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Abstract

We present a tight bound on the exact maximum com-
plexity of Minkowski sums of convex polyhedra in R

3.
In particular, we prove that the maximum number
of facets of the Minkowski sum of two convex poly-
hedra with m and n facets respectively is bounded
from above by f(m, n) = 4mn− 9m− 9n + 26. Given
two positive integers m and n, we describe how to
construct two convex polyhedra with m and n facets
respectively, such that the number of facets of their
Minkowski sum is exactly f(m, n). We generalize
the construction to yield a lower bound on the maxi-
mum complexity of Minkowski sums of many convex
polyhedra in R

3. That is, given k positive integers
m1, m2, . . . , mk, we describe how to construct k con-
vex polyhedra with corresponding number of facets,
such that the number of facets of their Minkowski sum
is

∑

1≤i<j≤k(2mi − 5)(2mj − 5) +
(

k

2

)

+
∑

1≤i≤k mi.
We also provide a conservative upper bound for the
general case. The polyhedra models and an in-
teractive program that computes their Minkowski
sums and visualizes them can be downloaded from
http://www.cs.tau.ac.il/~efif/Mink.

1 Introduction

Let P and Q be two compact convex polyhedra in
R

d. The Minkowski sum of P and Q is the convex
polyhedron, polytope for short, M = P ⊕ Q = {p +
q | p ∈ P, q ∈ Q}.

Minkowski-sum computation constitutes a funda-
mental task in computational geometry. Minkowski
sums are frequently used in areas such as robotics
and motion planing [6, 8] and many additional do-
mains, like solid modeling, design automation, man-
ufacturing, assembly planning, virtual prototyping,
etc., as Minkowski sums are closely related to prox-
imity queries [7].

Various methods to compute the Minkowski sum of
two polyhedra in R

3 have been proposed. One com-
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mon approach is to decompose each polyhedron into
convex pieces, compute pairwise Minkowski sums of
pieces of the two, and finally the union of the pairwise
sums. Computing the Minkowski sum of two convex
polyhedra remains a key operation. The combinato-
rial complexity of the sum can be as high as Θ(mn)
when both polyhedra are convex.

Recently a few complete implementations of
output-sensitive methods for computing exact
Minkowski sums have need introduced: (i) a method
based on Nef polyhedra embedded on the sphere [4],
(ii) an implementation of Fukuda’s algorithm by
Weibel [2, 9], and (iii) a method based on the cubical
Gaussian-map data structure [1]. These methods
exploit efficient innovative techniques in the area of
exact geometric-computing to minimize the time it
takes to ensure exact results. However, even with
the use of these techniques, the amortized time of
a single arithmetic operation is large in comparison
with a single arithmetic operation carried out on
native number types, such as floating point. Thus,
the constants involved in the expressions of these
algorithm time complexities increases, which makes
the question this paper attempts to answer, “What
is the exact maximum complexity of Minkowski sums
of polytopes in R

3?”, even more relevant.

Gritzmann and Sturmfels [5] formulated an upper
bound on the number of features fd

i of any given
dimension i of the Minkowski sum of many poly-
topes in d dimensions. Fukuda and Weibel [3] ob-
tained upper bounds on the number of edges and
facets of the Minkowski sum of two polytopes in R

3

in terms of the number of vertices of the summands:
f2(P1 ⊕ P2) ≤ f0(P1)f0(P2) + f0(P1) + f0(P2) − 6.
They also studied the properties of the Minkowski
sums of perfectly centered polytopes and their polars,
and provided a tight bound on the number of vertices
of the sum of polytopes in any given dimension.

2 The Upper Bound

The Gaussian Map G = G(P ) of a compact convex
polyhedron P in R

3 is a set-valued function from P to
the unit sphere S

2, which assigns to each point p the
set of outward unit normals to support planes to P at
p. The overlay of the Gaussian maps of two polytopes
P and Q respectively identifies all pairs of features of
P and Q respectively that have common supporting
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Figure 1: (a) The Minkowski sum of a tetrahedron and a

cube and (b) the Gaussian map of the Minkowski sum.

planes, as they occupy the same space on the unit
sphere, thus, identifying all the pairwise features that
contribute to the boundary of the Minkowski sum of
P and Q. A facet of the Minkowski sum is either a
facet f of Q translated by a vertex of P supported
by a plane parallel to f , or vice versa, or it is a facet
parallel to two parallel planes supporting an edge of
P and an edge of Q respectively. A vertex of the
Minkowski sum is the sum of two vertices of P and Q
respectively supported by parallel planes.

The number of facets of the Minkowski sum M of
two polytopes P and Q with m and n facets respec-
tively is equal to the number of vertices of the Gaus-
sian map of M . A vertex in the Gaussian map of M is
either due to a vertex in the Gaussian map of P , due
to a vertex in the Gaussian map of Q, or due to an
intersection between an edge of the Gaussian map of
P and an edge of the Gaussian map of Q. Thus, the
exact complexity f(m, n) of M can be upper bounded
by the expression g(m, n) + m + n, where g(m, n) is
the number of edge intersections in the Gaussian map
of M .1

Corollary 1 The maximum exact number of edges

in a Gaussian map G(P ) of a polytope P with m
facets is 3m− 6. The exact number of faces in such a

Gaussian map is 2m− 4.

The above can be obtained by a simple application
of Euler’s formula for planar graphs to the Gaussian
maps G(P ). It can be trivially used to bound the
exact number of facets of the Minkowski sum of two
polytopes. We can plug the bound on the number of
dual faces, which is the number of primal vertices, in
the expression introduced by Fukuda and Weibel, (see
Section 1), to obtain: f(m, n) ≤ (2m− 4) · (2n− 4) +
(2m − 4) + (2n − 4) − 6 = 4mn − 6m − 6n + 2. We
can improve the bound, but first we need to bound
the number of faces in G(M).

Lemma 2 Let G1 and G2 be two Gaussian maps,

and let G be their overlay. Let f1, f2, and f denote

the number of faces of G1, G2, and G respectively.

Then, the number of faces f cannot exceed f1 · f2.

1The exact complexity is strictly equal to the given expres-

sion, only when no degeneracies occur.

This lemma is similar to the one where convex planar
maps replace the Gaussian maps, the proof of which
appears in several flavors in the literature. We are
ready to tackle the upper bound.

Theorem 3 Let P and Q be two polytopes in R
3

with m and n facets respectively, and let f(m, n) de-

note the number of facets of their Minkowski sum

M = P ⊕ Q. Then, f(m, n) ≤ 4mn − 9m − 9n + 26.

The maximum complexity is attained only when the

number of edges of each of P and Q is maximal for

the given number of facets.

Proof. Let v1, e1, f1 and v2, e2, f2 denote the number
of vertices, edges, and faces of G(P ) and G(Q) respec-
tively. Recall that v1 = m, v2 = n, and v = f(m, n),
where v denotes the number of vertices of G(M). The
number of edges and faces of G(M) is similarly de-
noted as e and f respectively. Assume that P and
Q are two polytopes, such that the number of facets
f(m, n) of their Minkowski sum is maximal. First,
we need to show that vertices of G(P ), vertices of
G(Q), and intersections between edges of G(P ) and
edges of G(Q) do not coincide. Assume to the con-
trary that some do. Then, one of the polytopes P or
Q or both can be slightly rotated to escape this de-
generacy, but this would increase the number of ver-
tices v = f(m, n), contradicting the fact that f(m, n)
is maximal. Therefore, the number of vertices v is
exactly equal to v1 + v2 + vx, where vx denotes the
number of intersections of edges of G(P ) and edges of
G(Q) in G(M).

The total count of degrees of all vertices of G(M) is
twice the number of edges e of G(M) on one hand, as
each edge contributes two to this count. On the other
hand, it is equal to the sum of degrees of all vertices
of G(P ), vertices of G(Q), and intersection vertices.
Each edge of G(P ) and each edge of G(Q) contributes
exactly two to the count of degrees of the original
vertices, and the degree of each new intersection is
exactly four. Thus, we have 2e1 + 2e2 + 4vx = 2e.
Applying Euler’s formula and Lemma 2 yields vx ≤
f1f2 + v1 + v2 − 2 − e1 − e2.

Corollary 1 sets an upper bound on the number of
edges e1. Thus, e1 can be expressed in terms of `1,
a non-negative integer, as follows: e1 = 3v1 − 6 − `1.
Applying Euler’s formula, the number of facets can
be expressed in terms of `1 as well: f1 = e1−2−v1 =
2v1 − 4 − `1. Similarly, we have e2 = 3v2 − 6 − `2

and f2 = 2v2 − 4 − `2 for some non-negative integer
`2. G(P ) consists of a single connected component.
Therefore, the number of edges e1 must be at least
v1 − 1. This is used to obtain an upper bound on `1

as follows: v1 − 1 ≤ e1 = 3v1 − 6 − `1, which implies
`1 ≤ 2v1 − 5, and similarly `2 ≤ 2v2 − 5.

Plugging all this in the above inequality results with
vx ≤ 4v1v2−10v1−10v2+26, and since f(m, n) = v1+
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v2+vx, we conclude that f(m, n) ≤ 4v1v2−9v1−9v2+
26. The maximum complexity can be reached when
h(`1, `2) diminishes. This occurs when `1 = `2 = 0.
That is, when the number of edges of G(P ) and G(Q),
(respectively P and Q), is maximal. �

3 The Lower Bound

uv

w

Y

Given two integers m ≥ 4
and n ≥ 4, we describe
how to construct two poly-
topes in R

3 with m and
n facets respectively, such
that the number of facets of
their Minkowski sum is ex-
actly 4mn − 9m − 9n + 26.
More precisely, given i, we
describe how to construct a skeleton of a polytope Pi

with i facets, 3i − 6 edges, and 2i − 4 vertices, and
prove that the number of facets of the Minkowski sum
of Pm and Pn properly adjusted and oriented is ex-
actly 4mn−9m−9n+26. The figures above and below
depict the Gaussian map of P5 and P4 respectively.

uv
w

We use the subscript let-
ter i in all notations Xi to
identify some object X with
the polytope Pi. For ex-
ample, we give the Gaussian
map G(Pi) of Pi a shorter
notation Gi First, we ex-
amine the structure of the
Gaussian map Gi. Let Vi de-
note the set of vertices of Gi. Recall that the number
of vertices, edges, and faces of Gi is i, 3i−6, and 2i−4
respectively. The unit sphere, where Gi is embedded
on, is divided by the plane y = 0 into two hemispheres
H− ⊂ {(x, y, z) | y ≤ 0} and H+ ⊂ {(x, y, z) | y > 0}.
One vertex vi is located exactly at the pole (0, 0, 1).
Another vertex wi lies in H− very close to vi. A third
vertex ui is located very close to the opposite pole
(0, 0,−1). It is the only vertex (out of the i vertices)
that lies in H+. All the remaining i − 3 vertices in
V ′ = Vi \ {ui, vi, wi} are concentrated near the pole
(0, 0,−1) and lie in H−. The edge uvi is the only
edge whose interior is entirely contained in H+. Ev-
ery vertex in V ′ is connected by two edges to vi and
wi respectively. These edges together with the edge
uwi form a set of 2i − 5 edges, denoted as E′. The
length of all edges in E′ is almost π, due to the near
proximity of ui, vi, and wi to the respective poles.

It is easy to verify that if the polytope Pi is not
degenerate; namely, its affine hull is 3-space, then any
edge of Gi is strictly less than π long. Bearing this
in mind, the main difficulty in arriving at a tight-
bound construction is to force all edges but one of the
Gaussian map of one polytope to intersect all edges
but one of the Gaussian map of the other polytope,
and on top of that force the pair of excluded edges,

one from each Gaussian map, to intersect as well. As
shown below, this is the best one can do in terms of
intersections.

The number of facets in the
Minkowski sum of Pm and Pn

is maximal, when the number
of vertices in the overlay of
Gm and Gn is maximal. This
occurs, for example, when one
of Gm and Gn is rotated 90◦

about the Y axis, as depicted
on the right for the case of
m = n = 5. In this configura-
tion, each edge of the 2m − 5 edges in E′

m intersects
each edge of the 2n − 5 edges in E′

n. These intersec-
tions occur in H−. In addition, the edge uvm inter-
sects the edge uvn near the pole (0, 1, 0). Counting all
these intersections results with (2m−5)(2n−5)+1 =
4mn − 10m − 10n + 26. Adding the original vertices
of Gm and Gn yields the desired result.

All the vertices of Pi lie on the boundary of a cylin-
der the axis of which coincides with the Z axis. When
Pi is looked at from z = ∞, two facets are visible, and
when looked at from z = −∞, the remaining i − 2
facets are visible. The precise details that govern the
construction of Pi, i ≥ 4, which match the description
of Gi above, are omitted due to lack of space.

4 Maximum Complexity of Minkowski Sums of

Many Polytopes

In this section we discuss the bounds on the exact
complexity of the Minkowski sum many polytopes
generalizing some of the arguments presented above.

Conjecture 4 Let P1, P2, . . . , Pk be a set of k poly-

topes in R
3, such that the number of facets of Pi

is mi for i = 1, 2, . . . , k. The exact maximum com-

plexity of the Minkowski sum P1 ⊕ P2 ⊕ . . . ⊕ Pk is
∑

1≤i<j≤k(2mi − 5)(2mj − 5) +
(

k
2

)

+
∑k

i=1 mi.

In the following sections we establish the lower bound,
but provide only a conservative upper bound, which
leaves a gap between the two bounds.

4.1 The Lower Bound

Given k positive integers m1, m2, . . . , mk, such that
mi ≥ 4, we describe how to construct k polytopes
in R

3 with corresponding number of facets, such that
the number of facets of their Minkowski sum is ex-
actly

∑

1≤i<j≤j(2mi − 5)(2mj − 5) +
(

k
2

)

+
∑k

i=1 mi.
More precisely, given i, we describe how to construct
a skeleton of a polytope Pi with i facets, 3i− 6 edges,
and 2i−4 vertices, and prove that the number of facets
of the Minkowski sum M = P1 ⊕ P2 ⊕ . . .⊕ Pk of the
k polytopes properly adjusted and oriented is exactly
the expression above. We use the same construction
described in Section 3.
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(a) (b) (c) (d)

Figure 2: (a) The Minkowski sum M11,11 = P11 ⊕ P ′
11, where P ′

11 is P11 rotated 90◦ about the Y axis. (b) The Gaussian

map of M11,11 looked at from z = ∞. (c) A scaled up view of the Gaussian map of M11,11 looked at from z = ∞. (d) The

Gaussian map of M11,11 looked at from y = −∞.

The number of facets
in the Minkowski sum of
Pi, i = 1, 2, . . . , k is max-
imal, when the number of
vertices in the overlay of
Gi, i = 1, 2, . . . , k is maxi-
mal. This occurs, for ex-
ample, when Gi is rotated
180◦i/k about the Y axis
for i = 1, 2, . . . , k, as depicted on the right for the
case of m1 = m2 = m3 = 4. In this configura-
tion, all the 2mi − 5 edges in E′

i intersect all the
2mj − 5 edges in E′

j , for 1 ≤ i < j ≤ k. These
intersections occur in H−. In addition, the edge
uvmi

intersects the edge uvmj
for 1 ≤ i < j ≤ k.

These intersection points lie in H+ near the pole
(0, 1, 0). Counting all these intersections results with
∑

1≤i<j≤j(2mi −5)(2mj −5)+
(

k

2

)

. Adding the origi-
nal vertices of G(Pi), i = 1, 2, . . . , k, yields the bound
asserted in Conjecture 4.

4.2 An Upper Bound

We apply a similar technique to the one used in Sec-
tion 2 to obtain an upper bound. First, we extend
Lemma 2.

Lemma 5 Let G1, G2, . . . , Gk be a set of k Gaussian

maps, and let G be their overlay. Let fi denote the

number of faces of Gi, and let f denote the number of

faces of G. Then, the number of faces f of G cannot

exceed
∑

1≤i<j≤k fi · fj.

The proof of the lemma above is a simple generaliza-
tion of the proof of lemma 2. Secondly, we count the
total degrees of vertices in G(M). Let P1, P2, . . . , Pk

be k polytopes in R
3 with m1, m2, . . . , mk facets

respectively. Let G(Pi) denote the Gaussian map
of Pi, and let vi, ei, and fi denote the num-
ber of vertices, edges, and faces of G(Pi) respec-
tively. Let vx denote the number of intersec-
tions of edges of G(Pi) and edges of G(Pj), i 6=

j in G(M). Starting with
∑k

i=1 ei + 2vx = e,
and applying Lemma 5 and Theorem 3 we get
vx ≤

∑

1≤i<j≤k(2vi −4)(2vj −4)−2
∑k

i=1 vi +6k−2.

For example, the complexity of the Minkowski sum
of k tetrahedra is vx +

∑k

i=1 vi, and by the inequality
above it is bounded from above by 8k2 − 6k − 2. The
construction described in the previous section yields
a configuration of k tetrahedra, the Minkowski sum of
which is 5k2 − k. For k = 2 both expressions evaluate
to 18.
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