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Abstract

In this paper we solve the following optimization problem: Given a simple polygon P , what
is the maximum-area polygon that is axially symmetric and is contained by P? We propose an
algorithm for solving this problem, analyze its complexity, and describe our implementation of it
(for the case of a convex polygon). The algorithm is based on building and investigating a planar
map, each cell of which corresponds to a different configuration of the inscribed polygon. We
prove that the complexity of the map is O(n4), where n is the complexity of P . For a convex
polygon the complexity is Θ(n3) in the worst case.

1 Introduction

Containment problems have always held an important role in discrete and computational geometry, as
well as in its practical applicative domains. In general, we are given some object and aim to compute a
containing or contained object satisfying some additional criteria (see, e.g., [5, §27.5, p. 507] and [6]).
In the current work we seek a maximum-area polygon contained by a given simple polygon, with the
restriction that the inscribed polygon is axially symmetric. The main motivation for this problem
is industrial, originating from cutting shapes from metal and cloth sheets. (The 3D version of the
problem is relevant for cutting a diamond from a raw stone.) As we show below, this problem can
be reduced to the problem of maximizing the area of overlap between two polygons, one of them
is the input polygon and the other is its mirror reflection. From this perspective we should note
that a variety of similar problems were studied in the literature [1, 13] with efficient algorithms
offered to solve them. In these works the mutual placement of the polygons is restricted much more
than with our axial-symmetry constraint. Tuzikov and Heijmans [12] studied the somewhat similar
problem of representing a polygon as the Minkowski sum of two polygons Ps and Pa, where Ps is
the maximum-area polygon symmetric about some input direction. Böhringer et al. [2] look for area
bisectors of polygons. This problem is different from ours, but the presented solution uses similar
tools: computing an arrangement of curved segments in the dual plane, induced by the original
polygon, and processing that arrangement for solving the problem in hand.

In this paper we present an algorithm for computing the maximum-area axially-symmetric poly-
gon contained in a given simple polygon. In a sense, it follows a host of algorithms that make use
of the idea of configuration space of placements of polygons. Although the paper deals mainly with
convex polygons, the algorithm can also be applied to general simple polygons.

This paper is organized as follows. In Section 2 we provide some assumptions and definitions. In
Section 3 we investigate the representation of the map of symmetry axes in the dual plane, providing
a full analysis of its structure and complexity. In Section 5 we analyze the complexity of the map.
Section 6 develops the polygon-area function associated with each face of the map. In Section 7 we
analyze the running time of the algorithm and describe our implementation of it.
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Figure 1: Maximum-area symmetric contained polygon

2 Assumptions and Definitions

Throughout this paper we refer by the term “polygon” to the interior of the polygon. When we
mean the boundary of a polygon, we will mention this explicitly.

Definition 1 Given a simple polygon P in the plane, another polygon CP,� is called symmetric
contained in P if (1) CP,� ⊂ P ; and (2) CP,� is symmetric about some line (axis) �.

Among all symmetric polygons contained in P with some axis of symmetry �, we wish to find the
one with maximum area. This is easily done by computing the intersection of P and its reflection
with respect to �, denoted as P�. It is easily verified that this is the maximum-area symmetric polygon
contained in P and symmetric about �. First, it satisfies the two requirements of Definition 1. Second,
the area of P

⋂
P� is larger than any other polygon contained in P and symmetric about �. Suppose

for contradiction that there exists another polygon Q �= P
⋂

P� such that Area(Q) > Area(P
⋂

P�).
By definition, every point in Q \ (P

⋂
P�) is outside P and/or P�, so at least one of the requirements

is violated. Therefore the area of Q cannot exceed the area of P
⋂

P�, which is a contradiction.
The axially-symmetric polygon contained in a simple (nonconvex) polygon may consist of several
disconnected components. In the case of a convex polygon, the axially-symmetric contained polygon
is always connected and convex.

Note that the boundary of P
⋂

P� consists of portions of edges of P and of P�. See Figure 1
for an example. The polygon KLMNM ′L′ has the maximum area among all polygons contained in
the triangle ABC and symmetric about �. Such a polygon is hereafter called symmetric inscribed
polygon and denoted by IP,�.

Furthermore, the order of edges of P whose portions are the edges of IP,� is referred to as the
configuration of IP,�.1 Since every pair of symmetric edges of IP,� is contributed by some edge of
P and by its reflection P�, the configuration of the two halves of the boundary of IP,� (delimited
by �) are identical with respect to the edge identities, and have the opposite “origin” for each edge
(whether it is P or P�). Hence we may apply the term configuration to only one half of the boundary
of IP,�.

Thus the problem we actually need to solve is the following:

Problem 1 Given a simple polygon P , find the axis �opt whose respective symmetric inscribed poly-
gon Iopt

P is of maximum area.

1Where appropriate, we also apply this term to a chain of segments, part of the boundary of the polygon.
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3 The Map of Axes

3.1 Outline

The number of possible axis positions is obviously infinite, but the number of possible configurations
is restricted combinatorially by the number of intersections between edges of the original polygon
and its mirrored version. The general idea of our solution is to consider all possible configurations of
the inscribed polygon, then for each configuration to find the polygon of maximum area, and finally
to choose out of all these candidates the largest-area polygon. Thus we may split the problem into
two subproblems:

Problem 2 Given a simple polygon P , find all the possible configurations of its inscribed polygons.

Problem 3 Given a configuration of an inscribed polygon, find the instance of that configuration
with maximum area.

As noted above, an inscribed polygon is determined by the axis �, such that a change of � in
general causes a change in the inscribed polygon. Only more rarely a small movement of � causes a
change in the configuration. Thus, every legal configuration corresponds to a set of axes. These sets
are certainly disjoint and some of them have common boundaries, since the space of symmetry axes
is continuous. To alleviate the consideration of the sets of lines, we use a duality transform that maps
lines of the form � : y = kx + b in the primal plane (XY ) into points �∗(k, b) in the dual plane. Thus
the sets of legal axes (each set corresponding to the same configuration), induce a subdivision (or
map) of the dual plane. The faces in this planar map correspond to configurations of the inscribed
polygons. In the sequel we investigate the edges that bound the faces of this map.

4 Geometric Description

To distinguish between edges of the original polygon (and its inscribed polygons) and the edges of
the map in the dual plane, we will refer to the latter by the term “arcs.”

While we move in the dual plane, crossing an arc means a change in the combinatorial structure
of the inscribed polygon. There are two basic types of such changes: 1. A new edge emerges in the
boundary of IP,� between two existing edges; and 2. An edge disappears from the boundary. Both
events are mutually invertible and in fact represent two aspects of the same event, while appearing
or disappearing of an edge on the boundary of the inscribed polygon is determined by the direction
in which we move in the dual plane, that is, the direction in which the axis moves in the primal plane
(see Figure 2 for an illustration).

Let us now analyze the structure of an inscribed polygon IP,�. By definition, its boundary is the
union of two symmetric chains: one containing edges of P clipped by P�, and the other containing
edges of P� clipped by P . A new edge emerges (resp., vanishes) between two existing edges of IP,�’s
boundary only when some portion of an edge of P� (or P ) becomes (resp., ceases) clipped by P (or P�).
In other words, the major events occur with a change of some polygon-edge clipping. (As mentioned
above, the roles of P and P� are symmetric.) A clipping configuration is combinatorially altered
when a clipped edge changes its position with respect to an edge of the clipping polygon; here we
mean only combinatorial changes of the situations “intersection,” “no intersection,” and “touching.”
Actually we are interested only in the touching events, in which an endpoint of a clipped edge lies on
the clipping edge.2 The moment of touching corresponds to the appearance (or disappearance) of an
edge in the boundary of the inscribed polygon. Thus, arcs of the map in the dual plane correspond to
such axis positions, where edges of P touch edges of P� (and vice versa), or, in simpler words, when
vertices of P lie on edges of P�. Let us reformulate this crucial observation and refine the problem
in question:

Problem 4 Given a vertex v of the polygon P , find the family of axes reflecting v on edges of P .
2Due to the inherent symmetry between P and P�, both touching edges are clipping and are clipped by each other

at the same time.
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Figure 2: Change of the combinatorial structure: �1 and �2 are two lines, and �∗1 and �∗2 are their
respective dual points. F1 and F2 are the respective configurations of �1 and �2; the dual-plane view
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Figure 3: A reflection of the vertex V on the edge AB: (a) the vertices V , A and B are noncollinear,
(b) the vertices V , A and B are collinear

Let AB be an edge of P , such that the axis � : y = kx+b reflects a vertex V of P to some point V ′ that
lies on AB (see Figure 3(a)). Assume for now that V /∈ AB and that A, B, V are noncollinear. (We
will treat the special cases later.) Obviously, the axis of symmetry � passes through the midpoint
C of the segment V V ′, and it is perpendicular to V V ′. Using these facts we can use elementary
geometry and calculate the parameters of �:

k = − 1
slope(V V ′)

= −V ′
x − Vx

V ′
y − Vy

, b = Cy − kCx =
1
2

(
Vy + V ′

y − (Vx + V ′
x)k

)
. (1)

Omitting intermediate calculations we express:

b(k) =
N1k

2 + N2k + N3

D1k + D2
, k �= −Bx − Ax

By − Ay
, (2)

where

N1 = −((Vx + Ax)(By − Ay) + (Bx − Ax)(Vy − Ay),
N2 = 2((By − Ay)Vy − (Bx − Ax)Vx),
N3 = (Vy + Ay)(Bx − Ax) + (By − Ay)(Vx − Ax),
D1 = 2(By − Ay), and
D2 = 2(Bx − Ax).
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Figure 4: An axis passing through a vertex of the polygon

The domain of b(k) is determined by the positions of V , A, and B, and may consist of one or two
closed intervals. The arcs described by Equation (2) are hereafter referred to as arcs of type I.

The case in which A, B, V are collinear (see Figure 3(b)) requires a special treatment. The axis �
is perpendicular to AB, and consequently the line � : y = kx + b has a constant slope. The reflected
point V ′ sweeps along AB between the segment endpoints, so we easily see that the arc in the dual
plane subdivision is a vertical line segment with the parameters:

k = −Bx − Ax

By − Ay
, Ay �= By, (3)

b ∈
[
Ay +

Bx − Ax

By − Ay
Ax, By +

Bx − Ax

By − Ay
Bx

]
. (4)

We hereafter refer to such edges as arcs of type II. If AB is horizontal (that is, if Ay = By), then the
slope of � is infinite. In such case we virtually move the arc to infinity. (Or rotate a bit the input
polygon, or use homogeneous coordinates.)

Let us now handle the case in which the vertex V coincides with either point A or B. (Assume
without loss of generality that V coincides with A.) Then any axis passing through V = A maps it
to itself. The general equation of these axes (in the dual plane) is b = −Axk + Ay. This line has a
special role in the planar subdivision in the dual plane. Actually it may be related to two different
arc types, which are not obvious from the previous observations. An axis passing through a vertex
may cross the polygon (which we call an arc of type III ), or it may just support the polygon from
the outside (type IV ). In the latter case the inscribed polygon degenerates to a single point (the
supported vertex). Slight movements of the axis (that will make it not passing through the vertex)
will either cause the vanishing of the inscribed polygon, or will turn it into a regular nondegenerate
polygon. In the dual plane we thus consider the arcs of type IV as the “boundaries” of the planar
map, beyond which the inscribed polygon is empty.

Despite their essential distinction, both arc types (III and IV) are described by the same formula
of a straight line. If we rotate the axis around the vertex, both types meet when the axis passes
through one of the polygon edges incident to the vertex. Figure 4 illustrates this situation: In the
primal plane, the axis passes through either e1 or e2, which are two polygon edges that share the
vertex A. In the dual plane, these axis positions are two points e∗1 and e∗2 lying on the line A∗. As
can be seen in the figure, types III and IV alternate at e∗1 and e∗2 as we go along A∗.

So far we have examined all the possible cases of axes reflecting a vertex of the polygon on all
edges of the polygon, thus we have the tool for solving Problem 4. Figure 5(a) shows a convex
polygon, while Figure 5(b) shows the planar subdivision induced by this polygon in the dual plane.
[4, §5.2.2, pp. 122–124].
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(a) Polygon (b) Map

Figure 5: A sample convex polygon and its corresponding planar map in the dual plane

5 Map Complexity

The planar subdivision in the dual plane is induced by a set of Jordan arcs, any pair of which intersect
in a constant number of points (to be specified below). Therefore, the combinatorial complexity of
the arrangement that they form is O(m2) [5, §21.1.2, pp. 391–392] , where m is the total number
of arcs. First, we need to show that any two arcs intersect a constant number of times. Second, we
will show that for a convex polygon the complexity of the map can be considerably improved.

The number of intersection points of two arcs is indeed a small constant. Consider first two arcs
of type I. By comparing two terms of the form as in Equation (2), we obtain a cubic equation that
has at most three real solutions. Intersections with other arc types are even simpler. In all cases we
get equations of degree at most 2, which have at most two solutions.

The number of arcs m is quadratic in n (the complexity of the underlying polygon P ): each
vertex of P generates at most n − 1 arcs of type I, two arcs of type II extending one another and
looking like one segment, and a few arcs (up to six) of types III and IV, which are collinear and are
considered as a single unbounded arc.

In total there are n + 1 arcs per vertex and n(n + 1) for all vertices, thus m = Θ(n2) and the
subdivision complexity is O(m2) = O(n4). Note that this is true for any simple polygon P . We
will show below that for a convex polygon the complexity of the map is only Θ(n3), which is a tight
bound in the worst case.

To compute the complexity of the arrangement of arcs we will count its vertices. This is sufficient
since this is a planar map. To this aim we will perform a case analysis of intersections of arcs of all
types.
Intersections of arcs of type I. As mentioned above, a straightforward counting will give us a
trivial bound of O(n4). Instead of isolated arcs we will consider chains of arcs generated in the
dual plane by continuously sweeping a mirrored vertex along the boundary of P (except on the two
edges incident to it). In other words, a chain is a concatenation of all the type-I arcs of the same
vertex. See Figure 6 for an example. Note that when V V ′ is horizontal, the chain will split into two
chains. Asymptotically this does not change the complexity of the map. The convexity of P ensures
that a chain is k-monotone. Consider two chains made of arcs of type I. Each such chain consists of
n − 2 arcs,3 thus it contains n − 1 arc-transition points. Hence, for any two chains we have 2n − 1
k-intervals in which each chain is represented by a single arc. As mentioned above, two such arcs
can intersect at most three times, yielding a total of at most 3(2n− 1) intersections between chains.
Since there are n(n− 1)/2 pairs of chains, we obtain the upper bound 3n(n− 1)(2n− 1)/2 = O(n3)
on the total number of intersections.

3Actually, it may consists of n−1 curves, since one curve may split into two. This occurs when the vertex is reflected
onto nonincident edge by a vertical symmetry axis.
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Figure 6: Sliding V ′ (the reflection of V ) along the boundary of P

Intersections of arcs of types I and II. Due to the k-monotonicity of the chains of type I, any
vertical segment (arc of type II) can intersect it at most once. There are n such chains and n such
vertical segments, giving a total of O(n2) intersections.
Intersection of arcs of types I and {III,IV}. The arcs of types III and IV can be handled as a
special case of a chain, that intersects a regular chain in O(n) points. There are Θ(n) such special
chains and Θ(n) regular chains of type I, yielding O(n3) intersection points.
Intersections of arcs of types II, III, and IV. All these together are 2n straight lines or line
segments which intersect in at most O(n2) points.

Summing up, we obtain that the total number of arc intersection points (and hence the total
complexity of the map) is O(n3).

We will now give a matching lower bound in the worst case. Namely, we will show that there exists
an n-gon whose respective map in the dual plane has complexity Θ(n3). The following observation
will set the ground for our example.

Observation 1 Let the point A be mirrored into the point A′ by the line �. The points A and A′ lie
on the same circle centered at the origin if and only if � passes through the origin.

Consider a regular polygon P centered at the origin, and assume without loss of generality that
it has an even number of vertices. Figure 7(a) shows such a polygon inscribed by a circle. One of
the vertices of P , Vi, is reflected by � to another vertex V ′

i of P . Recall that moving � so as to sweep
the reflection of Vi along P generates a chain of arcs of type I in the dual plane. Observe the case in
which V ′

i coincides with another vertex Vj of P (j �= i). This is equivalent to the coincidence of V ′
j

and Vi. According to Observation 1, the reflection axis must pass through the origin, that is, it has
the form y = k0x. Now let us slightly change the slope of the axis and make it �∆ : y = (k0 + ∆k)x.
The axis will slightly turn around the origin, so that the points V ′

i and V ′
j will stay on the circle

circumscribing P (see Figure 7(b)). Indeed, the new line �∆ is no longer a valid axis. In order to
fix that (by returning V ′

i to the boundary of P ) without changing the slope of the axis, we need to
translate �∆ towards Vi. Now the axis �∆i is valid but it does not pass through the origin. Now do the
same for Vj and V ′

j . This time we translate �∆ towards Vj and obtain a valid axis �∆j , see Figure 7(c).
Since the vertices Vi, Vj and their proximities lie on different sides of �∆, its two translations �∆i and
�∆j are also on its two sides. The b-value of �∆ is 0. Consequently, at k = k0 + ∆k the values of b(k)
have different signs and the respective chains of Vi and Vj (in a sufficiently small neighborhood of
k = k0) touch, but do not intersect (forming an “X”-like configuration, see Figure 7(d)). This fact
is crucial for the sequel.

Observation 2 P is a regular polygon with an even number n of vertices. If a line � reflects a vertex
Vi of P to another vertex Vj, then � is an axis of symmetry of P , that is, every vertex Vk of P is
reflected to another vertex Vl (l �= k). Furthermore, there are n such axes of symmetry (n/2 of which
passing through n/2 vertices of P , and n/2 of which passing through n midpoints).
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Figure 8: Arcs at the vicinity of a touching point: the effect of displacing polygon vertices

The symmetry axes subject of Observation 2 are touching points of chains of type I in the
dual plane. There are exactly n such touching points, one of which can lie in infinity (representing a
vertical axis of symmetry). In addition, Θ(n) chains pass through each of these touching points. More
precisely, n−2 (respectively, n−4) chains meet at touching points that correspond to symmetry axes
that pass through antipodal vertices (respectively, midpoints of antipodal edges) of the underlying
polygon. In fact, arcs of other types pass through the meeting points as well, completing the number
of meeting arcs to n.

Our final goal is to show that we can perturb the original vertices of P in such a way that will
make each of the n touching points (incident to n chains) split in a nondegenerate manner into Θ(n2)
intersection points. When we slightly displace each vertex of the polygon, all the proper intersections
are maintained at the vicinity of the original intersection points (see Figure 8(b)). We thus perturb
one vertex at a time. While handling the ith vertex, there are infinitely-many possible ways to
perturb it, while only a finite number of moves will modify its chain (in the dual plane) so that
its intersections with the first i − 1 chains will overlap the intersections among these i − 1 chains.
Consequently, we can perturb the original vertices of the polygon such that each of the n touching
points in the dual map (with n chains passing through it) is broken into

(
n
2

)
intersection points.

This gives us a total of Ω(n3) intersection points, which matches the upper bound proven above. In
conclusion, we have:
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Theorem 1 For a convex polygon the complexity of the planar subdivision in the dual plane is Θ(n3)
in the worst case.

6 Maximizing the Area of the Inscribed Polygon

6.1 Area Function

We may now assume that the configuration of the inscribed polygon IP,� is given as a sequence of
edges of P : {l1, l2, ..., lm} (m ≤ 2n). The edges of IP,� are represented by lines li, for each of which
we store a triple (ki, bi, µi), where ki and bi are line coefficients and µi specifies whether the edge
belongs to the original polygon or to its reflected version. Note, if li contributes to the boundary of
IP,�, then its reflection li contributes as well. The indicators µi are defined as follows: µi = 1 if li
supports an original edge of P and µi = −1 if li supports an reflected edge.

We briefly describe the computation of the area of IP,�. We rotate the plane so as to make the
axis of symmetry � parallel to the X-axis (see Figure 9). The endpoints Qi of the edges of IP,� can
be determined as intersections of pairs of neighboring lines li and li+1. The vertices Qi and Qi+1 are
projected onto the X-axis and form a trapezoid whose area is

Si =
∣∣∣∣ Qxi+1 Qyi+1

Qxi Qyi

∣∣∣∣ . (5)

The coordinates of the point Qi are

Qxi =
b′i − b′i−1

k′
i − k′

i−1

and Qyi =
k′

i−1b
′
i − k′

ib
′
i−1

k′
i − k′

i−1

,

where

k′
i(k, b) = µi

ki − k

1 + kik
and b′i(k, b) = µi

bi − b

1 + kik

√
1 + k2.

Note that all the expressions above depend on k and b, which are line coefficients of the axis of
symmetry �. Summing up all the partial areas Si(b, k) gives the total area S(b, k):

S(b, k) =
m∑

i=1

(
2

bibi+1

ki+1 − ki
+ b2

i

ki−1 − ki+1

(ki−1 − ki)(ki − ki+1)

)
(6)

Our convention is that k0 = b0 = km+1 = bm+1 = 0.
The area function for the case of a general simple polygon is identical. The only difference is that

the inscribed symmetric polygon may contain few disconnected components, so the configuration can
consist of more than one sequence of lines.

Figure 10 plots the area of the inscribed polygon as a function of b and k (the parameters of the
axis of symmetry), for a simple inscribing polygon (a 2 × 2 square).
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Figure 10: The area S(k, b) as a function of the axis of symmetry

6.2 Maximizing the Area Function

The rest of the effort is to find a global maximum of S(k, b) within each cell of the planar subdivision in
the dual plane. This optimization problem is analytically intractable [11] because of the complexity of
the objective function, hence we have to resort to numerical methods. Formally, we need to optimize
(maximize) a low-dimensional rational polynomial (but with many terms). The objective function is
unconstrained (in the sense that the solution does not have to fulfill any other constraints) but the
optimum is sought within a bounded region.

A variety of strategies have been proposed to solve exactly such problems. Some methods rely
on an a priori knowledge of how rapidly the function varies (e.g., the Lipshitz constant) or on the
availability of an analytic formulation of the objective function (e.g., interval methods). Statistical
methods use domain partitioning to decompose the search space and a priori information (or as-
sumptions) about how the objective function can be modeled. A wide variety of other methods have
been proposed for solving the problems inexactly, including simulated annealing, genetic algorithms,
and clustering methods.

A description of a host of algorithms for a global optimization and their available implementations
is found in [10]. We note three systems that are suitable for our application: INTGLOB [9] (using
an interval technique), ASA [7] (a simulated-annealing algorithm), and Derivative-Free GLOBAL [3]
(based on a clustering stochastic multistart method). For our purposes we implemented a straight-
forward method that works well in practice. We evaluate S(k, b) in regularly-scattered points within
the current cell, and choose the best point (with respect to the objective function) as the first ap-
proximation of the optimum. Then we iteratively resample the function at the vicinity of the current
optimum and vary the sampling resolution, combining standard steepest-descent and simulated-
annealing heuristic methods. We stop when no sufficiently-improving direction is found any more.

7 Running-Time Analysis and Implementation

In this paper we have proposed the following algorithm for computing the maximum-area axis-
symmetric polygon inscribed by another polygon P :

1. For each vertex Vi ∈ P compute the arcs of types I-IV of the planar subdivision M in the dual
plane. Construct M .
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2. For each face of M compute the associated area function (of symmetric inscribed polygons)
and find its maximum (within the face).

3. Report the global maximum (of all faces) as the answer.

We have proven that the combinatorial complexity of M is Θ(n3) in the worst case, where n is the
complexity of a convex polygon P . Constructing M can easily be done by a plane-sweep procedure
whose running time is O(n3 log n) (taking into account the k-monotonicity of the chains). In each
face we need (a) to compute the area function; and (b) to find its maximum. Computing the area
function of the first face takes O(n) time.4 However, updating the area function while moving from
a face to a neighboring face can simply be done in constant time by adding and subtracting only a
few terms. Thus, the amount of time needed for computing all the area functions is proportional
to the number of faces, that is, O(n3). Maximizing the area function within a face is done by a
numerical method. In theory the optimization problem is intractable. In practice the running time
of the “black box” that solves the optimization problem depends linearly on the number of terms in
the objective function (n, in our case), linearly on the complexity of the cell’s boundary, and on the
convergence parameter, to which we refer as a constant. On average the complexity of a single cell
is constant (see details below), for a total of O(n3) for all the cells. For the analysis we denote by
T (n) the average time complexity of the optimization step in a single cell, and note that in practice
T (n) = O(n). To conclude, the computation and processing of M requires O(n3 log n) time for all
stages except the optimization steps. For the latter steps we spend O(n3T (n)) time. In total, the
running time of the algorithm is O(n3(log n + T (n))).

Similarly, for a simple polygon, constructing the map and maximizing the area functions require
O(n4 log n) and O(n4T (n)) time, respectively. Thus, the total running time is O(n4(log n + T (n))).

The space complexity of the algorithm is affected by the construction of the planar map and by
the optimization algorithm. The complexity of the planar map for a convex polygon is Θ(n3) in the
worst case, so the optimal amount of space used for its description is Θ(n3), too. However, we can
modify the map-construction algorithm and reduce this bound to superquadratic. The idea is to find
the combinatorial structures, the area functions, and immediately their local maxima while building
the map from a set of arcs (whose cardinality is Θ(n2)). After a cell of the planar map was discovered
and interpreted, and the maximum area within this cell was computed, we do not need this cell any
more and may discard the memory used for storing it. That means that at all times only the zone
of the sweep line is stored in memory, while the complexity of a zone of a vertical line in the map
is slightly over Θ(n2). Indeed, all arc chains are k-monotone, and there are Θ(n) such chains, so a
vertical sweep line intersects Θ(n) arcs and hence it intersects Θ(n) cells of the map. This can also
be understood from another point of view: moving along a vertical line corresponds to a vertical
translation of the axis of symmetry. During such a translation only Θ(n) combinatorial changes in a
structure of the symmetric inscribed polygon may occur. The complexity of a single cell is superlinear
[4, §5.2.2, pp. 122–124]. Thus, the complexity of a zone of the sweep line is superquadratic at any
time. The space complexity of the optimization routine depends on the underlying algorithm and
its parameters. Regarding these parameters as fixed, we can state that the space complexity of the
optimization step is linear in n. Hence, the space complexity of the whole algorithm is superqudratic.

We implemented the entire algorithm for convex inscribing polygons. The software was written in
C++ under the Windows operating system. It consists of about 6,500 lines of code, and it also uses
the geometric package CGAL, the GUI toolkit Qt, and an Open Inventor compatible toolkit Coin3D.
Our system offers an interactive tool which visualizes the objects, concepts, and relations presented
in the paper. The user is able to draw a polygon, visualize the respective planar subdivision in the
dual plane, move an axis in the primal plane (and see the induced inscribed polygon), and visualize
the effect also in the dual plane, or vice versa. The user can also change continuously the geometry
of the input polygon and visualize how this affects the inscribed polygon and the planar map in the
dual plane. Finally, a three-dimensional graph of the area function can be plotted on screen. All
display windows can be saved into graphic files. Figure 11 shows a screen snapshots of our system.

4This time reduces to O(1) if the first face corresponds to an empty inscribed polygon (where the axes do not cross
the input polygon).
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Figure 11: Screen snapshots of the system
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