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Abstract— An underlying structure in several sampling-based
methods for continuous multi-robot motion planning (MRMP)
is the tensor roadmap (TR), which emerges from combining
multiple PRM graphs constructed for the individual robots
via a tensor product. We study the conditions under which
the TR encodes a near-optimal solution for MRMP—satisfying
these conditions implies near optimality for a variety of popular
planners, including dRRT*, and the discrete methods M* and
CBS when applied to the continuous domain. We develop
the first finite-sample analysis of this kind, which specifies
the number of samples, their deterministic distribution, and
magnitude of the connection radii that should be used by each
individual PRM graph, to guarantee near-optimality using the
TR. This significantly improves upon a previous asymptotic
analysis, wherein the number of samples tends to infinity.
Our new finite sample-size analysis supports guaranteed high-
quality solutions in practice within finite time. To achieve our
new result, we first develop a sampling scheme, which we
call the staggered grid, for finite-sample motion planning for
individual robots, which requires significantly less samples than
previous work. We then extend it to the much more involved
MRMP setting which requires to account for interactions
among multiple robots. Finally, we report on a few experiments
that serve as a verification of our theoretical findings and raise
interesting questions for further investigation.

I. INTRODUCTION

Multi-robot (MR) systems are already playing a crucial
role in manufacturing, warehouse automation, and natural
resource monitoring, and in the future they will be employed
in even broader domains from space exploration to search-
and-rescue. One of the most basic ingredients necessary in
all those applications are mechanisms for multi-robot motion
planning (MRMP), which should quickly generate motion
trajectories to move robots from their origins to destinations,
while avoiding collisions with the environment and between
robots. In many cases, it is desirable to develop MRMP
approaches that provide strong guarantees of completeness
and near-optimality, to ensure that a high-quality solution
would be found (if one exists). To achieve this, methods
for MRMP must accurately capture the continuous state
space of individual robots and the intricate interactions
between multiple robots. Those considerations make the
task of designing efficient high-quality methods for MRMP
tremendously challenging [1–4].

In this work we develop a general approach for centralized
near-optimal sampling-based motion planning using a finite
number of samples, which is the first of its kind. Previous
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solutions guarantee path quality for the multi-robot case only
asymptotically, namely, as the number of samples tends to
infinity. In contrast, our new method explicitly prescribes
finite samples sets, and by that supports guaranteed high-
quality solutions in practice, within bounded running time.

Related work. A common approach to MRMP, which is
often taken in the AI research community, is to consider
a discretized version of the problem, termed multi-agent
pathfinding (MAPF), wherein robots are assumed to move
along vertices of a graph. A variety of methods were
developed for MAPF, including integer-programming for-
mulations [5], path-based search methods [6], and conflict-
based search [7]. Those have been successfully applied to a
variety of problems involving multiple robots—from ware-
house management [8] to multi-drone package delivery [9].
Unfortunately, MAPF methods provide no solution quality
guarantees with respect to the original continuous MRMP
problem, since they usually employ a crude discretization
of the robots’ environment in the form of a regular lattice,
where a cell size corresponds to a robot’s bounding box.

Recent work extends conflict-based search to the con-
tinuous MRMP domain, by using PRM graphs to capture
the individual robots’ state space [10–12]. Nevertheless,
no guidelines are provided as to how to construct those
roadmaps (in terms of number of samples, their distribu-
tion, and connection radius) to guarantee completeness or
optimality with respect to the original MRMP problem.

In a different line of work, computational geometry meth-
ods are employed to explicitly reason about the robots’
continuous state space. Such methods are quite powerful,
in that they guarantee polynomial runtime, completeness,
and near-optimal solutions for different quality metrics [13–
16]. However, those methods are typically restricted to disc-
shaped robots operating within a planar domain, and they re-
quire special separation constraints, e.g., between the robots’
initial and terminal positions, in order to work correctly,
which limits their applicability in practice.

A promising direction, which aims to overcome the
limitations of discrete and geometry-based approaches, are
sampling-based (SB) planners. SB-planners were initially
developed to the tackle the single-robot motion-planning
problem for complex systems, by using random sampling
of states to capture the structure of the robot’s complex
state space, which results in a discrete graph representation.
Many of those algorithms, including the celebrated PRM [17–
19], and RRT [20, 21] algorithms are known to converge
to a solution asymptotically with the number of samples
drawn. Some SB-planners are also guaranteed to converge
to the optimal solution as the number of samples tends to
infinity [22–26].

Consequently, a variety of SB-MRMP approaches have
emerged, from methods that aim to apply PRM-based so-



lutions [27, 28], to techniques that sample local instances
of the MAPF problem [29, 30]. A different method, termed
discrete RRT (dRRT) [31], carefully explores an implicitly-
represented tensor roadmap (TR), which emerges from com-
bining several PRM roadmaps constructed for the individual
robots, to effectively solve instances of MRMP requiring
tight coordination between multiple robots. A recent work
further improves this approach with the dRRT∗ method [32],
which is also shown to yield a near-optimal MRMP solution.
To the best of our knowledge, this is the only scalable SB-
MR planner with such a guarantee. Unfortunately, this result
is asymptotic and does not specify guarantees for a finite
number of samples.

Contribution. We develop a general framework for near-
optimal SB-MRMP while using a finite number of samples.
To this end, we study the structure of the TR which is an un-
derlying ingredient in dRRT∗, MC-CBS [11] (a continuous-
space extension of CBS), and M∗ [6] (when applied to a
continuous space). We develop conditions under which the
TR encodes a near-optimal solution to MRMP—if those
conditions hold, it implies that the aforementioned planners
are guaranteed to be near-optimal as well. In particular,
we prescribe a recipe for constructing individual-robot PRM
graphs, in terms of number of samples, their deterministic
distribution, and connection radius, so that the resulting TR
encodes a near-optimal solution for MRMP.

To achieve this we refine the asymptotic analysis that we
developed in [32] (in the context of the dRRT∗ algorithm)
to the finite-sample regime. The latter requires a much more
careful study of the different ingredients of the problem,
including the clearance parameter between robots and ob-
stacles, and the approximation factor, which were previously
assumed to be infinitesimally small. A key component in
our result is a new sampling scheme that we develop, which
we call the staggered grid, for finite-sample motion planning
for individual robots. This sampling scheme requires signif-
icantly less samples than our previous work [33], to achieve
near-optimality for the single-robot case.

The organization of this paper is as follows. In Section II
we describe the single-robot problem, introduce the stag-
gered grid, and study the theoretical properties of PRM using
this sampling scheme. In Section III we describe our central
contribution, namely the extension of this theoretical result
to the multi-robot setting. We provide experimental results
in Section IV, and conclude with an outline of future work
in Section V. An extended version of this paper provides
additional information and missing proofs [34].

II. IMPROVED SAMPLING DISTRIBUTIONS FOR A SINGLE
ROBOT

We present improved sampling distributions for proba-
bilistic roadmaps (PRM) for the single-robot case. First, we
introduce basic ingredients of the problem, then review the
concept of PRM, and introduce our staggered-grid sampling.
We conclude with our main theoretical result for the single-
robot case, pertaining to the quality of solutions obtained
using PRM with staggered-grid sampling.

A. Basics of single-robot motion planning
Let C denote the configuration space of the robot, which

we assume here to be [0, 1]d, where d is the dimension,

which is the number of degrees of freedom of the robot.
The free space, denoted by Cf ⊂ C, represents the set of
all collision-free configurations. A motion planning problem
is a tuple M := (Cf , xs, xg), where Cf is the free space,
and xs, xg ∈ Cf are the start and goal configurations,
respectively. A solution of M is a continuous collision-free
trajectory σ : [0, 1]→ Cf that begins at σ(0) = xs and ends
at σ(1) = xg . We measure the quality of a trajectory σ by
its length, which is denoted by ‖σ‖.

A crucial property of trajectories in sampling-based plan-
ning is the notion of clearance. A trajectory σ has δ-clearance
if
⋃

0≤t≤1Bδ(σi(t)) ⊆ Cf , for Bδ(σi(t)) being the d-
dimensional closed Euclidean ball with radius δ centered at
σi(t). We say that M is δ-clear if there exists a trajectory σ
with clearance δ that solves M.

B. Probabilistic roadmaps and sample sets
We provide a formal definition of the Probabilistic

Roadmap (PRM) method [17], which constructs a discrete
graph that captures the connectivity of Cf via sampling. PRM
plays a critical role in various sampling-based planners (see,
e.g., [33, 35]). PRM is also instrumental to our result both on
single-robot motion-planning in this section and on multi-
robot motion-planning in Section III.

For a given motion-planning problem M = (Cf , xs, xg),
a sample (point) set X ⊂ Cf , and a connection radius r > 0,
PRM generates a graph denoted by GM(X ,r) = (V,E). The
vertex set V consists of all the collision-free configurations
in X ∪ {xs, xg}. The set of (undirected) edges, E, consists
of all vertex pairs v, u ∈ V such that the Euclidean distance
between them is at most r, and the straight-line segment
between them is collision-free. Formally, we define
V :=(X ∪ {xs, xg}) ∩ Cf , and

E :=
{
{v, u} ∈ V × V : ‖v − u‖ ≤ r,CH({v, u}) ⊂ Cf

}
,

where CH denotes the convex hull of a point set.
To measure the quality of a sample set X and a connection

radius r we use the following definition [33].

Definition 1 (Single-robot (ε, δ)-completeness). Given a
sample set X and connection radius r, we say that (X , r)
is (ε, δ)-complete for some stretch ε > 0 and clearance
parameter δ > 0 if for every δ-clear M = (Cf , xs, xg) it
holds that

d(GM(X ,r), x
s
i , x

g
i )) ≤ (1 + ε)OPTδ,

where d(GM(X ,r), x
s, xg) denotes the length of the shortest

trajectory from xs to xg in the graph GM(X ,r), and OPTδ
is the length of the shortest δ-clear solution to M.

C. Efficient sampling via a staggered grid
In preparation for our main result in this section we

introduce a new sampling scheme termed a staggered grid,
which we denote by Xβ,γ , and study its implications with
respect to (ε, δ)-completeness of PRM. Refer to Figure 1
for an illustration. An important property of this staggered
grid, which we prove in the extended version [34], is that by
placing β-radius hyperspheres centered at the points Xβ,γ
we obtain a coverage of the robot’s configuration space.
Moreover, the size of the set Xβ,γ is smaller than previously
obtained sets with similar coverage properties [33]. Notice
that we use a slightly shrunk instance of the unit hyper-cube;
a solution path should not pass too close to the boundary of



the hyper-cube to respect the clearance condition—this is the
role of the parameter γ.

Definition 2 (Staggered grid). For given β > 0, γ > 0 the
staggered grid Xβ,γ is a union of two point sets X 1

β,γ ,X 2
β,γ

in [0, 1]d, where

X lβ,γ =

{
(p1, p2, ..., pd) : pi = γ + (2k + l − 2)w,

2− l ≤ k ≤
⌈

1− 2γ

2w

⌉
, 1 ≤ i ≤ d

}
,

for l ∈ {1, 2} and w = β
√

2/
√
d.

Notice that both X 1
β,γ and X 2

β,γ are square grids of side
length 2w, and the total number of points in the construction

is
(⌈

(1−2γ)
√
d√

8β

⌉)d
+
(⌈

(1−2γ)
√
d√

8β

⌉
+ 1
)d

.
Next we make the connection between the staggered grid

and a PRM graph that is (ε, δ)-complete. Namely, we will
show that given ε and δ, there is a sample set and radius
(Xβ,γ ,r) that are (ε, δ)-complete, where each of β and r
depends on both ε and δ, and γ is equal to δ.

Theorem 1 (Sufficient conditions for (ε, δ)-completeness).
Fix a stretch parameter ε > 0 and clearance δ > 0. For a
sampling distribution X = Xαδ,δ , where α = ε√

1+ε2
, and the

radius r = 2(ε+1)√
1+ε2

δ, it follows that (X , r) is (ε, δ)-complete.

Our proof of this theorem, which appears in the extended
version [34], is a refined version of [33, Proof of Theorem 2].
In particular, we first prove that the staggered grid Xαδ,δ
provides an αδ-cover of Cf , in the sense that for every point
c ∈ Cf there exists x ∈ Xαδ,δ such that ‖x − c‖ ≤ αδ. We
then use this property to show that we can use the vertices
and edges of GM(Xαδ,δ,r) to closely follow a shortest δ-clear
path for M. The value α is set so that the resulting solution
is of cost at most (1 + ε)OPTδ .

The previous proof [33] relies on a different sampling dis-
tribution, which we denote by Xprev, and the same connection
radius as above. The distribution Xprev is constructed by iter-
atively placing samples at points that are at a distance at least
αδ from the nearest previous sample, which makes it difficult
to construct in practice due to the need to keep track of a
hypersphere arrangement [36]. In contrast, our distribution
can be easily constructed from Definition 2. Moreover, our
sampling distribution Xαδ,δ , which is sufficient for (ε, δ)-
completeness, is significantly smaller in terms of number of
sample points. In the extended version of our paper [34], we
show that Xprev

Xαδ,δ ≈
√
πd
2 1.3687d for small values of ε and δ.

Fig. 1: Illustration of Definition 2 in two dimensions, for β =
0.08, γ = 0.1. On the left we visualize the first layer X 1

β,γ of the
staggered grid (denoted by green discs). On the right we add
the second layer X 2

β,γ (denoted by red discs). The centers of
the discs are the points of Xβ,δ.

We also provide a comparison for specific values of δ, ε, d
where we demonstrate a reduction of one order of magnitude
with respect to the sample size in our favor and compare our
result to the lower-bound obtained in [33, Theorem 1].

III. NEAR-OPTIMAL TENSOR ROADMAPS FOR MRMP

We present our central contribution: we extend our results
from the previous section to the multi-robot setting.

A. Basics of multi-robot motion planning
We provide a definition of the multi-robot motion planning

(MRMP) problem. We consider the setting of R ≥ 2 identical
robots operating in a shared workspace, and denote by
Ci ⊂ [0, 1]d the configuration space of robot i, 1 ≤ i ≤ R.
We define Cfi , Coi ⊂ Ci to be the free and forbidden spaces,
respectively, of robot i. Since the robots are identical it holds
that Cfi = Cfj for all 1 ≤ i ≤ j ≤ R.

The configuration space of the multi-robot system C,
termed the composite configuration space, is the Cartesian
product of the individual robots’ configuration spaces, i.e.,
C = C1 × . . .× CR. That is, a composite configuration Q =
(q1, ..., qR) ∈ C is an R-tuple of single-robot configurations,
where qi ∈ Ci. For two distinct robots i, j, we denote by
Iji (qj) ⊂ Ci the set of configurations of robot i that lead to
collision with robot j when j is at configuration qj . The
composite free space Cf ⊂ C consists of all composite
configurations (q1, ..., qR) such that (i) qi ∈ Cfi for every
1 ≤ i ≤ R, and (ii) qi /∈ Iji (qj) for every 1 ≤ i 6= j ≤ R,
which ensure that robot-obstacle and robot-robot collisions
are avoided, respectively.

Given start and goal positions xsi , x
g
i ∈ C

f
i , respectively,

for each robot 1 ≤ i ≤ R, define ~xs = (xs1, . . . , x
s
R) and

~xg = (xg1, . . . , x
g
R). The MRMP problem, denoted by M =

(Cf , ~xs, ~xg), consists of finding trajectories for the R robots
such that the robots begin their motion at ~xs, end at ~xg , and
avoid collisions (both with obstacles and with each other)
along the way. Formally, the objective is to find a collision-
free composite trajectory of the form Σ : [0, 1]→ Cf , where
Σ is an R-tuple Σ = (σ1, ..., σR) of single-robot trajectories
σi : [0, 1] → Cfi , such that Σ(0) = ~xs,Σ(1) = ~xg , and
Σ(τ) ∈ Cf for all 0 ≤ τ ≤ 1.

In this work we are interested in finding high-quality
solutions for the multi-robot problem. We consider as cost
criterion the sum of single-robot trajectory lengths, denoted
as cost(Σ) =

∑R
i=1 ‖σi‖. Our analysis can be easily adapted

to the case where the cost criterion is the maximum of
trajectory lengths, i.e., maxRi=1 ‖σi‖ (see [34]).

B. Tensor roadmaps
We provide a formal definition of the tensor roadmap (TR),

which is implicitly explored by sampling-based planners
such as dRRT [31], dRRT∗ [32], as well as by search-based
methods such as MC-CBS [11] and M∗ [6].

For every robot i, 1 ≤ i ≤ R, let Gi(Xi, ri) = (Vi, Ei)
be a PRM graph embedded in Cfi , for some point set Xi and
radius ri > 0 (as defined in Section II-B). The TR, denoted
by Ĝ( ~X , ~r) = (V̂ , Ê), is the tensor product of G1, . . . , GR. In
particular, each vertex of Ĝ( ~X , ~r) describes a simultaneous
placement of the R robots, and similarly an edge of Ĝ( ~X , ~r)
describes a simultaneous motion of the robots. Formally,



(i) V̂ = {(v1, . . . , vR) : ∀i, vi ∈ Vi}, and
(ii) for two vertices W = (w1, . . . , wR), U =

(u1, . . . , uR) ∈ V̂ , the edge set Ê contains the edge
(W,U) if for all i, wi = ui or (wi, ui) ∈ Ei.

Note that robots are allowed to stay put, which differs from
prevalent definitions of the tensor product of graphs [37–
39]. Notice further that by the definition of Gi, the motion
described by each edge in Ê represents a trajectory for the
R robots in which the robot-obstacle collisions are avoided.
Next we consider a subgraph of the TR in which also
robot-robot collisions are avoided. Given an MRMP problem,
M = (Cf , ~xs, ~xg) we will denote as ĜM( ~X ,~r)(x

s, xg) its TR
constructed from the PRM graphs of the individual robots’
GMi(Xi,ri), but where we remove all edges of the TR
representing transitions of the robots that are not collision
free. We denote by d(ĜM( ~X ,~r), ~x

s, ~xg) the minimal cost of
collision-free trajectories from ~xs to ~xg in the graph ĜM( ~X ,~r).

C. Multi-robot clearance and completeness

In preparation for defining the multi-robot equivalent of
(ε, δ)-completeness, we first define clearance for the multi-
robot case. Given a trajectory Σ, recall that we define
for each robot its forbidden space at time τ ∈ [0, 1] to
be its obstacle space Coi and the configurations that will
lead to collisions with other robots. Formally, Coi (τ) =
Coi
⋃
j 6=i I

j
i (σj(τ)) is the forbidden space for robot i at time

τ . Notice that we define Coi (τ) only for a given trajectory Σ
as it depends on the locations of the other robots.

Definition 3 (~δ-clearance). Given a trajectory Σ, we say that
Σ has ~δ-clearance for ~δ = (δ1, . . . , δR) if for each robot i,
1 ≤ i ≤ R and at any time τ ∈ [0, 1], the distance from i to
the obstacles and to each robot j 6= i is at least δi. Formally,
Σ has ~δ-clearance if, for all 1 ≤ i ≤ R, 0 ≤ τ ≤ 1, it holds
that ‖σi(τ)− x‖ > δi, for every x ∈ Coi (τ).

Next we define the equivalent of single-robot (ε, δ)-
completeness for MRMP:

Definition 4 (Multi-robot (ε, ~δ)-completeness). Given R
robots, a stretch parameter ε > 0, a vector of R sample
sets ~X = (X1, . . . ,XR), and a vector of R connection radii
~r = (r1, . . . , rR), we say that the pair ( ~X , ~r) is (ε, ~δ)-
complete if for every ~δ-clear M = (Cf , ~xs, ~xg) it holds that

d(ĜM( ~X ,~r), ~x
s, ~xg) ≤ (1 + ε)OPT~δ,

where OPT~δ is the minimal cost of a ~δ-clear M solution.

We are ready to state our main contribution.

Theorem 2 (Sufficient conditions for MRMP
(ε, ~δ)-completeness). Let ε > 0 be a stretch factor, let ~δ be
a clearance vector (δ1, . . . , δR), and denote ω = ε

2(ε+2) .
Define the sampling distributions ~X = (X1, . . . ,XR) and
radii vector ~r = (r1, . . . , rR), as

Xi = Xωδi,δi , ri = δi(ε+ 1)/(ε+ 2),

for every robot 1 ≤ i ≤ R. Then
(
~X , ~r
)

is
(
ε, ~δ
)

-complete.

We provide a sketch of the proof. The full proof can be
found in the extended version of the paper [34].

Sketch of proof. Let Σ∗ = (σ∗1 , . . . , σ
∗
R) be a ~δ-clear solution

such that cost(Σ∗) = OPT~δ . For every 1 ≤ i ≤ R, define
Xi = Xβi,δi , and set βi = ωδi. Let Gi = (Vi, Ei) be the PRM
graph for robot i using (Xi, ri), that is Gi = GMi(Xi,ri)
for Mi = (Ci, xsi , x

g
i ). Let Ĝ be the tensor roadmap of

G1, . . . , GR.
In the extended version [34, Lemma 3], we show that

for every robot i, Gi contains a collision-free path σ̄i (with
respect to the obstacles) from xsi to xgi , such that cost(σ̄i) ≤
(1 + ε)‖σ∗i ‖, and hence cost(Σ̄) ≤ (1 + ε)OPT~δ , for Σ̄ =
(σ̄1, . . . , σ̄R). Although each trajectory σ̄i is collision free
with respect to Cfi , it is not necessarily true that Σ̄ avoids
robot-robot collisions. Nevertheless, we show that we can
adjust the robots’ timing along the trajectories σ̄1, . . . , σ̄R,
to induce a collision-free trajectory over Ĝ, which we denote
by Σ̂ = (σ̂1, . . . , σ̂R). As our cost metric is total path length,
this timing adjustment does not increase the solution cost.

To do so, we use details from the proof of Theorem 1
(provided in the extended version [34]). In particular, for
every robot i, we can pick the trajectory σ̄i, which we used
above, such that if Zi = (zi0, . . . , z

i
`i

) denotes the sequence
of vertices of Gi visited along σ̄i, and (τ i0, . . . , τ

i
`i

) denote
the time of visitation of those vertices, i.e., zij = σ̄i(τ

i
j), then

the following properties hold for ρi = δi/(ε+ 2):
(i’) ‖σ∗

i (τ
i
k)− σ∗

i (τ
i
k−1)‖ ≤ ρi, ∀ 1 ≤ k ≤ `i;

(ii’) ‖zik − σ∗
i (τ

i
k)‖ ≤ βi, ∀ 0 ≤ k ≤ `i;

(iii’) ‖z−σ∗
i (τ

i
k)‖≤βi+ρi≤δi/2, ∀1≤k≤`i, z∈CH

(
zik−1, z

i
k

)
.

To exploit those properties we define a list L of triplets
of the following form: L :=

⋃R
i=1

⋃`i
j=1{(i, τ ij , zij)}. That

is, L contains for every robot 1 ≤ i ≤ R, `i triplets
of the form (i, τ ij , z

i
j), where τ ij ∈ Ti is a timestamp,

and zij ∈ Zi is the corresponding configuration. Addi-
tionally, define Lo to be a permutation of L, where the
triplets are ordered according to the timestamp. That is,
Lo := {(i1, τi1 , zi1), . . . , (i`, τi` , zi`)}, where l =

∑R
i=1 `i,

(ij , τij , zij ) ∈ L for every 1 ≤ j ≤ l, and τij ≤ τij+1 for
every 1 ≤ j ≤ `− 1.

We describe an iterative scheme that uses Lo for gener-
ating a sequence of composite vertices V0, V1, . . . , V` ∈ V̂ ,
such that (Vj , Vj+1) ∈ Ê. First, define V0 = ~xs. Next, given
that Vj = (vj1 , . . . , vjR) has already been defined for some
1 ≤ j ≤ ` − 1, set Vj+1 = (v(j+1)1 , . . . , v(j+1)R), where
v(j+1)ij+1

:= zij+1
, and v(j+1)i′

= vji′ for every i′ 6= ij+1.
Namely, when transitioning from Vj to Vj+1 all the robots
stay put, besides robot ij+1 whose timestamp appeared in
item j + 1 of Lo. (An example for L and Lo can be found
in the extended version [34].)

To complete the proof, we first note that (Vj , Vj+1) ∈ Ê
for every 1 ≤ j ≤ ` − 1. This follows from the values of
connection radii ~r we picked, and the fact that σ̄i is obstacle
collision-free, guaranteeing that {vij , vij+1} ∈ Ei for every
robot i, where (v1, . . . , vR) := Vj , (v

′
1, . . . , v

′
R) := Vj+1.

It remains to prove that the robots do not collide with one
another while they move along the path represented by any
such edge (Vj , Vj+1). First, recall that there is exactly one
robot moving for (Vj , Vj+1). In particular, this is the robot
whose index is ij , which is the first value of the jth triplet
(ij , τij , zij ) ∈ Lo. That is vij 6= v′ij , whereas for any other
robot k 6= ij it holds that vk = v′k. Note that given two
stationary robots k1, k2 6= ij , and assuming that they did



not collide along the previous edge (Vj−1, Vj), they will not
collide with each other for (Vj , Vj+1) as well.

Next, we prove that robot ij does not collide with any
stationary robot k 6= ij , while moving from vij to v′ij . By
definition of V0, . . . , V`, robot k is located at vk = zkj′ ∈ Zk
such that τkj′ ≤ τij ≤ τkj′+1, for some 0 ≤ j′ ≤ `k−1. Next,
recall that σ∗k, σ

∗
ij

are δk- and δij -clear, respectively. Thus,
it suffices to prove that ‖σ∗ij (τij ) − p‖ ≤ δij/2 for every

p ∈ CH
(
vij , v

′
ij

)
and ‖σ∗k(τij )− zkj′‖ ≤ δk/2.

Indeed, Property (iii’) implies that for p ∈ CH
(
vij , v

′
ij

)
we have that

∥∥∥p− σ∗ij (τij )∥∥∥ ≤ βij + ρij ≤ δij/2. Using the
triangle inequality and Properties (i’) and (ii’) we have that∥∥zkj′ − σ∗k(τij )

∥∥ ≤ ‖zkj′ − σ∗k(τkj′)‖+ ‖σ∗k(τkj′)− σ∗k(τij )‖
≤ βk + ρk ≤ δk/2,

which concludes the proof sketch.
We emphasize that even though our proof finds a trajectory

which uses edges where a single robot moves at a time, the
solution that would be found in practice is not necessarily
restricted to individual-robot moves. This is due to the
fact the tensor roadmap also includes edges representing
simultaneous motion of several robots.

D. Discussion
Theorem 2 implies that if a given MRMP planner is

guaranteed to find an optimal collision-free path over a TR,
then it is also guaranteed to find a (1 + ε)-approximation
of the optimal ~δ-clear trajectory (in the continuous domain),
when each PRM graph is constructed using the sample set
Xωδi,δi and radius ri = δi(ε+ 1)/(ε+ 2) for each robot
1 ≤ i ≤ R, where ω = ε/(2(ε+ 2)).

This statement applies, for instance, to M∗ and MC-CBS.
The former can be viewed as a refined version of A∗ for
searching the TR. The latter implicitly explores the TR
by incrementally considering combinations of single-robot
trajectories induced by the PRM graphs, until a combination
that yields a collision-free composite trajectory is found. The
dRRT∗ planner implicitly explores the TR via an RRT-style
random exploration using a secondary sampling procedure
which is employed after the PRM graphs are constructed.
Due to this additional randomization step, dRRT∗ achieves
a (1 + ε)-approximation only asymptotically. Nevertheless,
our analysis simplifies the usage of this algorithm by deran-
domizing the construction of PRM graphs used in dRRT∗.

Finally, we provide an example for the number of samples
that should be used according to Theorem 2 within each PRM
roadmap for specific parameters. In particular, we report in
the table below the value |Xωδi,δi |, for varying values of
the stretch parameter ε, dimension d, and clearance vector
(δ1, . . . , δR), where δi = 0.1 for all robots. While these
values are quite large, particularly for higher dimensions,
we emphasize that we do not expect our bounds to be tight,
as observed in Section IV. This suggests that smaller sample
sets are sufficient for (ε, ~δ)-completeness, which we aim to
explore in future research (see Section V).

IV. EXPERIMENTAL RESULTS

We provide experimental results to support our theoret-
ical findings, focusing on the case of multiple disc robots

d ε =∞ ε = 5 ε = 1 ε = 0.5 ε = 0.25

2 181 313 1201 3281 1.05·104
3 2331 6119 5.68·104 2.43·105 1.43·106
4 4.93·104 1.49·105 2.83·106 2.19·107 2.21·108
5 9.09·105 4.37·106 1.69·108 2.23·109 3.94·1010
6 1.89·107 1.5·108 1.18·1010 2.46·1011 7.82·1012

operating in a planar domain. We study the effect that the
stretch parameter ε, which determines the structure of the
underlying PRM graphs within the tensor product graph Ĝ in
Theorem 2, has on the actual solution quality. We observe
that the resulting approximation factor is in fact significantly
lower than 1 + ε. This suggests that our analysis can be
further refined to support even sampling distributions with
fewer samples (see Section V).

Concerning the design of the experiments, we were faced
with two challenges. First, current MRMP algorithms [6, 11,
32] (including our own) are limited in their ability to cope
with the large tensor roadmaps required to guarantee path
quality according to our analysis; this curbed our ability to go
to large numbers of robots in the experiments, and strongly
motivates further improving of such algorithms. Secondly,
in order to provide meaningful experimental reports, we
need yardsticks to compare to; the problem is that optimal
MRMP algorithms are not known to be tractable even for the
simple case of two unit disc robots moving amid obstacles
in the plane, and it is highly non-trivial to calculate optimal
solutions when coordination is required. We explain below
how we overcame this latter impediment.

A. Scenarios
The scenarios are illustrated in Figure 2. The first scenario,

[Left], consists of two robots in an obstacle-free environment.
We use this simple example to benchmark our solution
against an optimal δ-clear solution using a recent work that
provides characterization of optimal trajectories for two disc
robots in the absence of obstacles [40]. The [Center-left]
scenario uses a more complicated workspace topology, which
potentially requires more samples to achieve a near-optimal
solution, since multiple straight-line segments are required to
approximate every single-robot trajectory. The third scenario,
[Center-right], which consists of four robots, aims to test
our theory for a tight setting, which is obtained by tightly
packing the four robots inside a circular barrier. The fourth
scenario, [Right], which consists of seven robots, aims to test
our theory for a larger number of robots, where additional
coordination is required to achieve a solution.

B. Results
To test our theory on the aforementioned scenarios, we

constructed PRM graphs using our staggered grid as the
sample set, corresponding to different values of the stretch
parameter ε and clearance δ (for simplicity, we use the same
value of δ across all robots, i.e., ~δ := {δ, . . . , δ}). For all
the scenarios, we set the value δ to be equal to the static
clearance µ (see caption of Figure 2). We set the stretch
parameter ε to different values in the range [0.75,∞). We
then use A∗-search for the first three scenarios, and MC-CBS
for the seven-robot scenario, to obtain the best solution from
the resulting tensor roadmap.

The results are reported in Figure 3, where we plot the
approximation ratio obtained using the staggered grid Xωδ,δ
set to guarantee an approximation factor of at most 1+ε (see



Fig. 2: Test scenarios for multiple disc robots, where a circle and a disc of the same color represent the start and goal positions,
respectively, of a robot. [Left] A 2-robot obstacle-free scenario. The optimal trajectories, which were derived in [40], are drawn for
each robot. The robots’ radius is 0.09 and the static clearance µ is equal to 0.02. The latter value measures the minimum over
(i) the inter-robot distances at the initial placement, (ii) the distance of each robot at the initial placement from the obstacles, and
(iii,iv) the respective quantities for the target placement. [Center-left] A 2-robot scenario with a spiral obstacle with robots’ radius
0.06 and static clearance µ = 0.04. [Center-right] Four robots tightly placed within a circular barrier, using robot radius 0.19 and
static clearance µ = 0.02. [Right] A 7-robot scenario with robots’ radius 0.08 and the static clearance µ = 0.04.

Fig. 3: We report for each of the four scenarios its approx-
imation factors, which are represented by the ratio between
the cost of the solution obtained from the tensor roadmap
and OPTδ. Notice that the tensor-roadmap solution is not
necessarily δ-clear and thus can be of lower cost than OPTδ,
which explains why two of the plots get approximation factors
smaller than 1. Next to the points in each plot is the number of
collision-free samples in the PRM graph of an individual robot.
Due to the prohibitive running times incurred by MC-CBS on
the 7-robot scenario and by our Python implementations of A∗

on the 4-robot scenario, we report the solution quality for these
scenarios only for a subset of values of ε.

Theorem 2). The reported approximation factor represents
the ratio between the cost of the best solution obtained
from the tensor roadmap, denoted by Σ̂, and the optimal
δ-clear solution whose cost is denoted by OPTδ . For the
first scenario we obtain the value OPTδ using [40], as we
reported earlier. For the [Center-left] scenario, OPTδ is equal
to the sum of the shortest δ-clear trajectories for the two
individual robots, as one of the robots can move after the
other finishes its motion without increasing the overall cost
of the solution. For the [Center-right] scenario, OPTδ is equal
to the perimeter of the circle going though the robot centers
at the initial positions (as each robot traverses a quarter of
the circle). For the [Right] scenario, OPTδ is equal to the
sum of the Euclidean distances between each robot’s origin
and destination, as the robots can move one after the other
to obtain an optimal solution.

In all the experiments we obtain an approximation factor
that is significantly lower than what our worst-case analysis
predicts. For instance, already when setting the stretch pa-
rameter to ε = 50 we obtain an approximation factor of at

most 1.075. Moreover, for ε ≤ 1.5 we obtain approximation
factors below 1 in both two-robot scenarios. This is possible
as the solution obtained from the tensor roadmap is not
necessarily δ-clear, which allows robots to take shortcuts in
proximity to obstacles and each other. The overall trend of
the graphs complies with our expectation: when the stretch
parameter decreases, we obtain improved solutions. The
biggest improvement (at least for the two-robot scenarios)
occurs when ε goes below 2, due to the rapid increase in the
number of samples in Xωδ,δ . In some cases using a smaller
number of samples may yield better solutions, as in the 2-
robot spiral scenario for stretch factors ε = 50 and ε = 20.
The explanation is that the smaller sample set gets closer
to the (approximate) optimal solution by chance. Still, the
worst-case approximation factor is guaranteed to improve
as the size of the staggered grid increases.

V. DISCUSSION AND FUTURE WORK

We developed sufficient theoretical conditions for finite-
sample near-optimality of the tensor roadmap, which is an
underlying structure in several sampling-based algorithms
for MRMP. We also presented a new sampling-scheme,
termed the staggered grid, for near-optimal motion planing
for individual robots, which requires fewer samples than
previous work.

Our work raises interesting questions for further inves-
tigation both in practice and theory. The scalability is-
sues we encountered when testing our theoretical finding
on MC-CBS—a continuous extension of a state-of-the-art
method for MAPF—motivate the study of more effective
methods for exploring tensor roadmaps introduced by large
PRM graphs. On the positive side, the scenarios that we did
manage to solve suggest that near-optimality can be achieved
with smaller sample sets than our theory prescribes. This
motivates the development of even more compact sampling-
distributions for the single-robot case, and refining our proof
technique for the multi-robot case (Theorem 2).
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