Triangulating Planar Point Sets and Delaunay Triangulations

Dan Halperin, Tel Aviv University

Overview

- preliminaries
- legal triangulations
- Delaunay graphs
- algorithms

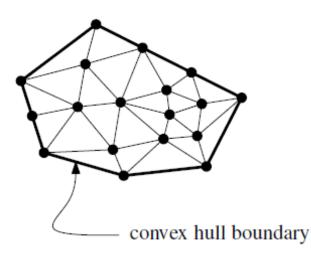
Credits

- the presentation is based on Sections 9.1 and 9.2 of the book by de Berg et al [CGAA]
- the original figures and pseudocode, as well as Ch. 9 in full are available from the book site: www.cs.uu.nl/geobook/

Triangulating planar point sets

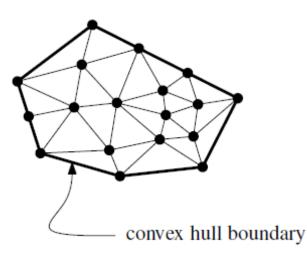
Triangulating point sets

- input: a set *P* of *n* points in the pane
- triangulation: by adding a maximal set of noncrossing segments connecting pairs of input points
- why is this a triangulation?



Triangulating planar point sets, size

- if k points of P are on the convex hull of P (possibly in non-general position) then any triangulation of P has
 - m := 2n 2 k triangles, and
 - 3n 3 k edges

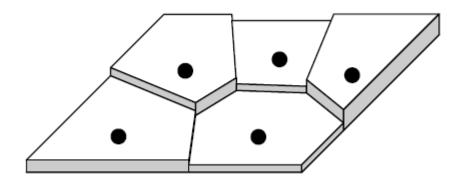


Motivation : Terrains

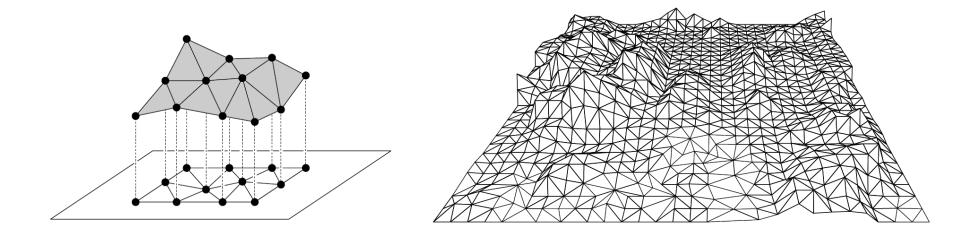
- Given a set *P* of data points in the plane
- the height f(p) is determined for each p in P
- how can we naturally approximate the height of points not in P?

Take I

- let the height of each point not in *P* be the same as the height as of its closest point in *P*
- does not look natural

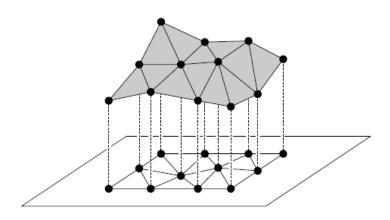


• determine a triangulation of the points P in the plane, and raise each point to f(p)



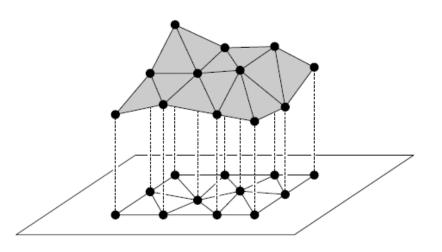
Motivation

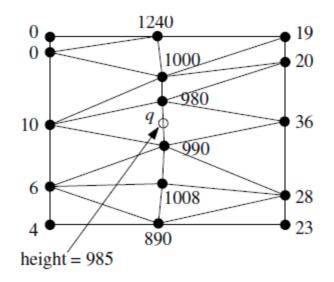
- triangulations are at the heart of central modeling tools in science and engineering
- FEM, meshing
- polyhedral terrains

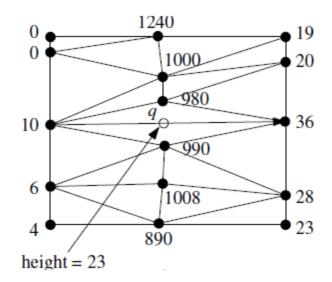


Polyhedral terrains

 some triangulations are better than other







Max min angle

- in what follows, we wish to maximize the minimal angle in the triangulation
- T(P): triangulation of the set of points P
- A(T): the angle vector of the triangulation sorted in increasing order, $(\alpha_1, \alpha_2, ..., \alpha_{3m})$
- A(T) is (lexicographically) larger than A(T') if there exists an index $i \in [1, 3m]$ such that

•
$$\alpha_j = \alpha'_j$$
 for all $j < i$, and

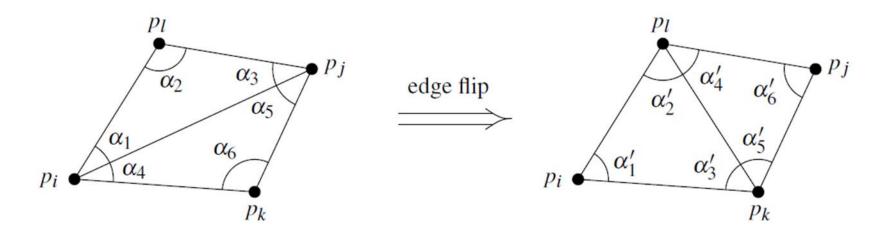
• $\alpha_i > \alpha'_i$

Angle-optimal triangulation

• Triangulation T is angle optimal if $A(T) \ge A(T')$ for all triangulations T' of P

Edge flip

• *e* is an edge of *T* bounding two triangles that form a convex quadrilateral, then one can perform an edge flip



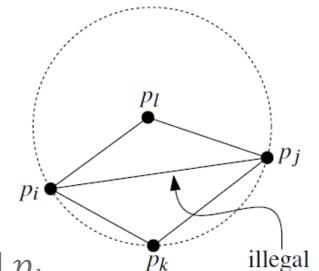
• $p_i p_j$ is an illegal edge if $\min_{1 \le i \le 6} \alpha_i < \min_{1 \le i \le 6} \alpha'_i$

Observation

- let *T* be a triangulation with illegal edge *e*
- let *T*' be obtained from *T* by flipping *e*
- then A(T') > A(T)

Lemma illegal

- Let $p_i p_j$ be an edge incident to triangles $p_i p_j p_k$ and $p_i p_j p_l$
- Let C be a circle through p_i , p_j , and p_k

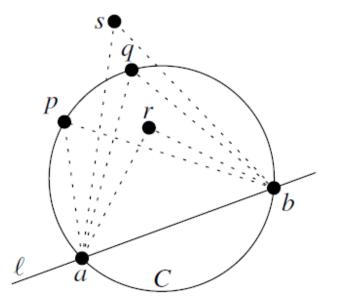


- The edge $p_i p_j$ is illegal iff the point p_l lies inside C
- If p_i, pj, pk , and p_l form a convex quadrilateral and do not lie on a common circle, then exactly one of $p_i p_j$ and $p_k p_l$ is an illegal edge
- the situation is symmetric in p_k and p_l

Theorem (Thales, variant)

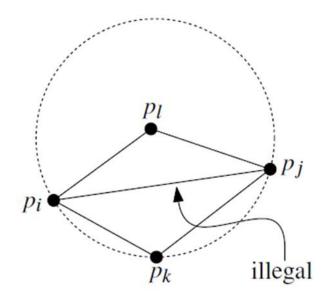
- let *C* be a circle and *L* a line intersecting *C* in points *a* and *b*
- the points *p*, *q*, *r*, and *s* all lie on the same side of *L*
- suppose p and q lie on C, r lies inside C and s lies outside C

4arb > 4apb = 4aqb > 4asb



Proof of Lemma illegal

- Reminder: the edge $p_i p_j$ is illegal iff the point p_l lies inside C
- using Thales theorem
 for example:
 ∠p_ip_lp_k > ∠p_ip_jp_k



Point inside a circle

- the lemma gives us an easy way to test the validity of an edge
- there is a simple and elegant predicate to test if a point lies inside a circle—we will see it later

Legal triangulations

- a legal triangulation is a triangulation that does not contain any illegal edge
- any angle-optimal triangulation is legal

Algorithm LEGALTRIANGULATION(\mathcal{T})

Input. Some triangulation \mathcal{T} of a point set *P*.

Output. A legal triangulation of *P*.

- while T contains an illegal edge $\overline{p_i p_i}$ 1.
- **do** (* Flip $\overline{p_i p_i}$ *) 2.
- Let $p_i p_j p_k$ and $p_i p_j p_l$ be the two triangles adjacent to $\overline{p_i p_j}$. 3. 4.
 - Remove $\overline{p_i p_i}$ from \mathcal{T} , and add $\overline{p_k p_l}$ instead.

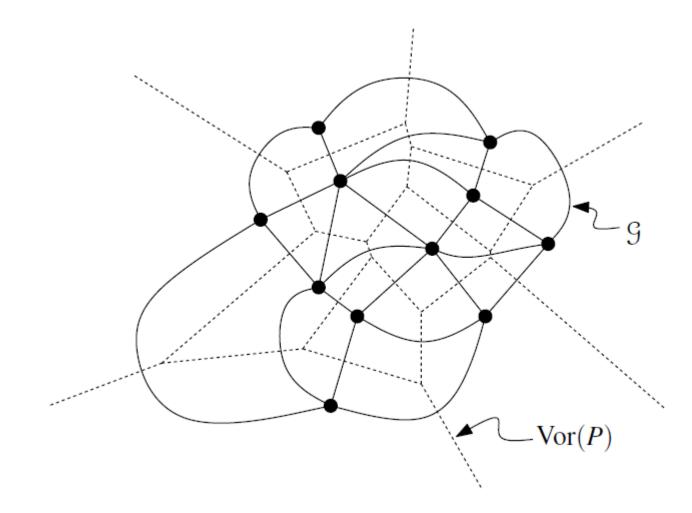
5. return T

Legal triangulation by edge flips

• why is the loop finite?

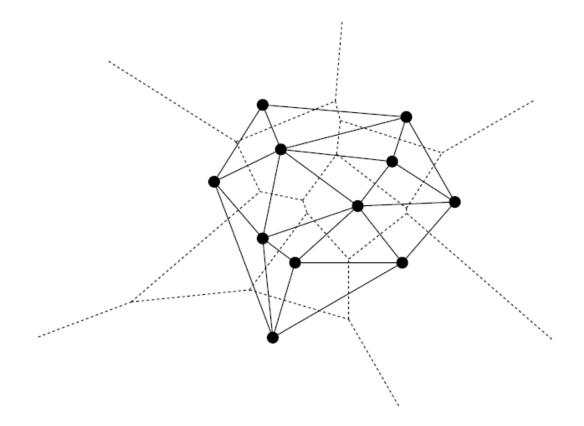
The Delaunay Graph

The (graph) dual of the Voronoi diagram



The Delaunay Graph

• The straight edge dual of the Voronoi diagram

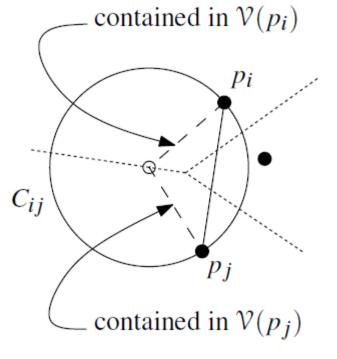


Theorem

• The Delaunay graph of a planar point set is a plane graph.

 C_{ij} : an empty circle through p_i, p_j c_{ij} : the center of C_{ij} , lying on the Voronoi edge between V(pi) and $V(p_j)$ t_{ij} : the triangle c_{ij}, pi, pj

 t_{kl} : the same for the sites p_k , pl

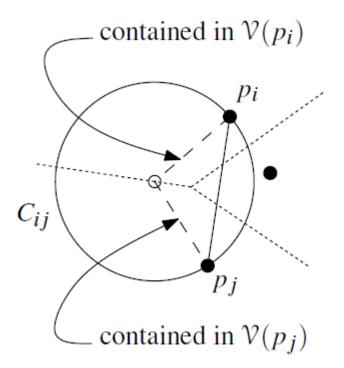


Proof

suppose for a contradiction that

 $p_i p_j$ and $p_k p_l$ intersect

- notice that p_k and p_l must lie outside C_{ij}, and therefore outside t_{ij}
- this implies that p_kp_l must intersect one of the edges of t_{ii} incident to c_{ii}
- similarly, $p_i p_j$ must intersect one of the edges of t_{lk} incident to c_{ij}
- it follows that one of the edges of t_{ij} incident to c_{ij} must intersect one of the edges of t_{kl} incident to c_{kl}
- contradiction: each edge incident to c_{ij} or c_{kl} must lie in a unique Voronoi cell

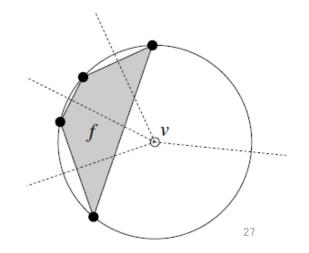


$$\begin{split} & C_{ij} \text{: an empty circle through } p_i, p_j \\ & c_{ij} \text{: the center of } C_{ij} \text{, lying on the} \\ & \text{Voronoi edge between } V(pi) \\ & \text{and } V(p_j) \\ & t_{ij} \text{: the triangle } c_{ij}, pi, pj \end{split}$$

 t_{kl} : the same for the sites p_k , pl

The Delaunay Triangulation

- If we assume general position
 - no three points are collinear, and
 - no four points are cocircular
- then the Delaunay graph is a triangulation.
- (Otherwise, the Delaunay graph can be easily triangulated.)

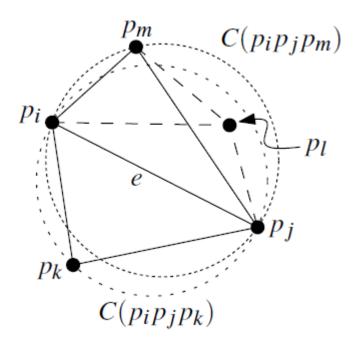


Theorem VD2DG

- We rephrase a theorem on Voronoi diagrams in terms of their straight edge dual:
 - three points p_i, p_j, p_k in P are vertices of the same face of the Delaunay graph iff the circle through p_i, p_j, p_k contains no point of P in its interior
 - the points p_i, p_j in P form an edge of the Delaunay graph iff there is a closed disc that contains p_i, p_j on its boundary and does not contain any other point of P
- Corollary: A triangulation T of a point set P is a Delaunay triangulation of P iff the circumcircle of any triangle in T does not contain a point of P in its interior

Theorem (almost the punch line)

- Thm: A triangulation T of a point set P is legal iff T is a Delaunay triangulation of P
- Pf: Assume the contrary, and let (t, pl), $t \in T$, and p_l inside circumcircle(t), such that $\measuredangle p_i p_j p_l$ is the largest



The punch line(s)

- Theorem: Any angle-optimal triangulation of a point set *P* is a Delaunay triangulation of *P*.
- Any Delaunay triangulation of *P* maximizes the minimum angle over all triangulations of *P*.
- We say *a* Deluanay triangulation since we do not assume general position. We also rely on the fact that in any triangulation of cocircular points the minimal angle is the same.

Algorithms

- construct the Voronoi diagram and dualize (highly inefficient in terms of algebraic operations)
- randomized incremental construction [GKS]
- we will see another algorithm, based on CH computation, later

THE END