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Abstract

We study several variants of the problem of moving a convex polytope in three dimensions
through a flat rectangular (and sometimes more general) window. Specifically, we study
variants in which the motion is restricted to translations only, discuss situations in which
such a motion can be reduced to sliding (translation in a fixed direction) and present efficient
algorithms for those variants. We then discuss the case of a window that is unbounded (has
two infinite edges) and show that in this case, rotations are not necessary for passing the
polytope through the window, an observation that leads to an efficient algorithm for this
variant too. Then we study the importance of rotations by an example of a polytope that
cannot pass through a certain window by translations only, but it can do so when rotations are
allowed. We study also more general convex windows, and obtain some special properties of
polytopes that can pass such a convex window. We then study the case of a circular window,
and show that, for the regular tetrahedron K, there are two thresholds 1 ą δ1 ą δ2 such that
(i) K can slide through the window W if its diameter d is ě 1, (ii) K cannot slide through
W but can pass through it by a purely translational motion when δ1 ď d ă 1, (iii) K cannot
pass through W by a purely translational motion but can do it when rotations are allowed
when δ2 ď d ă δ1, and (iv) K cannot pass through W at all when d ă δ2. This divides this
motion planning problem into three sub-classes, with different capabilities: one dimensional
translation (“sliding”), purely translational motion, and unrestricted motion (with all six
degrees of freedom).
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1
Introduction

Let K be a convex polytope (a ‘sofa’) in R3 with n edges, and let W be a rectangular window,
placed, say, in the xy-plane in the axis-parallel position r0, as ˆ r0, bs, where a and b are the
respective width and height of W . We assume that the complement of W in the xy-plane is
a solid wall that K must avoid. The problem is to determine whether K can be moved, in a
collision-free manner, from any position that is fully contained in the upper halfspace z ą 0,
through W , to any position that is fully contained in the lower halfspace z ă 0, and, if so,
to plan such a motion (see Figure 1.1).

A continuous motion of a rigid body in three dimensions has six degrees of freedom, three
of translation and three of rotation, and in the general form of the problem, we allow all
six degrees. We will mainly study simpler versions where only restricted types of motion
are allowed, such as purely translational motion (that has only three degrees of freedom), a
translational motion in a fixed direction, that we refer to as sliding (one degree of freedom),
or a translational motion combined with rotations around the vertical axis only (four degrees
of freedom), etc. Some of our main results show that, in certain favorable situations, the ex-
istence of a general collision-free motion of K through W implies the existence of a restricted
motion. This allows us to solve the problem in a significantly more efficient manner.

In terms of the free configuration space F of K, all the placements of K that are fully
contained in the upper halfspace are free, and form a connected subset F` of F . Similarly,
all the placements of K that are fully contained in the lower halfspace are free, and form a
connected subset F´ of F . Our problem, in general, is to determine whether both F` and
F´ are contained in the same connected component of F . This interpretation applies to the
general setup, with six degrees of freedom, as well as to any other subclass of motion, with
fewer degrees of freedom.

Motion planning is an intensively studied problem in computational geometry and robotics.
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Figure 1.1: The general problem studied in this thesis: moving a convex polytope from an initial
configuration above the xy-plane, to a target configuration below the xy-plane through a window
on the xy-plane.

There is a systematic and general way to describe the free space F using constraint surfaces,
namely surfaces describing all the configurations where one feature on the boundary of the
moving object (K in our case) touches a feature on the boundary of the work space space
(W in our case); see, e.g., [7, 15, 21]. These surfaces partition the configuration space into
cells such that each cell is either fully contained in F or fully contained in the forbidden
portion of the configuration space. This representation is based on the arrangement [14] of
constraint surfaces, and is induced in our setting by Opnq surfaces, since the combinatorial
complexity (number of vertices, edges, and facets) of K is Opnq and of the window is Op1q.
By standard arguments in the study of arrangements of surfaces, the complexity of F is
bounded by Opndq, where d is the number of degrees of freedom [15]. In order to exploit
this representation, we need to be able to construct it and then transform it into a graph (in
the graph-theory sense) on which we will search for a solution motion. To this end we need
further machinery, and we typically use vertical decomposition, a refinement of arrangements
of surfaces [5]. Such constructions are easily implementable for motion planning with two
degrees of freedom [10], but become practically complex for problems with three or more
degrees of freedom. This has led researchers in robotics to develop alternative methods as
we describe next.

There is a large suite of practical solutions to the motion-planning problem based on
sampling-based techniques [6, Chapter 7],[13], the best known of which are PRM [19] and
RRT [20], which have dozens of variants. While extremely successful in solving practical
problems, they trade-off the completeness of the arrangement approach with efficiency. In
particular the sampling-based techniques fail miserably, when the setting is tight [23, 24],

2



which is exactly the situation in the problems that we study in this thesis. If the polytope
K is small relative to the window, then the problems become trivial. Therefore, our study
is of instances where K is roughly the size of the window (the size comparisons are made
precise below), and in such cases sampling-based techniques are inapplicable.

Toussaint [27] collected a variety of tight-setting motion planning problems under the
title movable separability of sets. These problems are interesting both from a pure research
perspective (see, e.g., [26] for an intriguing problem and its solution), but also from an
applied perspective, since motion in tight settings often arises in manufacturing processes
such as assembly planning [12] or casting and molding [4]. It is in Toussaint’s review that we
encountered the problem of throwing a polytope through a window. Although Toussaint’s
paper was published 35 years ago, to the best of our knowledge there has not been progress
on this specific problem up till this thesis. We remark that the word sofa in the title of the
thesis is borrowed from a classical problem of this flavor, in a two-dimensional setting, the
moving sofa problem, or just the sofa problem (see, e.g., [8, 11]), which is to find the shape
of largest area that can be moved through a corner in an L-shaped corridor whose legs have
width 1 (see Figure 1.2).

Figure 1.2: Moving a ‘sofa’ around the corner of an L-shaped corridor. Figure taken from
https://img.microsiervos.com/images2017/problema-del-sofa-Hammersley.png

In general, F is six-dimensional, so constructing an exact representation of F , as is needed
here, is both complicated and expensive. We do not address this setup in most of the thesis,
but mainly focus on variants of the problem with fewer degrees of freedom, of the kinds
mentioned above (General motions are considered in Chapters 6 and 7, and they are also

3



discussed in several other instances of the problem). In addition to allowing us to obtain
considerably faster algorithms, these versions have nontrivial geometric properties, which
are interesting in their own right, and which also allow us, in certain favorable situations,
to reduce more general problems to simpler ones, with fewer degrees of freedom, thereby
achieving faster algorithmic solutions.

Our results. We first consider, in Chapter 2, sliding motions (translations in a fixed
direction) of K. We characterize the situations in which such a sliding motion exists, present
efficient algorithms for finding such a motion when one exists, and report that there is no
such a motion otherwise. We next consider in Chapter 3 unrestricted motion for the case
where the window is unbounded in one direction (has two infinite edges)—we refer to such
an unbounded window as a gate. We show that the existence of such a general collision-free
motion through a gate implies the existence of a collision-free sliding motion through that
gate, which is very easy to find when it exists. In Chapter 4 we present the connection
between the existence of a general collision-free motion through any convex window W and
sliding through a gate whose width depends on W . Specifically, we show that if the polytope
K can pass through some convex window of diameter d, then, for any fixed direction ~v, we
can slide K through a gate of width d in the direction ~v. We then consider in Chapter 5
purely translational motion of K through a rectangular window, and prove that the existance
of such a purely-translational collision-free motion implies the existence of a collision-free
sliding motion. In Chapter 6, we observe the importance of rotations. We give an example of
a convex polytope that can move through a squared window by a collision-free motion that
includes rotation, and show that in this case a purely translational motion does not exist.
In Chapter 7 we consider the case where the window is circular. We show that for some
polytopes, the various restricted families of motions are non-equivalent: For a sufficiently
large window, there is a sliding motion. When the window is too small for sliding, it might
be still large enough for a purely-translational motion. And if the window is too small for a
purely-translational motion, it is possible that it is large enough for a general motion with
six-degrees of freedom.
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2
Translation in a Fixed Direction

In this chapter we address the case in which the movement is purely translational in a single
fixed direction. Such a motion, to which we refer as a sliding motion, has only one degree
of freedom. In the most restricted version (which is very easy to solve), we are given a fixed
orientation of K and a fixed initial placement, and also the direction of motion. In this
chapter we study a more general setting, in which we seek values for these parameters—
orientation, initial placement, and direction of motion, for which such a sliding motion of K
through W is possible (or determine that no such motion is possible).

In Section 2.1 we observe that if a sliding motion for K exists, then K can also slide in
a direction orthogonal to the plane of the window. This is a special case of a more general
and known result; we give a simpler proof of this result in our setting. We then describe,
in Section 2.2, an algorithm to compute the orientation of K that will allow for sliding
along this orthogonal direction. In Section 2.3, we address a sub-problem that arises in
the algorithm, and we give an efficient algorithm to compute an implicit representation of
all possible silhouettes of K. Finally, in Section 2.4 we present a more efficient algorithm
to solve the orientation-determination problem, using intricate batch range-searching data
structures.

2.1 The Existence of an Orthogonal Sliding Motion

For the most general version of the sliding motion, in which none of the parameters (orien-
tation, initial placement, and direction of motion) is prespecified, we use the following key
lemma:

Lemma 2.1. If K can slide through W from some starting position in some direction, then
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K can slide through W , possibly from some other starting position and another orientation,
by translating it in the z-direction.

Proof. Let K0 be the starting position of K and ~v be the direction of motion through
W , for which the resulting sliding motion is collision-free. Form the infinite prism Π0 :“
Ť

λPRpK0 ` λ~vq that K0 spans in direction ~v. The premise of the lemma implies that the
intersection of Π0 with the xy-plane is contained in W .

Let W0 be the orthogonal projection of W onto some plane orthogonal to ~v. Note that
W0 is a parallelogram, and that, by construction, K0 can pass through W0 when translated
in direction ~v. By an old result, reviewed and proved by Debrunner and Mani-Levitska [9],
it follows that, when mapped rigidly into the xy-plane, W0 (the ‘shadow’ of W in direction
~v) can be placed fully within W (see Figure 2.1).

Figure 2.1: The projection of W (green) can be located in a congruent copy of W (blue).

Now rotate and translate R3 so that ~v becomes the (negative) z-direction, and the image
of W0 is fully contained in (the former, untransformed copy of) W . Then the image of
K under this transformation can be moved vertically down through W , in a collision-free
manner, as asserted. l

The proof of Debrunner and Mani-Levitska [9] is rather involved, and applies to an
arbitrary planar convex shape (showing that it contains its projection in any direction). For
the sake of completeness, we provide a simple alternative proof for the case of a rectangle.

Lemma 2.2. Let W be a rectangle on some plane h. Let W0 be the projection of W on the
xy-plane. Then the xy-plane contains a congruent copy of W that contains W0.

Proof. Denote the xy-projection by π. Let l be the intersection line of h and the xy-plane,
and let α be the dihedral angle between these planes. Let p be an arbitrary point on h, and

6



Figure 2.2: The window W (blue), the line l (orange) and the image σpW q (green).

let d be the distance from p to l. Then πppq lies at distance d cosα from l (with the same
nearest point on l). Informally, π moves every point in h closer to l by a factor of cosα.
Then, instead of projecting h to the xy plane, we apply on h this linear transformation that
moves every point closer to l by a factor of cosα. Denote this transformation by σ. This
implies that every line segment in h is transformed to a shorter segment or of the same
length—no line segment increases its length.

Let W “ ABCD, and let A1 “ σpAq, B1 “ σpBq, C 1 “ σpCq, D1 “ σpDq. Let E denote
the center of W (see Figure 2.2). Note that translating W on h keeps σpW q the same up to
translation, so we may assume that l passes through E without loss of generality.

We use the following lemma:

Lemma 2.3. Assume without loss of generality that B and C lie on one side of l, and that A
and D lie on the other side (otherwise rename the vertices as BCDA), and that l intersects
the ray

ÝÝÑ
BC, namely the ray starting at B and passing through C (otherwise rename the

vertices as DCBA). Then ?A1C 1B1 ď ?ACB.

Proof. Denote by T the intersection point of the lines BC and B1C 1 (see Figure 2.3). As
σpBCq “ B1C 1 the line l must pass through T since it is the only point of BC that stays at
the same location when applying σ. We then have:

?A1C 1B1 “ ?EC 1B1 “ ?TEC 1 `?C 1TE ď ?TEC `?CTE “ ?ECB “ ?ACB.

l

Continuing with the proof of Lemma 2.2. there are two cases to consider:
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Figure 2.3: The side BC of W (blue), the side B1C 1 (green), and the line l (orange).

Figure 2.4: Placing σpW q in a congruent copy of W . Left: Placing the diagonal A1C 1 on the
diagonal AC. Right: Placing the side A1B1 parallel to the side AB.
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For any pair of points P and Q we denote by PQ the line through P and Q. If ?C 1A1B1 ď
?CAB, then, since no line segment increases its length by applying σ, we have A1C 1 ď AC.
Denote by m the line AC. Place A1C 1 on m, such that the points A,A1, C 1, C appear on
m in this order and A1C 1 is centered at E (see Figure 2.4, left). Note that the angle that
AB forms with m is greater than the angle that A1B1 forms with l (by assumption), and
that the angle that BC forms with m is greater than the angle that B1C 1 forms with m (by
Lemma 2.3). Hence B1 is inside the triangle ABC. By symmetry, D is inside the triangle
CDA, and therefore we successfully placed σpW q inside W .

if ?C 1A1B1 ě ?CAB, draw from C 1 a line perpendicular to A1B1 and denote the inter-
section by P (see Figure 2.2). We place σpW q inside W so that A1B1 is parallel to AB (see
Figure 2.4, right). To do so, we need to prove that C 1P ď CB and that A1P ď AB. Indeed,
we have:

CB ě C 1B1 ě C 1P,

AB “ CB ¨ cot ?CAB ě C 1P ¨ cot ?C 1A1B1 “ A1P.

Therefore we successfully placed σpW q inside W . l

2.2 Finding a Sliding Motion

Lemma 2.1 implies that K can slide through W if and only if there exists an orthogonal
projection of K onto some plane h~v, so that the image of K can be placed within a congruent
copy of W . We specify such a projection by its direction, represented as a point on the unit
sphere S2. This fixes the projected silhouette of K, which is the boundary of the convex
polygon obtained by the projection of K in direction ~v, up to a possible rigid motion within
the image plane h~v. The silhouette itself is the cyclic sequence of vertices and edges of K,
whose projections form the projected silhouette.1 The silhouette and its projection do not
change combinatorially, that is, when represented as a cyclic sequence of vertices and edges
of K (or of their projections), as long as ~v is not parallel to any face of K. The locus of
directions that are parallel to a face f of K is the great circle γf of S2 that is parallel to f . We
draw these Opnq great circles on S2, one circle for each face of K, and form their arrangement
A0 (see [14]). (This arrangement is also known as the aspect graph of K; see [22].) It consists
of Opn2q faces, and, for all directions ~v within the same face of A0, the silhouette and its
projection are fixed combinatorially, but the actual spatial positions of the projected vertices
depend on the direction ~v, and the projected silhouette can also rotate arbitrarily within
the image plane h~v. (Note that in this discussion we completely ignore translations of K, as
they are irrelevant for the analysis and its conclusions.)

We assign some canonical coordinate frame to h~v, and refer, for simplicity, to its axes as
the x- and y-axes (they depend on ~v). For example, excluding Op1q problematic directions,
which can be handled separately, and easily, we can take the x-axis within h~v to be the inter-
section of h~v with the xz-plane, and take the y-axis to be in the orthogonal direction within

1The silhouette is indeed such a cycle of vertices and edges of BK for generic directions ~v. When ~v is
parallel to a face f of K, the entire f is part of the silhouette.
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Figure 2.5: The silhouette and its projection: (i) The case of a generic ~v. (ii) The case where ~v
is parallel to a face f of K (~v is on the great circle γf ).

h~v, oriented in the direction that has a positive y-component. The actual spatial location
of the projected silhouette (up to translation, which we ignore) of K can be parameterized
by p~v, θq, where θ is the rotation of the projected silhouette within the image plane h~v. We
refer to p~v, θq as the view of K. See Figure 2.5.

As we vary ~v and θ, we want to keep track of the leftmost and rightmost vertices of the
projected silhouette (in the x-direction), and of the topmost and bottommost vertices (in
the y-direction, all with respect to the coordinate frame within h~v). We succeed when we
find a projection (in direction ~v), followed by a rotation (by θ), for which the x-difference
between the rightmost and leftmost vertices is at most a and the y-difference between the
topmost and bottommost vertices is at most b. We reiterate that this is indeed the property
that we need: It takes place in a slanted plane h~v with respect to an artificial coordinate
frame within that plane, but using a suitable rotation of h~v we can make it horizontal and
its coordinate frame parallel to the standard xy-frame. A subsequent suitable translation
then brings the projected silhouette to within W , as desired.

Fix a face ϕ of A0, and let w1, w2, . . . , wm denote the cyclic sequence of the vertices
of the projected silhouette, say in counterclockwise order, for views in ϕ. If the current
leftmost vertex is some wj, then it remains leftmost as long as neither of the two adjacent
edges wj´1wj and wjwj`1 becomes y-vertical. (Recall that ‘leftmost’ and ‘y-vertical’ are with
respect to the artificial frame within h~v.) The views p~v, θq at which an edge e of K, say,
wj´1wj is y-vertical comprise a two-dimensional surface ρe in the three-dimensional space
V “ S2 ˆ S1 of views p~v, θq. See Figure 2.6.

The discussion so far has been for views that have a combinatorially fixed silhouette.
However, to make the algorithm for finding a sliding motion more efficient, we consider all
possible silhouettes ‘at once’, using the following approach. After forming the aspect-graph
arrangement A0, as defined above, we replace each great circle γf on S2 by the cylindrical
surface γ˚f “ γf ˆ S1, and collect these surfaces into a set Γ, of cardinality Opnq. Then, for
each edge e of K (regardless of whether it is a silhouette edge or not), we form the surface
ρe, as just defined, and collect these surfaces into a set Σ, of cardinality n. We now form
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Figure 2.6: A view of K. To simplify the visualization, we rotate the containing window W
rather than the projected silhouette. The leftmost, rightmost, topmost and bottommost vertices
are highlighted.

Figure 2.7: A discrete change of the leftmost vertex of the projected silhouette.
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the three-dimensional arrangement A “ ApΓ Y Σq (note that all the surfaces of Γ Y Σ are
two-dimensional). As is easily verified, for each three-dimensional cell τ of A, the projected
silhouette of K, and its four leftmost, rightmost, topmost and bottommost vertices (we refer
to them collectively as the extreme vertices of the projected sihouette) are fixed for all views
in τ . Since |ΓY Σ| “ Opnq, the complexity of A is Opn3q.

To obtain a representation that is easy to process further, we construct the vertical decom-
position of A, which we denote as VDpAq. It is a decomposition of the three-dimensional
cells of A into a total of nearly cubic number of prism-like subcells (that we simply call
prisms). See Sharir and Agarwal [25, Section 8.3] for more details. A sharp bound on its
complexity (i.e., the number of prisms) is Opn2λspnqq, for some constant s (a sharp estima-
tion of the value of s is not given in this thesis), where λspnq is the maximum length of a
Davenport–Schinzel sequence of order s on n symbols; see [25]. The vertical decomposition
can be constructed in time Oppn2λspnq log nq [3].

We now iterate over all prisms of VDpAq. For each prism τ , we retrieve the four extreme
vertices of the projected silhouette, which are fixed for all views in τ , and check whether
there is a view in τ for which these vertices, and thus all of the projected silhouette, fit into
W (after suitable rotation and translation of W , as discussed above). To do so, denote these
leftmost, rightmost, topmost and bottommost vertices as wl, wr, wt and wb, respectively.
The x-coordinates xwl

, xwr of wl and wr, and the y-coordinates ywt , ywb
of wt and wb (within

h~v) are functions of p~v, θq. We need to determine whether the region

S “ Spwl, wr, wt, wbq :“ tp~v, θq P S2
ˆ S1

| xwrp~v, θq ´ xwl
p~v, θq ď a, ywtp~v, θq ´ ywb

p~v, θq ď bu,

which is exactly the region of views p~v, θq at which W contains a (rotated and translated)
copy of the projected silhouette with these four specific vertices as the extreme vertices of
the projection, has a nonempty intersection with τ . Since S and τ are semialgebraic regions
of constant complexity, this test can be performed, in a suitable (and standard) model of
real algebraic computation, in constant time [10]. Summing over all prisms τ , the overall
cost of these tests is proportional to the complexity of VDpAq, namely it is Opn2λspnqq.

To complete the description of the algorithm, we now consider the task of computing
the four extreme vertices wl, wr, wb and wt of the silhouette, or, more precisely, the four
(fixed) vertices of K that project to them, for each cell c of A. As an easy by-product of the
construction of VDpAq, each of its prisms can be associated with the cell of A containing it,
so the four extreme vertices will also be available for each prism of VDpAq.

By the nature of the surfaces forming A, the projection of each cell c of A onto S2 is fully
contained in a single cell ρ “ ρpcq of the two-dimensional aspect-graph arrangement A0. For
each such cell ρ, the discrete nature of the silhouette, as a cyclic sequence of vertices (and
edges) of K, is fixed for every ~v P ρ and for any θ P S1. Although we can do it faster, we
simply iterate over the Opn2q cells of A0, and for each cell ρ, compute the silhouette in Opnq
time, in brute force (by picking an arbitrary point ~v in ρ, and by examining each edge of K
for being part of the silhouette in direction ~v). The overall cost of this step is thus Opn3q.

Consider now a cell c of A, and let ρ “ ρpcq be the cell of A0 that contains the S2-
projection of c. Let pu1, u2, . . . , umq denote the cyclic counterclockwise sequence of vertices
of K that forms the silhouette for directions in ρ, and let wi denote the S2-projection of
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ui, for i “ 1, . . . ,m. Since the vertices of K inducing wl, wr, wb and wt are fixed over c, it
suffices to compute them for a fixed arbitrary view in c. We thus fix such a view p~v, θq, and
proceed as follows.

For each i, define the “derivative” of the silhouette at wi to be the pair of vectors

pw´
i ,w

`
i q “ p

ÝÝÝÝÑwi´1wi, ÝÝÝÝÑwiwi`1q,

where the vectors are represented in the coordinate frame induced by p~v, θq in a plane or-
thogonal to ~v, and where addition and subtraction of indices is modulo m. The extreme
vertices wl, wr, wb, wt partition the silhouette into (at most) four subsequences: S1, between
wr and wt, S2, between wt and wl, S3, between wl and wb, and S4, between wb and wr (see
Figure 2.8), so that, for wi P S1 (resp., S2, S3, S4) both vectors w´

i , w`
i lie in the second

(resp., third, fourth, first) quadrant. For wr (resp., wt, wl, wb), the vectors lie, respectively, in
the first and second (resp., second and third, third and fourth, fourth and first) quadrants.2

Figure 2.8: The sub-silhouettes S1 (purple), S2 (blue), S3 (green), S4 (orange). The extreme
vertices wr, wt, wl, wb delimit these sub-silhouettes and are highlighted.

Using these observations, we find the four extreme vertices using binary search, as follows.
We break the silhouette sequence into two linear subsequences at w1 and wm{2, and find the
extreme vertices in each subsequence. Consider the subsequence pw1, w2, . . . , wm{2q. We
compute the derivatives at w1 and at wm{2, and thereby identify the two respective sub-
silhouettes that contain these vertices. Suppose for specificity that w1 lies in S1 and wm{2
lies in S3. Then we know that our subsequence contains (only) wt and wl, and we can find
each of them by a straightforward binary search, using the derivatives to guide the search.

2We gloss here over the easy special cases of degeneracy, in which the extreme vertices are not all distinct.
In such cases some of the sub-silhouettes S1, . . . , S4 might be empty, and the rules for identifying the extreme
vertices need to be adjusted.
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We apply similar procedures in each of the other cases, and for the second subsequence
pwm{2, wm{2`1, . . . , w1q.

In conclusion, it takes Oplog nq time to find the extreme vertices for each cell of A, and
thus also for each prism of VDpAq, for a total running time of Opn2λspnq log nq.

2.3 Implicitly Constructing All the Silhouettes

We do not have a faster approach to the full problem of finding a view for which the projection
of K can fit inside W . Nevertheless, we present here an improved solution, which runs in
Opn2 log nq time, for the subproblem of (implicitly)3 constructing the silhouette for every
face of the aspect-graph arrangement A0. That is, our goal is to process the arrangement A0

of the great circles γf on S2, and implicitly store with each of its faces ϕ the (fixed) circular
list Λϕ of the vertices of the projected silhouette. A key step towards this goal is to store,
for each edge g of A0, that separates two adjacent faces ζ, ζ 1 of A0, the change between the
silhouettes stored at ζ and at ζ 1.

To understand this last issue, we note that g is a portion of some great circle γf , for
some face f of K, so that f is visible for directions ~v on one side of γf , say ζ, and invisible
for directions ~v on the other side, that is ζ 1. For these nearby directions, when f is visible,
one connected portion vispfq of Bf is part of the silhouette, and when f is invisible, the
complementary portion invispfq of Bf becomes part of the silhouette. These two portions
are fixed for each edge of γf , like g, but are not fixed throughout γf . Specifically, let g1 be
the next edge of A0 along γf . The common endpoint ~v of g and g1 is an intersection of γf
with another great circle γf 1 . If f and f 1 are not adjacent along BK, the two portions vispfq
and invispfq for g1 are the same as for g, and no special treatment is needed. If f and f 1

share an edge e of K then, by construction, ~v is the direction of e. Then, as is easily checked,
e belongs to vispfq at g and to invispfq at g1 or the other way around. (Note that, at ~v itself,
e might fail to belong to either silhouette.) See Figure 2.9 for an illustration.

This suggests that we trace the edges of A0 along each great circle γf in order, maintain
the two portions vispfq and invispfq of Bf for each edge g of γf , by a pair of pointers into the
circular list of edges of Bf (which we assume to be available from the DCEL representation
of BK), and update these pointers by moving one of them past e, where e is the edge of
f whose direction separates g from the next edge on γf (if such an e exists at all). The
overall number of changes of these pointers, over all faces f of K, is thus proportional to
the complexity of K, i.e., it is Opnq. However, since most of the Opn2q vertices of A0 do not
entail any change of pointers, the overall cost of this preprocessing step is Opn2q, which is
the number of edges of A0.

Having computed this data, over all edges of A0, we now return to the main goal, of
(implicitly) constructing the silhouette for each face of A0. As a matter of fact, it will be
more convenient to construct the (degenerate) silhouettes over each edge of A0. We will

3An explicit construction of the silhouettes is doomed to require Θpn3q time in the worst case, since A0

has Θpn2q cells and each silhouette might be of linear size.
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Figure 2.9: f is the top face and f 1 is the right face adjacent to f . When f is invisible from the
direction ~v (the antipodal to the point marked as visf on the unit sphere), invispfq is a part of
the projected silhouette (green). When f is visible (the antipodal to the point marked as invisf
on the unit sphere), the complementary portion vispfq is a part of the projected silhouette (blue).
When ~v is the direction marked as invisf 1 we are at the portion g1 of γf (green arc) instead of
g (red arc) and therefore the portion vispfq (purple) changes: e belongs to vispfq at g and to
invispfq at g1.
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later comment on how to extend the algorithm so that it can also retrieve the silhouette for
each two-dimensional face of A0.

We fix a face f of K, consider the corresponding great circle γf on S2, and construct the
silhouette over each edge of γf . We enumerate these edges as g1, . . . , gm, where m “ Opnq
is the number of faces of K minus 1. (The sequence is actually cyclic but we consider it as
linear, starting at some arbitrary edge g1.) We compute the silhouette over g1 in Opnq time,
by brute force. We prepare a persistent search tree structure that stores all the versions
of the silhouette over the edges gi. To obtain the silhouette at gi from that at gi´1, we
consider the great circle γf 1 that separates gi´1 and gi, and note that the silhouette changes
by replacing the edges in vispf 1q by those in invispf 1q, or vice versa, and we update our
persistent search structure accordingly.

The overall number of changes, as we trace the entire γf , is proportional to the sum of
the number of edges on the other faces of K (we encounter each other face exactly twice).
Since each edge of K is counted in this sum twice, the overall number of updates over γf
is Opnq, and the total cost of these updates is Opn log nq. Summed over all great circles γf ,
this gives a total cost of Opn2 log nq time.

The actual output of the procedure is slightly more involved, to facilitate the handling
of the silhouettes over the two-dimensional faces of A0. Note that the entire face f is always
part of the silhouette over all edges along γf , but our output will store instead, for each edge
g of γf , the two portions vispfq and invispfq of Bf that replace f on the silhouette on the
two sides of g (which have already been computed). This step is also done implicitly, by
storing only the indices of the edges of f that delimit the portions vispfq and invispfq. The
overall cost of this supplementary maintenance is Opn2q time.

We can now access the silhouette in a given direction ~v as follows. We locate ~v in
A0. If it lies on an edge g, we access the silhouette stored at g using the persistent search
structure associated with the great circle γf containing g. If ~v lies in a face ϕ of A0, we take
an (arbitrary) edge g of ϕ, lying on some γf , identify whether f is visible or invisible for
directions in ϕ, and access the version of the silhouette at g that uses, respectively, vispfq
or invispfq as a subsequence of the silhouette.

If our goal is to report the silhouette in direction ~v, we can do it in Oplog n ` k~vq time,
where k~v is the number of edges of the silhouette. While being a nontrivial result, it is not
significant in the worst case, since we can easily compute the silhouette at ~v in brute force, in
Opnq time. A more significant performance improvement is obtained for tasks that involve
searching in the silhouette, like finding the vertex of the silhouette that is extreme in some
query direction, which can be accomplished in Oplog nq time.

2.4 Improved Algorithm

We next present an improved, albeit more involved algorithm that solves the problem of
finding an orientation of K that will allow for a sliding motion through W if one exists, in
time Opn8{3`εq, for any ε ą 0. The problem of finding a direction ~v in which we can slide K
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through W is equivalent to the problem of finding a placement of W on some plane h such
that the projected silhouette of K on h is contained in W , which in turn is equivalent to
verifying that all the vertices of K are projected into that placement of W .

An equivalent way of checking for the latter characterization is to look for two unit vectors
x and y (which will be the directions of the axes of W in the desired placement; note that
h is spanned by x and y) that satisfy:

(i) x and y are perpendicular to each other.

(ii) For every segment e connecting two vertices of K we have xx, ey ď a.

(iii) For every segment e connecting two vertices of K we have xy, ey ď b.

(Note that since we go over all unordered pairs of vertices of K in (ii), (iii), we actually
require that |xx, ey| ď a and |xy, ey| ď b for each such segment e.) Every inequality in (ii)
defines a halfspace that has to contain x. We intersect those Opn2q halfspaces, to obtain a
convex polytope Q of complexity Opn2q, and intersect Q with the unit sphere S2 to obtain
the admissible region A of the vectors x that satisfy (ii), in Opn2 log nq. We apply the same
procedure for y using the suitable collection of halfspaces in (iii), and obtain the admissible
region B for the vectors y that satisfy (iii), also in Opn2 log nq. To satisfy also (i), we need to
check whether there exist an orthogonal pair of vectors x P A, y P B. We use the following
lemma:

Lemma 2.4. Let SA denote the set of all vertices of A, and let TA denote the set of the
points that are closest locally to the north pole of S2 along each circular arc of the boundary
of A. (By choosing a generic direction for the north pole of S2 we may assume that TA is
finite and |SA Y TA| “ Opn2q.) Define similarly the sets SB, TB. If there exist an orthogonal
pair px, yq P A ˆ B then there exist such an orthogonal pair so that either x P SA Y TA or
y P SB Y TB.

Proof. We refer to an orthogonal pair in A ˆ B as a good pair. Let px, yq be a good pair
such that x is as close to the boundary of A as possible. If there are multiple pairs with this
property, pick the one in which x is the closest to the north pole. If there are still multiple
pairs, pick an arbitrary pair among them. By continuity and the compactness of A and B,
it is easy to show that such a “minimal pair” exist.

Several cases can arise:

1. x or y is one of the desired vertices. In this case we are done.

2. Both x and y lie in the interiors of A and B, respectively. In this case they can be
moved slightly together in any direction, while maintaining their mutual orthogonality.
In particular, x can get closer to the boundary of A so px, yq is not the minimal pair.

3. x is on the boundary of A, and y is in the interior of B. Since we are not in Case 1, x
lies in the relative interior of an edge of BA and is not the point on that edge that is
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closest to the north pole. Then we have two available directions to move px, yq slightly
such that x remains on the same edge. One of these directions brings x to a point
closer to the north pole, so px, yq is not the minimal pair.

4. y is on the boundary of B (as in Case 3 we may assume that y lies in the relative
interior of an edge of BB). In this case we fix x and move y along the great circle Cx of
points perpendicular to x. Recall that y is on an edge of B, which is a circular arc γ.
Every halfspace of the intersection contains the origin, so B is contained in the bigger
portion C` (bigger than a hemisphere) of S2 that is bounded by the circle C containing
γ. Since Cx is a great circle, it is bigger than C, so when moving y along Cx in at least
one of the two possible directions, y enters C` (this is always true, regardless of the
size of Cx, when the circles cross one another at y; the fact that Cx is larger is needed
when they are tangent at y), so it enters the interior of B. Now we are in one of the
cases 2, 3 that we have already settled.

Having covered all possible cases, this completes the proof of the lemma. l

We iterate over the points of SA Y TA. For each such point v let Cv be the great circle
of vectors perpendicular to v, and let C denote the collection of these Opn2q great circles.
We face the problem of determining whether any great circle in C crosses B. This is the
same as determining whether any great circle in C crosses an arc of BB. This is a variant
of the batched range searching paradigm, and we present next a detailed solution for this
case. We apply a fully symmetric procedure to the collection of great circles orthogonal to
the points of SB Y TB and to A. If we find a valid intersection it gives us a valid orthogonal
pair. Otherwise, such a pair does not exist.

Detecting an intersection between the great circles of C and the boundary arcs of
B. We apply a central projection (from the center of S2) onto some plane, say a horizontal
plane h lying below S2 (with a generic choice of the coordinate frame, we may assume that
none of the points in SAYTAYSBYTB are on the great circle that is parallel to h). This is a
bijection of the open lower hemisphere onto h, in which (the lower portions of) great circles
are mapped to lines, and (the lower portions of) circular arcs are mapped to arcs of conic
sections (ellipses, parabolas, hyperbolas, or straight lines). This transforms the problem into
a batched range searching problem, in which we have a set L of M “ Opn2q lines (which
arise from the great circles orthogonal to the points of SA Y TA) and a set E of N “ Opn2q

pairwise disjoint arcs of conic sections (which are the projections of the arcs forming the
boundary of B), and the goal is to determine whether any line in L crosses any arc in E. We
note that the halfspaces from which we obtain B come in pairs that are symmetric to each
other about the origin, so restricting the problem to the lower hemisphere incurs no loss of
generality. We also note that there might be situations in which one of the great circles is
fully contained in B, but these cases are easy to detect, e.g., by picking an arbitrary point
on each great circle and checking whether it belongs to B, using a suitable point-location
data structure on B.

To simplify the presentation, we assume that the arcs of E are elliptic arcs; handling the
cases of parabolic or hyperbolic arcs is done in essentially the same manner.
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Orient all the lines of L from left to right. We may assume that all the arcs in E are x-
monotone (otherwise we break each arc that is not x-monotone at its leftmost and rightmost
points, into at most three x-monotone subarcs). We orient all these (sub)arcs also from left
to right. We also treat separately convex arcs, namely arcs for which the tangent directions
turn counterclockwise as we traverse them from left to right, and concave arcs, for which
the tangent directions turn clockwise. The treatments of these two subfamilies are fully
symmetric, so we only consider the case of convex arcs.

A line ` intersects a convex x-monotone arc γ of some ellipse e, both oriented as above,
if and only if one of the following conditions holds.

(i) The two endpoints of γ lie on different sides of `. See Figure 2.10(i).

(ii) The two endpoints of γ lie to the left of ` and ` intersects e. For this to happen, γ
must have a tangent that is parallel to `. That is, the slope of ` must lie between the
slopes of the tangents to γ at its endpoints. When all these conditions hold, it suffices
to require that ` lies to the left of the right tangent to e with the same slope of `. See
Figure 2.10(ii,iii).

To test for intersections of type (i), we use a two-level data structure, where each level
is a standard tree-like range searching structure for points and halfplanes (see [1, 2]). The
first level collects the arcs that have one endpoint to the right of `, and the second level
tests whether any of these arcs has its other endpoint to the left of `. Using the standard
machinery for point-halfplane range searching (see, e.g., [1, Theorem 6.1], and also [2]), this
takes time OpM2{3N2{3polylogpM `Nqq “ Opn8{3polylogpM `Nqq.

To test for intersections of type (ii), we use a four-level data structure, where, as before,
the first two levels are standard range searching structures for points and halfplanes, so that
the first level collects the arcs that have their left endpoint to the left of `, and the second
level collects, from among the arcs in the output of the first level, those arcs that have their
right endpoint also to the left of `. The third level is a one-dimensional segment tree on
the interval ranges of the slopes of the tangents to the arcs, and it collects those arcs whose
tangent-slope range contains the slope of `. Finally, the fourth level tests whether any of the
arcs is such that its tangent that is parallel to ` passes to the right of `.

To implement the fourth level, we note that the lines that are tangent to the ellipse e and
have slope a can be written as y “ ax ` ϕ´e paq and y “ ax ` ϕ`e paq, with ϕ´e paq ă ϕ`e paq,
where ϕ´e paq and ϕ`e paq are algebraic functions of constant degree that depend on e. If `
has the equation y “ ax` b then we need to test whether there exists an ellipse e such that
b ą ϕ´e paq. We thus compute the lower envelope of the functions ϕ´e in time nearly linear in
the number of arcs, and then, given a line y “ ax ` b, we test whether the point pa, bq lies
above the envelope, in logarithmic time.

It is easy to see that in this case too, the overall cost is Opn8{3polylogpnqq. In conclusion,
we have shown:

Theorem 2.5. Given K and W as above, we can determine whether K can slide through W
in a collision-free manner, and, if so, find such a sliding motion, in time Opn8{3polylogpnqq.
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Figure 2.10: A line ` intersecting a convex x-monotone elliptic arc γ: (i) The two endpoints of
γ lie on different sides of `. (ii) The two endpoints lie to the left of ` and ` lies to the left of
the parallel tangent to the arc. (iii) The two endpoints lie to the right of ` (and then there is no
intersection). (iv) The two endpoints lie to the left of ` but γ has no tangent parallel to ` (and
then there is no intersection).

We are not aware of any published result that solves the specific problem at hand, of
determining whether any great circle in C crosses B, with comparable running time. A
different solution, with a similar performance bound, was suggested to us by Pankaj Agarwal,
and we thank him deeply for the useful interaction concerning this problem.
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3
Unbounded Windows

In this chapter we consider the variant of the general problem in which W is an infinite slab
in the xy-plane, bounded by, say, two vertical lines x “ 0 and x “ a. We refer to such a
window as a gate. The problem is to determine whether K can be moved through W , by an
arbitrary collision-free motion.

We claim that the problem can be reduced to the setup studied in the previous chapter,
of translation in a single direction (sliding).

We first establish this claim for the case where K is a smooth compact strongly convex
body, and then use a compactness argument to extend the result to convex polytopes. We
note that strong convexity is not needed for the analysis in this chapter, but only in subse-
quent chapters. To avoid duplication, we use the same scheme for approximating a convex
polytope, both here and in Chapter 4.

Let K be an arbitrary compact convex body in R3. Let h denote the xz-plane, and let
g :“ h XW , which is the segment 0 ď x ď a, z “ 0 within h. The two complementary
rays to g within the x-axis form the only obstacles within h. Let π denote the orthogonal
projection of 3-space onto h.

Assume thatK can be moved throughW by an arbitrary collision-free rigid motion, which
we represent as a continuous map on r0, 1s (a ‘time interval’), where, for each t P r0, 1s, Kptq
denotes the placement of K at time t during the motion. For each t P r0, 1s, BπpKptqq is the
projection of the silhouette of Kptq on h. It is a time-varying convex region within h, whose
shape is not rigidly fixed. For a convex polytope K, the projected silhouette BπpKptqq is a
time-varying convex polygon.

We have the following property, whose easy proof is omitted.

Lemma 3.1. The motion t ÞÑ Kptq is collision-free, and moves K through W from a
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placement Kp0q in the upper halfspace to a placement Kp1q in the lower halfspace, if and only
if the map t ÞÑ πpKptqq is collision-free within h, and moves the (time-varying) projection
πpKptqq through g from the placement πpKp0qq in the upper halfplane z ą 0 to the placement
πpKp1qq in the lower halfplane z ă 0.

We note that in Lemma 3.1 the body K is not required to be smooth, but this requirement
is needed for the proof of the following theorem.

Theorem 3.2. Let K be a smooth compact convex body that can be moved, by a collision-free
rigid motion, through W from a placement in the upper halfspace z ą 0 to a placement in
the lower halfspace z ă 0. Then there exists a sliding collision-free motion of K through W .

Proof. Let K be as in the theorem, and let t ÞÑ Kptq be a collision-free rigid motion that
takes K through W , as in the theorem statement. For each t, πpKptqq is also smooth (as a
planar convex region). Put κptq :“ πpKptqq X g, which is a subsegment of g (by assumption,
and by Lemma 3.1, the intersection of πpKptqq with the x-axis is always fully contained in
g). κptq is empty at the begining and at the end of the motion, namely during some prefix
interval and some suffix interval of r0, 1s (if the motion is ‘crazy’ enough, κptq might also be
empty during some other inner intervals of r0, 1s). Nevertheless, since πpKptqq crosses g from
side to side, there must exist at least one closed maximal connected interval I “ rt1, t2s within
r0, 1s such that κptq ‰ H for all t P I, and such that κpt1q and κpt2q are singletons, so that
κpt1q (resp., κpt2q) is the z-lowest (resp., z-highest) point of πpKpt1qq (resp., of πpKpt2qq).
See Figure 3.1 for an illustration.

Denote, for t P I, the left and right endpoints of κptq by κ´ptq and κ`ptq, respectively,
and let τ´ptq (resp., τ`ptq) denote the tangent to πpKptqq at κ´ptq (resp., at κ`ptq), where
we orient both tangents so that πpKptqq lies to their right.

Since πpKptqq is smooth, the two tangents are well defined and unique. Moreover, since
the motion of Kptq is continuous, so is the ‘motion’ of πpKptqq, and this is easily seen to
imply that the directions µ´ptq of τ´ptq, and µ`ptq of τ`ptq are also continuous functions of
t.

Consider the map ϕptq that maps t P I to the counterclockwise angle between µ´ptq and
µ`ptq. The map is undefined at t1 and at t2, but we assume that it is defined everywhere in
the interior of I (as would be the typical situation—see the comment made earlier). ϕptq is
clearly a continuous function. For t slightly larger than t1, ϕptq has a small positive value,
and for t slightly smaller than t2, ϕptq is close to 2π. It follows, by continuity, that there
exists t0 P I for which ϕpt0q “ π, that is, the two tangents at κ´pt0q and at κ`pt0q are parallel
to each other. This means that πpKpt0qq is contained in the slab σ, within h, bounded by
the two tangent lines. This in turn implies that Kpt0q is contained in the three-dimensional
slab S which is the Cartesian product of σ and the y-axis. Moreover, the intersection of S
with the xy-plane is a y-vertical slab that is contained in W (see Figure 3.2 for illustration).
This in turn means that, if we fix the orientation of K to be that of Kpt0q, we can slide K
within S through W (note that there are infinitely many ways to do so, each with its own
y-component of the sliding direction). This completes the proof. l
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Figure 3.1: Moving the projection of K through g. Top: At the beginning of the crossing of g,
the tangents τ´ptq and τ`ptq ‘open up’ (with respect to their sides that contain Kptq). Bottom:
At the end of the crossing, they ‘open down’.
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Figure 3.2: The critical instance t0 where the tangents at κ´pt0q and at κ`pt0q become parallel.

To extend Theorem 3.2 to the case where K is a polytope, we use the following approx-
imation scheme. Let D be some ball fully contained in K, with center c and radius ρ. For
each δ ą 0, let Lδ be the Minkowski sum of K and a ball centered at the origin with radius
δ, and define a map fδ on S2, so that, for each ~v P S2, fδp~vq “ p1 ´ δqgp~vq ` δρ, where gp~vq
is the distance from c to BLδ in direction ~v. Define Kδ to be

Kδ “ tc` tfδp~vq~v | ~v P S2, t P r0, 1su,

scaled down by a factor of 1` δ. See Figure 3.3 for an illustration.

Figure 3.3: A two-dimensional illustration of the scheme for approximating a convex polytope by
smooth strongly convex bodies: the convex polygon (blue), Minkowski sum with a small circle
(green) and Kδ (black).

It is easily seen that Kδ is a smooth compact strongly convex object that is contained
in K, and that Kδ Ñ K as δ Ñ 0, in the sense that the Hausdorff distance between K and
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Kδ tends to zero. Clearly, if K can be moved through W (by an arbitrary collision-free rigid
motion), then so can Kδ.

For each δ ą 0, apply Theorem 3.2 to Kδ, to obtain a direction ~vδ and a rotation θδ
orthogonal to ~vδ so that there is a sliding collision-free motion of Kδ in direction ~vδ from its
view p~vδ, θδq through W . By compactness of S2, there exists a sequence δi Ó 0 such that ~vδi
converges to some direction ~v in S2, and θδi converges to some rotation θ. By continuity, it
follows that there exists a sliding collision-free motion of K through W in direction ~v from
its view p~v, θq. That is, we have obtained the following result.

Theorem 3.3. Let K be a convex polytope that can be moved by some collision-free rigid
motion through a gate W . Then there exists a sliding collision-free motion of K through W .

We can therefore apply the machinery of Theorem 2.5, and conclude that we can deter-
mine whetherK can be moved throughW by a collision-free motion in timeOpn8{3polylogpnqq.
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4
From Passing Through an Arbitrary Convex

Window to Sliding Through a Gate

In this chapter we prove a similar yet different property of a convex polytope passing through
some window. Here the window W is an arbitrary compact planar convex shape, not neces-
sarily rectangular.

Theorem 4.1. Let W be an arbitrary compact convex region in the xy-plane. Let K be a
convex polytope that can be moved by some collision-free motion through W , and let d be
the diameter of W (the maximum distance between any pair of points in W ). Let h be an
arbitrary plane, and let Kh be the projection of K on h. Then Kh can be rigidly placed
between two parallel lines at distance d. That is, for any fixed direction ~v, K can slide in
direction ~v through a gate of width d, in a plane perpendicular to ~v.

Before giving the proof, here is an interesting corollary of the theorem.

Corollary 4.2. If K can be moved through a rectangular window W of dimensions aˆ b by
some collision-free motion, then K can slide through a rectangle of dimensions min pa, bq ˆ?
a2 ` b2.

Proof. Assume without loss of generality that a ă b. Since K can be moved by a collision-
free motion through a rectangle of dimensions aˆ b it can be moved through a gate of width
a, which we also assume to lie in the xy-plane. Therefore, by Theorem 3.3, K can slide
through that gate, and Lemma 2.1 then implies that there exists a placement K0 of K from
which it can slide through the gate in the negative z-direction. Now project K0 on the yz-
plane and use Theorem 4.1 to place the projection between two parallel lines l1, l2 at distance?
a2 ` b2 (which is the diameter of W in this case), which, by rotating K0 around the x-axis,
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we can assume to be perpendicular to the xy-plane. All this implies that the xy-projection
of (a rotated copy of) K0 is contained in a rectangle of the asserted dimensions. Indeed, the
projection of K0 is contained in a y-vertical gate of width a, and this property remains true
after we rotate K0 around the x-axis. Therefore K can slide through such a rectangle in the
negative z-direction (see Figure 4.1). l

Figure 4.1: K can slide through a rectangle of dimensions aˆ
?
a2 ` b2. (top) The projection of

K on the xy-plane is contained in a gate of width a (the black lines), and the projection of K on
the yz-plane is contained between l1, l2 (orange). (bottom) After rotating K around the x-axis,
l1, l2 are perpendicular to the xy-plane and the projection of K on the xy-plane is contained in
such a rectangle.

We move now to prove the theorem.

Proof of Theorem 4.1. As before, we will first prove the theorem for smooth strongly
convex compact bodies, and then extend the result to polytopes the same way as we did
in the previous chapter. Consider the motion of K, now assumed to be smooth, strongly
convex, and compact, in the normal setup, where W remains stationary in the xy-plane and
K moves, during the time interval r0, 1s. We assume that at t “ 0 (resp., at t “ 1), K lies
fully above (resp., below) the xy-plane.

Fix some direction ~v, and let C “ Cp~vq denote the silhouette of K when viewed in
direction ~v. Let h be some plane orthogonal to ~v, and let πh denote the orthogonal projection
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onto h. Parameterize a point u P C by the orientation θ of the tangent at πhpuq to Kh :“
πhpKq which is well defined since K is smooth, and let γh be the inverse of πh; that is, γhpθq
is the unique point u P C such that πhpuq “ θ. Since K is assumed to be strongly convex,
Kh is also strongly convex, and γ is a well-defined and continuous function on S1. We extend
γ to a bivariate function γ˚ : S1ˆr0, 1s ÞÑ R3, so that γ˚pθ, tq is the position (in the ambient
3-space) of γpθq at time t during the motion of K.

Let δ : S1 ˆ r0, 1s ÞÑ R be the function δpθ, tq “ zpγ˚pθ, tqq, namely, the z-coordinate of
the corresponding point γpθq of C at time t. Note that at time t “ 0 (resp., at time t “ 1), δ
is positive (resp., negative) at each θ, since K lies fully above (resp., below) the xy-plane at
that time. Put M :“ maxθPS1 δpθ, 0q and m :“ minθPS1 δpθ, 1q. By our assumptions, M ą 0
and m ă 0.

The functions δ0pθq “ δpθ, 0q and δ1pθq “ δpθ, 1q are defined and continuous on S1, and
we extend each of them to the closed unit disk B1 bounded by S1, in polar coordinates,
which, for technical reasons, we write in reverse order as pθ, rq, by

δ˚0 pθ, rq “ rδ0pθq ` p1´ rqM

δ˚1 pθ, rq “ rδ1pθq ` p1´ rqm.

It is easily checked that these extensions are well defined and continuous over B1. Moreover,
δ˚0 pθ, rq ą 0 and δ˚1 pθ, rq ă 0 for every θ.

We now take our function δ, which is so far defined on the side surface S of the cylinder
S1 ˆ r0, 1s, and extend it to the entire boundary S˚ :“ S YB0 YB1 of the cylinder, so that
δ coincides with δ˚0 on the base B0 of the cylinder at t “ 0, and with δ˚1 on the base B1 at
t “ 1. Clearly, the extended δ is well defined and continuous over S˚.

To simplify the forthcoming analysis, we identify S˚ with the unit sphere S2, which we
parameterize by pθ, zq, where θ P S1 is the horizontal orientation of the point on S2 and z
is its z-coordinate (so θ is not well defined at the north and south poles of S2). We use the
simple homeomorphism f that maps a point pθ, tq P S to pθ, t ´ 1{2q P S2, maps a point
pθ, rq P B0 to pθ,´1 ` r{2q P S2, and maps a point pθ, rq P B1 to pθ, 1 ´ r{2q P S2. See
Figure 4.2 for an illustration. In what follows, we will mostly use S2 to represent S˚, except
for a few technical observations.

Define a function G from S2 to R2 by

Gpθ, tq “ pδpθ, zq, δpθ ` π, zqq , for pδ, zq P S2.

Our goal is to show that GpS2q contains the origin. Note that, by construction, GpfpB0qq

is fully contained in the positive quadrant Q1 :“ tpx, yq | x, y ą 0u, and GpfpB1qq is fully
contained in the negative quadrant Q3 :“ tpx, yq | x, y ă 0u. Thus, if GpS2q contains the
origin then so does GpfpSqq. Once this property is established, it provides us with a pair
pθ, zq such that δpθ, zq “ δpθ ` π, zq “ 0, which means that there are two antipodal points
u, v P C that pass through W simultaneously. Therefore their distance must be at most
the diameter of W , and hence also the distance between the parallel tangent planes through
them, which is a slab parallel to ~v of width at most d that contains K, as asserted.
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Figure 4.2: Identifying S˚ with the unit sphere S2. B0 is shown in green, B1 in orange, and S
in light blue. In (i) S˚ is depicted, in (ii) an intermediate snapshot of the deformation is shown,
for visual convenience, and in (iii) the final unit ball is shown, divided into the three parts that
correspond to B0, S and B1.

Assume to the contrary that GpS2q does not contain the origin. Then we can normalize
G to the function

Hpθ, zq :“
Gpθ, zq

}Gpθ, zq}
, for pθ, zq P S2,

which maps S2 continuously to the unit circle S1. The function G, and thus also the function
H, are symmetric with respect to the line y “ x in R2, meaning that

Gpθ ` π, zq “ ΣpGpθ, zqq, for pθ, zq P S2, and thus also

Hpθ ` π, zq “ ΣpHpθ, zqq, for pθ, zq P S2,

where Σ is the reflection about y “ x, that is, Σpx, yq “ py, xq.

We now use the property that the real line is a covering space of S1, in the specific (and
easily verified) sense that the continuous map p : R ÞÑ S1, given by ppxq “ e2πix, for x P R, is
surjective, and, for each ζ P S1, there exists an open neighborhood U of ζ such that p´1pUq
is the disjoint union of open sets in R, each of which is mapped homeomorphically to U by
p. The map p is called the covering map.

A well known property of covering spaces is the lifting property (reviewed, e.g., in [17];
see also [16]), a special case of which asserts, in the specific context used here, that, if ϕ
is any continuous map from S2 to S1 then ϕ can be lifted to a map ψ : S2 ÞÑ R, so that
p ˝ ψ “ ϕ. (Technically, this property holds when the domain of ϕ (and ψ), which is S2 in
our case, is path connected, locally path connected, and simply connected, conditions that
are trivially satsfied by S2. Hence the lifting ψ does indeed exist.)

Applying the lifting property to the function H, we get a continuous mapping T : S2 ÞÑ R,
such that p ˝ T “ H, so we have the property that

ppT pθ ` π, zqq “ ΣpppT pθ, zqqq, for pθ, zq P S2.

As is easily checked, we have Σ peiyq “ eipπ{2´yq, and therefore, for a point x P R, we have

Σpppxqq “ Σ
`

e2πix
˘

“ eπi{2´2πix “ pp1{4´ xq, so
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ppT pθ ` π, zqq “ pp1{4´ T pθ, zqq, for pθ, zq P S2.

This in turn implies, by the definition of p, that

T pθ ` π, zq “ 1{4` kθ,z ´ T pθ, zq,

for some integer kθ,z. However, since T is continuous, there must be a single integer k such
that kθ,z ” k for all θ and z. That is, we have

T pθ ` π, zq ` T pθ, zq “ 1{4` k, for all pθ, zq P S2. (4.1)

By an easy application of the mean-value theorem (which is also a special case of the Borsuk-
Ulam theorem in dimension 1), there exist θ0 and θ1 such that, recalling that the value
z “ ´1{2 (resp., z “ 1{2) corresponds to points on the lower (resp., upper) circle bounding
S,

T pθ0 ` π,´1{2q “ T pθ0,´1{2q

T pθ1 ` π, 1{2q “ T pθ1, 1{2q.

Substituting in (4.1), we get

T pθ0,´1{2q “ T pθ1, 1{2q “ 1{8` k{2.

However, by construction, Hpθ0,´1{2q lies in the first quadrant Q1, and Hpθ1, 1{2q lies in the
third quadrant Q3. Hence we have T pθ0,´1{2q P p0, 1{4q`Z and T pθ1, 1{2q P p1{2, 3{4q`Z,
but 1{8` k{2 can belong to only one of these sets (depending on whether k is even or odd).
This contradiction shows that GpS2q, and thus also GpfpSqq, contains the origin, as asserted.

So far the proof was for a smooth strongly convex compact bodies. The extension to
the case of a convex polytope K is done exactly as in the proof of (that is, the argument
preceding) Theorem 3.3. l

A second proof. We provide an alternative proof of Theorem 4.1, and we are grateful to
Boris Aronov for providing to us its main ingredients.

We use the same notations as in the previous proof. Similar to the first proof, the
following, slightly more generally stated proposition is the main technical tool that we need.

Proposition 4.3. Let G : S Ñ R2 be a continuous map, interpreted as the homotopy of
the closed curve δ0 : S1 Ñ Q1 Ă R2, given by θ ÞÑ Gpθ, 0q, to the closed curve δ1 : S1 Ñ

Q3 Ă R2, given by θ ÞÑ Gpθ, 1q. In addition, suppose that G is symmetric, in the sense that
Gpθ ` π, tq “ ΣpGpθ, tqq, for all θ P S1 and t P r0, 1s. Then there exist θ P S1, t P R that
satisfy Gpθ, tq “ O, that is, G cannot miss the origin.

Proof. Clearly, if Gpθ, tq “ O then we also have Gpθ ` π, tq “ O. Hence it suffices to show
that there exists pθ, tq in D :“ r0, πs ˆ r0, 1s (half the side surface of the cylinder) such that
Gpθ, tq “ O. Let Π be the image of D under G.
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Consider the curve γ0 : r0, 1s Ñ S defined by t ÞÑ p0, tq, and its image Γ0 under G,
i.e., Γ0ptq “ Gp0, tq P R2. Let γ1 and Γ1 be defined similarly by γ1ptq :“ pπ, tq, so that
Γ1ptq “ Gpπ, tq. Let γ11 and Γ11 be the reverses of γ1 and Γ1, respectively — the same curves
traversed in reverse direction.

Additionally, let ζ0, ζ1 : r0, πs Ñ S be the “half-circles” defined by θ ÞÑ pθ, 0q and θ ÞÑ
pθ, 1q, respectively, and Zi :“ G ˝ ζi, for i “ 0, 1. Let ζ 10 and Z 10 be the reverses of ζ0 and Z0,
respectively. See Figure 4.3 for an illustration.

Figure 4.3: The boundary of half the cylinder is mapped to a closed loop with a nonzero winding
number around the origin. Note that γ0 and γ1 are symmetric about the axis of the cylinder, and
therefore Γ0 “ ΣpΓ1q.

Concatenating γ0, ζ1, γ
1
1, and ζ 10 in this order, we obtain a closed loop ` in S, which is

the boundary of D, and its corresponding image L :“ Gp`q in the plane. By construction,
` bounds the topological disk r0, πs ˆ r0, 1s in S. and L is a closed loop in R2. We prove
below that, if O R L, then L has a non-zero winding number around O. Given this property,
we claim that O must lie in Π “ Gpr0, πs ˆ r0, 1sq. Indeed, if O R Π then Π is contained in
the punctured plane at the origin. Since L has a nonzero winding number around O, it is
homotopic, within Π, to a curve obtained by looping around the origin a nonzero number of
times. This curve is not homotopy-trivial—it is not homotopic to a point (within Π). On
the other hand, ` is clearly homotopy-trivial within D, and therefore L “ Gp`q is homotopic
to a single point within GpDq “ Π, a contradiction that establishes the proposition. l

To complete the proof, we thus show:

Claim 4.4. In the notation of the above proof, if L misses O, then the winding number of
L around O is non-zero.

Proof. Let argpx, yq be the clockwise angle that the vector px, yq makes with the positive
x-axis and let, for a section λ of L, ∆λ be the integral of the change in arg λptq as t traces
out λ from start to finish.

We will compute the winding number of L around the origin by breaking L into sections
λ, computing the angle change ∆λ for each section, and adding up the numbers.
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Let α :“ argGp0, 0q P p0, π{2q. Then by Σ-symmetry argGpπ, 0q “ π{2 ´ α. Similarly,
put β :“ argGp0, 1q P pπ, 3π{2q, so that argGpπ, 1q “ 5π{2 ´ β P pπ, 3π{2q. Since Z0 Ă Q1

(so Z0 cannot wind around O), ∆Z0 “ argGpπ, 0q ´ argGp0, 0q “ pπ{2´αq ´α “ π{2´ 2α
and ∆Z 10 “ ´∆Z0 “ 2α ´ π{2. Similarly, since Z1 Ă Q3, ∆Z1 “ argGpπ, 1q ´ argGp0, 1q “
p5π{2´ βq ´ β “ 5π{2´ 2β.

Γ0 connects Gp0, 0q to Gp0, 1q, so ∆Γ0 “ argGp0, 1q ´ argGp0, 0q ` 2πk “ β ´ α ` 2πk,
for some integer k, over which we have no control as we do not know how many times Γ0

winds around the origin (we use here the assumption that Γ0 avoids the origin). Because of
Σ-symmetry, we must have ∆Γ1 “ ´∆Γ0 and therefore ∆Γ11 “ ´∆Γ1 “ ∆Γ0.

To summarize, the total change of the angle around L is equal to

∆Γ0 `∆Z1 `∆Γ11 `∆Z 10 “ 2∆Γ0 `∆Z1 `∆Z 10
“ 2pβ ´ α ` 2πkq ` p5π{2´ 2βq ` p2α ´ π{2q

“ 2πp2k ` 1q.

In particular, the total angle is not zero, no matter what the value of the integer k is, thereby
completing the proof.

The remainder of the argument, namely that Proposition 4.3 implies the theorem, and
the extension to the case of convex polytopes, is done exactly as in the first proof, thereby
completing this second proof of the theorem. l

32



5
Purely Translational Motions

In this chapter we solve another special case of the problem, in which arbitrary translations
are allowed, with all three degrees of freedom, but rotations are not allowed. This case is
solved by an easy combination of what we have proved so far. The following theorem is, in
a sense, a strengthening of Lemma 2.1.

Theorem 5.1. If K can be moved through a rectangular window W by some purely trans-
lational collision-free motion, then K can be moved through W , possibly from some other
(translated and rotated) starting position, by sliding in the z-direction.

Proof. Again, we first carry out the proof for the case where K is a smooth compact strongly
convex body in three dimensions, and then extend the proof to the case where K is a convex
polytope. We recall the proof of Theorem 3.2 and follow the notations used there. When K
translates through W , its projection on the xz-plane is a fixed convex region that translates
through the interval g on the x-axis, which is the x-projection of W . By the argument in
the proof of Theorem 3.2, there is a time t during the motion at which the tangents τ´

and τ` become parallel, and form, when extended in the y-direction, a (possibly slanted)
slab S that is orthogonal to the xz-plane, and that contains the placement of K at time
t, so that the intersection of S with the xy-plane is a y-vertical strip of width at most a,
whose x-projection is contained in that of W . Applying the same argument to the yz-plane
(swapping the x- and y-directions), we get another time t1 at which K is contained in another
slab S 1, orthogonal to the yz-plane, whose intersection with the xy-plane is an x-horizontal
strip of width at most b, whose y-projection is contained in that of W (see Figure 5.1).

Hence, the intersection τ “ S X S 1 is a (slanted) prism, whose cross-section with the
xy-plane is a rectangle contained in W . Moreover, as is easily verified, τ contains some
translated copy K0 of K. Hence, K can slide through W from its placement K0 in the
unbounded direction of τ . By Lemma 2.1, K can also slide through W in the z-direction,
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from a different, possibly rotated, initial placement.

The case where K is a convex polytope can be handled by the same limiting argument
given in the proof of Theorem 3.3. l

Figure 5.1: Some translated copy of K is contained within a slab S perpendicular to the xz-plane,
and some other translated copy of K is contained in a slab S 1 perpendicular to the yz-plane, so
that the x-projection of the intersection of S with the xy-plane is contained in that of W , and
the y-projection of the intersection of S and the xy-plane is contained in that of W . We can
thus translate K to a placement contained in the prism S X S 1, from which K can slide through
the intersection of S X S 1 and the xy-plane (the black rectangle, which is contained in W ).

This leads to an efficient algorithm, with running time Opn8{3polylogpnqq, for the problem
considered in this chapter, following the algorithm given in Chapter 2.
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6
Rotations Are Needed

So far we have considered sliding motions of a convex polytope through a window, and
showed that in several cases it suffices to consider only such motions. However, this is not
the case in general. We show in this and the following chapter that in general rotations are
needed to obtain a collision-free motion of the polytope through the window.

Lemma 6.1. let W be a squared window with side length
?

5. Let A “ p0, 0, 0q, B “

p1, 3, 0q, C “ p1, 0, hq, D “ p0, 3, hq be four points, where h " 1 is a sufficiently large param-
eter. Let K be the tetrahedron ABCD (see Figure 6.1). Then:

1. K cannot pass through W by any purely translational collision-free motion (for suffi-
ciently large h " 1).

2. K can pass through W by a collision-free motion with only two degrees of freedom:
translating in the z-direction combined with horizontal rotation (for any value of h ą 0).

Proof.

1. Assume to the contrary that there exists a purely translational motion of K through
W . By Theorem 5.1, there exists some placement K0 of K from which K can slide through
W in the negative z-direction. Let πpK0q denote the vertical projection of K0 onto the
xy-plane. By the theorem, πpK0q can be rigidly placed inside W . Recall now that h is very
large, which implies that, when transforming K to K0, the z-vertical direction turns by only
a very small angle, for otherwise πpK0q would be very long and would not fit into such a
square. More formally, for every ε ą 0 there exists h0 such that for every h ą h0 the angle
by which the z-axis turns from K to K0 is at most ε. As ε decreases to zero, the lengths
of the projections of the segments AB,CD grow to

?
10, which is their original length, and

the angle between them converges to some 0 ă φ ă π
2

(the exact angle is the angle obtained
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Figure 6.1: The tetrahedron K “ ABCD.

when the z-axis remains the same, which is then φ “ 2 sin´1 1?
10

). Therefore, the projection

πpK0q is the convex hull of two segments of length sufficiently close to
?

10, which is the
diagonal of W , where the angle between them is sufficiently far from 0, π{2. Hence πpK0q

cannot be placed inside a square with side length
?

5. This contradiction establishes the first
part of the theorem.

2. We move W instead of K, allowing it only to translate in the z-direction (so it always
remains horizontal), and simultaneously rotate around its center (so the motion of W has
only two degrees of freedom). More concretely, the center of W moves up along the line
x “ 1{2, y “ 3{2. We parameterize the motion by a parameter c P r0, 1s, so that at time
c, W lies on the plane z “ ch and its center is at p1{2, 3{2, chq. See Figure 6.2(left) for a
schematic top view of K.

The cross section Kc of K at time c is shown (in green) in Figure 6.2(right). It is a
quadrilateral PQRS, with P “ pc, 0q, Q “ p1, 3p1 ´ cqq, R “ p1 ´ c, 3q and S “ p0, 3cq.
We place W around Kc so that PR lies at the middle of one diagonal of W (so W keeps
rotating to align with this rotating segment). It is clear that the motion of W is continuous,
and it remains to show that Kc always lies in (the placement at height ch, with the aligned
diagonals, of) W .

It suffices to show that, at any time c during the motion, ∆PRS is contained in the
isosceles right triangle with hypotenuse PR (this triangle is half of W , and the argument for
the complementary half and for ∆PQR is fully symmetric). For this, it suffices to show that
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Figure 6.2: Placing the cross section of K inside W . Left: A schematic top view of K. Right:
The cross section of K at time c (green), and a copy of W that contains it.

each of the angles ?SPR, ?SRP is smaller than π{4. Note that the edges of PQRS have
fixed slopes, namely 3 and ´3, as they are parallel to the xy-projections of AB and CD.
This implies that tan ?SPQ “ tan ?SRQ “ 3

4
ă 1, so ?SPQ “ ?SRQ ă π{4. We have

thus shown that K can move through W by (the dual version of) this motion, of translation
in the z-direction combined with horizontal rotation. l
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7
The Case of a Circular Window

In this chapter we study the case where W is a circular window, of some diameter d. There
are (at least) three possible types of motion of K through W : sliding, purely translational
motion, and general motion, with all six degrees of freedom. In this chapter we show that
these types are not equivalent. Our two main results are: (a) There are situations in which
K can pass through W by a purely-translational collision-free motion but K cannot slide
through W . (b) There are situations in which K can pass through W by a general collision-
free motion but K cannot pass through W by a purely-translational motion.

We prove both results for the case where K is a regular tetrahedron of side length 1. We
do so by showing the existence of two threshold parameters δ2 ă δ1 ă 1, so that, denoting by
diampW q the diameter of W , (i) K can slide through W if diampW q ě 1, (ii) K cannot slide
through W , but can pass through W by a purely translational motion, if δ1 ď diampW q ă 1,
(iii) K cannot pass through W by a purely translational motion, but can pass through W
by a general motion, if δ2 ď diampW q ă δ1, and (iv) K cannot pass through W at all if
diampW q ă δ2.

Approximate values for these thresholds, obtained numerically, are δ1 « 0.901388 and
δ2 « 0.895611.

7.1 Purely Translational Motion

Let K be a regular tetrahedron of side length 1. Assume first that diampW q ě 1. Then it is
easy to show that K can slide through W . This is because K can be enclosed in a cylinder
of diameter 1, such as a cylinder (of diameter 1) whose axis is orthogonal to two opposite
edges of K. The interesting case is therefore when diampW q ă 1. We then have:
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Theorem 7.1. Let W be a circular window of diameter d.

(1) K cannot slide through W , at any fixed orientation, if d ă 1.

(2) There exists a threshold δ1 « 0.901388, such that K can pass through W by a collision-
free purely translational motion, if d ě δ1.

Proof.

(1) First, by the argument in the proof of Lemma 2.1, the projection of W on any plane can
be rigidly placed inside W (for a circular window, the argument is actually simpler, since the
projection is an ellipse whose major axis equals to the diameter of W ), so, arguing as in the
proof of Lemma 2.1, any polytope that can slide through W can also slide in the direction of
the z-axis. It therefore suffices to show that K cannot be contained in a cylinder of diameter
smaller than 1.

A proof of this fact can be found in [18]. For the sake of completeness, we reproduce here
the proof. We first note that for any four vectors ~v1, ~v2, ~v3, ~v4 the following identity holds:

1

2

4
ÿ

i“1

4
ÿ

j“1

|~vi ´ ~vj|
2
“ 3

4
ÿ

i“1

|~vi|
2
´ 2

ÿ

1ďiăjď4

x~vi, ~vjy “ 4
4
ÿ

i“1

|~vi|
2
´

ˇ

ˇ

ˇ

ˇ

ˇ

4
ÿ

i“1

~vi

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Let K be the tetrahedron whose vertices are:

~v1 “
1
?

24
p0, 0, 3q, ~v2 “

1
?

24
p
?

8, 0,´1q,

~v3 “
1
?

24
p´
?

2,
?

6,´1q, ~v4 “
1
?

24
p´
?

2,´
?

6,´1q.

It is indeed a regular tetrahedron of side length 1:

|~v1 ´ ~v2|
2
“

1

24
p8` 16q “ 1, |~v1 ´ ~v3|

2
“

1

24
p2` 6` 16q “ 1,

|~v1 ´ ~v4|
2
“

1

24
p2` 6` 16q “ 1, |~v2 ´ ~v3|

2
“

1

24
p18` 6q “ 1,

|~v2 ´ ~v4|
2
“

1

24
p18` 6q “ 1, |~v3 ´ ~v4|

2
“

1

24
p24q “ 1.

Represent vectors in our 3-dimensional space as 3ˆ1 column vectors. By some more algebra,
we obtain

4
ÿ

i“1

~vi~vi
T
“

1

24

»

–

¨

˝

0 0 0
0 0 0
0 0 9

˛

‚`

¨

˝

8 0 ´
?

8
0 0 0

´
?

8 0 1

˛

‚

fi

fl`

`
1

24

»

–

¨

˝

2 ´
?

12
?

2
´
?

12 6 ´
?

6
?

2 ´
?

6 1

˛

‚`

¨

˝

2
?

12
?

2
?

12 6
?

6
?

2
?

6 1

˛

‚

fi

fl “
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1

24

¨

˝

12 0 0
0 12 0
0 0 12

˛

‚“
1

2
I3.

Therefore, for any unit vector ~n the following equation is satisfied:

4
ÿ

i“1

x~vi, ~ny
2
“

4
ÿ

i“1

|~vi
T~n|2 “

4
ÿ

i“1

Tr
`

p~vi~vi
T
q ¨ p~n~nT q

˘

“
1

2
Trp~n~nT q “

1

2
.

Note that
4
ř

i“1

vi “ 0, and hence:

ÿ

1ďiăjď4

x~n, ~vi ´ ~vjy
2
“

1

2

4
ÿ

i“1

4
ÿ

j“1

x~n, ~vi ´ ~vjy
2
“ 4

4
ÿ

i“1

x~n, ~viy
2
“ 2.

Assume that the smallest cylinder that contains K has diameter d. Let h be a plane per-
pendicular to the axis of the cylinder, let ~n1, ~n2 be two orthogonal unit vectors in h, let ~ui
be the projection of ~vi on h, for 1 ď i ď 4, and put ~lij “ ~ui ´ ~uj. It is easy to see that

|~lij|
2
“ |~ui ´ ~uj|

2
“ x ~n1, ~ui ´ ~ujy

2
` x ~n2, ~ui ´ ~ujy

2
“ x ~n1, ~vi ´ ~vjy

2
` x ~n2, ~vi ´ ~vjy

2.

We thus have
ř

1ďiăjď4

|~lij|
2 “ 4. Consider the coordinate system in h whose axes are parallel

to ~n1 and ~n2, and whose origin is at the center of the intersection circle of h and the cylinder.
In this coordinate system we have |~ui| ď

d
2

for each i. Note that ~lij remains the same and

that
4
ř

i“1

~ui “ 0, as the projection of
ř4
i“1 ~vi “ 0, and we thus obtain:

ÿ

1ďiăjď4

|~lij|
2
“

ÿ

1ďiăjď4

|~ui ´ ~uj|
2
“ 4

4
ÿ

i“1

|~ui|
2
ď 16

ˆ

d

2

˙2

“ 4d2.

Finally we get that 4 “
ř

1ďiăjď4

|~lij|
2 ď 4d2, so d ě 1, but in our case the diameter of

W is strictly smaller than 1. We therefore conclude that K cannot slide through W , thus
establishing Part (1).

(2) We now prove that although K cannot slide through W , it can pass through W by a
purely translational movement, provided that d “ diampW q is at least some threshold δ1 ă 1,
whose concrete value will be analyzed below. This holds for many orientations of K (but
not for all orientations); this set of admissible orientations keeps shrinking as d approaches
δ1.

Assume for now that the orientation of K is fixed. We claim that K can move through
W at this fixed orientation, as above, if and only if every horizontal cross section of K can
be enclosed in a disc of diameter d; that is, the smallest enclosing disc of each cross section
has diameter at most d. We refer to this property as the small diameter property. The ‘only
if’ part is obvious. We briefly explain the ‘if’ part. Let Kpzq be the cross section of K at
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height h. For every x P BKpzq let cx be a horizontal circle of diameter d centered at x.
That is, all the points within the plane of the cross section whose distance from x is at most
d
2
. Clearly, the intersection Rpzq “

Ş

xPBKpzq

cx denotes the set of all available positions for

the center of W within that plane, such that it contains the cross section Kpzq. Kpzq is a
continuous function of z in the Hausdorff metric of sets, and hence so is Rpzq. This is easily
seen to imply that we can choose the position of the center of W for every cross section in
a way that is continuous in z.

Assume without loss of generality that the initial placement of K is with its lowest vertex
at z “ 0, and let h denote the z-coordinate of the highest vertex. As above, denote by Kpzq
the cross section of K at height z, for z P r0, hs. Assume without loss of generality that all
four vertices have distinct z-coordinates, and that the order of increasing z-coordinates of
the vertices is A, B, C, D; that is, zA ă zB ă zC ă zD.

We claim that the small diameter property holds if and only if it holds for KpzBq and
KpzCq. Indeed, observing that these two cross sections are triangles, assume without loss of
generality that the radius ρ of the smallest enclosing disc DB of KpzBq is larger than or equal
to that of KpzCq. Enclose KpzCq by some disc DC of radius ρ, and let E be the convex hull of
DBYDC , which is a possibly slanted elliptic cylinder, each of whose horizontal cross sections
is a congruent copy of the disc DB. Since K has no vertices in the open slab zB ă z ă zC ,
it follows that the portion of K within the closed slab zB ď z ď zC is the convex hull of
KpzBq YKpzCq, and is therefore fully contained in E. Hence, for every zB ă z ă zC , Kpzq
is contained in a disc of radius ρ. The cases of the slabs zA ă z ă zB and zC ă z ă zD are
argued in the same manner. This establishes our claim.

In other words, we want to find orientations of K for which the (triangular) horizontal
cross sections at the two middle vertices of K (in the z-direction) have smallest enclosing
discs of diameters smaller than 1.

Denote the cross section KpzBq through B by BUV , where U is the point AC XKpzBq
and V is the point ADXKpzBq. Put x “ |AU | and y “ |AV |, so 0 ď x, y ď 1. Similarly, we
write the triangular cross section KpzCq through C as CST , where S is the point ADXKpzCq
and T is the point BD XKpzCq, and put z “ |SD| and w “ |TD|, so again 0 ď z, w ď 1.
See Figure 7.1 for an illustration. Note that we must have x ą y and w ą z, for otherwise
A and D would not have been the two z-extreme vertices of K.

The requirement that these two cross sections be parallel imposes the following relations
between x, y, z, and w.

z “
x´ y

x
(7.1)

w “
x´ y

xp1´ yq
.

Indeed, since the two cross sections are parallel, they intersect any plane (not parallel
to them) at parallel lines. In particular, we have UV ‖ CS and TS ‖ BV , so the triangles
AUV and ACS are similar, and so are the triangles DST and DV B. The first similarity
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Figure 7.1: The horizontal cross sections of a regular tetrahedron through its two middle vertices.

implies that

x “
AU

AC
“
AV

AS
“

y

AS
,

so AS “ y{x, and then

z “ AD ´ AS “ 1´ AS “
x´ y

x
.

The second similarity implies that

w “
DT

DB
“
DS

DV
“

z

1´ y
“

x´ y

xp1´ yq
,

thus establishing (7.1).

Note that, once we enforce x ą y, the second inequality w ą z trivially holds.

The goal is then to search for orientations of K and for suitable choices of x and y
(and thus of z and w too) for which the two cross sections have smallest enclosing discs of
diameters smaller than 1. This is done as follows.

For a triangle ∆ of side lengths a, b, c, the circumradius rp∆q of ∆ is given by the formula

rp∆q “
abc

4 ¨ Areap∆q
.

The area can be expressed by Heron’s formula as

Areap∆q2 “ πpπ ´ aqpπ ´ bqpπ ´ cq,
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where π “ pa` b` cq{2 is half the perimeter. That is, we have

Areap∆q2 “
1

16
pa` b` cqpb` c´ aqpa` c´ bqpa` b´ cq

“
1

16
ppa` bq2 ´ c2qpc2 ´ pa´ bq2q

“
1

16
p2a2b2 ` 2a2c2 ` 2b2c2 ´ a4 ´ b4 ´ c4q.

Therefore,

r2p∆q “
a2b2c2

2a2b2 ` 2a2c2 ` 2b2c2 ´ a4 ´ b4 ´ c4
. (7.2)

Assume that the triangles BUV and CST are both acute, so their smallest enclosing discs
coincide with their circumscribing discs. Apply this formula to each of the triangles BUV
and CST . An easy application of the Law of Cosines yields

|BU |2 “ 1´ x` x2

|BV |2 “ 1´ y ` y2

|UV |2 “ x2 ´ xy ` y2

|CS|2 “ 1´ z ` z2

|CT |2 “ 1´ w ` w2

|ST |2 “ z2 ´ zw ` w2.

Substituting these values in (7.2), once with a2 “ |BU |2, b2 “ |BV |2, c2 “ |UV |2, and once
with a2 “ |CS|2, b2 “ |CT |2, c2 “ |ST |2, we get the values of the circumradii of the two
triangles. If any of these triangles is obtuse, the radius of its smallest enclosing disc is half
the longest edge.

The goal is, as said above, to find values of the parameters x, y that minimize the larger
of these two radii (note that the choice of x and y determines the orientation of K, up to
rotation about the z-axis because they determine a slice of K (namely, BUV ) that has to
be horizontal). By numerically testing a dense grid of values for x, y and running methods
for finding the minimum of a function (computing the radius of the smallest enclosing disc
using (7.2) for acute triangles, and half the longest edge for obtuse triangles), the optimizing
parameters turned out to be x « 0.43400 and y « 0.30265, and the larger of the two
diameters was « 0.901388. Setting δ1 to this value completes the proof of Part (2). l

7.2 General Motion

Theorem 7.2. Let W be a circular window of diameter d. Then there exists a threshold
δ2 « 0.895611, such that K can pass through W by a collision-free motion if and only if
d ě δ2.

In other words, for diameters δ2 ď d ă δ1, the only way to move K through W is via a
motion that also involves rotations, and for diameters d ă δ2, no motion of K through W is
possible.
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Proof. We first construct the desired motion for d ě δ2, which consists of five steps—sliding,
rotation, sliding, rotation, and a final sliding. We use the setup and notations introduced
in the analysis of the preceding section, and depicted in Figure 7.1. As earlier, it is more
convenient to consider K as fixed, and W as moving around K.

Assume that the lowest vertex A lies on the xy-plane and inside W (see Figure 7.2 (i)).
Start by sliding W up, possibly in a slanted direction, ensuring that it keeps containing the
cross section of K with the plane supporting W , until W comes to contain B: See Figure 7.2
(ii). We want to choose the initial orientation of K so that the smallest enclosing disc of
the horizontal (triangular) cross section of K through B, namely the triangle BUV , is of
diameter at most d. As already noted, the orientation of K is determined by x and y, up to
a possible rotation around the z-axis, as they determine the vertical direction of K (the one
orthogonal to the triangle BUV ).

Figure 7.2: Moving W around K. (i) The initial configuration. (ii) W contains the triangle
BUV . (iii) W contains the rectangle UV V 1U 1. (iv) W contains the symmetric rectangle, with
edge lengths swapped. The remainder of the motion is a fully symmetric reversal of the first two
steps.

We ran our numerical approximation scheme, and the smallest diameter of the smallest
enclosing disc of BUV that we obtained was 0.895611, attained at x “ y “ 0.391113, and we
take this value as our approximation of δ2. Note, incidentally, that this choice of parameters
implies that the edge CD of K is horizontal. It also implies that |UV | “ x “ y “ 0.391113.

We now rotate W about the line UV , in the direction that keeps A and B on one side
of it. The cross section of K by the rotating plane is an isosceles trapezoid, and we keep
rotating the plane until it becomes a rectangle UV V 1U 1. As is easily checked, we have
|UU 1| “ |V V 1| “ 1 ´ x “ 0.608887, and the diameter of the smallest enclosing disc of
UV V 1U 1, which is its diagonal, is « 0.72368, much smaller than δ2. An easy adaptation of
an argument used earlier shows that, during this rotation of W about UV , every cross section
is contained in the corresponding rotated copy of the disc of diameter δ2 whose bounding
circle passes through U and V . See Figure 7.2(iii).

We then slide W in the direction perpendicular to UV V 1U 1. During this sliding the cross
section of K remains rectangular, so that UV keeps increasing and UU 1 keeps decreasing,
while the sum of their lengths remains 1. We stop when we reach a ‘symmetric’ rectangle
where the side parallel to UV (resp., UU 1) is of length 1´ x (resp., x). See Figure 7.2(iv).

The situation that we have reached is fully symmetric to the one after the first two steps,
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and we can now complete the motion by a symmetric reversal of the first two steps.

To complete the proof, for the case where diampW q ă δ2, we observe that in this case W
cannot pass through any vertex of K, because then, by definition of δ2, the smallest enclosing
disc of any cross section through any vertex would have diameter larger than diampW q. l
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8
Conclusion

In this thesis we have studied a variety of problems concerning collision-free motion of a con-
vex polytope thrugh a planar window, under several kinds of motion — sliding (translation
in a fixed direction), purely translational motion, and general motion. We have presented
several properties and characterizations of such motions, and obtained efficient algorithms
for several special cases.

There are many open problems and directions for further research. One such direction is
to derive efficient algorithms for the most general problem with all six degrees of freedom.
In general one expects a solution that runs in roughly Opn6q time, but the special structure
of the problem suggests that faster solutions should be possible. We are currently pursuing
this direction, by reducing the number of degrees of freedom to four, by forcing two edges
of the polytope to touch two edges of the window. We believe that this should lead to an
algorithm with running time close to Opn4q.

Moreover, the free configuration space of the polytope has a combinatorial complexity
of Opn4q, because each edge of the window can touch at most one element of the polytope
(a face, a vertex or an edge). This suggests that if we form the arrangement of these Opnq
‘contact surfaces’ in the sixth-dimensional configuration space, its complexity should be only
Opn4q. Transforming this observation into a comparably efficient algorithm is more involved,
and we are currently studying this approach.

Furthermore, we believe that this bound is tight, in the sense that for every positive
integer m there is a polytope with complexity n ą m, such that its free configuration free-
space has combinatorial complexity of Θpn4q, which will show that an Opn4q algorithm for the
general problem might be optimal in some cases, if we compute the entire free configurations
space.

In addition, in Chapter 6 we presented an example in which a rotation is needed to pass
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the polytope through the window. However, in this construction we only used a rotation
about the line perpendicular to the plane that contains the window. This suggest the conjec-
ture that maybe every convex polytope that can pass through a rectangular window can also
pass through it by a motion consisting of arbitrary translations, and rotations only about
the line perpendicular to the plane that contains the window. The results of Chapter 7 show
that for circular window this claim is false, but the status of the conjecture is still open for
a rectangular window.
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 תקציר 
 

)או בעיית    בעיית הספה  .( the sofa problem) הספה   בעיית של   מימדית-גרסה תלתב התיזה עוסקת

תמטיקה, שהתפרסמה רשמית באמצע שנות השישים של המאה  היא בעיה עתיקה במ  הזזת הספה(

עם פנייה  ברוחב נתון בתכונות הצורה המקסימלית שיכולה לעבור במסדרון    הבעיה עוסקת הקודמת.

מעלות. הבעיה שאנו דנים בה היא חקר תכונות הפאונים הקמורים שיכולים לעבור דרך חור   90של 

 מלבני )"חלון"( על קיר אינסופי. 

ם לעבור דרך  : תכונות הכרחיות של פאונים קמורים שיכוליכיווניםאנחנו חוקרים את הבעיה בשני 

 החלון, ואלגוריתמים יעילים לתכנון תנועה כנ"ל במידה והיא קיימת. 

 הרבה וריאנטים של הבעיה, כגון: עוסקים באנחנו 

 , כשהתנועה מוגבלת רק להזזה ובכיוון יחיד )"החלקה"( •

 , כשהתנועה מוגבלת רק להזזה )בלי סיבובים(  •

 , כשזוג צלעות של החלון הן אינסופיות )"שער"( •

 כשהחלון מעגלי.  •

מאמר נוסף שדן  ולא מצאנוללא פיתרון,   1985משנת  Toussaintהבעיה הוצגה לראשונה במאמר של  

 . בבעיה ספציפית זו 

 התוצאות המוצגות בתיזה כוללות: 

אנו דנים בהחלקה דרך חלון מלבני, ומראים שקיום החלקה של הפאון דרך החלון    2בפרק  •

לקה )אולי אחרת(, בכיוון שמאונך למישור החלון. זה  מבלי שהם יחתכו גוררת קיום של הח

לכל החלקה מעין "צורה קנונית", ואנו מציגים אלגוריתם יעיל לקבוע   להתאיםמאפשר לנו 

 האם קיימת החלקה שכזאת, ואם כן למצוא אותה. 

)פס החסום על    אנו חוקרים את המקרה של תנועה כללית )הזזות וסיבובים( דרך שער  3בפרק  •

. אנחנו מראים שקיום תנועה של הפאון דרך השער  צלעות מקבילות לא חסומות(  ידי שתי

 לתכנון תנועה שכזאת.  אלגוריתם יעיל קל לקבל  גוררת קיום החלקה שלו דרך השער, ומכאן

קשר שבין חלון כללי שהפאון יכול לעבור דרכו, לעובי של שער  על ה עומדיםאנחנו   4בפרק  •

)על ידי   𝑑אנחנו מראים שאם הפאון יכול לעבור בחלון עם קוטר   שהחלון יכול לעבור דרכו.

בלבד כך שיוכל   �⃗�אפשר לסובב את הפאון סביב   �⃗�, אז לכל כיוון  תנועה כללית כלשהי( 

 .�⃗�-על מישור שמאונך ל  חשמונ 𝑑בעובי  להחליק דרך שער 



בלבד. אנחנו מראים  אנו דנים בתנועה של פאון דרך חלון מלבני, המורכבת מהזזות    5בפרק  •

, מה שמאפשר שימוש באלגוריתם  שקיום תנועה שכזאת גוררת קיום של החלקה דרך החלון

 . 2שהצגנו בפרק 

מראים שסיבובים לפעמים הכרחיים להעביר פאון דרך חלון. קונקרטית, אנו  אנו   6בפרק  •

סיבובים  בתנועה המורכבת ממלבני )למעשה ריבועי( פאון שניתן להעביר דרך חלון   מציגים

 והזזות, אך לא ניתן להעבירו בחלון בתנועה המורכבת מהזזות בלבד. 

החלקה, תנועה של הזזות בלבד,  —מציגים את ההבדלים בין שלושת סוגי התנועה אנו   7בפרק  •

( יכול  1עבור חלון מעגלי. אנו מראים שהארבעון המשוכלל )בעל אורך צלע —ותנועה כללית

, אינו יכול להחליק אך יכול לעבור בתנועה של הזזות  1להחליק דרך חלון שקוטרו לפחות 

בהזזות בלבד אך יכול  , אינו יכול לעבור  0.901388-אך גדול מ 1-בלבד דרך חלון שקוטרו קטן מ

, ואינו יכול לעבור כלל  0.901388-ל 0.895611ם אם הקוטר בין לעבור בתנועה הכוללת סיבובי

 אם הקוטר קטן יותר. 
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