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Abstract—We present Roadmap Sparsification by Edge Con-
traction (RSEC), a simple and effective algorithm for reducing
the size of a motion-planning roadmap. The algorithm exhibits
minimal effect on the quality of paths that can be extracted from
the new roadmap. The primitive operation used by RSEC is edge
contraction—the contraction of a roadmap edge to a single vertex
and the connection of the new vertex to the neighboring vertices
of the contracted edge. For certain scenarios, we compress more
than 98% of the edges and vertices at the cost of degradation of
average shortest path length by at most 2%.

I. INTRODUCTION

The introduction of sampling-based planners [1], [2], [3]
enabled solving motion-planning problems that were previ-
ously infeasible [4]. Specifically, for multi-query scenarios,
planners such as the Probabilistic Roadmap Planner (PRM) [2]
approximate the connectivity of the free space (Cfree) by taking
random samples from the Configuration Space (C-space) and
connecting near-by free configurations when possible. The
resulting data structure, the roadmap, is a graph where vertices
represent configurations in Cfree and edges are collision-free
paths connecting two such configurations.

Answering a motion-planning query using such a roadmap
is subdivided into (i) connecting the source and target con-
figurations of the query to the roadmap, and (ii) finding a
path in the roadmap between the connection points. Thus, a
roadmap should cover the C-space (coverage property) and be
connected when the C-space is connected (connectivity prop-
erty). Typically, a path of high quality is desired where quality
can be measured in terms of length, clearance, smoothness,
energy, to mention a few criteria, or some combination of the
above. As the connectivity property alone does not guarantee
high-quality paths [5], [6] additional work is required.

Smoothing is a common practice that may improve the
quality of a single path. In particular when applied to a
path extracted from the output roadmap of an algorithm that
produces paths deformable to optimal ones (see, e.g., [7],
[8]). However smoothing is costly and needs to be applied
for every query. Nieuwenhuisen and Overmars [9] suggested
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adding useful cycles to the roadmap in order to improve the
resulting quality of the paths. Raveh et al. [10] proposed
combining the output of several different planners. Recent
work by Karaman and Frazzoli [6] introduced several sampling
based algorithms, including PRM*, such that asymptotically,
the solution returned by the roadmap almost surely converges
to an optimum path (with regards to some quality measure).
This desired behavior comes at the expense of increasing the
number of neighbors each node is connected to, as the number
of samples increases.

Thus, motion-planning algorithms that create high-quality
roadmaps result in large, dense graphs. This may be undesir-
able due to prohibitive storage requirements and long online
query processing time. We seek a compact representation of
the roadmap graph without sacrificing the desirable guarantees
on path quality.

A. Related work

Geraerts and Overmars [11] suggested an algorithm for
creating small roadmaps of high-quality but their technique
is limited to two- and three-dimensional C-spaces. The work
on graph spanners [12], [13] is closely related to our problem
of computing a compact representation of a roadmap graph.
Formally, a t-spanner of a graph G = (V,E) is a sparse
subgraph G′ = (V,E′ ⊆ E), where the shortest path between
any pair of points in G′ is no longer than t times the shortest
path between them in G. The parameter t is referred to as
the stretch of the spanner. It is well known that small size
(1 + ε)-spanners exist for complete Euclidean graphs [13],
[14], [15]. Spanners have been successfully used to compute
collision-free approximate shortest paths amid obstacles in
2D and 3D or to compute them on a surface [16], [17],
[18], [19]. In the context of roadmap constructions, Marble
and Bekris [20] introduced the notion of Asymptotically near-
optimal roadmaps—roadmaps that are guaranteed to return a
path whose quality is within a guaranteed factor of the optimal
path. They apply a graph-spanner algorithm to an existing
roadmap to reduce its size. Recently, graph-spanner algorithms
have also been incorporated in the construction phase of the
roadmap itself [21], [22], [23].

A drawback of the spanner based approach is that it only
reduces the number of edges of the graph and does not remove
any of its vertices. In the context of roadmaps, it will be useful
to remove redundant vertices as well and to construct a small-
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size graph in the free space. Such an approach was recently
proposed for computing approximate shortest paths for a point
robot amid convex obstacles in two or three dimensions [24],
but it is not clear how to extend this approach to higher
dimensional configuration spaces.

The problem of computing a compact representation of
a roadmap graph falls under the broad area of computing
data summaries or computing a hierarchical representation
of data. There has been extensive work in this area in the
last decade because of the need to cope with big data sets.
The work in computer graphics on computing a hierarchical
representation of a surface, represented as a triangulated mesh,
is perhaps the most closely related work to our approach.
The surface-simplification problems asks for simplifying the
mesh—reducing its size—while ensuring that the resulting
surface approximates the original one within a prescribed
error tolerance [25]. Some versions of the optimal surface-
simplification problem, the problem of computing a smallest-
size surface, are known to be NP-Hard [26], and several
approximation algorithms and heuristics have been proposed.
The practical algorithms progressively simplify the surface by
modifying its topology locally at each step, e.g., removing a
vertex and retriangulating the surface, or contracting an edge.
The edge-contraction method has by now become the most
popular method for simplifying a surface [27], [28], [29].

B. Contribution

In this work, we adapt the widely used edge-contraction
technique for surface simplification to roadmap simplification.
We suggest a simple algorithm to sparsify a roadmap—
Roadmap Sparsification by Edge Contraction (RSEC) where
edge contraction is the primitive operation. Our algorithm
often exhibits little degradation in path quality when compared
to the original graph while providing very sparse graphs. In
contrast to the algorithm of Marble and Bekris [20] in which
the set of vertices remains intact, RSEC dramatically reduces
the number of vertices.

In Section II we present the algorithmic framework and in
Section III we cover the implementation details. Section IV
presents experimental results comparing our implementation
with several alternatives. For certain scenarios, we compress
more than 98% of the edges and vertices while causing degra-
dation of average path length by at most 2%. Additionally, we
compare RSEC with the algorithm presented by Marble and
Bekris [20]. We show that our algorithm produces paths of
higher quality than theirs when applying the same compression
rate while also being able to surpass the maximum compres-
sion rate achieved by their algorithm. We conclude with a
discussion and suggestions for further research in Section V.

II. ALGORITHMIC FRAMEWORK

Let G = (V,E) be an undirected input graph, which is
the output of a PRM-type algorithm approximating Cfree.
Informally, we wish to construct a graph G′ = (V ′, E′)
such that G′ is a more compact approximation of Cfree while
maintaining the coverage of the roadmap and the quality of

Algorithm 1 is contractible (G(E, V ), (u, v), p)
1: for all w ∈ {G.neighbors(v) ∪ G.neighbors(u)} do
2: if local planner(w, p) = FAILURE then
3: return FAILURE
4: return SUCCESS

Algorithm 2 edge contraction (G(E, V ), (u, v), p)
1: if is contractible(G, (u, v), p) then
2: for all v′ ∈ {G.neighbors(v)} do
3: E ← E ∪ {(v′, p)}
4: E ← E \ {(v′, v)}
5: for all u′ ∈ {G.neighbors(u)} do
6: E ← E ∪ {(u′, p)}
7: E ← E \ {(u′, u)}
8: V ← V ∪ {p}
9: V ← V \ {v, u}

10: return SUCCESS
11: else
12: return FAILURE

the approximation provided by G. In this work we concentrate
on the quality measure of path length.

We denote the set of all neighbors of a vertex v ∈ V by:

neighbors(v) = {u ∈ V |(u, v) ∈ E}.

Given an edge (u, v) and a point p ∈ Cfree, we define an edge
contraction of (u, v) to p as the following process: Adding p
as a new vertex, adding an edge (w, p) for each vertex w ∈
{neighbors(u)∪ neighbors(v)} and removing the vertices u, v
and all their neighboring edges from the graph. We say that
u and v were contracted to p and define:

parent(v′) = {v|v was contracted to v′}.

Using this definition, we can recursively define that a vertex
v is an ancestor of a vertex v′ if either: (i) v is a parent of v′

or (ii) there exists a vertex u such that u is the parent of v′

and v is an ancestor of u.
An edge contraction is considered legal if each new edge is

collision-free. This is detailed in Algorithm 1, which performs
the validity check that an edge (u, v) can be contracted to
a point p using a local planner1 and in Algorithm 2, which
updates the graph G after the contraction.

Connecting an edge (u, v) to a graph G reduces the size
of G—the number of vertices decreases by one and the
number of edges decreases by at least one (the edge (u, v)).
Additionally, for every common neighbor w of u and v, the
edges (u,w) and (v, w) merge into a single edge (p, w).

Our algorithm, Roadmap Sparsification by Edge Contraction
(RSEC), performs a series of legal edge contractions as
detailed in Algorithm 3. The algorithm maintains an order
on the edges considered for contraction by using a priority
queue ordered according to some weight function (line 2).

1A local planner is a predicate that determines if there exists a collision-free
path between two configurations.



Algorithm 3 RSEC (G(E, V ))
1: G′ ← G
2: Q← initialize queue(E)
3: while not empty(Q) do
4: e← Q.pop head
5: p← get contraction point(e)
6: if p 6=NIL then
7: if edge contraction (G′, e, p) == SUCCESS then
8: Q← update queue(E′)

Algorithm 4 get contraction point (e = (u, v))
1: p← random point(u, v)
2: if collision detector(p) 6= FREE then
3: return NIL
4: for all w ∈ u.ancestors()

⋃
v.ancestors() do

5: if distance(w, p) > d then
6: return NIL
7: p.ancestors()← u.ancestors()

⋃
v.ancestors()

8: return p

At each step the current edge is popped out of the queue
(line 4) and a contraction point is computed (line 5). If the
prospective contraction point is valid and the edge contraction
was successful (lines 6, 7), the queue is updated, as the weights
of edges may have changed (line 8). The process terminates
when the queue is empty.

III. ALGORITHMIC DETAILS

Algorithm 3 presents RSEC as a general, modular frame-
work. As such, some technical details still need to be addressed
in order to complete its description. Specifically, what point
should an edge be contracted to? How do we order the edges
in our queue to obtain a sparse graph of high quality?

A. Contraction point choice

When contracting an edge e to a point p, several alternatives
regarding the choice of p come to mind: (i) The midpoint of e,
(ii) an incident vertex of e or (iii) a random point along e.
One may also consider several contraction points when testing
whether an edge is contractible.

The advantage of alternative (ii) is that the neighboring
edges of the vertex chosen to be the contraction point are
not altered. This reduces dramatically the number of collision
checks needed by the algorithm. Alternatives (i) and (iii), on
the other hand, seem to distribute naturally the location of the
contraction point as the average of its ancestors. We chose the
contraction point to be alternative (iii), random point along the
edge, as we observed higher path degradation in comparison
to the other alternatives.

B. Quality-driven constraint

As we wish to preserve the quality and connectivity of the
output graph we add the constraint that vertices in the new
graph are not too far from their ancestors. Then, given a drift

bound d > 0 and a distance function dist, we maintain the
following invariant in our algorithm:

Bounded drift invariant - For every vertex v′ ∈ V ′

and for every v ∈ ancestor(v′), dist(v′, v) ≤ d.

Line 5 of Algorithm 3 performs a call to a subroutine
get contraction point(e). The subroutine verifies that the con-
traction point does not violate the bounded drift invariant. Al-
gorithm 4 demonstrates an implementation of this subroutine.

We note that in practice we normalize the drift bound to
be d

a where a is the length of the workspace bounding box
diagonal. In the rest of the paper we use the term drift bound
to refer to the normalized drift bound.

C. Edge ordering

We suggest to choose the edges next edge e = (u, v) for
contraction as follows: We order (from low to high) the edges
according to the sum of degrees of the vertices incident to the
edge, namely degree(u) + degree(v), and name the heuristic
deg sum. The motivation for this heuristics comes from the
fact that vertices with low degree impose less validity checks
(and hence less constraints) when checking whether an edge
is contactable. This not only reduces the computation time,
but more importantly, increases the probability of a valid
contraction.

In Section IV we evaluate our heuristic by suggesting sev-
eral alternatives and comparing them to deg sum. Indeed, in
the experimental results deg sum outperforms the alternative
heuristics.

An additional implementation issue that should be addressed
regards the question “should edges be re-inserted into the
priority queue?” An edge (u, v) that was removed from the
queue because it could not be contracted could possibly be
contracted at a later stage of the algorithm. Such an event
could occur when a vertex that is adjacent to either u or v
moves as a result of a contraction operation on a different
edge. An example of such a scenario is depicted in Figure 1.
Obviously, re-inserting these edges is costly with regards to
runtime but improves the compression achieved. As we did not
consider processing time to be a major constraint, we allowed
edges to be re-inserted to the queue.

IV. EVALUATION

We evaluated our algorithm by running the PRM* [6]
algorithm on several scenarios to obtain initial roadmaps. We
first compared our heuristic for ordering the edges with several
alternatives. Then we compared RSEC with the spanner-based
sparcification algorithm by Marble and Bekris [20] (which we
will call SPANNER). We chose to compare our algorithm to
SPANNER as it is, to the best of our knowledge, the only
offline algorithm for reducing roadmaps.

We measure the quality of a roadmap in terms of path length
and report two values: (i) path degradation and (ii) compres-
sion factor. The former is the ratio of the average shortest



(a) (b) (c)

Fig. 1. Scenario where re-inserting an edge to the priority queue enables additional edge contractions. (a) Edge (v3, v4) is considered for
contraction but the contraction is not valid and the edge is removed from the queue as the prospective edge from v8 will collide with the green
obstacle (demonstrated by the dashed red line). (b) The edge (v7, v8) is contracted to the point v7,8 (c) Re-inserting the edge (v3, v4) to the queue
allows it to be contracted to the point v3,4.

(a) Easy (b) Cubicles (c) Bug trap (d) Alpha puzzle

Fig. 2. Environments used for the experiments. The robot is depicted in several configurations in each environment. All scenarios were taken from
the OMPL [30] distribution.

path length in the sparse graph and the average shortest path
length in the original graph for random queries. The latter is
the ratio |G|

|G′| where |G| be the size2 of the original roadmap
and |G′| be the size of the compressed roadmap.

All experiments were run using the Open Motion Planning
Library (OMPL) [30] on a 3.4GHz Intel Core i7 processor
with 8GB of memory. We used several scenarios provided by
the OMPL distribution. The scenarios are depicted in Figure 2.

A. Heuristic evaluation

In Section III we described our edge ordering heuristic,
namely deg sum. Several natural alternatives may come to
mind: The first, termed compressibility, chooses the next
edge e = (u, v) to contract according to how many edges could
potentially be eliminated from the graph by contracting e into
a single point. The number of edges that will be eliminated
(except from the contracted edge) is the number of common
neighbors of u and v. We normalize this value by dividing
by the total number of neighbors of u and v and define the
compreassbility of (u, v) as:

compressibility(u, v) =
|neighbors(u) ∩ neighbors(v)|
|neighbors(u) ∪ neighbors(v)|

.

The second heuristic that one may think of chooses the
next edge to contract according to its clearance, namely the
distance of the edge from the closest obstacle (ordered from
high clearance to low). This is motivated by the fact that

2We assume that each vertex stores the coordinates of the configuration it
represents (which is proportional in size to the number of degrees of freedom)
and each edge stores the indices of the vertices it connects and its weight.
Thus for our scenarios in SE03 we measure the size of a roadmap G(V,E)
as |G| = 6|V |+ 3|E|.

edges of high-clearance may be good candidates for successful
contractions. A third option may be a simple first in first out
(FIFO) ordering scheme.

We ran the alternative implementations on roadmaps con-
taining 5,000 vertices and approximately 50,000 edges. The
results for the Cubicles scenario are summarized in Figure 3.

Fig. 3. Comparison of different heuristics on the cubicles scenario.

For low compression factors, all heuristics exhibit no degra-
dation with regards to path quality. A possible explanation is
that for small perturbations, our algorithm may be seen as
a smoothing of the graph. For high compression factors, the
path degradation is very low for all heuristics, where deg sum
seems to be the best choice.

One can see that deg sum and FIFO achieve the highest
compression factors. In order to explain this, we note that
vertices with high degrees are more likely to fail a contraction
operation, thus providing a negative influence to the overall
compression achieved by RSEC. The clearance heuristic pri-
oritizes edges with high clearance, resulting in contraction
operations being applied repeatedly to high-clearance areas



Normal setting Dense setting
Scenario PRM* RSEC PRM* RSEC

Easy 100% 100% 100% 99.9%
Cubicles 99.9% 97.2% 100% 97.6%
Bug trap 100% 100% 100% 100%

Alpha Puzzle 100% 100% 100% 99.9%

TABLE II
Probability to connect a random point to the roadmap. The drift bound

used by RSEC is d = 0.16.

of the roadmap. As each contraction operation creates a
vertex with a higher degree than its ancestors’, biasing the
contraction operations to specific areas of the graph at a time
is likely to create high degree vertices. In a similar manner,
the compressibility is likely to focus the contractions on
highly connected areas. On the other hand, the FIFO heuristic
performs the contraction operations without prioritizing any
specific areas of the graph, and the deg sum heuristic aims to
prevent high-degree vertices by concentrating on edges who’s
incident vertices have a low degree

Table I summarizes the algorithm’s results on all scenarios
for the deg sum heuristic. For the complete set of results, we
refer the reader to the appendix.

B. Comparison with SPANNER

When comparing RSEC with SPANNER, we used the same
scenarios depicted in Figure 2 with two initial roadmap sizes.
The first, which we call normal setting, contains a roadmap
with 5,000 vertices and approximately 50,000 edges. The sec-
ond, which we call dense setting, contains 20,000 vertices and
approximately 1.2 million edges. The dense setting resembles
the benchmark used by Marble and Bekris [20]. The crucial
difference between our two settings is not the size but the
average degree of each vertex (20 and 120 for the normal
setting and dense setting, respectively).

Roadmap Connectivity We desire that a sparsification
algorithm retains some quality measures while not sacrificing
the ability to connect queries to the roadmap. Hence, we
sampled 1000 random free configurations (playing the role of
start or goal) and tested for each if it can be connected to the
roadmap. Table II reports on the probability to connect such
a random query point to each roadmap. As SPANNER does
not remove vertices, the probability to connect a random point
to the new roadmap does not change. Hence, we only present
comparison results of RSEC and the original roadmap. One
can see that for all test cases, there is a negligible degradation
in connectivity (if any).

Roadmap Compression The amount of compression
achieved by each algorithm is governed by its input
parameters—k for SPANNER, where k is a parameter related
to the stretch, and drift bound for RSEC. Thus, for each
algorithm we plot the compression factor as a function of its
input parameter as shown in Figure 4. One can see that the
compression factors achieved by RSEC are much higher than
SPANNER. Although we ran SPANNER with high values of
its input parameter k, we did not manage to obtain a higher

compression factor than 2.4 for the normal setting and 10 for
the dense setting. RSEC on the other hand exhibits very high
compression factors, up to 55 for the cubicles scenario in the
normal setting (this is a sparsified graph which is less than
2% the size of the original roadmap).

Roadmap Quality As the compression factor of the two
algorithms is based on different parameters, we chose to
compare the path quality as a function of the compression
factor that was obtained. Figure 5 plots the average degradation
in path length as a function of the compression factor for each
algorithm for the normal setting. For the same values of the
compression factor, RSEC exhibits less degradation in average
path quality. For example in the bugtrap scenario, for the
compression factor of 2.4, SPANNER exhibits a degradation
in average path quality of around 5% while RSEC slightly
improves the average quality of paths. The same behavior is
observed for the dense setting depicted in Figure 6.

V. DISCUSSION

Comparing the difference between RSEC and SPANNER
helps understand both the advantages as well as the short-
comings of RSEC. A key drawback of SPANNER is that it
overlooks the fact that the graph on which it operates is a
roadmap. Thus, it does not introduce any new vertices and
edges and is only capable of removing edges while leaving the
set of vertices intact. In contrast, RSEC makes use of the fact
that the roadmap is an approximation of some space and uses
both a collision detector and a local planner to perform edge
contraction. Clearly these operations are much more time-
consuming than edge removal operations, but in return these
natural operations in motion-planning algorithms grant RSEC
much more power as demonstrated in Section IV.

The additional running time incurred by the geometric
operations seems reasonable as RSEC is expected to run in an
offline phase where running time is not the primary concern.

We saw that the performance of RSEC clearly surpasses
SPANNER for graphs with a small average degree. This seems

(a) RSEC, normal setting (b) RSEC, dense setting

(c) SPANNER, normal setting (d) SPANNER, dense setting

Fig. 4. Compression factor of the two sparsification algorithms for each
scenario and each setting. Results are averaged over 5 runs.



drift bound
Scenario original d = 0.1 d = 0.2 d = 0.4 d = 0.8 d = 0.16

Easy

average path length 314.8 99.8% 99.2% 98.1% 97.5% 99.1%
compression factor 1 1.16 1.82 3.37 11.4 17.6

vertices 5016 87.2% 59.0% 26.2% 10.1% 3.6%
edges 48866 85.7% 54.0% 30.4% 14.0% 6.1%

Cubicles

average path length 472.4 99.9% 99.5% 98.1% 101.2% 99.2%
compression factor 1 1.33 2.27 5.58 18.85 53

vertices 5004 76.8% 45.6% 16.4% 5.3% 2.0%
edges 45217 74.8% 43.7% 18.3% 5.3% 1.9%

Bug trap

average path length 41.8 100% 99.6% 97.6% 95.1% 93.8%
compression factor 1 1.03 1.6 2.9 7.2 25.8

vertices 5011 95.8% 66.9% 33.3% 12.3% 3.4%
edges 66053 97.1% 61.6% 33.4% 14.1% 3.9%

Alpha puzzle

average path length 127.8 99.9% 99.3% 98.1% 97.1% 97.6%
compression factor 1 1.09 1.74 3.23 6.57 16.3

vertices 5053 92.1% 61.3% 28.3% 11.6% 4.1%
edges 62294 91.8% 56.8% 31.4% 15.8% 6.5%

TABLE I
Average path degradation and compression factor of RSEC with respect to the original graph using the deg sum heuristic. The results are

averaged over 5 runs and 150 random queries.

(a) Easy (b) Cubicles

(c) Bug trap (d) Alpha puzzle

Fig. 5. Path degradation for each scenario as a function of the
compression factor for each algorithm – Normal setting.

natural as the notion of edge contraction is borrowed from
mesh simplifications where the average degree is at most
6. As the roadmaps become dense the advantage of RSEC
diminishes. A possible approach may be to run the SPANNER
algorithm with a small stretch factor in order to reduce the
average degree (this is bound to happen as the number of
vertices does not change) and then run RSEC.

Additional suggestions for further research include (i) deriv-
ing theoretical bounds to the quality of the obtained roadmap
and (ii) relaxing the edge contraction operation to allow edge
contractions even when not all neighbors can be connected to
the contraction point. This may lead to higher compressions
with limited effect on the path degradation.
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APPENDIX

We include additional experimental results regarding the
different heuristics evaluated. Tables III, IV and V summarize
RSEC’s results on all scenarios for the FIFO, Compresability
and Clearance heuristic, respectively.



drift bound
Scenario original d = 0.1 d = 0.2 d = 0.4 d = 0.8 d = 0.16

Easy

average path length 314.8 99.9% 99.5% 98.7% 98.8% 99.4%
compression factor 1 1.16 1.8 3.5 9.11 23.6

vertices 5016 87.5% 61.9% 30.5% 11.4% 5.1%
edges 48866 85.5% 54.3% 28.2% 10.9% 4.1%

Cubicles

average path length 472.4 99.9% 99.7% 99.5% 101.8% 103.6%
compression factor 1 1.32 2.2 5.62 20.42 52.23

vertices 5004 78.3% 50.1% 20.0% 6.7% 3.2%
edges 45217 75.4% 44.3% 17.3% 4.5% 1.6%

Bug trap

average path length 41.8 100% 99.6% 98.1% 95.8% 95.4%
compression factor 1 1.03 1.58 3.18 9.03 29.5

vertices 5011 95.7% 69.5% 35.2% 13.0% 4.8%
edges 66053 97.0% 62.6% 30.9% 10.8% 3.2%

Alpha puzzle

average path length 127.8 99.9% 99.5% 98.6% 98.0% 98.4%
compression factor 1 1.09 1.73 3.47 8.51 23.76

vertices 5053 92.2% 63.7% 30.6% 11.8% 4.5%
edges 62294 91.6% 56.8% 28.5% 17.7% 4.2%

TABLE III
Average path degradation and compression factor of RSEC with respect to the original graph using the FIFO heuristic. The results are averaged

over 5 runs and 150 random queries.

drift bound
Scenario original d = 0.1 d = 0.2 d = 0.4 d = 0.8 d = 0.16

Easy

average path length 314.8 99.9% 99.4% 98.8% 99.7% 101.1%
compression factor 1 1.18 1.82 3.43 8.01 16.0

vertices 5016 8703% 62.1% 32.7% 15.0% 9.1%
edges 48866 84.4% 53.5% 28.4% 12% 5.7%

Cubicles

average path length 472.4 99.9% 99.4% 99.9% 103.0% 104.5%
compression factor 1 1.34 2.21 5.21 13.34 29.14

vertices 5004 77.7% 51.4% 23.6% 10.8% 6.0%
edges 45217 74.0% 44.0% 18.2% 6.8% 2.9%

Bug trap

average path length 41.8 99.9% 99.7% 97.7% 95.9% 94.8%
compression factor 1 1.03 1.63 3.18 8.42 17.82

vertices 5011 95.7% 67.5% 34.8% 14.2% 8.2%
edges 66053 97.0% 60.2% 30.9% 11.5% 5.2%

Alpha puzzle

average path length 128.2 99.9% 99.6% 99.5% 99.4% 101.6%
compression factor 1 1.09 1.82 4.28 12.25 31.29

vertices 5053 92.3% 64.1% 31.3% 12.3% 6.3%
edges 62294 91.3% 53.6% 22.0% 7.5% 2.7%

TABLE IV
Average path degradation and compression factor of RSEC with respect to the original graph using the Compressibility heuristic. The results are

averaged over 5 runs and 150 random queries.

drift bound
Scenario original d = 0.1 d = 0.2 d = 0.4 d = 0.8 d = 0.16

Easy

average path length 314.8 99.9% 99.7% 99.7% 101.4% 104.4%
compression factor 1 1.18 1.89 4.25 11.44 26.27

vertices 5016 87.3% 63.1% 32.0% 13.8% 8.1%
edges 48866 84.3% 50.8% 21.8% 7.7% 2.9%

Cubicles

average path length 472.4 100% 99.7% 100.4% 104.0% 106.0%
compression factor 1 1.36 2.43 6.79 21.73 45.0

vertices 5004 77.7% 50.7% 22.3% 8.9% 5.6%
edges 45217 72.7% 39.0% 13.0% 3.7% 1.5%

Bug trap

average path length 41.8 100% 99.8% 98.7% 96.9% 97.5%
compression factor 1 1.03 1.65 3.94 12.71 41.27

vertices 5011 95.8% 69.1% 34.9% 12.8% 5.3%
edges 66053 96.9% 59.1% 24.0% 7.11% 2.0%

Alpha puzzle

average path length 127.8 99.7% 99.2% 98.3% 97.4% 97.4%
compression factor 1 1.1 1.8 3.73 9.43 24.18

vertices 5053 91.7% 61.7% 29.0% 11.1% 5.3%
edges 62294 91.1% 54.8% 26.4% 10.5% 4.0%

TABLE V
Average path degradation and compression factor of RSEC with respect to the original graph using the Clearance heuristic. The results are

averaged over 5 runs and 150 random queries.
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