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Abstract. This paper investigates the approximation of set-valued functions
with compact images (not necessarily convex), by adaptations of the Schoenberg
spline operators and the Bernstein polynomial operators. When replacing the sum
between numbers in these operators, by the Minkowski sum between sets, the
resulting operators approximate only set valued functions with compact-convex
images [10]. To obtain operators which approximate set-valued functions with
compact images, we use the well known fact that both types of operators for real-
valued functions can be evaluated by repeated binary weighted averages, starting
from pairs of function values. Replacing the binary weighted averages between
numbers by a binary operation between compact sets, introduced in [1] and termed
in [4] the "metric average”, we obtain operators which are defined for set-valued
functions. We prove that the Schoenberg operators so defined approximate set-
valued functions which are Holder continuous, while for the Bernstein operators
we prove approximation only for Lipschitz continuous set-valued functions with
images in R all of the same topology. Examples illustrating the approximation
results are presented.

Key words: Minkowski sum, metric average, set-valued functions, compact
sets, Schoenberg spline operators, Bernstein polynomial operators.

1 Introduction

We present in this paper a method for adapting to set-valued functions
(multifunctions) certain well known linear positive approximation operators
for real-valued functions. We study two types of linear operators, the Schoen-
berg spline operators and the Bernstein polynomial operators. Both types
of operators, when adapted by the usual method of replacing sums between
numbers by Minkowski sums of sets, approximate in the Hausdorff metric



only multifunctions with compact-convex images [10]. It is shown in [5] that
such Bernstein multipolynomials of a set-valued function F with compact
images, converge in the Hausdorff metric, with growing degree, to the set-
valued function whose images are the convex hulls of the images of F'.

Our adaptation method is taken from [4], where the approximation ope-
rators were limits of spline subdivision schemes. Here we apply the method
successfully to the Schoenberg operators. We use the de Boor algorithm
for the evaluation of the Schoenberg operators in terms of repeated binary
weighted averages, and replace the binary weighted average between two
numbers by a binary operation between sets, introduced in [1], and termed
in [4] the "metric average”. We prove that with this procedural definition of
the Schoenberg operators for multifunctions, the Schoenberg operators ap-
proximate a Holder continuous set-valued function in a rate which equals the
Holder exponent of the multifunction.

For the Bernstein operators we use the de Casteljau algorithm for the
evaluation of a Bernstein polynomial in terms of repeated binary weighted
averages, and replace the average between two numbers by the metric average
of two sets. We prove for F' Lipschitz continuous with images in R all of the
same topology, that its Bernstein multipolynomial of large enough degree m
approximates F with an error bound proportional to m~=1/2.

The approximation results for both types of operators are illustrated by
examples.

We conclude the Introduction by an outline of the paper. In Section 2
we give basic definitions and notations. In particular we discuss the met-
ric average and its relevant properties. In Section 3 the Schoenberg spline
operators for real-valued functions are defined, and their evaluation in terms
of the de Boor algorithm is briefly reviewed. The procedural definition of
the Schoenberg operators for set-valued functions is given in Section 4, to-
gether with the approximation results, their proofs and examples. Section 5
discusses the Bernstein polynomials of real-valued functions and their eval-
uation in terms of the de Casteljau algorithm. In Section 6 the Bernstein
operators for set-valued functions are defined, and the proof of the approxi-
mation result together with an example are given.

2 Preliminaries

In this section we introduce some definitions and notation. The collection of
all nonempty compact subsets of R™ is denoted by K(R"). By Co(R") we
denote the collection of all convex sets in K(R"), and by coA we denote
the convex hull of A. The Euclidean distance from a point a to a set



B € K(R") is defined as
dist(a, B) = inf |a — b,
beB

where |- | is the Euclidean norm in R™.
The Hausdorff distance between two sets A, B € K(R"™) is defined by

haus(A, B) = max {sup dist(a, B), sup dist (b, A)} :

acA beB

The set of all projections of a € R™ into a set B € K(R") is
IIg(a) ={b€ B:|a— bl =dist(a, B)}.
For A, B € K(R"™) the projection of A on B is the set
p(A) ={Ilg(a) : a € A}.
A linear Minkowski combination of two sets A and B from K(R") is
M+ puB ={Aa+ ub,a € A,b € B},

with A\, € R. The Minkowski sum corresponds to a linear Minkowski
combination with A =pu=1.

Definition 2.1. Let A, B € K(R") and 0 <t¢ < 1. The t-weighted metric
average of A and B is

A®; B={ta+ (1-t)p(a):ac A J{tTab) + (1 —1)b:be B} (1)

The most important properties of the metric average are presented below [4] :
For AABe K(R") and 0<t<1,0<s<1

1. Ao B=B, A®,B=A A®,B=B®; A
2. A, A=A
3. ANBCA®;BCtA+(1—-t)B Cco(A|UB)
4. haus(A®; B,A®, B) = |t — s|haus(A, B)
5. A B=tA+(1-t)B, A,B € Co(R)
It follows from properties 1 and 4 that

haus(A®; B, A) = (1—t)haus(A, B), haus(A®,;B, B) =thaus(4, B) (2)



3 Schoenberg operators for real-valued
functions, and their evaluation by repeated
binary averages

The m-th order Schoenberg spline operator (Schoenberg’s variation dimin-
ishing spline approximation) S,,f to a continuous function f on R is given
by
Smf =Y f()Bn (- — i),
icZ
where By, (t) is the B-spline of order m with integer knots and support
[0,m] [3]. For the knot sequence hZ , with small A, we consider the operator

Snf = Z £(ih) By, <E - 2) . (3)
For fe C(R) lim S, nf(t) = f(t) t€ R [3]

Sm.nf can be evaluated by an algorithm (known as the de Boor algo-
rithm) for the computation of a spline function given in terms of the B-spline
basis, based on the recurrence formula for B-splines.

For j <t <j+1, (3) can be written as

J
i=j—m+k+1

with 0 <k <m—1 and

. Y- %

ar = 1+m_ka. ) Z:]_m+k+1>a] (5)

! m—k

Introducing the notation

_i—l—m—k—t
N m—k

AR

)

. i=j-m4k+1,..,j, k=1..m—-1, (6)

we observe that a¥ is a convex combination of a7 and af' with coeffi-

cients A\¥, 1 — A\F. The case k =m — 1 yields

S nf(th) = al'™", (7)



Remark 3.1. It follows from (4) with & = 0 that S,, »f(th) at ¢t € [j,7+1)
depends only on f(ih) i =j—m+1,...,5. A better approximation is the
symmetric Schoenberg operator:

Swnf =Y f(ih)B, <E - z) . where B,.(t) = By, (t - T) (8)

, 2
VA

For t € [j,j+1) Sp. nf(th) is a convex combination of values of f at a set
of symmetric points relative to (jh, (j+1)h). For even m the evaluation of
gm,hf is similar to that of S, 1 f .

In this work we study the operator S,,; for set-valued functions.

4 Schoenberg operators for set-valued
functions

Let F': R — K(R™) be a set-valued function. We define the set-valued
Schoenberg operator of order m in terms of its evaluation according to the
de Boor algorithm, using the metric average as the basic binary operation
and the initial sets {F? = F(i),i € Z}. To calculate the spline operator
Sm.nF(th) at t € [j,7 + 1) we use an extension of (5) and (7) with the
average between two numbers replaced by the metric average of two sets.
Thus for £k =1,...,m — 1 we define recursively the sets

Ff =l e B, (9)

with AF given by (6) and as in (7), determine S,, ,F'(th) to be
S F(th) = F" L. (10)

First we prove some basic results, which are used in the proof of the
approximation theorem.

Lemma 4.1. Given an initial sequence of compact sets {F?,i € Z} C K(R"),
we define the sets at level k by repeated application of (9). Let

d" = sup haus(FF_, F¥). (11)
i€z
Then E 1
<0 =1 m—2.
m—1



Proof. It follows from (9) and (2) that

haus(F}, F{™") = haus(F! D \k FFERY

m—k
Thus , by
haus(FF, FA1) < L2 T VT ger (12)

m—k

In the same way we obtain

haus(F !, FE ) = haus(Ff !, FF! D \k Fih
i+1

t—1—1

d" .
m —k

= (1= A Dhaus(EfF ' FIOY) <

Therefore ,
t—i—1

haus(FF=Y FE ) <
aus( 7 ) H—l) m_k,

d"t (13)
By the triangle inequality and using the estimates (12) and (13) we get:

m—k—1

dF1.
m—k

haus(E¥, FY,,) < haus(FF, F) + haus(FE ", FL,) <

This leads to
m—k—1

k<
d m—k

d"t. (14)

Now, using (14) repeatedly, we obtain the claim of the lemma

dkém—k—ldk_lgm—k—l.m—(k—l)—l.“m—Q—l .m—l—lal0
m—k m—k m—(k—1) m— 2 m—1
:m—k—ldo
m—1 ‘
U
Lemma 4.2. Let S,, nF', be define by (9) and (10). Then for any point
telij+1)
haus(SmhF(th),F]Q)gdog. (15)



Proof. By (10), the triangle inequality, (12) and Lemma 4.1

0 m—1 7m0 k-1 ik m—k+j—1 , 4
haus(Sm, nF'(th), F}) = haus(F;" ", F}') < haus(F, F}') < Z — d
k=1 k=1
m—1 m—1
m—k+j—t m—(k—1)—-1 , d° ,
< d = —k —1
- m—k m — 1 m—1 Z(m it
k=1 k=1
m—1
_ 0 o — g m
—d (m—i—j - —— k:) d(m—i—j ¢ 2)
k=1
Finally we obtain
haus( Sy, 1 F(th), F°) < d° (% +j— t) < dog.
[

As a consequence of the last lemma, we get the approximation result.

Theorem 4.1. Let the set-valued function F : [0,1] — K(R™) be Hélder
continuous with exponent v € (0, 1],

haus(F'(z), F(z)) < Cylz — z|", =,z €]0,1].
Let F? = F(ih), i =0,1,...,N with hN =1, and F? = {0} otherwise.
Then for any x € [h(m — 1), 1]
m
haus(Sy, 4 F(z), F(z)) < (5 + 1) O, h. (16)

Proof. For z € [(m —1)h,1], let [, € Z be such that x € [l,h, (I, +1)h).
Note that for such z, the value S,, F(z) depends on values F? for
ie{ly,—m+1,1l,—m+2,..,0,} C{0,1,...,N}.

By the triangle inequality we have

haus(Sy, n F'(z), F(x)) < haus(Sy, nF(z), F) + haus(F, F(z))

Hence by Lemma 4.2 we obtain

haus(S,, 4 F(z), F(z)) < dog + haus(F2, F(z)) (17)
Now, by the Holder continuity of F',
< C,h
and
haus(F, F(x)) = haus(F(I;h), F(z)) < C,h"
This together with (17) leads to the claim of the theorem. O
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Example 4.1. We construct Schoenberg approximations to the multifunction
F(z) defined by

F(z) = {y: max{0, (r/2)* — (z — 0.5)*} < ¢y* <r° — (z — 0.5)*},

r=0.5, z€[0,1]. (18)

(a) Approximation with S ,F .

The original set-valued function is presented in gray on the left-hand
side of Figure 4.1, 40 cross-sections of the reconstructed shape, Ss g1 F', is
depicted in black. The graph of

en(z) = haus(Ss , F'(x), F(x))

at x = 0.425 as function of h, is shown on the right-hand side of Figure 4.1.

o

(a) (b)
Figure 4.1.

(a) F - in gray. Forty cross-sections of Ss 0.01F - in black.
(b) Error between the original and the reconstructed cross-sections at x = 0.425 as
function of h.

We note that e,(0.425) changes almost linearly with A. This is in ac-
cordance with Theorem 4.1, since at = = 0.425 F is Lipschitz continu-
ous (vr=1).

The graph of the maximal error between cross-sections of the recon-
structed shape, S; ,F and the corresponding cross-sections of (18) as a

8
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function of h is presented in Figure 4.2 (a). The maximal error is obtained
at the points of change of topology of the cross-sections of (18), which are
depicted in Figure 4.2 (b).

To verify that the decay of the error in this figure is in accordance with
Theorem 4.1, we show that F' in (18) is Hélder continuous with expo-
nent 1/2, at points of change of topology.

llex () loo

0.430898

001 Lk

(a) (b)
Figure 4.2.

(a) Maximal error between the original and the reconstructed cross-sections as function
of h.
(b) Points of change of topology, where the maximal error is attained.

Consider the boundary of the ring in 2D determined by (18). Locally
near the points of change of topology of cross-sections the boundary can be
described by a scalar function y = f(x), or by = = g(y). One can see easily
that the derivative of f tends to infinity at points of change of topology (see
Figure 4.2 (b)). Let = = g(y) be the inverse function of f and let (zo,yo)
be a point of topology change. Since ¢'(yo) = 1/f'(x¢) = 0, we get by the
Taylor expansion of degree 2 of g(y) about yo,

o(0) — gtwo) = (8- LY gy Ay =y,

Thus for |z—zo| =h and since |Rs|/|Ay|* = o(|Ay|), we obtain Ay ~ \/2h/¢" (yo) ,
from which it can be concluded that F' is Holder continuous with expo-
nent 1/2 at the points of change of topology.

9



(b) Approximation with S ,F.

ﬂeuhm.;us}

i

(a) (b)
Figure 4.3.

(a) F - in gray. Forty cross-sections of §4,0,01F - in black.
(b) Error between the original and the reconstructed cross-sections at = = 0.425 as
function of h.

Figure 4.3 is similar to Figure 4.1 but with §47hF replacing Sz ,F'. It
is easy to observe that the behavior of the error function is almost quadratic
in h. We conjecture that F' is smooth enough at = = 0.425 in a sense yet
to be defined, and that

en(x) = haus(F(z), Sy nF(x)) = O(h?), (19)

in points of smoothness of F'. Moreover, we conjecture that (19) holds for
Som, nF" for all m > 2. This is an improvement over the approximation rate
in Theorem 4.1, as in the case of real-valued functions.

10
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5 Bernstein polynomials of real-valued
functions and their evaluation by repeated
binary averages.

For f € C|0,1], the Bernstein polynomial of degree m is
— (M m—i i
Bulfo) =Y (7 )iy (1) (20
i=0

The value B,,(f,u) can be calculated recursively by using the de Casteljau
algorithm [9] in terms of repeated binary averages. The algorithm is based
on the following recurrence relation,

Bim(u) = (1 —u)B;m1(u) + u Bi_1 m—1(u), (21)

where B;,(u) = <T) u'(1—u)™ "

By, (f,u) in (20) for u € [0, 1] can be presented by a repeated application
of (21) as:

" im\ . T =k .
Balfn) =Y (7 )utta = = > (")t e
with the values fF given recursively by

fF=Q—-wfft+uffs, i=01,...m—k k=1,..,m, (23)
and with f? = f(i/m), i =0,1,...,m.

Comparing formulas (23) with formulas (5) one can easily see that the
de Boor algorithm is a generalization of the de Casteljau algorithm.

Taking & = m in (22) we obtain B,,(f,u) = fi*. Thus the Bernstein
polynomial of a real-valued function can be defined by repeated binary ave-
rages.

6 Bernstein operators for set-valued functions
Let F:]0,1] — K(R"™) be a set-valued function with compact images. Let

F? = F(i/m) be the initial cross-sections, F € K(R"), 1 =0,1,...,m. Con-
sider the Bernstein polynomial of a set-valued function, having the form of

11



the Bernstein polynomial of a real-valued function with sums of numbers
replaced by Minkowski sums of sets,

BM(F,u) = 1 —u)""F(— 24
de =3 (7)wa e (1) (21)
It is shown in [5] that the limit of BM(F,u), for a fixed u € (0,1), when
m — oo, is the convex hull of F(u). Therefore, the set-valued polyno-
mial (24) is a good approximation for functions with convex compact images.
To obtain an operator, which does not convexify the initial data, we define
constructively the Bernstein approximation of F' in terms of the de Casteljau
algorithm with the metric average as the basic binary operation. Thus to
calculate the value of the Bernstein polynomial of degree m at the point
u € [0,1], Bu(F,u), we use the following extension of (23):

FF=F'o, ,F'Y i=01,..m—k k=1,..,m (25)
and define

Bn.(F,u) = Fj". (26)

First we show,

Lemma 6.1. Let F* = {FF, i=0,...m —k} be define as above, and let

d*=sup  haus(F¥ ,F), k=0,1,...,m~— 1. (27)
i€Z N[1,m—Fk]

Then
& <d k=1.,m-1.
Proof. From (25) and (2)
haus(F}', Ff 1) = haus(Ff 1 F7 @, Eljr_ll) (28)
= whaus(F/" " FFY) <wd™

In the same way we obtain

haus(ﬂk_la sz—l) = haus(Fjik—_l1 D 1—u F;k_1> F’z‘k_l) (29)
= (1 —u)haus(FF 1 FFY < (1 —u)dé

Now, by the triangle inequality, (28) and (29) we get,
haus(FF |, FF) < haus(Ef™, FF ) + haus(FF™, FF)
<1 —wdt+udt =db
Thus
dF <d

which implies the claim of the lemma. O

12



We do not have a proof of the convergence of B,,(F,u) to F(u) as
m — 00. Yet we have a proof in the case of set-valued functions with cross-
sections in R all of the same topology. Our proof is based on the following
result from [10]:

Result 6.1. For F':[0,1] — Co(R™) Lipschitz continuous
haus(BM(F,u),F(u)) < C/v/m, ue€[0,1],

where BM(F,u) is defined by (24) and the constant C' depends only on the
Lipschitz constant of F.

Any set A in R consists of a number of disjoint intervals, some possibly
with empty interior. Thus A can be written in the form A = U;.lzl A; with
A;, j=1,..,J ordered and disjoint intervals, namely a; < a;j;; for any
a; € Aj and ajy+1 € Aj+17 j =1,..., J — 1. We denote this by Al < ... < AJ.
We introduce a measure of separation of such a set with J > 1:

s(A) = l7j€{1}.?7fJ}7l¢j{dlst(a, Aj)ae A} (30)

In the following we assume that J is finite. We discuss only the case J > 1,
since J =1 is a special case of Result (6.1).

Definition 6.1. Two sets A, B € K(R) are called topologically equivalent
if each is a union of the same number of disjoint intervals, namely

A:UAj, B:UB]-, (31)

with 4;, j=1,...,J and B;, j=1,...,J disjoint ordered intervals.

Definition 6.2. Let A, B € K(R) be topologically equivalent. The sets
A, B are called metrically equivalent if

This relation between the two sets is denoted by A ~ B.
Lemma 6.2. Let A, B € K(R) be topologically equivalent. If

min(s(A), s(B))
2

haus(A, B) < (33)
then A and B are metrically equivalent.

13



Proof. Assume the opposite, i.e. that (33) holds, but A, B are not metrically
equivalent, namely there exists a subset B; € B such that two points from
By have their closest points in A in two subsets of A, say A; and A;44.
By the continuity of the projection mapping there exists a point be B; such
that {a1, a2} CI4(b), a1 € A;, as € Ajyy.

By the triangle inequality,

dist(aq, az) < dist(b, a1) + dist(b, az) = 2 dist(b, A). (34)

Now, by the definition of the Hausdorff distance, (34) and (30) we obtain:

haus(A, B) > dist(b, A) > %dist(al,cm) > Lo

N | —

in contradiction to assumption (33). Thus I14(B;) C A;, and by symmetry
II5(A;) C By. It remains to prove that k =1.

Let a € A; and b € B; be such that a € I14(b;). Let b, € By be such
that by € IIg(a). By the triangle inequality and by the definition of the
Hausdorff distance

diSt(bl, bk) < diSt(bl, CL) + dist(a, bk)

35
< dist(b;, A) + dist(a, B) < 2haus(A, B). (35)

Now by (30) we have if k£ # [ that

S(B) S diSt(bl, bk)

This together with (35) contradicts (33). Hence II4(B;) C A; and
II5(A;) C B;. Since A and B are both of the form (31), we conclude that
= j. Thus A~ B. 0

Corollary 6.1. The metric average of two topologically equivalent sets A
and B, satisfying (33), is given by
J
Ao, B=|]JA; e B; (36)
j=1

Lemma 6.3. Let {F? C R, i =0,1,....,m} be topologically equivalent, of the
form

J
0 __ 0
F=UF
i=1

14



with FY;,j =1,...,J disjoint ordered intervals. Define {F}'} and d* by (25)
and (27) respectively, and define

s* =min{s(FF):i=0,1,...m—k}, k=0,1,...m — 1. (37)
If d° < s°/2, then
d"<s/2, k=1,..,m—1, (38)
and the sets {FF, i=0,...,m—k, k=0,....,m} are topologically equivalent.
Proof. We prove the lemma by induction. We assume that the sets
{Fl:i=0,...m—1,l=0,..,k—1} are topologically equivalent and that
d*=1 < s¥71/2. Note that the induction hypothesis is satisfied for k = 1.

Since two consecutive sets of {F~'} are metrically equivalent, by the in-
duction hypothesis and by Lemma 6.2, we get by Corollary 6.1 that

J
FF = Uﬂffj—l G1u F7Y i=0,..,m—k. (39)
j=1

Now, by property 5 of the metric average (see Section 2)

k—1 k—1 k—1 k-1 _ 71k
Ey @ By =1 —uw)E; +u by =1,

(40)
where Ifj is an interval.
First we show that

of =minf{|c; — ¢o] 1 ¢ € 1],

e €I, je{l,..,J—1}} > (41)
Let oFf =|c; — ¢3|. By (39) and (40), we have
g=01-uwa+ub, =12

- k-1 k-1 k-1 k-1
with ap € F;';7, b€ L, and ax € Fj'; 1y, by € Fj, ,;,, for some

je{l,..,J —1}. Thus,
¢l — a3 = [(1 —u)(a1 — az) +u(br — by).

Since the differences (a; — as) and (b — by) have the same sign, we can write
lci — 3] = (1 —u)|ay — as| + u|by — bs)|. Finally, using (30) we obtain:

o = |¢} — &3l = (1 — )|y — az| + ulby — by

> (1—u) s(Ff) +us(Fi') > min(s(F7), s(F1) = s
It follows from (41) that I}, 1};,, =0 for j € {1,..,J — 1}, and in view
of (39) and (40) we conclude that F} is topologically equivalent to F/*~', FF .

15



Moreover by (41) s" = mino¥, and

st > L
This together with Lemma 6.1 and the induction hypothesis leads to
dF < d! < Sk_1/2 < sk/2.

Thus the induction hypothesis holds for &£ which concludes the proof of the
lemma. O

Lemmas 6.3 and 6.2 lead to

Corollary 6.2. Let the sets {FF:i=0,..m—k,k=0,...m—1} be as
in Lemma 6.5. Then FF~FF i=1...m-k,k=0,...m— 1.

Now we can prove,

Theorem 6.1. Let the set-valued function F :[0,1] — K(R) be Lipschitz
continuous, such that for each t € [0,1], F(t) = U‘j]:1 Fi(t), with J > 1,
where {F;(t)} are disjoint ordered intervals. Then for m large enough

haus(By (F,u), F(u)) < C/v/m, uel0,1]. (42)
Proof. Let m be such that for F? = F(i/m),i=0,...,m,
d’ < 5*/2,
with d° defined by (27) and
s* = inf s(F(t)) > 0.

0<t<1

Such m exists since F' is Lipschitz continuous. In fact m has to be large
enough. Obviously s* < s”, where s° is defined in (37). Thus d° < s%/2.
Now, by Corollary 6.1 and Property 5 of the metric average we get

J
By (F,u) = Byl (Fj,w).
j=1

Therefore

haus(F'(u), By, (F,u)) = max haus(Fj(u), B%(Fj, w)),

1<5<J

and (42) follows from Result 6.1. O
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Example 6.1. To illustrate Theorem 6.1, we consider the function F(z)
defined by

F(z)={{y:1<y<0.062"+2}J

(43)
{y:0.12" +25 <y <13.5}}, x € [0,10].

This function is depicted in gray in (a), (b), (c) of Figure 6.1. Fifty cross-
sections of the reconstructed shapes, Bia(F,u), Bi3(F,u) and Bso(F,u), are
colored by black and presented in (a), (b) and (c) of Figure 6.1 respectively.
Note that (33) does not hold for m = 12, while for m = 13 and m = 30
(33) holds. Figure 6.1 shows that for m = 12 there is no approximation,
while Bj3(F,u) is already approximating the shape. The approximation by
Bso(F,u) is better than that by Bis(F,u).

(a) (b) ()
Figure 6.1.

(a) F(x) - in gray. Fifty cross-sections of Bia(F,u) - in black.
(b) F(x) - in gray. Fifty cross-sections of Bi3(F,u) - in black.
(a) F(x) - in gray. Fifty cross-sections of Bso(F,u) - in black.

7 Conclusion

We expect that the approximation methods studied in this paper will become
useful for practical applications. For this, an effective algorithm for the evalu-
ation of the metric average is needed. An algorithm for computing the metric
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average of two compact sets in R, which has linear complexity in the total
number of intervals, is presented in [2]. This algorithm can be applied to the
reconstruction of 2D shapes from their 1D cross-sections. The computation
of the metric average of compact sets in R?, required for the reconstruction
of 3D objects from their 2D cross-sections, is much more complicated. As
a first attempt, [7] presents an algorithm for the computation of the metric
average of two intersecting convex polygons having linear complexity in the
number of vertices of the two polygons. This algorithm is generalized for the
case of two intersecting regular polygons, but with quadratic computation
time [8].

The authors stipulate that the lack of a general approximation result in
the case of the Bernstein operators in contrast to the cases of the Schoenberg
operators and spline subdivision operators [4] is due to the global nature of
the Bernstein operators. In the Bernstein operators the approximation at a
point depends on values of the approximated function over all the interval
of approximation, while in the two other operators it depends on a finite
number of samples of approximated function near the point. This failure
of the adaptation method, based on the metric average, lead the authors to
extend the metric average to a new set-operation acting on a finite sequence
of compact sets. With this operation, most known approximation methods
for real-valued functions, are adapted to set-valued functions successfully [6].
Yet at this stage the results are mainly theoretical.
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