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Overview

•preliminaries

• legal triangulations

•Delaunay graphs

•algorithms
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Credits

• the presentation is based on Sections 9.1 and 9.2 of 
the book by de Berg et al [CGAA]

• the original figures and pseudocode, as well as Ch. 9 
in full are available from the book site: 
www.cs.uu.nl/geobook/
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Triangulating planar point sets
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Triangulating point sets

• input: a set 𝑃 of 𝑛 points in the pane

• triangulation: by adding a maximal set of non-
crossing segments connecting pairs of input points

• why is this a triangulation?
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Triangulating planar point sets, size

• if 𝑘 points of 𝑃 are on the convex hull of 𝑃 (possibly in 
non-general position) then any triangulation of 𝑃 has 
•𝑚:= 2𝑛 − 2 − 𝑘 triangles, and
•3𝑛 − 3 − 𝑘 edges
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Motivation : Terrains

•Given a set 𝑃 of data points in the plane

• the height 𝑓(𝑝) is determined for each 𝑝 in 𝑃

•how can we naturally approximate the height of 
points not in 𝑃?
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Take I

• let the height of each point not in 𝑃 be the same as 
the height as of its closest point in 𝑃

•does not look natural
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Take II

•determine a triangulation of the points 𝑃 in the 
plane, and raise each point to 𝑓(𝑝)
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Motivation

• triangulations are at the heart of central modeling 
tools in science and engineering

•FEM, meshing

•polyhedral terrains
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Polyhedral terrains

• some triangulations are 
better than other
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Max min angle

• in what follows, we wish to maximize the minimal 
angle in the triangulation

•𝑇(𝑃): triangulation of the set of points 𝑃

•𝐴(𝑇): the angle vector of the triangulation sorted 
in increasing order, (𝛼1, 𝛼2, … , 𝛼3𝑚)

•𝐴(𝑇) is (lexicographically) larger than 𝐴(𝑇’) if 
there exists an index 𝑖 ∊ [1,3𝑚] such that 
•𝛼𝑗 = 𝛼’𝑗 for all 𝑗 < 𝑖, and
•𝛼𝑖 > 𝛼’𝑖
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Angle-optimal triangulation

•Triangulation 𝑇 is angle optimal if 𝐴(𝑇) ≥ 𝐴(𝑇’)
for all triangulations 𝑇’ of 𝑃
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Edge flip

•𝑒 is an edge of 𝑇 bounding two triangles that form a 
convex quadrilateral, then one can perform an edge 
flip

•𝑝𝑖𝑝𝑗 is an illegal edge if min1≤𝑖≤6 𝛼𝑖 < min1≤𝑖≤6 𝛼’𝑖
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Observation

• let 𝑇 be a triangulation with illegal edge 𝑒

• let 𝑇’ be obtained from 𝑇 by flipping 𝑒

• then 𝐴(𝑇’) > 𝐴(𝑇)
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Lemma illegal

• Let 𝑝𝑖𝑝𝑗 be an edge incident to 
triangles 𝑝𝑖𝑝𝑗𝑝𝑘 and 𝑝𝑖𝑝𝑗𝑝𝑙
• Let 𝐶 be a circle through 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘
•The edge 𝑝𝑖𝑝𝑗 is illegal iff the point 𝑝𝑙

lies inside 𝐶

• If 𝑝𝑖, 𝑝𝑗, 𝑝𝑘, and 𝑝𝑙 form a convex 
quadrilateral and do not lie on a 
common circle, then exactly one of 
𝑝𝑖𝑝𝑗 and 𝑝𝑘𝑝𝑙 is an illegal edge

• the situation is symmetric in 𝑝𝑘 and 𝑝𝑙
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Theorem (Thales, variant)

• let 𝐶 be a circle and 𝐿 a line 
intersecting 𝐶 in points 𝑎 and 𝑏

• the points 𝑝, 𝑞, 𝑟, and 𝑠 all lie on 
the same side of 𝐿

• suppose 𝑝 and 𝑞 lie on 𝐶, 𝑟 lies 
inside 𝐶 and 𝑠 lies outside 𝐶

• then                         

∡𝑎𝑟𝑏 > ∡𝑎𝑝𝑏 = ∡𝑎𝑞𝑏 > ∡𝑎𝑠𝑏
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Proof of Lemma illegal

•Reminder: the edge 𝑝𝑖𝑝𝑗 is illegal iff the point 𝑝𝑙 lies 
inside 𝐶

•using Thales theorem

• for example: 
∡𝑝𝑖𝑝𝑙𝑝𝑘 > ∡𝑝𝑖𝑝𝑗𝑝𝑘
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Point inside a circle

• the lemma gives us an easy way to test the validity 
of an edge

• there is a simple and elegant predicate to test if a 
point lies inside a circle─we will see it later

19



Legal triangulations

•a legal triangulation is a triangulation that does not 
contain any illegal edge

•any angle-optimal triangulation is legal
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Legal triangulation by edge flips

•why is the loop finite?
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The Delaunay Graph
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The (graph) dual of the Voronoi diagram

23



The Delaunay Graph

•The straight edge dual of the Voronoi diagram
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Theorem

•The Delaunay graph of a planar point set is a plane 
graph.
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𝐶𝑖𝑗: an empty circle through 
𝑝𝑖, 𝑝𝑗
𝑐𝑖𝑗: the center of 𝐶𝑖𝑗, lying 
on the Voronoi edge 
between 𝑉(𝑝𝑖) and 𝑉(𝑝𝑗)
𝑡𝑖𝑗: the triangle 𝑐𝑖𝑗, 𝑝𝑖, 𝑝𝑗

𝑡𝑘𝑙: the same for the sites 
𝑝𝑘, 𝑝𝑙



Proof

• suppose for a contradiction that 

𝑝𝑖𝑝𝑗 and 𝑝𝑘𝑝𝑙 intersect

• notice that pk and pl must lie 
outside Cij, and therefore outside tij

• this implies that pkpl must intersect 
one of the edges of tij incident to cij

• similarly, 𝑝𝑖𝑝𝑗 must intersect one of 
the edges of 𝑡𝑙𝑘 incident to 𝑐𝑖𝑗

• it follows that one of the edges of 
𝑡𝑖𝑗 incident to 𝑐𝑖𝑗 must intersect one 
of the edges of 𝑡𝑘𝑙 incident to 𝑐𝑘𝑙

• contradiction: each edge incident 
to 𝑐𝑖𝑗 or 𝑐𝑘𝑙 must lie in a unique 
Voronoi cell
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𝐶𝑖𝑗: an empty circle through 𝑝𝑖, 𝑝𝑗
𝑐𝑖𝑗: the center of 𝐶𝑖𝑗, lying on the 
Voronoi edge between 𝑉(𝑝𝑖)
and 𝑉(𝑝𝑗)
𝑡𝑖𝑗: the triangle 𝑐𝑖𝑗, 𝑝𝑖, 𝑝𝑗

𝑡𝑘𝑙: the same for the sites 𝑝𝑘, 𝑝𝑙



The Delaunay Triangulation

• If we assume general position
• no three points are collinear, and
• no four points are cocircular

• then the Delaunay graph is a triangulation.

• (Otherwise, the Delaunay graph can be easily triangulated.)
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Theorem VD2DG

•We rephrase a theorem on Voronoi diagrams in 
terms of their straight edge dual:
• three points 𝑝𝑖, 𝑝𝑗, 𝑝𝑘 in 𝑃 are vertices of the same face of 

the Delaunay graph iff the circle through 𝑝𝑖, 𝑝𝑗, 𝑝𝑘 contains 
no point of 𝑃 in its interior

• the points 𝑝𝑖, 𝑝𝑗 in 𝑃 form an edge of the Delaunay graph 
iff there is a closed disc that contains 𝑝𝑖, 𝑝𝑗 on its boundary 
and does not contain any other point of 𝑃

•Corollary: A triangulation 𝑇 of a point set 𝑃 is a 
Delaunay triangulation of 𝑃 iff the circumcircle of 
any triangle in 𝑇 does not contain a point of 𝑃 in its 
interior
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Theorem (almost the punch line)

•Thm: A triangulation 𝑇 of 
a point set 𝑃 is legal iff 𝑇 is 
a Delaunay triangulation 
of 𝑃

•Pf: Assume the contrary, 
and let (𝑡, 𝑝𝑙),  𝑡 ∈ 𝑇, and 
𝑝𝑙 inside circumcircle(𝑡), 
such that ∡𝑝𝑖𝑝𝑗𝑝𝑙 is the 
largest
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The punch line(s)

•Theorem: Any angle-optimal triangulation of a 
point set 𝑃 is a Delaunay triangulation of 𝑃.

•Any Delaunay triangulation of 𝑃 maximizes the 
minimum angle over all triangulations of 𝑃.

•We say a Deluanay triangulation since we do not 
assume general position. We also rely on the fact 
that in any triangulation of cocircular points the 
minimal angle is the same.
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Algorithms

• construct the Voronoi diagram and dualize (highly 
inefficient in terms of algebraic operations)

• randomized incremental construction [GKS]

•we will see another algorithm, based on CH 
computation, later
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THE END


