size is explained as follows: when the
triangles are tiny, most of them appear on the envelope, and so the minimization diagram
is big; as the triangles grow bigger, they start to hide each other, such that fewer of them
appear on the envelope, and the envelope size becomes smaller.

Table 7.1 shows the actual running time for different input sets, each consisting of 1000
input surfaces. In the last three columns we give statistics of the whole process — the
total sum of the sizes of all the minimization diagrams computed during the recursion, the
number of intersections between pairs of surfaces that were found by the algorithm and the
number of two-dimensional intersections between projected curves that were found during
the algorithmic process. We show these quantities since they can give an idea about the
amount of work that is carried out during the whole execution. Table 7.2 shows statistics
on the size of the minimization diagram: the number of surfaces that appear on the
envelope and the number of vertices, edges and faces in the minimization diagram. As the
algorithm is not output-sensitive, this table does not, in general, reflect the amount of work
carried out by the algorithm. However, it is an interesting example of the huge variance
in output size for the same (combinatorial) input size. It can be seen that the algorithm
is much slower when run on non-linear input than on linear input; this is expected when
using exact arithmetic, since with linear input, rational arithmetic suffices, whereas with
non-linear input, algebraic numbers should be used.

7.5 Breakdown of the Running Time

In Figures 7.10 and 7.11 we present the breakdown of the running time of the algorithm by
steps. It can be seen that the two most costly steps are the overlay and the resolving of the
features. This is not surprising since these steps use the two intersection operations, for xy-
monotone surfaces in three-dimensions and for x-monotone curves in the plane, which are
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Table 7.1: Results for different input sets; times are measured in seconds. Each input set contains

1000 surfaces. Interm. features is the total sum of the combinatorial size of all the minimization

diagrams computed during the recursion. Intersections is the number of intersections between pairs

of surfaces that were found by the algorithm. 2d-Intersections is the number of two-dimensional

intersections between x-monotone curves that were found during the entire run of the algorithm.

Time in Process details
Input File Seconds Interm. features Intersections 2d-Intersections

rnd triangles 14.0739 190,942 12,007 52,990
rnd small 0.1 triangles 2.36964 94,906 117 11,134
rnd small 0.5 triangles 6.53201 144,383 2,676 29,093
grid triangles intersect 148.621 71,830 250,000 1,502,500
grid triangles disjoint 62.3065 71,830 0 1,002,500
degenerate triangles 13.5728 182,815 11,373 51,106
rnd small spheres 249.111 60,465 842 7,472
rnd spheres 654.044 53,188 1,565 8,547
degenerate spheres 610.27 53,001 1,383 7,891
rnd ellipsoids 581.138 60,357 4,945 15,915

Table 7.2: Lower envelope statistics for different input sets. Each input set contains 1000 surfaces.

Surfaces on envelope is the number of surfaces that appear on the envelope. V, E, F are the number

of vertices, edges and faces in the minimization diagram.

Output size
Input File Surfaces on envelope V E F

rnd triangles 482 4,899 6,632 1,764
rnd small 0.1 triangles 992 8,072 11,061 3,012
rnd small 0.5 triangles 413 3,339 4,561 1,237
grid triangles intersect 1000 1,503,000 2,003,000 500,002
grid triangles disjoint 1000 1,003,000 1,503,000 500,002
degenerate triangles 441 4,336 5,919 1,606
rnd small spheres 207 712 925 220
rnd spheres 100 305 405 102
degenerate spheres 100 281 359 92
rnd ellipsoids 75 269 344 77
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expected to be the most costly among the geometric operations, since they construct new
geometric objects. Note how much this issue is significant when working with non-linear
objects (and irrational computation).

7.6 The Effect of Saving Algebraic Computation

Table 7.3 shows the number of calls to the three types of comparison methods made by
the algorithm in the labelling process, comparing between the näıve approach and our
approach. Table 7.4 shows the algorithm running time, comparing between the same two
approaches. The näıve approach means comparing surfaces over all features, except over
projected intersections. Our approach is described in Chapter 5, and uses the intersection
type and continuity/discontinuity information together with a breadth-first traversal of
the faces. Both approaches use the caching information described in Chapter 4. Note
that a comparison could not be made on quadrics input data since the comparison over a
point operation is not implemented for the general case, so the computation of envelopes
of quadrics is only available using our approach. It can be seen that the reduction in the
number of operations is highly significant for all the input sets. The number of comparison
operations over a two-dimensional point reduces to zero in our approach in all the examples
that do not contain degeneracies in which this operation is invoked. We remark that
the improvement in the running time is not gained only by the reduction in the three-
dimensional comparison operations. Recall that we can only label features after they have
been resolved. When it is possible to carry a decision made over a face to its boundary
edge, then resolving this edge will not split it. Thus, we can avoid the resolve step for
this edge, which means that we avoid unnecessary three-dimensional and two-dimensional
costly intersection operations.

7.7 The Issue of Vertical Decomposition

Recall that a vertical decomposition is a subdivision of an arrangement where a vertical
ray is extended upwards and downwards from every vertex of the arrangement, until it
hits another feature (vertex or edge) of the arrangement, or extends to infinity. A vertical
decomposition creates simple faces, with constant number of edges on their boundary, and
without holes, and at the same time preserves the asymptotic combinatorial complexity of
the arrangement.

In a partial vertical decomposition only a subset of the vertical segments defined by
the full vertical decomposition are added. A vertical segment is added only from a curve
endpoint, not from an intersection point. The partial vertical decomposition creates less
new features than the full vertical decomposition. The faces that are created are no longer
of constant size, but they do not contain any hole, and their upper and lower curve chain
is x-monotone.

In Table 7.5, we summarize experiments computing the minimization diagram of trian-
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Table 7.3: Comparing the number of comparison operations used by the algorithm with and without

our means for reducing the number of algebraic operations. Each input set contains 1000 surfaces.

The Pt., Cv. and Cv.-side columns represent the number of calls made to the appropriate version of

the comparison method: comparison over a two-dimensional point, comparison over a two-dimensional

x-monotone curve and comparison above/below a two-dimensional x-monotone curve respectively.

Näıve solution Using our improvements
Input File Pt. Cv. Cv.-side Pt. Cv. Cv.-side

rnd triangles 85,091 166,405 13,715 0 10,333 3,287
rnd small 0.3 triangles 42,090 76,763 1,934 0 8,244 791
rnd small 0.5 triangles 51,598 96,662 3,703 0 8,851 1,325
grid triangles intersect 1,000,000 1,500,000 500,000 0 0 250,000
grid triangles disjoint 1,000,000 1,250,000 0 0 250,000 0
degenerate triangles 79,660 155,636 13,406 10 9,394 3,187
rnd small spheres 14,901 25,853 1297 0 2,466 450
rnd spheres 14,965 25,630 2247 0 1,840 617
degenerate spheres 14,141 24,114 2,006 8 1,851 571

Table 7.4: Comparing the running time of the algorithm with and without our means for reducing

algebraic operations. Times are measured in seconds.

Input File Näıve solution Using our improvements

rnd triangles 25.0282 14.0739
rnd small 0.3 triangles 6.86196 5.2632
rnd small 0.5 triangles 9.59354 6.53201
degenerate triangles 22.9374 13.5728
grid triangles intersect N/Aa 148.621
grid triangles disjoint 68.9785 62.3065
rnd small spheres 399.327 249.111
rnd spheres 1116.43 654.044
degenerate spheres 990.578 610.27

aThe näıve approach does not run on this input. We believe that it consumes more
memory than is available on our computer.
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Table 7.5: Comparing the running time with and without using the partial vertical decomposition.

Times are measured in seconds.

Using Partial VD
Input File Total time PVD time Total - PVD Without VD

rnd triangles 28.2307 12.1931 16.0376 14.0739
rnd small 0.1 triangles 8.64469 5.20921 3.43548 2.36964
rnd small 0.3 triangles 12.8021 6.82096 5.98114 5.2632
rnd small 0.5 triangles 15.1287 7.6998 7.4289 6.53201
grid triangles intersect 207.597 59.234 148.363 148.621
grid triangles disjoint 120.757 59.7989 60.9581 62.3065

gles using the partial vertical decomposition and without using a decomposition, namely
directly handling complicated faces. The implementation of the partial vertical decompo-
sition is done by inserting the vertical segments into the arrangement as regular curves.

We carried out our experiments only for triangles, because the other traits classes that
we have, those that handle spheres or quadrics, are not able to represent the vertical seg-
ments that are created by the decomposition. Both traits represent only two-dimensional
curves which are algebraic functions with rational coefficients. Since a vertex in the ar-
rangement of such curves might represent a point with irrational algebraic x-coordinate
x0, the line x = x0 may not have rational coefficients, and a vertical segment with this
vertex as an endpoint cannot be created.

In theory, vertical decomposition is performed on the overlaid arrangement in order to
get constant size faces, leading to constant amount of work invested at each face, and a
running time proportional to the size of the arrangement of the merge step. In practice,
though, the full vertical decomposition seems to be an overkill. Even the partial vertical
decomposition has a little overhead, as demonstrated by the experiments. But in this
case, since a face does not contain holes, the asymptotic combinatorial complexity of the
algorithm can be assured. The overhead in the running time of the decomposition stems
mainly from the additional geometric constructions that are computed to form the ver-
tical segments, and by intersecting the surfaces’ projected intersections with them. Such
constructions are known to be costly when using exact computation.

We remark that the presented results may not be the final word about the effective-
ness of vertical decomposition in practice. We suggest the following improvements of the
implementation. First, in our implementation, the decomposition is done on the whole ar-
rangement, including the unbounded face, and other faces where the label can be trivially
determined. This may be wasteful, and it may be desirable to perform the decomposition
only in faces of the overlay that will be resolved, and contain holes. Secondly, our imple-
mentation inserts the vertical segments into the arrangement as regular curves/edges. It
may be better to treat them as special curves/edges, only topologically, not geometrically.
By this we mean that the topology of the arrangement with the decomposition will be
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known, but the coordinates of the split points (which are supposed to disappear in the
cleanup step) will not be computed exactly.

7.8 Summary of the Experimental Results

In this chapter we presented the results of computing the lower envelope of three families
of surfaces: triangles, spheres and quadrics using our algorithm. We showed that the
algorithm performs well in terms of running-time, and for some input sets, it even performs
better than the worst-case bound predicts. We measured the size of the lower envelope in
our experiments, and found out that for some input sets, this size is sub-linear, which is
significantly smaller than the theoretical bound. We used our algorithm with various input
sets consisting of 1000 surfaces each, and saw the huge variance in the output size for the
same combinatorial input size. In addition, we found out that as expected, the algorithm
performs better when run on linear input (using rational arithmetic) than when run on
non-linear input (using algebraic numbers). We demonstrated the significant reduction
in the number of geometric operation carried out by our algorithm, yielding a significant
improvement in the algorithm’s performance. Finally, we discussed the issue of performing
a vertical decomposition vs. handling a complex face, and concluded that currently the
latter is preferable.



74 CHAPTER 7. EXPERIMENTAL RESULTS



Chapter 8

Conclusions and Future Work

We presented a generic, robust and efficient implementation of the divide-and-conquer al-
gorithm for computing the envelope of three-dimensional surfaces. To our knowledge, it is
the first such implementation. Our implementation uses a geometric traits class to sepa-
rate the topology and geometry. This separation allows for the reuse of the algorithm for
different families of surfaces. We provide three traits classes that handle a set of triangles,
a set of spheres and a set of quadrics in R

3. We reported the results of our experiments
showing that our algorithm performs well on various input sets.

We propose several directions for further research:

1. Voronoi diagrams. As explained in Section 2.2.2, every two-dimensional Voronoi
diagram can be seen as a minimization diagram of three-dimensional surfaces. It
is possible to use our algorithm to compute the Voronoi diagram of a set of planar
objects, provided that an appropriate traits class is supplied. The two-dimensional
geometric objects and operations are those that build the planar subdivision of the
Voronoi diagram. The three-dimensional objects and operations involve surfaces,
which are added to the problem artificially, and may increase the algebraic complexity
of the problem. An important observation here is that the artificial surfaces need not
be represented explicitly. Rather, they can be represented by the two-dimensional
sites they stand for. The projected intersection operation is interpreted as the bisector
between the Voronoi cells of the two corresponding sites. The different comparison
operations between two surfaces are interpreted as a comparison of the distances to
the two respective sites.

2. A “lazy” arithmetic scheme. In a lazy scheme, exact computation is postponed
until it is actually needed. Interval arithmetic is used to estimate the values of
expressions on the input geometric objects as well as on new constructions. These
estimations are used to filter out situation where exact computation is not needed.
Only when a filter fails, that is the estimation cannot guarantee a correct answer,
the exact arithmetic is used. A work on such a lazy kernel for Cgal is in progress
[28]. At the moment, it supports two-dimensional objects only. The experiments
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on the Cgal arrangement package [67], and our experiments that show a better
performance of the currently available filtered kernel over a non-filtered kernel make
us believe that using this lazy kernel (when it includes a support for objects in three-
dimensions) can improve the performance of the envelope computation, at least for
some input sets, which do not contain many degeneracies.

3. A special traits class for polyhedral surfaces. Polyhedral surfaces are a very
useful type of surfaces in many applications, since they can represent approximations
of other, more complicated surfaces. If the polyhedral surfaces are triangulated, it is
possible to use our algorithm with our triangles traits class, to compute their enve-
lope. However, some assumptions can be made on the input in the case of polyhedral
surfaces, which we believe, can be exploit to yield much better performance. Find-
ing the intersection between two triangles is usually a costly operation. Adjacent
triangles on the surface share a common edge, which is their intersection. Thus, in
this case, the primary knowledge of the adjacency relation of the triangles can make
the intersection operation trivial. This information can be useful for handling the
triangles in three-space and their projections as well, since the overlay procedure
may work hard to glue up projections of adjacent triangles from a single surface.
Moreover, the minimization diagram of an entire xy-monotone polyhedral surface is
known trivially, thus, it can be computed in the bottom of the recursion, which in
turn will lead to less recursive steps. This can save a lot of unnecessary computation,
especially in the overlay procedure.

4. Support for unbounded surfaces. The current implementation of the only class
that can represent a minimization diagram, namely the Cgal Arrangement 2 class,
supports only bounded curves, and one unbounded face in every arrangement. As a
result, the algorithm for computing the minimization diagram supports only bounded
surfaces. The need for unbounded curves shows up already when dealing with
quadrics, and exists also in computing Voronoi diagrams. We believe that a fun-
damental solution to the topological structure of the arrangement will enable an easy
support for unbounded surfaces in the divide-and-conquer algorithm for computing
envelopes in three-dimensional space.

5. The complexity of the minimization diagram and of the divide-and-conquer

algorithm of random objects. Our experiments show that the combinatorial com-
plexity of the minimization diagram and the running-time of the divide-and-conquer
algorithm are much less than the worst-case bound, for some types of inputs sets of
random objects. This raises the question whether better theoretical bounds can be
proved in such cases.

6. Controlled perturbation for envelopes. In controlled perturbation, the input
set is perturbed slightly to get a new set, which is free of degeneracies, and on which
the algorithm using a floating-point number type performs in the same way as if it
was using an exact number type, see, for example [34, 38, 40]. The question is how
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to perform such a perturbation on a set of triangles and other surfaces in order to
compute their lower envelope.

7. Sandwich Regions. A sandwich region consists of all points that lie above the
upper envelope of one set of surfaces and below the lower envelope of another set of
surfaces. An example application of sandwich regions is given in Section 2.2.4. Given
a lower envelope L of one set of surfaces and an upper envelope U of another set of
surfaces, computing the sandwich region of L and U can be carried out in a way
similar to the merging of two envelopes in the divide-and-conquer algorithm. There
are a few differences though; for example, the representation of the result differs
from the representation of a minimization diagram in the additional data attached
to the arrangement features, the meaning of the comparison methods used in the
labelling step is different (though they return a three-valued result in both cases),
and the criteria of the cleanup is not the same as well. Making the code slightly more
generic, it is possible to reuse it for computing sandwich regions. This can be achieved
by introducing a new parameter to the merge algorithm, whose responsibility would
be to perform all the result-specific operations.
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Appendix A

Program Checking

Programming is a very error-prone task. There are two common ways to find coding errors
in programs: program testing and program checking. In program testing, the program is
run on inputs for which the output is known by other means, for example, by manually
computing it or by using an alternative program for the same task. A program checker
verifies that the output of a particular program is correct [14, 52]. When computing
envelopes of surfaces in three-dimensional space, the output itself is very complicated, to
be computed manually. Moreover, we are not aware of any other program that computes
a similar output. In this appendix we describe two methods that we developed in order
to check the results of our divide-and-conquer algorithm. Though these methods are not
perfect (each with its own drawbacks), they are very helpful in automatically checking the
algorithm on many different input sets, with different number of input surfaces, including
large examples. These methods are described below.

1. Random shuffle the input, and use the same divide-and-conquer algorithm to cre-
ate the output minimization diagram. The division of the surfaces’ input set will
be totally different with each shuffle, and this will result in a completely different
algorithm flow. Next, compare two minimization diagrams that were computed for
distinct shuffles (and should be equal) as follows. First, compare the number of faces,
edges and vertices. Second, overlay the two underlying arrangements, and compare
the labels of each pair of overlapping regions of the two arrangements.
This test does not guarantee the correctness of the minimization diagram, however,
we found it very effective in practice. The test is relatively inexpensive, as a result,
it is usable on large input sets, and many shuffles can be performed on each input.

2. Construct a refinement of the actual minimization diagram using a simple algorithm,
and check the labelling using the same idea described above. We take all the projected
boundaries of the input xy-monotone surfaces together with the projected intersec-
tions of all possible pairs of xy-monotone surfaces, and build their arrangement At.
At is a refinement of the underlying arrangement of the minimization diagram. Now
we find the correct label for each feature of At in a straightforward way. For vertices,
we compare all the relevant surfaces over the related point, using the appropriate
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comparison operation supplied by the traits. By relevant surfaces, we mean only
surfaces that are actually defined over that point. For edges and faces, we find a
point in their interior, and operate in the same way as for points, since for every edge
or face in At, an xy-monotone surface is fully defined or fully undefined over that
feature, and the envelope order of two xy-monotone surface that are defined there
is preserved for all the points of the feature. To find a point in the interior of an
edge, we simply find a point in the interior of the underlying x-monotone curve it
represents. Finding a point inside a face is a little more complicated since the face
can have a complicated shape. We take a non-vertical edge on the face boundary, and
shoot a vertical ray up or down from a point on (the interior of) that edge, call it the
starting point, towards the face interior, until it hits another feature. The vertical
segment that is formed between the starting point and the hit point lies totally inside
the face, and we can take any point on (the interior of) it, to represent the face.

This simple algorithm is parameterized with a geometric traits, as the divide-and-
conquer algorithm does. The traits concept of the test algorithm is a refinement of
the traits concept needed for the divide-and-conquer algorithm. We describe here
the additional traits requirement for the test algorithm:

(a) Given xy-monotone surface s and a two-dimensional point p, determine whether
p is part of the planar definition domain of s. This operation is used for checking
whether an xy-monotone surface is to be compared over a feature that contains
p.

(b) Given planar x-monotone curve, construct a point in its interior. This operation
is used for finding a point in the interior of an edge and inside a face.

(c) Given a planar x-monotone curve c and a point p, defined in the x-range of c,
construct the point on c with the same x-coordinate as p. This operation is
used for finding a point inside a face.

The test algorithm described here is very costly in terms of both time and space, since
we build an arrangement of O(n2) curves, where n is the number of input surfaces.
This arrangement can thus be of size Θ(n4), and for each of its features we check for
all the n surfaces whether they are defined over the feature, so we get a time and
space bound of O(n5) (this is also a bound for the working space since we save for
each feature a list, which may be of size Θ(n), of all the surfaces seen on the envelope
there; an example can be built similarly to the one in Figure 5.3). Consequently, we
can use it for small to medium size input only. Another disadvantage of this test is
that it does not check the cleanup step of the algorithm — every refinement of the
actual result (which includes only projected boundary and intersection curves), will
pass this test.

We remark that the methods described above check only the divide-and-conquer algo-
rithm, assuming correctness of all other code blocks it uses, among them are the geometric
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traits-class operations, the number types, the two-dimensional arrangement data-structure
and its operations. The geometric traits-class operations are easier to test in the sense
that each operation takes constant number of geometric objects and its output is relatively
simple, with limited constant size. Thus, it is possible to write predefined tests for each
operation, and test all the different cases in their implementation. The code of the Cgal

arrangement package was already tested by its authors as part of the Cgal test suite.
In addition to the above methods, we developed a visualization tool, which greatly

assisted us in testing the algorithm results, especially for small input sets. We also carefully
checked small predefined examples manually.
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