Course Overview

Computational Geometry, Fall 2020-2021
Dan Halperin
Tel Aviv University

Slides overview

- Central predicate: the orientation test
- Course mechanics
- Team
- CG challenge
- Bird's eye view of selected topics
- Convex hull in 3D

Credits

- some figures are taken from Computational Geometry Algorithms and Applications by de Berg et al [CGAA]
- the original figures are available at the book's site: www.cs.uu.nl/geobook/

The orientation test

A central predicate, the planar case

Orientation test

- given three points in the plane p, q, r, consider the line L through p and q oriented from p to q
- orientation (or side-of-line) test: is r to the left of L, on L, or to the right of L ?

Orientation test, cont'd

the vector product of \vec{v} and \vec{w} :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
v_{x} & v_{y} & 0 \\
w_{x} & w_{y} & 0
\end{array}\right| \quad=\quad\left(v_{x} w_{y}-v_{y} w_{x}\right) \hat{k} \\
& \vec{v}=q-p \Rightarrow v_{x}=q_{x}-p_{x}, \quad v_{y}=q_{y}-p_{y} \\
& \vec{w}=r-p \Rightarrow w_{x}=r_{x}-p_{x}, \quad w_{y}=r_{y}-p_{y}
\end{aligned}
$$

$$
\left(v_{x} w_{y}-v_{y} w_{x}\right)=\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right) \equiv \Delta(p, q, r)
$$

Orientation test, cont'd

if $\Delta(p, q, r)>0$ then r is to the left of $L(p, q)$
if $\Delta(p, q, r)=0$ then r is on of $L(p, q)$
if $\Delta(p, q, r)<0$ then r is to the right of $L(p, q)$
GeoGebra

Orientation test, equivalent formulation

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
v_{x} & v_{y} & 0 \\
w_{x} & w_{y} & 0
\end{array}\right|=\left|\begin{array}{ccc}
p_{x} & p_{y} & 1 \\
q_{x} & q_{y} & 1 \\
r_{x} & r_{y} & 1
\end{array}\right|
$$

Orientation test in higher dimensions

- in 3D: on which side of the oriented plane $H(p, q, r)$ does the point s lie?

$$
\left|\begin{array}{cccc}
p_{x} & p_{y} & p_{z} & 1 \\
q_{x} & q_{y} & q_{z} & 1 \\
r_{x} & r_{y} & r_{z} & 1 \\
s_{x} & s_{y} & s_{z} & 1
\end{array}\right|>,<,=0 ?
$$

- in R^{d} : on which side of an oriented hyperplane containing d points does another point lie? the determinant of a $d+1 \times d+1$ matrix

Course mechanics

Assignments, theory

- Mandatory! You must submit all the assignments and get a passing grade in each set in order to take the exam
- Five (or four) assignment sets throughout the semester
- Submission via Moodle
- Typed submissions preferred
- It is OK to discuss the assignments with others
- You must write down yourself the solution to each assignment
- The assignment grade is 10% of the final grade and only if it improves the final grade (מגן)

Programming project, optional

- Will be announced soon
- Large scale
- Can be worked out in pairs
- The project grade is 15% of the final grade and only if it improves the final grade (מגן)

Final grade composition

- 90\% final exam
- 10\% assignments
or
- 75\% final exam
- 15\% programming project
- 10\% assignments

Course website

http://acg.cs.tau.ac.il/courses/computational-geometry/Fall\%202020-2021/CG-Fall-2020-21

- assignments
- bibliography
- brief lesson summary
- additional information

Course team

- Instructor: Dan Halperin
- TA: Michal Kleinbort
- Grader: Tomer Even

Selected topics

Bird's eye view

Map overlay

[CGAL arrgs and their applications, FHW]

Map overlay, cont'd

[CGAL arrgs and their applications, FHW]

Map overlay, more example

- potential agricultural pollution
- design plan vs. drone maps
- compare Brazil and Australia
- Also, exposes both a representation of arbitrary two-dimensional entities (generalization of polygons) and a fundamental efficient algorithmic padarigm

Art gallery and polygon triangulation

- How many cameras are needed to cover the art gallery?

[CGAA]

Art gallery, cont'd

- Four cameras cover this art gallery

[Wikipedia:art gallery problem]

Art gallery and polygon triangulation, cont'd

[CG optimization competition, GFH]

Casting and linear programming

[wikipedia:casting]

Casting and linear programming, cont'd

- Can a cast object (polyhedron) be taken out of its mold without breaking the mold?

- Intersection of half-spaces
- Linear programming

Orthogonal range search and nearest-neighbor search

- Nearest-neighbor search
- Orthogonal range search

and more ...

- Voronoi diagrams
- Delaunay triangulations
- Smallest enclosing disc
- Point location

Convex hull in 3D

Convex hull in 3D

- the convex hull of a set P of n points in R^{3} is a convex polytope whose vertices are points in P
- it therefore has at most n vertices
- its vertices and edges constitute a planar graph

[O’Rourke]
- $C H(P)$ has at most $2 n-4$ faces and at most $3 n-6$ edges

Convex polytopes and planar graphs

- the complexity bounds hold also for non-convex polytopes of genus zero with n vertices

THE END

