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Abstract

We study several variants of the problem of moving a convex polytope in three dimensions
through a flat rectangular (and sometimes more general) window. Specifically, we study
variants in which the motion is restricted to translations only, discuss situations in which
such a motion can be reduced to sliding (translation in a fixed direction) and present efficient
algorithms for those variants. We then discuss the case of a window that is unbounded (has
two infinite edges) and show that in this case, rotations are not necessary for passing the
polytope through the window, an observation that leads to an efficient algorithm for this
variant too. Then we study the importance of rotations by an example of a polytope that
cannot pass through a certain window by translations only, but it can do so when rotations are
allowed. We study also more general convex windows, and obtain some special properties of
polytopes that can pass such a convex window. We then study the case of a circular window,
and show that, for the regular tetrahedron K, there are two thresholds 1 > §; > d5 such that
(i) K can slide through the window W if its diameter d is > 1, (ii) K cannot slide through
W but can pass through it by a purely translational motion when 6; < d < 1, (iii) K cannot
pass through W by a purely translational motion but can do it when rotations are allowed
when 0y < d < §;, and (iv) K cannot pass through W at all when d < d,. This divides this
motion planning problem into three sub-classes, with different capabilities: one dimensional
translation (“sliding”), purely translational motion, and unrestricted motion (with all six
degrees of freedom).
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Introduction

Let K be a convex polytope (a ‘sofa’) in R? with n edges, and let T be a rectangular window,
placed, say, in the xy-plane in the axis-parallel position [0, a] x [0,b], where a and b are the
respective width and height of W. We assume that the complement of W in the xy-plane is
a solid wall that K must avoid. The problem is to determine whether K can be moved, in a
collision-free manner, from any position that is fully contained in the upper halfspace z > 0,
through W, to any position that is fully contained in the lower halfspace z < 0, and, if so,
to plan such a motion (see Figure 1.1).

A continuous motion of a rigid body in three dimensions has six degrees of freedom, three
of translation and three of rotation, and in the general form of the problem, we allow all
six degrees. We will mainly study simpler versions where only restricted types of motion
are allowed, such as purely translational motion (that has only three degrees of freedom), a
translational motion in a fixed direction, that we refer to as sliding (one degree of freedom),
or a translational motion combined with rotations around the vertical axis only (four degrees
of freedom), etc. Some of our main results show that, in certain favorable situations, the ex-
istence of a general collision-free motion of K through W implies the existence of a restricted
motion. This allows us to solve the problem in a significantly more efficient manner.

In terms of the free configuration space F of K, all the placements of K that are fully
contained in the upper halfspace are free, and form a connected subset F* of F. Similarly,
all the placements of K that are fully contained in the lower halfspace are free, and form a
connected subset F~ of F. Our problem, in general, is to determine whether both F* and
F~ are contained in the same connected component of F. This interpretation applies to the
general setup, with six degrees of freedom, as well as to any other subclass of motion, with
fewer degrees of freedom.

Motion planning is an intensively studied problem in computational geometry and robotics.



Figure 1.1: The general problem studied in this thesis: moving a convex polytope from an initial
configuration above the xy-plane, to a target configuration below the xy-plane through a window
on the zy-plane.

There is a systematic and general way to describe the free space F using constraint surfaces,
namely surfaces describing all the configurations where one feature on the boundary of the
moving object (K in our case) touches a feature on the boundary of the work space space
(W in our case); see, e.g., [7, 15, 21]. These surfaces partition the configuration space into
cells such that each cell is either fully contained in F or fully contained in the forbidden
portion of the configuration space. This representation is based on the arrangement [14] of
constraint surfaces, and is induced in our setting by O(n) surfaces, since the combinatorial
complexity (number of vertices, edges, and facets) of K is O(n) and of the window is O(1).
By standard arguments in the study of arrangements of surfaces, the complexity of F is
bounded by O(n?), where d is the number of degrees of freedom [15]. In order to exploit
this representation, we need to be able to construct it and then transform it into a graph (in
the graph-theory sense) on which we will search for a solution motion. To this end we need
further machinery, and we typically use vertical decomposition, a refinement of arrangements
of surfaces [5]. Such constructions are easily implementable for motion planning with two
degrees of freedom [10], but become practically complex for problems with three or more
degrees of freedom. This has led researchers in robotics to develop alternative methods as
we describe next.

There is a large suite of practical solutions to the motion-planning problem based on
sampling-based techniques [6, Chapter 7],[13], the best known of which are PRM [19] and
RRT [20], which have dozens of variants. While extremely successful in solving practical
problems, they trade-off the completeness of the arrangement approach with efficiency. In
particular the sampling-based techniques fail miserably, when the setting is tight [23, 24],



which is exactly the situation in the problems that we study in this thesis. If the polytope
K is small relative to the window, then the problems become trivial. Therefore, our study
is of instances where K is roughly the size of the window (the size comparisons are made
precise below), and in such cases sampling-based techniques are inapplicable.

Toussaint [27] collected a variety of tight-setting motion planning problems under the
title movable separability of sets. These problems are interesting both from a pure research
perspective (see, e.g., [26] for an intriguing problem and its solution), but also from an
applied perspective, since motion in tight settings often arises in manufacturing processes
such as assembly planning [12] or casting and molding [4]. 1t is in Toussaint’s review that we
encountered the problem of throwing a polytope through a window. Although Toussaint’s
paper was published 35 years ago, to the best of our knowledge there has not been progress
on this specific problem up till this thesis. We remark that the word sofa in the title of the
thesis is borrowed from a classical problem of this flavor, in a two-dimensional setting, the
moving sofa problem, or just the sofa problem (see, e.g., [8, 11]), which is to find the shape
of largest area that can be moved through a corner in an L-shaped corridor whose legs have
width 1 (see Figure 1.2).
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Figure 1.2: Moving a ‘sofa’ around the corner of an L-shaped corridor. Figure taken from
https://img.microsiervos.com /images2017 /problema-del-sofa-Hammersley.png

In general, F is six-dimensional, so constructing an exact representation of F, as is needed
here, is both complicated and expensive. We do not address this setup in most of the thesis,
but mainly focus on variants of the problem with fewer degrees of freedom, of the kinds
mentioned above (General motions are considered in Chapters 6 and 7, and they are also



discussed in several other instances of the problem). In addition to allowing us to obtain
considerably faster algorithms, these versions have nontrivial geometric properties, which
are interesting in their own right, and which also allow us, in certain favorable situations,
to reduce more general problems to simpler ones, with fewer degrees of freedom, thereby
achieving faster algorithmic solutions.

Our results. We first consider, in Chapter 2, sliding motions (translations in a fixed
direction) of K. We characterize the situations in which such a sliding motion exists, present
efficient algorithms for finding such a motion when one exists, and report that there is no
such a motion otherwise. We next consider in Chapter 3 unrestricted motion for the case
where the window is unbounded in one direction (has two infinite edges)—we refer to such
an unbounded window as a gate. We show that the existence of such a general collision-free
motion through a gate implies the existence of a collision-free sliding motion through that
gate, which is very easy to find when it exists. In Chapter 4 we present the connection
between the existence of a general collision-free motion through any convex window W and
sliding through a gate whose width depends on W. Specifically, we show that if the polytope
K can pass through some convex window of diameter d, then, for any fixed direction v, we
can slide K through a gate of width d in the direction . We then consider in Chapter 5
purely translational motion of K through a rectangular window, and prove that the existance
of such a purely-translational collision-free motion implies the existence of a collision-free
sliding motion. In Chapter 6, we observe the importance of rotations. We give an example of
a convex polytope that can move through a squared window by a collision-free motion that
includes rotation, and show that in this case a purely translational motion does not exist.
In Chapter 7 we consider the case where the window is circular. We show that for some
polytopes, the various restricted families of motions are non-equivalent: For a sufficiently
large window, there is a sliding motion. When the window is too small for sliding, it might
be still large enough for a purely-translational motion. And if the window is too small for a
purely-translational motion, it is possible that it is large enough for a general motion with
six-degrees of freedom.



Translation in a Fixed Direction

In this chapter we address the case in which the movement is purely translational in a single
fixed direction. Such a motion, to which we refer as a sliding motion, has only one degree
of freedom. In the most restricted version (which is very easy to solve), we are given a fixed
orientation of K and a fixed initial placement, and also the direction of motion. In this
chapter we study a more general setting, in which we seek values for these parameters—
orientation, initial placement, and direction of motion, for which such a sliding motion of K
through W is possible (or determine that no such motion is possible).

In Section 2.1 we observe that if a sliding motion for K exists, then K can also slide in
a direction orthogonal to the plane of the window. This is a special case of a more general
and known result; we give a simpler proof of this result in our setting. We then describe,
in Section 2.2, an algorithm to compute the orientation of K that will allow for sliding
along this orthogonal direction. In Section 2.3, we address a sub-problem that arises in
the algorithm, and we give an efficient algorithm to compute an implicit representation of
all possible silhouettes of K. Finally, in Section 2.4 we present a more efficient algorithm
to solve the orientation-determination problem, using intricate batch range-searching data
structures.

2.1 The Existence of an Orthogonal Sliding Motion

For the most general version of the sliding motion, in which none of the parameters (orien-
tation, initial placement, and direction of motion) is prespecified, we use the following key
lemma:

Lemma 2.1. If K can slide through W from some starting position in some direction, then



K can slide through W, possibly from some other starting position and another orientation,
by translating it in the z-direction.

Proof. Let Ky be the starting position of K and v be the direction of motion through
W, for which the resulting sliding motion is collision-free. Form the infinite prism I, :=
User (Ko + AU) that K, spans in direction ¥. The premise of the lemma implies that the
intersection of Iy with the zy-plane is contained in W.

Let Wy be the orthogonal projection of W onto some plane orthogonal to . Note that
Wy is a parallelogram, and that, by construction, K can pass through W, when translated
in direction ¥. By an old result, reviewed and proved by Debrunner and Mani-Levitska [9],
it follows that, when mapped rigidly into the xy-plane, Wy (the ‘shadow’ of W in direction
U) can be placed fully within W (see Figure 2.1).
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Figure 2.1: The projection of W (green) can be located in a congruent copy of W (blue).

Now rotate and translate R3 so that @ becomes the (negative) z-direction, and the image
of Wy is fully contained in (the former, untransformed copy of) W. Then the image of
K under this transformation can be moved vertically down through W in a collision-free
manner, as asserted. []

The proof of Debrunner and Mani-Levitska [9] is rather involved, and applies to an
arbitrary planar convex shape (showing that it contains its projection in any direction). For
the sake of completeness, we provide a simple alternative proof for the case of a rectangle.

Lemma 2.2. Let W be a rectangle on some plane h. Let Wy be the projection of W on the
xy-plane. Then the xy-plane contains a congruent copy of W that contains Wj.

Proof. Denote the xy-projection by 7. Let [ be the intersection line of h and the zy-plane,
and let a be the dihedral angle between these planes. Let p be an arbitrary point on h, and



Figure 2.2: The window W (blue), the line [ (orange) and the image (W) (green).

let d be the distance from p to [. Then 7(p) lies at distance dcosa from [ (with the same
nearest point on [). Informally, 7 moves every point in h closer to [ by a factor of cosa.
Then, instead of projecting h to the xy plane, we apply on h this linear transformation that
moves every point closer to [ by a factor of cosa. Denote this transformation by o. This
implies that every line segment in A is transformed to a shorter segment or of the same
length—mno line segment increases its length.

Let W = ABCD, and let A" = 6(A), B’ = 0(B),C" = o(C),D’" = (D). Let E denote
the center of W (see Figure 2.2). Note that translating W on h keeps o(W) the same up to
translation, so we may assume that [ passes through E without loss of generality.

We use the following lemma:

Lemma 2.3. Assume without loss of generality that B and C' lie on one side of |, and that A
and D lie on the other side (otherwise rename the vertices as BCDA), and that | intersects
the ray B-é, namely the ray starting at B and passing through C (otherwise rename the
vertices as DCBA). Then xA'C'B’ < xACB.

Proof. Denote by T the intersection point of the lines BC' and B'C” (see Figure 2.3). As
o(BC) = B'C’ the line [ must pass through T since it is the only point of BC' that stays at
the same location when applying o. We then have:

xA'C'B'= xEC'B' = <xTEC' + xC'TE < ¥TEC + xCTE = ¥ECB = xACB.

]

Continuing with the proof of Lemma 2.2. there are two cases to consider:
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Figure 2.3: The side BC' of W (blue), the side B'C" (green), and the line [ (orange).
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Figure 2.4: Placing o(W) in a congruent copy of W. Left: Placing the diagonal A’C" on the
diagonal AC. Right: Placing the side A’B’ parallel to the side AB.



For any pair of points P and @) we denote by PQ the line through P and Q. If xC'A’B’ <
X CAB, then, since no line segment increases its length by applying o, we have A'C’ < AC.
Denote by m the line AC. Place A’C’ on m, such that the points A, A’,C’,C appear on
m in this order and A’C” is centered at E (see Figure 2.4, left). Note that the angle that
AB forms with m is greater than the angle that A’B’ forms with [ (by assumption), and
that the angle that BC forms with m is greater than the angle that B’C” forms with m (by
Lemma 2.3). Hence B’ is inside the triangle ABC. By symmetry, D is inside the triangle
CDA, and therefore we successfully placed o(W) inside W.

if xC'A'B’ > xCAB, draw from C’ a line perpendicular to A’B’ and denote the inter-
section by P (see Figure 2.2). We place (W) inside W so that A’B’ is parallel to AB (see
Figure 2.4, right). To do so, we need to prove that C’P < C'B and that A’P < AB. Indeed,
we have:

CB=>C'B =C'P,
AB =CB-cot xCAB > C'P - cot xC'"A'B' = A'P.
Therefore we successfully placed o(W) inside W. [

2.2 Finding a Sliding Motion

Lemma 2.1 implies that K can slide through W if and only if there exists an orthogonal
projection of K onto some plane hg, so that the image of K can be placed within a congruent
copy of W. We specify such a projection by its direction, represented as a point on the unit
sphere S?. This fixes the projected silhouette of K, which is the boundary of the convex
polygon obtained by the projection of K in direction ¢, up to a possible rigid motion within
the image plane hg. The silhouette itself is the cyclic sequence of vertices and edges of K,
whose projections form the projected silhouette.! The silhouette and its projection do not
change combinatorially, that is, when represented as a cyclic sequence of vertices and edges
of K (or of their projections), as long as v is not parallel to any face of K. The locus of
directions that are parallel to a face f of K is the great circle v, of S? that is parallel to f. We
draw these O(n) great circles on S?, one circle for each face of K, and form their arrangement
Ag (see [14]). (This arrangement is also known as the aspect graph of K; see [22].) Tt consists
of O(n?) faces, and, for all directions ¢ within the same face of Ay, the silhouette and its
projection are fixed combinatorially, but the actual spatial positions of the projected vertices
depend on the direction ¥, and the projected silhouette can also rotate arbitrarily within
the image plane hz. (Note that in this discussion we completely ignore translations of K, as
they are irrelevant for the analysis and its conclusions.)

We assign some canonical coordinate frame to hz, and refer, for simplicity, to its axes as
the z- and y-axes (they depend on ¥). For example, excluding O(1) problematic directions,
which can be handled separately, and easily, we can take the x-axis within hz to be the inter-
section of hz with the xz-plane, and take the y-axis to be in the orthogonal direction within

IThe silhouette is indeed such a cycle of vertices and edges of 0K for generic directions . When ¥ is
parallel to a face f of K, the entire f is part of the silhouette.



(i)

Figure 2.5: The silhouette and its projection: (i) The case of a generic ¢. (ii) The case where ¢/
is parallel to a face f of K (U'is on the great circle 7).

hg, oriented in the direction that has a positive y-component. The actual spatial location
of the projected silhouette (up to translation, which we ignore) of K can be parameterized
by (¥, 0), where 6 is the rotation of the projected silhouette within the image plane hy. We
refer to (¥, 0) as the view of K. See Figure 2.5.

As we vary ¢ and 6, we want to keep track of the leftmost and rightmost vertices of the
projected silhouette (in the z-direction), and of the topmost and bottommost vertices (in
the y-direction, all with respect to the coordinate frame within hy). We succeed when we
find a projection (in direction v), followed by a rotation (by ), for which the z-difference
between the rightmost and leftmost vertices is at most a and the y-difference between the
topmost and bottommost vertices is at most b. We reiterate that this is indeed the property
that we need: It takes place in a slanted plane hy with respect to an artificial coordinate
frame within that plane, but using a suitable rotation of hz we can make it horizontal and
its coordinate frame parallel to the standard xy-frame. A subsequent suitable translation
then brings the projected silhouette to within W, as desired.

Fix a face ¢ of Ay, and let wy,ws,...,w,, denote the cyclic sequence of the vertices
of the projected silhouette, say in counterclockwise order, for views in . If the current
leftmost vertex is some w;, then it remains leftmost as long as neither of the two adjacent
edges w;_jw; and wjw;q1 becomes y-vertical. (Recall that ‘leftmost” and ‘y-vertical’ are with
respect to the artificial frame within hz.) The views (v, 60) at which an edge e of K, say,
w;_1w; is y-vertical comprise a two-dimensional surface p, in the three-dimensional space
V =§? x St of views (¥,0). See Figure 2.6.

The discussion so far has been for views that have a combinatorially fixed silhouette.
However, to make the algorithm for finding a sliding motion more efficient, we consider all
possible silhouettes ‘at once’, using the following approach. After forming the aspect-graph
arrangement Ay, as defined above, we replace each great circle ¢ on S? by the cylindrical
surface 7§ = 7y x S!, and collect these surfaces into a set I', of cardinality O(n). Then, for
each edge e of K (regardless of whether it is a silhouette edge or not), we form the surface
Pe, as just defined, and collect these surfaces into a set X, of cardinality n. We now form

10



Figure 2.6: A view of K. To simplify the visualization, we rotate the containing window W
rather than the projected silhouette. The leftmost, rightmost, topmost and bottommost vertices
are highlighted.

Figure 2.7: A discrete change of the leftmost vertex of the projected silhouette.
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the three-dimensional arrangement A = A(I" U X)) (note that all the surfaces of I' U ¥ are
two-dimensional). As is easily verified, for each three-dimensional cell T of A, the projected
silhouette of K, and its four leftmost, rightmost, topmost and bottommost vertices (we refer
to them collectively as the extreme vertices of the projected sihouette) are fixed for all views
in 7. Since [I' U X| = O(n), the complexity of A is O(n?).

To obtain a representation that is easy to process further, we construct the vertical decom-
position of A, which we denote as VD(A). It is a decomposition of the three-dimensional
cells of A into a total of nearly cubic number of prism-like subcells (that we simply call
prisms). See Sharir and Agarwal [25, Section 8.3] for more details. A sharp bound on its
complexity (i.e., the number of prisms) is O(n?)\(n)), for some constant s (a sharp estima-
tion of the value of s is not given in this thesis), where A;(n) is the maximum length of a
Davenport—Schinzel sequence of order s on n symbols; see [25]. The vertical decomposition
can be constructed in time O((n?X\;(n)logn) [3].

We now iterate over all prisms of VD(.A). For each prism 7, we retrieve the four extreme
vertices of the projected silhouette, which are fixed for all views in 7, and check whether
there is a view in 7 for which these vertices, and thus all of the projected silhouette, fit into
W (after suitable rotation and translation of W, as discussed above). To do so, denote these
leftmost, rightmost, topmost and bottommost vertices as w;, w,, w; and wy, respectively.
The z-coordinates x,, ., of w; and w,, and the y-coordinates y,,, yu, of w; and w, (within
hz) are functions of (¥, #). We need to determine whether the region

S = S(wy, wy, wy, wy) 1= {(0,0) € S? x S | T, (U, 0) — 24, (U, 0) < @, Yo, (T, 0) — yu, (U, 0) < b},

which is exactly the region of views (¢,6) at which W contains a (rotated and translated)
copy of the projected silhouette with these four specific vertices as the extreme vertices of
the projection, has a nonempty intersection with 7. Since S and 7 are semialgebraic regions
of constant complexity, this test can be performed, in a suitable (and standard) model of
real algebraic computation, in constant time [10]. Summing over all prisms 7, the overall
cost of these tests is proportional to the complexity of VD(A), namely it is O(n*X,(n)).

To complete the description of the algorithm, we now consider the task of computing
the four extreme vertices w;, w,, w, and w,; of the silhouette, or, more precisely, the four
(fixed) vertices of K that project to them, for each cell ¢ of A. As an easy by-product of the
construction of VD(A), each of its prisms can be associated with the cell of A containing it,
so the four extreme vertices will also be available for each prism of VD(A).

By the nature of the surfaces forming A, the projection of each cell ¢ of A onto S? is fully
contained in a single cell p = p(c) of the two-dimensional aspect-graph arrangement A,. For
each such cell p, the discrete nature of the silhouette, as a cyclic sequence of vertices (and
edges) of K, is fixed for every ¢ € p and for any 6 € S'. Although we can do it faster, we
simply iterate over the O(n?) cells of Ay, and for each cell p, compute the silhouette in O(n)
time, in brute force (by picking an arbitrary point ¥ in p, and by examining each edge of K
for being part of the silhouette in direction /). The overall cost of this step is thus O(n?).

Consider now a cell ¢ of A, and let p = p(c) be the cell of Ay that contains the S*-
projection of ¢. Let (uy,us, ..., u,) denote the cyclic counterclockwise sequence of vertices
of K that forms the silhouette for directions in p, and let w; denote the S-projection of

12



u;, for ¢ = 1,...,m. Since the vertices of K inducing w;, w,, w, and w; are fixed over ¢, it
suffices to compute them for a fixed arbitrary view in ¢. We thus fix such a view (¢, 0), and
proceed as follows.

For each i, define the “derivative” of the silhouette at w; to be the pair of vectors

(W’L_7W’L+> = (wi—lw”D wiwi+1)7

where the vectors are represented in the coordinate frame induced by (7, 6) in a plane or-
thogonal to ¥, and where addition and subtraction of indices is modulo m. The extreme
vertices wy, w,, wy, wy partition the silhouette into (at most) four subsequences: Sy, between
w, and wy, Sa, between w; and w;, S3, between w; and wy, and Sy, between wy, and w, (see
Figure 2.8), so that, for w; € Sy (resp., Sa, S3, S;) both vectors w; , w; lie in the second

(resp., third, fourth, first) quadrant. For w, (resp., wy, wy, wy), the vectors lie, respectively, in
the first and second (resp., second and third, third and fourth, fourth and first) quadrants.?

Wt

o W,

wy

S

Wy

Figure 2.8: The sub-silhouettes S; (purple), Sy (blue), S; (green), Sy (orange). The extreme
vertices w,, wy, wy, w;, delimit these sub-silhouettes and are highlighted.

Using these observations, we find the four extreme vertices using binary search, as follows.
We break the silhouette sequence into two linear subsequences at w; and w,y, 2, and find the
extreme vertices in each subsequence. Consider the subsequence (wq,ws, ..., Wnyp). We
compute the derivatives at w; and at wy,», and thereby identify the two respective sub-
silhouettes that contain these vertices. Suppose for specificity that w; lies in S and w2
lies in S3. Then we know that our subsequence contains (only) w; and w;, and we can find
each of them by a straightforward binary search, using the derivatives to guide the search.

2We gloss here over the easy special cases of degeneracy, in which the extreme vertices are not all distinct.
In such cases some of the sub-silhouettes S1,...,.S4 might be empty, and the rules for identifying the extreme
vertices need to be adjusted.

13



We apply similar procedures in each of the other cases, and for the second subsequence
(wm/27 wm/2+17 cee ,U}1>.

In conclusion, it takes O(logn) time to find the extreme vertices for each cell of A, and
thus also for each prism of VD(A), for a total running time of O(n?A,(n)logn).

2.3 Implicitly Constructing All the Silhouettes

We do not have a faster approach to the full problem of finding a view for which the projection
of K can fit inside W. Nevertheless, we present here an improved solution, which runs in
O(n*logn) time, for the subproblem of (implicitly)® constructing the silhouette for every
face of the aspect-graph arrangement Ay. That is, our goal is to process the arrangement Ay
of the great circles v; on S?, and implicitly store with each of its faces ¢ the (fixed) circular
list A, of the vertices of the projected silhouette. A key step towards this goal is to store,
for each edge g of Ay, that separates two adjacent faces ¢, (' of Ay, the change between the
silhouettes stored at ¢ and at (.

To understand this last issue, we note that g is a portion of some great circle ¢, for
some face f of K, so that f is visible for directions ¢ on one side of 7, say (, and invisible
for directions ¢ on the other side, that is (/. For these nearby directions, when f is visible,
one connected portion vis(f) of df is part of the silhouette, and when f is invisible, the
complementary portion invis(f) of df becomes part of the silhouette. These two portions
are fixed for each edge of ~;, like g, but are not fixed throughout 7. Specifically, let ¢’ be
the next edge of A along v;. The common endpoint ¢ of g and ¢’ is an intersection of 7
with another great circle vp. If f and f’ are not adjacent along 0K, the two portions vis(f)
and invis(f) for ¢’ are the same as for g, and no special treatment is needed. If f and f’
share an edge e of K then, by construction, ¢ is the direction of e. Then, as is easily checked,
e belongs to vis(f) at g and to invis(f) at ¢’ or the other way around. (Note that, at ' itself,
e might fail to belong to either silhouette.) See Figure 2.9 for an illustration.

This suggests that we trace the edges of Ay along each great circle ¢ in order, maintain
the two portions vis(f) and invis(f) of df for each edge g of ¢, by a pair of pointers into the
circular list of edges of df (which we assume to be available from the DCEL representation
of 0K), and update these pointers by moving one of them past e, where e is the edge of
f whose direction separates g from the next edge on 7y (if such an e exists at all). The
overall number of changes of these pointers, over all faces f of K, is thus proportional to
the complexity of K, i.e., it is O(n). However, since most of the O(n?) vertices of Ay do not
entail any change of pointers, the overall cost of this preprocessing step is O(n?), which is
the number of edges of Aj.

Having computed this data, over all edges of Ay, we now return to the main goal, of
(implicitly) constructing the silhouette for each face of A;. As a matter of fact, it will be
more convenient to construct the (degenerate) silhouettes over each edge of Ay. We will

3 An explicit construction of the silhouettes is doomed to require ©(n3) time in the worst case, since Ay
has ©(n?) cells and each silhouette might be of linear size.
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Figure 2.9: f is the top face and f’ is the right face adjacent to f. When f is invisible from the
direction ¥ (the antipodal to the point marked as vis; on the unit sphere), invis(f) is a part of
the projected silhouette (green). When f is visible (the antipodal to the point marked as invisy
on the unit sphere), the complementary portion vis(f) is a part of the projected silhouette (blue).
When ©' is the direction marked as invisy we are at the portion ¢’ of 74 (green arc) instead of
g (red arc) and therefore the portion vis(f) (purple) changes: e belongs to vis(f) at ¢ and to
invis(f) at ¢'.
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later comment on how to extend the algorithm so that it can also retrieve the silhouette for
each two-dimensional face of Aj.

We fix a face f of K, consider the corresponding great circle v; on S?, and construct the
silhouette over each edge of ;. We enumerate these edges as g1, ..., gm, where m = O(n)
is the number of faces of K minus 1. (The sequence is actually cyclic but we consider it as
linear, starting at some arbitrary edge ¢g;.) We compute the silhouette over ¢g; in O(n) time,
by brute force. We prepare a persistent search tree structure that stores all the versions
of the silhouette over the edges g;. To obtain the silhouette at ¢g; from that at g; 1, we
consider the great circle v that separates g;—; and g;, and note that the silhouette changes
by replacing the edges in vis(f’) by those in invis(f’), or vice versa, and we update our
persistent search structure accordingly.

The overall number of changes, as we trace the entire ~¢, is proportional to the sum of
the number of edges on the other faces of K (we encounter each other face exactly twice).
Since each edge of K is counted in this sum twice, the overall number of updates over 7
is O(n), and the total cost of these updates is O(nlogn). Summed over all great circles vy,
this gives a total cost of O(n*logn) time.

The actual output of the procedure is slightly more involved, to facilitate the handling
of the silhouettes over the two-dimensional faces of A4y. Note that the entire face f is always
part of the silhouette over all edges along 7y, but our output will store instead, for each edge
g of ¢, the two portions vis(f) and invis(f) of 0f that replace f on the silhouette on the
two sides of g (which have already been computed). This step is also done implicitly, by
storing only the indices of the edges of f that delimit the portions vis(f) and invis(f). The
overall cost of this supplementary maintenance is O(n?) time.

We can now access the silhouette in a given direction v as follows. We locate ¥ in
Ag. If it lies on an edge g, we access the silhouette stored at g using the persistent search
structure associated with the great circle v containing g. If ¥ lies in a face ¢ of Ay, we take
an (arbitrary) edge g of ¢, lying on some 7y, identify whether f is visible or invisible for
directions in ¢, and access the version of the silhouette at g that uses, respectively, vis(f)
or invis(f) as a subsequence of the silhouette.

If our goal is to report the silhouette in direction ¢, we can do it in O(logn + kz) time,
where kz is the number of edges of the silhouette. While being a nontrivial result, it is not
significant in the worst case, since we can easily compute the silhouette at ¢ in brute force, in
O(n) time. A more significant performance improvement is obtained for tasks that involve
searching in the silhouette, like finding the vertex of the silhouette that is extreme in some
query direction, which can be accomplished in O(logn) time.

2.4 Improved Algorithm

We next present an improved, albeit more involved algorithm that solves the problem of
finding an orientation of K that will allow for a sliding motion through W if one exists, in
time O(n®3+¢), for any ¢ > 0. The problem of finding a direction ¢ in which we can slide K
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through W is equivalent to the problem of finding a placement of W on some plane h such
that the projected silhouette of K on h is contained in W, which in turn is equivalent to
verifying that all the vertices of K are projected into that placement of W.

An equivalent way of checking for the latter characterization is to look for two unit vectors
x and y (which will be the directions of the axes of W in the desired placement; note that
h is spanned by = and y) that satisfy:

(i) « and y are perpendicular to each other.
(ii) For every segment e connecting two vertices of K we have (x,e) < a.

(iii) For every segment e connecting two vertices of K we have (y,e) < b.

(Note that since we go over all unordered pairs of vertices of K in (ii), (iii), we actually
require that |{z,e)| < a and |{y,e)| < b for each such segment e.) Every inequality in (ii)
defines a halfspace that has to contain x. We intersect those O(n?) halfspaces, to obtain a
convex polytope @ of complexity O(n?), and intersect @Q with the unit sphere S? to obtain
the admissible region A of the vectors z that satisfy (ii), in O(n?logn). We apply the same
procedure for y using the suitable collection of halfspaces in (iii), and obtain the admissible
region B for the vectors y that satisfy (iii), also in O(n?logn). To satisfy also (i), we need to
check whether there exist an orthogonal pair of vectors x € A,y € B. We use the following
lemma:

Lemma 2.4. Let S, denote the set of all vertices of A, and let Ty denote the set of the
points that are closest locally to the north pole of S* along each circular arc of the boundary
of A. (By choosing a generic direction for the north pole of S* we may assume that Ty is
finite and |S4 U Ta| = O(n?).) Define similarly the sets Sg, Tg. If there exist an orthogonal
pair (z,y) € A x B then there exist such an orthogonal pair so that either x € Sq u Ty or
ye SpuTp.

Proof. We refer to an orthogonal pair in A x B as a good pair. Let (z,y) be a good pair
such that x is as close to the boundary of A as possible. If there are multiple pairs with this
property, pick the one in which z is the closest to the north pole. If there are still multiple
pairs, pick an arbitrary pair among them. By continuity and the compactness of A and B,
it is easy to show that such a “minimal pair” exist.

Several cases can arise:
1. x or y is one of the desired vertices. In this case we are done.

2. Both x and y lie in the interiors of A and B, respectively. In this case they can be
moved slightly together in any direction, while maintaining their mutual orthogonality.
In particular, = can get closer to the boundary of A so (x,y) is not the minimal pair.

3. x is on the boundary of A, and y is in the interior of B. Since we are not in Case 1, x
lies in the relative interior of an edge of dA and is not the point on that edge that is
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closest to the north pole. Then we have two available directions to move (z,y) slightly
such that x remains on the same edge. One of these directions brings x to a point
closer to the north pole, so (z,y) is not the minimal pair.

4. y is on the boundary of B (as in Case 3 we may assume that y lies in the relative
interior of an edge of dB). In this case we fix = and move y along the great circle C, of
points perpendicular to x. Recall that y is on an edge of B, which is a circular arc .
Every halfspace of the intersection contains the origin, so B is contained in the bigger
portion C'* (bigger than a hemisphere) of S? that is bounded by the circle C' containing
v. Since C, is a great circle, it is bigger than C', so when moving y along C,, in at least
one of the two possible directions, y enters C* (this is always true, regardless of the
size of C';, when the circles cross one another at y; the fact that C, is larger is needed
when they are tangent at y), so it enters the interior of B. Now we are in one of the
cases 2,3 that we have already settled.

Having covered all possible cases, this completes the proof of the lemma. []

We iterate over the points of S4 U T4. For each such point v let C, be the great circle
of vectors perpendicular to v, and let C denote the collection of these O(n?) great circles.
We face the problem of determining whether any great circle in C crosses B. This is the
same as determining whether any great circle in C crosses an arc of dB. This is a variant
of the batched range searching paradigm, and we present next a detailed solution for this
case. We apply a fully symmetric procedure to the collection of great circles orthogonal to
the points of Sp U Tp and to A. If we find a valid intersection it gives us a valid orthogonal
pair. Otherwise, such a pair does not exist.

Detecting an intersection between the great circles of C and the boundary arcs of
B. We apply a central projection (from the center of S?) onto some plane, say a horizontal
plane h lying below S? (with a generic choice of the coordinate frame, we may assume that
none of the points in Sy u T4 U Sp U Tp are on the great circle that is parallel to k). This is a
bijection of the open lower hemisphere onto A, in which (the lower portions of) great circles
are mapped to lines, and (the lower portions of) circular arcs are mapped to arcs of conic
sections (ellipses, parabolas, hyperbolas, or straight lines). This transforms the problem into
a batched range searching problem, in which we have a set L of M = O(n?) lines (which
arise from the great circles orthogonal to the points of Sy U T4) and a set E of N = O(n?)
pairwise disjoint arcs of conic sections (which are the projections of the arcs forming the
boundary of B), and the goal is to determine whether any line in L crosses any arc in £. We
note that the halfspaces from which we obtain B come in pairs that are symmetric to each
other about the origin, so restricting the problem to the lower hemisphere incurs no loss of
generality. We also note that there might be situations in which one of the great circles is
fully contained in B, but these cases are easy to detect, e.g., by picking an arbitrary point
on each great circle and checking whether it belongs to B, using a suitable point-location
data structure on B.

To simplify the presentation, we assume that the arcs of E are elliptic arcs; handling the
cases of parabolic or hyperbolic arcs is done in essentially the same manner.
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Orient all the lines of L from left to right. We may assume that all the arcs in E are z-
monotone (otherwise we break each arc that is not z-monotone at its leftmost and rightmost
points, into at most three z-monotone subarcs). We orient all these (sub)arcs also from left
to right. We also treat separately conver arcs, namely arcs for which the tangent directions
turn counterclockwise as we traverse them from left to right, and concave arcs, for which
the tangent directions turn clockwise. The treatments of these two subfamilies are fully
symmetric, so we only consider the case of convex arcs.

A line /¢ intersects a convex z-monotone arc 7y of some ellipse e, both oriented as above,
if and only if one of the following conditions holds.

(i) The two endpoints of 7 lie on different sides of ¢. See Figure 2.10(i).

(ii) The two endpoints of v lie to the left of ¢ and ¢ intersects e. For this to happen, 7
must have a tangent that is parallel to £. That is, the slope of £ must lie between the
slopes of the tangents to v at its endpoints. When all these conditions hold, it suffices
to require that /¢ lies to the left of the right tangent to e with the same slope of £. See

To test for intersections of type (i), we use a two-level data structure, where each level
is a standard tree-like range searching structure for points and halfplanes (see [1, 2]). The
first level collects the arcs that have one endpoint to the right of ¢, and the second level
tests whether any of these arcs has its other endpoint to the left of ¢. Using the standard
machinery for point-halfplane range searching (see, e.g., [1, Theorem 6.1], and also [2]), this
takes time O(M?3N?3polylog(M + N)) = O(n®*polylog(M + N)).

To test for intersections of type (ii), we use a four-level data structure, where, as before,
the first two levels are standard range searching structures for points and halfplanes, so that
the first level collects the arcs that have their left endpoint to the left of ¢, and the second
level collects, from among the arcs in the output of the first level, those arcs that have their
right endpoint also to the left of . The third level is a one-dimensional segment tree on
the interval ranges of the slopes of the tangents to the arcs, and it collects those arcs whose
tangent-slope range contains the slope of £. Finally, the fourth level tests whether any of the
arcs is such that its tangent that is parallel to ¢ passes to the right of /.

To implement the fourth level, we note that the lines that are tangent to the ellipse e and
have slope a can be written as y = az + ¢, (a) and y = ax + ¢} (a), with ¢_ (a) < ¢} (a),
where ¢ (a) and ¢ (a) are algebraic functions of constant degree that depend on e. If ¢
has the equation y = ax + b then we need to test whether there exists an ellipse e such that
b > - (a). We thus compute the lower envelope of the functions ¢ in time nearly linear in
the number of arcs, and then, given a line y = ax + b, we test whether the point (a,b) lies
above the envelope, in logarithmic time.

It is easy to see that in this case too, the overall cost is O(n®3polylog(n)). In conclusion,
we have shown:

Theorem 2.5. Given K and W as above, we can determine whether K can slide through W
in a collision-free manner, and, if so, find such a sliding motion, in time O(n®3polylog(n)).
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Figure 2.10: A line ¢ intersecting a convex z-monotone elliptic arc v: (i) The two endpoints of
7 lie on different sides of ¢. (i) The two endpoints lie to the left of ¢ and ¢ lies to the left of
the parallel tangent to the arc. (iii) The two endpoints lie to the right of ¢ (and then there is no
intersection). (iv) The two endpoints lie to the left of £ but  has no tangent parallel to ¢ (and
then there is no intersection).

We are not aware of any published result that solves the specific problem at hand, of
determining whether any great circle in C crosses B, with comparable running time. A
different solution, with a similar performance bound, was suggested to us by Pankaj Agarwal,
and we thank him deeply for the useful interaction concerning this problem.
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Unbounded Windows

In this chapter we consider the variant of the general problem in which W is an infinite slab
in the zy-plane, bounded by, say, two vertical lines x = 0 and z = a. We refer to such a
window as a gate. The problem is to determine whether K can be moved through W, by an
arbitrary collision-free motion.

We claim that the problem can be reduced to the setup studied in the previous chapter,
of translation in a single direction (sliding).

We first establish this claim for the case where K is a smooth compact strongly convex
body, and then use a compactness argument to extend the result to convex polytopes. We
note that strong convexity is not needed for the analysis in this chapter, but only in subse-
quent chapters. To avoid duplication, we use the same scheme for approximating a convex
polytope, both here and in Chapter 4.

Let K be an arbitrary compact convex body in R3. Let h denote the zz-plane, and let
g := h n' W, which is the segment 0 < z < a, z = 0 within h. The two complementary
rays to g within the z-axis form the only obstacles within h. Let m denote the orthogonal
projection of 3-space onto h.

Assume that K can be moved through W by an arbitrary collision-free rigid motion, which
we represent as a continuous map on [0, 1] (a ‘time interval’), where, for each t € [0, 1], K(t)
denotes the placement of K at time ¢ during the motion. For each ¢ € [0, 1], on(K (t)) is the
projection of the silhouette of K (¢) on h. It is a time-varying convex region within A, whose
shape is not rigidly fixed. For a convex polytope K, the projected silhouette on(K(t)) is a
time-varying convex polygon.

We have the following property, whose easy proof is omitted.

Lemma 3.1. The motion t — K(t) is collision-free, and moves K through W from a
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placement K (0) in the upper halfspace to a placement K (1) in the lower halfspace, if and only
if the map t — w(K(t)) is collision-free within h, and moves the (time-varying) projection
(K (t)) through g from the placement w(K(0)) in the upper halfplane z > 0 to the placement
w(K (1)) in the lower halfplane z < 0.

We note that in Lemma 3.1 the body K is not required to be smooth, but this requirement
is needed for the proof of the following theorem.

Theorem 3.2. Let K be a smooth compact convex body that can be moved, by a collision-free
rigid motion, through W from a placement in the upper halfspace z > 0 to a placement in
the lower halfspace z < 0. Then there exists a sliding collision-free motion of K through W'.

Proof. Let K be as in the theorem, and let t — K (t) be a collision-free rigid motion that
takes K through W, as in the theorem statement. For each ¢, w(K(t)) is also smooth (as a
planar convex region). Put x(t) := m(K(t)) n g, which is a subsegment of g (by assumption,
and by Lemma 3.1, the intersection of 7(K (t)) with the z-axis is always fully contained in
g). k(t) is empty at the begining and at the end of the motion, namely during some prefix
interval and some suffix interval of [0, 1] (if the motion is ‘crazy’ enough, () might also be
empty during some other inner intervals of [0, 1]). Nevertheless, since 7(K(t)) crosses g from
side to side, there must exist at least one closed maximal connected interval I = [t;, t5] within
[0, 1] such that x(t) # & for all t € I, and such that x(t;) and k(t3) are singletons, so that
k(t1) (resp., k(t2)) is the z-lowest (resp., z-highest) point of m(K(t1)) (resp., of (K (t2))).
See Figure 3.1 for an illustration.

Denote, for ¢ € I, the left and right endpoints of x(t) by £~ (t) and kT (t), respectively,
and let 77(t) (resp., 71(¢)) denote the tangent to m(K(t)) at = (t) (resp., at kK (t)), where
we orient both tangents so that m(K(¢)) lies to their right.

Since (K (t)) is smooth, the two tangents are well defined and unique. Moreover, since
the motion of K(t) is continuous, so is the ‘motion’ of (K (¢)), and this is easily seen to
imply that the directions p~(t) of 77(¢), and pu*(t) of 7+(¢) are also continuous functions of
t.

Consider the map () that maps t € I to the counterclockwise angle between p~(¢) and
wF(t). The map is undefined at ¢; and at 3, but we assume that it is defined everywhere in
the interior of I (as would be the typical situation—see the comment made earlier). o(t) is
clearly a continuous function. For ¢ slightly larger than t;, ¢(t) has a small positive value,
and for ¢ slightly smaller than ¢, ¢(t) is close to 27. It follows, by continuity, that there
exists ty € I for which ¢(ty) = m, that is, the two tangents at k™ (t9) and at k™ (ty) are parallel
to each other. This means that w(K (¢y)) is contained in the slab o, within A, bounded by
the two tangent lines. This in turn implies that K () is contained in the three-dimensional
slab S which is the Cartesian product of ¢ and the y-axis. Moreover, the intersection of S
with the zy-plane is a y-vertical slab that is contained in W (see Figure 3.2 for illustration).
This in turn means that, if we fix the orientation of K to be that of K(ty), we can slide K
within S through W (note that there are infinitely many ways to do so, each with its own
y-component of the sliding direction). This completes the proof. []
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tion

Figure 3.1: Moving the projection of K through g. Top: At the beginning of the crossing of g,
the tangents 7~ (¢) and 77 (¢) ‘open up’ (with respect to their sides that contain K (¢)). Bottom:
At the end of the crossing, they ‘open down'.
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tiony,

Figure 3.2: The critical instance t, where the tangents at k= () and at " (¢y) become parallel.

To extend Theorem 3.2 to the case where K is a polytope, we use the following approx-
imation scheme. Let D be some ball fully contained in K, with center ¢ and radius p. For
each 0 > 0, let Ls be the Minkowski sum of K and a ball centered at the origin with radius
§, and define a map fs on S?, so that, for each 7€ S?, f5(¥) = (1 — §)g(¥) + dp, where g(?v)
is the distance from ¢ to dLs in direction ¢. Define K; to be

Ky = {c+ tfs(0)7 | 7 St e [0,1]),

scaled down by a factor of 1 + . See Figure 3.3 for an illustration.

O

Figure 3.3: A two-dimensional illustration of the scheme for approximating a convex polytope by
smooth strongly convex bodies: the convex polygon (blue), Minkowski sum with a small circle
(green) and K, (black).

It is easily seen that Ky is a smooth compact strongly convex object that is contained
in K, and that K5 — K as 6 — 0, in the sense that the Hausdorff distance between K and
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K tends to zero. Clearly, if K can be moved through W (by an arbitrary collision-free rigid
motion), then so can Kj.

For each 0 > 0, apply Theorem 3.2 to Ky, to obtain a direction vs and a rotation 6
orthogonal to ¥5 so that there is a sliding collision-free motion of K in direction vs from its
view (U5, 6s) through W. By compactness of S?, there exists a sequence d; | 0 such that v,
converges to some direction ¥ in S?, and 65, converges to some rotation ¢. By continuity, it
follows that there exists a sliding collision-free motion of K through W in direction v from
its view (¢, ). That is, we have obtained the following result.

Theorem 3.3. Let K be a convex polytope that can be moved by some collision-free rigid
motion through a gate W. Then there exists a sliding collision-free motion of K through W'.

We can therefore apply the machinery of Theorem 2.5, and conclude that we can deter-
mine whether K can be moved through W by a collision-free motion in time O(n*3polylog(n)).
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From Passing Through an Arbitrary Convex
Window to Sliding Through a Gate

In this chapter we prove a similar yet different property of a convex polytope passing through
some window. Here the window W is an arbitrary compact planar convex shape, not neces-
sarily rectangular.

Theorem 4.1. Let W be an arbitrary compact convex region in the xy-plane. Let K be a
convez polytope that can be moved by some collision-free motion through W, and let d be
the diameter of W (the maximum distance between any pair of points in W ). Let h be an
arbitrary plane, and let K; be the projection of K on h. Then K can be rigidly placed
between two parallel lines at distance d. That s, for any fixed direction v, K can slide in
direction U through a gate of width d, in a plane perpendicular to U.

Before giving the proof, here is an interesting corollary of the theorem.

Corollary 4.2. If K can be moved through a rectangular window W of dimensions a x b by
some collision-free motion, then K can slide through a rectangle of dimensions min (a,b) x

Proof. Assume without loss of generality that a < b. Since K can be moved by a collision-
free motion through a rectangle of dimensions a x b it can be moved through a gate of width
a, which we also assume to lie in the xy-plane. Therefore, by Theorem 3.3, K can slide
through that gate, and Lemma 2.1 then implies that there exists a placement K, of K from
which it can slide through the gate in the negative z-direction. Now project Ky on the yz-
plane and use Theorem 4.1 to place the projection between two parallel lines [1, [5 at distance
va? + b? (which is the diameter of W in this case), which, by rotating K, around the z-axis,
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we can assume to be perpendicular to the xy-plane. All this implies that the xy-projection
of (a rotated copy of) Ky is contained in a rectangle of the asserted dimensions. Indeed, the
projection of K is contained in a y-vertical gate of width a, and this property remains true
after we rotate K, around the z-axis. Therefore K can slide through such a rectangle in the
negative z-direction (see Figure 4.1). [

af

Figure 4.1: K can slide through a rectangle of dimensions a x v/a? 4+ b2. (top) The projection of
K on the zy-plane is contained in a gate of width a (the black lines), and the projection of K on
the yz-plane is contained between [y, (orange). (bottom) After rotating K around the x-axis,
ly, 15 are perpendicular to the xy-plane and the projection of K on the xy-plane is contained in
such a rectangle.

We move now to prove the theorem.

Proof of Theorem 4.1. As before, we will first prove the theorem for smooth strongly
convex compact bodies, and then extend the result to polytopes the same way as we did
in the previous chapter. Consider the motion of K, now assumed to be smooth, strongly
convex, and compact, in the normal setup, where W remains stationary in the xy-plane and
K moves, during the time interval [0, 1]. We assume that at t = 0 (resp., at t = 1), K lies
fully above (resp., below) the xy-plane.

Fix some direction ¢, and let C' = C(¢) denote the silhouette of K when viewed in
direction ¢. Let h be some plane orthogonal to ¢, and let 7, denote the orthogonal projection
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onto h. Parameterize a point u € C' by the orientation 6 of the tangent at m,(u) to Kj :=
7 (K) which is well defined since K is smooth, and let v, be the inverse of my; that is, v,(6)
is the unique point u € C such that m,(u) = 6. Since K is assumed to be strongly convex,
K, is also strongly convex, and 7 is a well-defined and continuous function on S!. We extend
7 to a bivariate function v* : S* x [0, 1] — R?, so that v*(6,t) is the position (in the ambient
3-space) of v(#) at time ¢ during the motion of K.

Let 0 : S* x [0,1] — R be the function §(6,t) = 2(7y*(0,t)), namely, the z-coordinate of
the corresponding point v(f) of C' at time ¢. Note that at time ¢t = 0 (resp., at time t = 1), §
is positive (resp., negative) at each 6, since K lies fully above (resp., below) the xy-plane at
that time. Put M := maxges1 6(6,0) and m := minges: 6(0, 1). By our assumptions, M > 0
and m < 0.

The functions dy(f) = §(6,0) and §;(6) = 6(0, 1) are defined and continuous on S', and
we extend each of them to the closed unit disk B! bounded by S!, in polar coordinates,
which, for technical reasons, we write in reverse order as (6, ), by

It is easily checked that these extensions are well defined and continuous over B!. Moreover,
dg(0,7r) > 0 and 057 (0,7) < 0 for every 6.

We now take our function 9, which is so far defined on the side surface S of the cylinder
S! x [0,1], and extend it to the entire boundary S* := S U By u By of the cylinder, so that
0 coincides with ¢F on the base By of the cylinder at ¢ = 0, and with ¢ on the base B; at
t = 1. Clearly, the extended ¢ is well defined and continuous over S*.

To simplify the forthcoming analysis, we identify S* with the unit sphere S?, which we
parameterize by (6, 2), where 6 € S! is the horizontal orientation of the point on S* and z
is its z-coordinate (so 6 is not well defined at the north and south poles of S§?). We use the
simple homeomorphism f that maps a point (6,t) € S to (6,t — 1/2) € S?, maps a point
(0,7) € By to (0,—1 + r/2) € S?, and maps a point (0,r) € By to (6,1 —r/2) € S®. See
Figure 4.2 for an illustration. In what follows, we will mostly use S? to represent S*, except
for a few technical observations.

Define a function G from S? to R? by
G(0,t) = (6(0,2), 6(0 +m,2)), for (6,z2)eS>

Our goal is to show that G(S?) contains the origin. Note that, by construction, G(f(By))
is fully contained in the positive quadrant @ := {(z,y) | =,y > 0}, and G(f(B;)) is fully
contained in the negative quadrant Q3 := {(z,y) | x,y < 0}. Thus, if G(S?) contains the
origin then so does G(f(S)). Once this property is established, it provides us with a pair
(0, z) such that §(0,2) = §(0 + 7, 2) = 0, which means that there are two antipodal points
u,v € C that pass through W simultaneously. Therefore their distance must be at most
the diameter of W, and hence also the distance between the parallel tangent planes through
them, which is a slab parallel to ¢ of width at most d that contains K, as asserted.
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(i) (i) (iii)

Figure 4.2: Identifying S* with the unit sphere S?. By is shown in green, B; in orange, and S
in light blue. In (i) S* is depicted, in (ii) an intermediate snapshot of the deformation is shown,
for visual convenience, and in (iii) the final unit ball is shown, divided into the three parts that
correspond to By, S and Bj.

Assume to the contrary that G(S?) does not contain the origin. Then we can normalize

G to the function
G(0,z2)

,: 2
H(,z): G for (0, 2) € S,

which maps S? continuously to the unit circle S'. The function G, and thus also the function
H, are symmetric with respect to the line y = z in R?, meaning that

GO+ 7, z2) =%(G(0,2)), for (9,2) € S?, and thus also
H(O+mz2)=%(H(,z2), for(0z)eS

where 3 is the reflection about y = z, that is, X(z,v) = (y, z).

We now use the property that the real line is a covering space of S, in the specific (and
easily verified) sense that the continuous map p : R — S!, given by p(x) = ™% for z € R, is
surjective, and, for each ¢ € S', there exists an open neighborhood U of ¢ such that p~'(U)
is the disjoint union of open sets in R, each of which is mapped homeomorphically to U by
p. The map p is called the covering map.

A well known property of covering spaces is the lifting property (reviewed, e.g., in [17];
see also [16]), a special case of which asserts, in the specific context used here, that, if ¢
is any continuous map from S? to S! then ¢ can be lifted to a map ¢ : S* — R, so that
po1 = p. (Technically, this property holds when the domain of ¢ (and ), which is S? in
our case, is path connected, locally path connected, and simply connected, conditions that
are trivially satsfied by S%. Hence the lifting ¢ does indeed exist.)

Applying the lifting property to the function H, we get a continuous mapping 7' : S? — R,
such that poT = H, so we have the property that

P(T(0 + 7.2)) = ST, =), for (6.2) €S
As is easily checked, we have X (e) = €!"/?7%) and therefore, for a point z € R, we have

S(p(z)) = T (™) = €272 _ (1 /4 — ), SO
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p(T(0+m,z2) =p(1/4—-T(0,z)), for (0,2) e S*.
This in turn implies, by the definition of p, that

TO+mz)=1/44ky.—T(0,2),

for some integer ky .. However, since 7" is continuous, there must be a single integer k£ such
that kp . = k for all € and z. That is, we have

TO+mz)+T(0,2) =1/4+k, for all (6, z) e S*. (4.1)

By an easy application of the mean-value theorem (which is also a special case of the Borsuk-
Ulam theorem in dimension 1), there exist §y and 6; such that, recalling that the value
z = —1/2 (resp., z = 1/2) corresponds to points on the lower (resp., upper) circle bounding
S,

T(0 + 7, —1/2) = T(6y, —1/2)
T(0) + 7, 1/2) = T(6;,1/2).

Substituting in (4.1), we get
T(0y,—1/2) =T(01,1/2) = 1/8 + k/2.

However, by construction, H (6, —1/2) lies in the first quadrant @)1, and H (6, 1/2) lies in the
third quadrant ()3. Hence we have T'(0y, —1/2) € (0,1/4) +Z and T'(64,1/2) € (1/2,3/4) + Z,
but 1/8 + k/2 can belong to only one of these sets (depending on whether & is even or odd).
This contradiction shows that G(S?), and thus also G(f(S)), contains the origin, as asserted.

So far the proof was for a smooth strongly convex compact bodies. The extension to
the case of a convex polytope K is done exactly as in the proof of (that is, the argument
preceding) Theorem 3.3. []

A second proof. We provide an alternative proof of Theorem 4.1, and we are grateful to
Boris Aronov for providing to us its main ingredients.

We use the same notations as in the previous proof. Similar to the first proof, the
following, slightly more generally stated proposition is the main technical tool that we need.

Proposition 4.3. Let G: S — R? be a continuous map, interpreted as the homotopy of
the closed curve &y: S' — Q1 < R?, given by 0 — G(0,0), to the closed curve §;: S* —
Q3 = R?, given by 0 — G(0,1). In addition, suppose that G is symmetric, in the sense that
GO + 7,t) = X(G(0,1)), for all @ € S' and t € [0,1]. Then there exist § € S, t € R that
satisfy G(0,t) = O, that is, G cannot miss the origin.

Proof. Clearly, if G(0,t) = O then we also have G(6 + 7, t) = O. Hence it suffices to show

that there exists (0,¢) in D := [0, 7] x [0, 1] (half the side surface of the cylinder) such that
G(0,t) = O. Let II be the image of D under G.
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Consider the curve ~q: [0,1] — S defined by ¢t — (0,¢), and its image I'y under G,
i.e., Do(t) = G(0,t) € R% Let 7, and I'; be defined similarly by ~;(¢) := (m,t), so that
['y(t) = G(m,t). Let 74 and I"] be the reverses of y; and I'y, respectively — the same curves
traversed in reverse direction.

Additionally, let (o, (;: [0,7] — S be the “half-circles” defined by 6 — (6,0) and 6 —
(0, 1), respectively, and Z; := G o (;, for i = 0,1. Let ¢}, and Z] be the reverses of (y and Zy,
respectively. See Figure 4.3 for an illustration.

(0,0)

(m.0)

ho

Figure 4.3: The boundary of half the cylinder is mapped to a closed loop with a nonzero winding
number around the origin. Note that 7y and ; are symmetric about the axis of the cylinder, and
therefore T'y = X(I';).

Concatenating 7o, (1, 71, and ¢ in this order, we obtain a closed loop ¢ in S, which is
the boundary of D, and its corresponding image L := G(¢) in the plane. By construction,
¢ bounds the topological disk [0,7] x [0,1] in S. and L is a closed loop in R2. We prove
below that, if O ¢ L, then L has a non-zero winding number around O. Given this property,
we claim that O must lie in IT = G([0, 7] x [0,1]). Indeed, if O ¢ II then II is contained in
the punctured plane at the origin. Since L has a nonzero winding number around O, it is
homotopic, within II, to a curve obtained by looping around the origin a nonzero number of
times. This curve is not homotopy-trivial—it is not homotopic to a point (within IT). On
the other hand, ¢ is clearly homotopy-trivial within D, and therefore L = G(¢) is homotopic
to a single point within G(D) = II, a contradiction that establishes the proposition. []

To complete the proof, we thus show:

Claim 4.4. In the notation of the above proof, if L misses O, then the winding number of
L around O is non-zero.

Proof. Let arg(z,y) be the clockwise angle that the vector (x,y) makes with the positive
x-axis and let, for a section A\ of L, AX be the integral of the change in arg A(t) as t traces
out A from start to finish.

We will compute the winding number of L around the origin by breaking L into sections
A, computing the angle change A\ for each section, and adding up the numbers.
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Let o := arg G(0,0) € (0,7/2). Then by ¥-symmetry arg G(7,0) = 7/2 — «. Similarly,
put 5 :=arg G(0,1) € (m,37/2), so that arg G(7,1) = 57/2 — € (m,37/2). Since Zy < Q4
(so Zy cannot wind around O), AZy = arg G(w,0) —arg G(0,0) = (7/2 —a) —a = 71/2 — 2«
and AZ) = —AZy = 2a — /2. Similarly, since Z; < Q3, AZ; = arg G(m,1) —arg G(0,1) =
(5m/2 = B) — B = 57/2 —20.

[y connects G(0,0) to G(0,1), so ATy = arg G(0,1) — arg G(0,0) + 27k =  — a + 27k,
for some integer k, over which we have no control as we do not know how many times I’y

winds around the origin (we use here the assumption that I'y avoids the origin). Because of
Y-symmetry, we must have Al'y = —Al'y and therefore A"} = —AI'y = AT

To summarize, the total change of the angle around L is equal to

ATy + AZy + AT, + AZ| = 2AT g + AZy + AZ]
=2(6—a+27k) + (5b7/2 — 20) + (2o — w/2)
=27(2k + 1).
In particular, the total angle is not zero, no matter what the value of the integer k is, thereby
completing the proof.

The remainder of the argument, namely that Proposition 4.3 implies the theorem, and
the extension to the case of convex polytopes, is done exactly as in the first proof, thereby
completing this second proof of the theorem. []
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Purely Translational Motions

In this chapter we solve another special case of the problem, in which arbitrary translations
are allowed, with all three degrees of freedom, but rotations are not allowed. This case is
solved by an easy combination of what we have proved so far. The following theorem is, in
a sense, a strengthening of Lemma 2.1.

Theorem 5.1. If K can be moved through a rectangular window W by some purely trans-
lational collision-free motion, then K can be moved through W, possibly from some other
(translated and rotated) starting position, by sliding in the z-direction.

Proof. Again, we first carry out the proof for the case where K is a smooth compact strongly
convex body in three dimensions, and then extend the proof to the case where K is a convex
polytope. We recall the proof of Theorem 3.2 and follow the notations used there. When K
translates through W its projection on the zz-plane is a fixed convex region that translates
through the interval g on the x-axis, which is the z-projection of W. By the argument in
the proof of Theorem 3.2, there is a time ¢ during the motion at which the tangents 7~
and 77 become parallel, and form, when extended in the y-direction, a (possibly slanted)
slab S that is orthogonal to the xz-plane, and that contains the placement of K at time
t, so that the intersection of S with the xy-plane is a y-vertical strip of width at most a,
whose z-projection is contained in that of W. Applying the same argument to the yz-plane
(swapping the z- and y-directions), we get another time ¢’ at which K is contained in another
slab S’, orthogonal to the yz-plane, whose intersection with the zy-plane is an z-horizontal
strip of width at most b, whose y-projection is contained in that of W (see Figure 5.1).

Hence, the intersection 7 = S n S’ is a (slanted) prism, whose cross-section with the
zry-plane is a rectangle contained in W. Moreover, as is easily verified, 7 contains some
translated copy Ky of K. Hence, K can slide through W from its placement K, in the
unbounded direction of 7. By Lemma 2.1, K can also slide through W in the z-direction,
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from a different, possibly rotated, initial placement.

The case where K is a convex polytope can be handled by the same limiting argument
given in the proof of Theorem 3.3. []

Figure 5.1: Some translated copy of K is contained within a slab S perpendicular to the xz-plane,
and some other translated copy of K is contained in a slab S’ perpendicular to the yz-plane, so
that the x-projection of the intersection of S with the zy-plane is contained in that of I/, and
the y-projection of the intersection of S and the xy-plane is contained in that of W. We can
thus translate K to a placement contained in the prism S n .S/, from which K can slide through
the intersection of S n S’ and the xy-plane (the black rectangle, which is contained in ).

This leads to an efficient algorithm, with running time O(n%?3polylog(n)), for the problem
considered in this chapter, following the algorithm given in Chapter 2.
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Rotations Are Needed

So far we have considered sliding motions of a convex polytope through a window, and
showed that in several cases it suffices to consider only such motions. However, this is not
the case in general. We show in this and the following chapter that in general rotations are
needed to obtain a collision-free motion of the polytope through the window.

Lemma 6.1. let W be a squared window with side length /5. Let A = (0,0,0),B =
(1,3,0),C = (1,0,h), D = (0,3, h) be four points, where h » 1 is a sufficiently large param-
eter. Let K be the tetrahedron ABCD (see Figure 6.1). Then:

1. K cannot pass through W by any purely translational collision-free motion (for suffi-
ciently large h > 1).

2. K can pass through W by a collision-free motion with only two degrees of freedom:
translating in the z-direction combined with horizontal rotation (for any value of h > 0).

Proof.

1. Assume to the contrary that there exists a purely translational motion of K through
W. By Theorem 5.1, there exists some placement K, of K from which K can slide through
W in the negative z-direction. Let m(Kj) denote the vertical projection of K, onto the
xy-plane. By the theorem, m(Kj) can be rigidly placed inside W. Recall now that h is very
large, which implies that, when transforming K to Ky, the z-vertical direction turns by only
a very small angle, for otherwise m(Kj) would be very long and would not fit into such a
square. More formally, for every € > 0 there exists hy such that for every h > hy the angle
by which the z-axis turns from K to K| is at most €. As e decreases to zero, the lengths
of the projections of the segments AB, C'D grow to 4/10, which is their original length, and
the angle between them converges to some 0 < ¢ < 7 (the exact angle is the angle obtained
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Figure 6.1: The tetrahedron K = ABCD.

when the z-axis remains the same, which is then ¢ = 2sin™* \/%70) Therefore, the projection

7(Ky) is the convex hull of two segments of length sufficiently close to /10, which is the
diagonal of W, where the angle between them is sufficiently far from 0, /2. Hence 7(K))
cannot be placed inside a square with side length 4/5. This contradiction establishes the first
part of the theorem.

2. We move W instead of K, allowing it only to translate in the z-direction (so it always
remains horizontal), and simultaneously rotate around its center (so the motion of W has
only two degrees of freedom). More concretely, the center of W moves up along the line
x = 1/2, y = 3/2. We parameterize the motion by a parameter ¢ € [0, 1], so that at time
¢, W lies on the plane z = ch and its center is at (1/2,3/2,ch). See Figure 6.2(left) for a
schematic top view of K.

The cross section K. of K at time ¢ is shown (in green) in Figure 6.2(right). It is a
quadrilateral PQRS, with P = (¢,0), Q = (1,3(1 —¢)), R = (1 —¢,3) and S = (0, 3c¢).
We place W around K. so that PR lies at the middle of one diagonal of W (so W keeps
rotating to align with this rotating segment). It is clear that the motion of W is continuous,
and it remains to show that K. always lies in (the placement at height ch, with the aligned
diagonals, of) W.

It suffices to show that, at any time ¢ during the motion, APRS is contained in the
isosceles right triangle with hypotenuse PR (this triangle is half of W, and the argument for
the complementary half and for APQR is fully symmetric). For this, it suffices to show that
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D(0,3,h) B(1,3,0)

D(0,3,h B(1,3,0)

/A(0,0,0) C(1,0,h)

A(0,0,0

Figure 6.2: Placing the cross section of K inside W. Left: A schematic top view of K. Right:
The cross section of K at time ¢ (green), and a copy of W that contains it.

each of the angles xSPR, ¥xSRP is smaller than 7/4. Note that the edges of PQRS have
fixed slopes, namely 3 and —3, as they are parallel to the zy-projections of AB and CD.
This implies that tan x.SPQ = tan xSR(Q) = % < 1,80 xSPQ = ¥xSRQ < ©/4. We have
thus shown that K can move through W by (the dual version of) this motion, of translation

in the z-direction combined with horizontal rotation. []
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The Case of a Circular Window

In this chapter we study the case where W is a circular window, of some diameter d. There
are (at least) three possible types of motion of K through W: sliding, purely translational
motion, and general motion, with all six degrees of freedom. In this chapter we show that
these types are not equivalent. Our two main results are: (a) There are situations in which
K can pass through W by a purely-translational collision-free motion but K cannot slide
through W. (b) There are situations in which K can pass through W by a general collision-
free motion but K cannot pass through W by a purely-translational motion.

We prove both results for the case where K is a regular tetrahedron of side length 1. We
do so by showing the existence of two threshold parameters d, < d; < 1, so that, denoting by
diam (W) the diameter of W, (i) K can slide through W' if diam(W) > 1, (ii) K cannot slide
through W, but can pass through W by a purely translational motion, if 6; < diam(W) < 1,
(iii) K cannot pass through W by a purely translational motion, but can pass through W
by a general motion, if dy < diam(W) < ¢, and (iv) K cannot pass through W at all if
diam(W) < 9,.

Approximate values for these thresholds, obtained numerically, are §; ~ 0.901388 and
09 ~ 0.895611.

7.1 Purely Translational Motion

Let K be a regular tetrahedron of side length 1. Assume first that diam(7/) > 1. Then it is
easy to show that K can slide through W. This is because K can be enclosed in a cylinder
of diameter 1, such as a cylinder (of diameter 1) whose axis is orthogonal to two opposite
edges of K. The interesting case is therefore when diam (W) < 1. We then have:
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Theorem 7.1. Let W be a circular window of diameter d.

(1) K cannot slide through W, at any fized orientation, if d < 1.

(2) There exists a threshold §; ~ 0.901388, such that K can pass through W by a collision-
free purely translational motion, if d = 0.

Proof.

(1) First, by the argument in the proof of Lemma 2.1, the projection of W on any plane can
be rigidly placed inside W (for a circular window, the argument is actually simpler, since the
projection is an ellipse whose major axis equals to the diameter of W), so, arguing as in the
proof of Lemma 2.1, any polytope that can slide through W can also slide in the direction of
the z-axis. It therefore suffices to show that K cannot be contained in a cylinder of diameter
smaller than 1.

A proof of this fact can be found in [18]. For the sake of completeness, we reproduce here
the proof. We first note that for any four vectors v1, v3, v3, v3 the following identity holds:

1 &4 4 - 1
D NCEEIEE ) WL I WRCE AR WA e
i=1j=1 i=1 i=1 =1

1<i<j<4

2

Let K be the tetrahedron whose vertices are:
1 1

V@&mx @:ET@QAL
. 1 . 1
U3 = \/—2—4(—\/5, \/6, —1), Vy = \/—2—4(—\f, —\/6, —1)-

It is indeed a regular tetrahedron of side length 1:

—

U1

1 1
- 12 . 12
— B = (84 16) =1 — = (2 16) = 1
|01 — 03 24(8+ 6) : |01 — v 24( + 6+ 16) ,
1 1
— =—(24+6+16)=1 - =—(18+6)=1
|01 — 24( +6+16) =1, |03 — 3 24( +6) =1,
— — 1 — — ]-
"UQ —U4’2 = ﬂ(lg + 6) = 1, |’03 —’U4|2 = ﬁ<24) =1.

Represent vectors in our 3-dimensional space as 3 x 1 column vectors. By some more algebra,
we obtain



12 0 0 )
0 12 0 |==I.
0 0 12

1
24

Therefore, for any unit vector 77 the following equation is satisfied:
4 4 A 1 1
;@2,7’5 2 _ ; o 7% = ;Tr ((@@T> ) (ﬁﬁT)) _ §Tr(ﬁﬁT) -1

4
Note that >} v; = 0, and hence:
=1

7
1 4 4 4
D (A=)’ = 3 ) G — ) =4 () =2
1<i<g<4 i=1j=1 i=1

Assume that the smallest cylinder that contains K has diameter d. Let h be a plane per-
pendicular to the axis of the cylinder, let nj, 73 be two orthogonal unit vectors in h, let u;
be the projection of v; on h, for 1 <4 < 4, and put [;; = w; — 4. It is easy to see that

1 * = 100 = T = T, 0 = 1) o+ 7, 0 — 5% = 7, 6 — )% o (7, 01— )
We thus have Y |l;;|2 = 4. Consider the coordinate system in h whose axes are parallel
1<i<j<4

to 717 and 715, and whose origin is at the center of the intersection circle of h and the cylinder.
In this coordinate system we have |u;| < g for each i. Note that [;; remains the same and

4
that Y} u4; = 0, as the projection of Zle 0; = 0, and we thus obtain:

i=1
4 nt
72 - =12 12 2
1<i<j<4 1<i<y<4 i=1
Finally we get that 4 = >} |l;;|2 < 4d?% so d = 1, but in our case the diameter of
1<i<j<4

W is strictly smaller than 1. We therefore conclude that K cannot slide through W, thus
establishing Part (1).

(2) We now prove that although K cannot slide through W, it can pass through W by a
purely translational movement, provided that d = diam(W) is at least some threshold ¢; < 1,
whose concrete value will be analyzed below. This holds for many orientations of K (but
not for all orientations); this set of admissible orientations keeps shrinking as d approaches

1.

Assume for now that the orientation of K is fixed. We claim that K can move through
W at this fixed orientation, as above, if and only if every horizontal cross section of K can
be enclosed in a disc of diameter d; that is, the smallest enclosing disc of each cross section
has diameter at most d. We refer to this property as the small diameter property. The ‘only
if” part is obvious. We briefly explain the ‘if’ part. Let K(z) be the cross section of K at

40



height h. For every z € 0K (z) let ¢, be a horizontal circle of diameter d centered at x.

That is, all the points within the plane of the cross section whose distance from x is at most

4. Clearly, the intersection R(z) = ()] ¢, denotes the set of all available positions for
x€0K (2z)

the center of W within that plane, such that it contains the cross section K(z). K(z) is a

continuous function of z in the Hausdorff metric of sets, and hence so is R(z). This is easily

seen to imply that we can choose the position of the center of W for every cross section in

a way that is continuous in z.

Assume without loss of generality that the initial placement of K is with its lowest vertex
at z = 0, and let h denote the z-coordinate of the highest vertex. As above, denote by K (z)
the cross section of K at height z, for z € [0, h]. Assume without loss of generality that all
four vertices have distinct z-coordinates, and that the order of increasing z-coordinates of
the vertices is A, B, C, D; that is, 24 < zp < z¢ < zp.

We claim that the small diameter property holds if and only if it holds for K(zp) and
K(z¢). Indeed, observing that these two cross sections are triangles, assume without loss of
generality that the radius p of the smallest enclosing disc Dp of K(zp) is larger than or equal
to that of K (z¢). Enclose K (z¢) by some disc D¢ of radius p, and let E be the convex hull of
Dpu D¢, which is a possibly slanted elliptic cylinder, each of whose horizontal cross sections
is a congruent copy of the disc Dg. Since K has no vertices in the open slab zp < 2z < z¢,
it follows that the portion of K within the closed slab zp < z < z¢ is the convex hull of
K(zp) U K(z¢), and is therefore fully contained in E. Hence, for every zp < z < z¢, K(2)
is contained in a disc of radius p. The cases of the slabs 24 < 2z < zp and z¢ < z < zp are
argued in the same manner. This establishes our claim.

In other words, we want to find orientations of K for which the (triangular) horizontal
cross sections at the two middle vertices of K (in the z-direction) have smallest enclosing
discs of diameters smaller than 1.

Denote the cross section K (zp) through B by BUV, where U is the point AC' n K(zp)
and V' is the point AD n K(zg). Put x = |[AU| and y = |AV|, s0 0 < z,y < 1. Similarly, we
write the triangular cross section K (z¢) through C' as C'ST, where S is the point ADN K (z¢)
and T is the point BD n K(z¢), and put z = |SD| and w = |T'D|, so again 0 < z,w < 1.
See Figure 7.1 for an illustration. Note that we must have x > y and w > z, for otherwise
A and D would not have been the two z-extreme vertices of K.

The requirement that these two cross sections be parallel imposes the following relations
between x, y, z, and w.

T —y
_ 7.1
z " (7.1)
T —y
W= ——".
r(1—y)

Indeed, since the two cross sections are parallel, they intersect any plane (not parallel
to them) at parallel lines. In particular, we have UV || C'S and T'S || BV, so the triangles
AUV and ACS are similar, and so are the triangles DST and DV B. The first similarity
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Figure 7.1: The horizontal cross sections of a regular tetrahedron through its two middle vertices.

implies that
L AU AV Y
AC AS  ASY
so AS = y/x, and then
r=AD-AS=1-AS=""1Y

T

The second similarity implies that

DT DS z T —y

YTDBTDV 1-y 21—y

thus establishing (7.1).
Note that, once we enforce x > y, the second inequality w > z trivially holds.

The goal is then to search for orientations of K and for suitable choices of x and y
(and thus of z and w too) for which the two cross sections have smallest enclosing discs of
diameters smaller than 1. This is done as follows.

For a triangle A of side lengths a, b, ¢, the circumradius 7(A) of A is given by the formula

B abe
4 Area(A)’

The area can be expressed by Heron’s formula as

Area(A)? = 7(1 — a)(m — b) (7 — ¢),

r(A)
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where m = (a 4+ b + ¢)/2 is half the perimeter. That is, we have

Area(A)? = i(a +b+c)b+c—a)a+c—b)(a+b—rc)

16
1
= gl@+0)’ =)@ = (a-b)*)
1
= 1—6(2a262 +2a%c® + 2b°c* — a* — bt — ).

Therefore, b

r2(A) = a’be .
2a20% 4+ 2a%c® 4+ 2022 —a* — bt — A

Assume that the triangles BUV and C'ST are both acute, so their smallest enclosing discs

coincide with their circumscribing discs. Apply this formula to each of the triangles BUV

and CST. An easy application of the Law of Cosines yields

|BUP> =1 — 2 + 2?

BV =1—y+19°

UV |? = 2% — 2y + 1

ICSPP=1—2+ 22

ICT? =1—w+ w?

|ST|? = 22 — zw + w?.
Substituting these values in (7.2), once with a* = |BU|?, b* = |BV|?, ¢ = |[UV|?, and once
with a? = |CS|?, b* = |CT|?, ¢* = |ST|?, we get the values of the circumradii of the two

triangles. If any of these triangles is obtuse, the radius of its smallest enclosing disc is half
the longest edge.

(7.2)

The goal is, as said above, to find values of the parameters =,y that minimize the larger
of these two radii (note that the choice of x and y determines the orientation of K, up to
rotation about the z-axis because they determine a slice of K (namely, BUV') that has to
be horizontal). By numerically testing a dense grid of values for x,y and running methods
for finding the minimum of a function (computing the radius of the smallest enclosing disc
using (7.2) for acute triangles, and half the longest edge for obtuse triangles), the optimizing
parameters turned out to be z ~ 0.43400 and y ~ 0.30265, and the larger of the two
diameters was ~ 0.901388. Setting d; to this value completes the proof of Part (2). [

7.2 General Motion

Theorem 7.2. Let W be a circular window of diameter d. Then there exists a threshold
do ~ 0.895611, such that K can pass through W by a collision-free motion if and only if
d = 0.

In other words, for diameters d; < d < d7, the only way to move K through W is via a
motion that also involves rotations, and for diameters d < d2, no motion of K through W is
possible.
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Proof. We first construct the desired motion for d > d, which consists of five steps—sliding,
rotation, sliding, rotation, and a final sliding. We use the setup and notations introduced
in the analysis of the preceding section, and depicted in Figure 7.1. As earlier, it is more
convenient to consider K as fixed, and W as moving around K.

Assume that the lowest vertex A lies on the xy-plane and inside W (see Figure 7.2 (i)).
Start by sliding W up, possibly in a slanted direction, ensuring that it keeps containing the
cross section of K with the plane supporting W, until W comes to contain B: See Figure 7.2
(ii). We want to choose the initial orientation of K so that the smallest enclosing disc of
the horizontal (triangular) cross section of K through B, namely the triangle BUV, is of
diameter at most d. As already noted, the orientation of K is determined by = and y, up to
a possible rotation around the z-axis, as they determine the vertical direction of K (the one
orthogonal to the triangle BUV).

C

' A
(i) (ii) (iii) (iv)

Figure 7.2: Moving W around K. (i) The initial configuration. (ii) W contains the triangle
BUYV. (iii) W contains the rectangle UVV'U’. (iv) W contains the symmetric rectangle, with
edge lengths swapped. The remainder of the motion is a fully symmetric reversal of the first two
steps.

We ran our numerical approximation scheme, and the smallest diameter of the smallest
enclosing disc of BUV that we obtained was 0.895611, attained at z = y = 0.391113, and we
take this value as our approximation of d5. Note, incidentally, that this choice of parameters
implies that the edge C'D of K is horizontal. It also implies that [UV| = x =y = 0.391113.

We now rotate W about the line UV, in the direction that keeps A and B on one side
of it. The cross section of K by the rotating plane is an isosceles trapezoid, and we keep
rotating the plane until it becomes a rectangle UVV'U’. As is easily checked, we have
\UU'| = |[VV'| = 1 —x = 0.608887, and the diameter of the smallest enclosing disc of
UVV'U’, which is its diagonal, is ~ 0.72368, much smaller than d,. An easy adaptation of
an argument used earlier shows that, during this rotation of W about UV, every cross section
is contained in the corresponding rotated copy of the disc of diameter do whose bounding
circle passes through U and V. See Figure 7.2(iii).

We then slide W in the direction perpendicular to UV V'U’. During this sliding the cross
section of K remains rectangular, so that UV keeps increasing and UU’ keeps decreasing,
while the sum of their lengths remains 1. We stop when we reach a ‘symmetric’ rectangle
where the side parallel to UV (resp., UU’) is of length 1 — z (resp., z). See Figure 7.2(iv).

The situation that we have reached is fully symmetric to the one after the first two steps,
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and we can now complete the motion by a symmetric reversal of the first two steps.

To complete the proof, for the case where diam(W') < dq, we observe that in this case W
cannot pass through any vertex of K, because then, by definition of d5, the smallest enclosing
disc of any cross section through any vertex would have diameter larger than diam (). []
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Conclusion

In this thesis we have studied a variety of problems concerning collision-free motion of a con-
vex polytope thrugh a planar window, under several kinds of motion — sliding (translation
in a fixed direction), purely translational motion, and general motion. We have presented
several properties and characterizations of such motions, and obtained efficient algorithms
for several special cases.

There are many open problems and directions for further research. One such direction is
to derive efficient algorithms for the most general problem with all six degrees of freedom.
In general one expects a solution that runs in roughly O(n%) time, but the special structure
of the problem suggests that faster solutions should be possible. We are currently pursuing
this direction, by reducing the number of degrees of freedom to four, by forcing two edges
of the polytope to touch two edges of the window. We believe that this should lead to an
algorithm with running time close to O(n*).

Moreover, the free configuration space of the polytope has a combinatorial complexity
of O(n*), because each edge of the window can touch at most one element of the polytope
(a face, a vertex or an edge). This suggests that if we form the arrangement of these O(n)
‘contact surfaces’ in the sixth-dimensional configuration space, its complexity should be only
O(n"). Transforming this observation into a comparably efficient algorithm is more involved,
and we are currently studying this approach.

Furthermore, we believe that this bound is tight, in the sense that for every positive
integer m there is a polytope with complexity n > m, such that its free configuration free-
space has combinatorial complexity of ©(n*), which will show that an O(n?) algorithm for the
general problem might be optimal in some cases, if we compute the entire free configurations
space.

In addition, in Chapter 6 we presented an example in which a rotation is needed to pass
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the polytope through the window. However, in this construction we only used a rotation
about the line perpendicular to the plane that contains the window. This suggest the conjec-
ture that maybe every convex polytope that can pass through a rectangular window can also
pass through it by a motion consisting of arbitrary translations, and rotations only about
the line perpendicular to the plane that contains the window. The results of Chapter 7 show
that for circular window this claim is false, but the status of the conjecture is still open for
a rectangular window.

47



Bibliography

[1] P. K. Agarwal, Simplex range searching, in Journey Through Discrete Mathematics (M.
Loebl, J. Nesetfil and R. Thomas, eds.), Springer, Heidelberg 2017, pp. 1-30.

2] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in
Discrete and Computational Geometry, Contemp. Math. 223 (B. Chazelle, J. E. Goodman,
and R. Pollack, eds.), AMS Press, Providence, RI, 1999, pp. 1-56.

[3] M. de Berg, L. J. Guibas and D. Halperin, Vertical decompositions for triangles in 3-
space, Discrete Comput. Geom. 15(1) (1996), 35-61.

[4] P. Bose and D. Halperin and S. Shamai, On the separation of a polyhedron from its
single-part mold, 13th IEEE Conference on Automation Science and Engineering, (2017),
61-66.

[5] B. Chazelle, H. Edelsbrunner, L. J. Guibas and M. Sharir, A singly exponential strati-
fication scheme for real semi-algebraic varieties and its applications, Theor. Comput. Sci.
84(1) (1991), 77-105.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S.
Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press,
2005.

[7] J.-C. Latombe, Robot Motion Planning, The Kluwer international series in engineering
and computer science, Kluwer, volume 124, 1991.

[8] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Problem
Books in Mathematics, Springer Verlag, Heidelberg, 1991.

9] H. E. Debrunner and P. Mani-Levitska, Can you cover your shadows? Discrete Comput.
Geom. 1 (1986), 45-58.

[10] E. Fogel, D. Halperin and R. Wein, CGAL Arrangements and their Applications - A
Step-by-Step Guide, Geometry and Computing, 7, Springer, 2012.

[11] P. Gibbs, A computational study of sofas and cars, Computer Science 2 (2014), 1-5.

[12] D. Halperin, J.-C. Latombe and R. H. Wilson, A general framework for assembly plan-
ning: The motion space approach, Algorithmica 3-4 (2000), 577-601.

48



[13] D. Halperin, L. Kavraki and K. Solovey, Robotics, Chapter 51 in Handbook of Discrete
and Computational Geometry, Chapman & Hall/CRC, 3rd edition, 2018, 1343-1376.

[14] D. Halperin and M. Sharir, Arrangements, Chapter 28 in Handbook of Discrete and
Computational Geometry, Chapman & Hall/CRC, 3rd edition, 2018, 723-762.

[15] D. Halperin, O. Salzman and M. Sharir, Algorithmic Motion Planning, Chapter 50 in
Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC, 3rd edition,
2018, 1311-1342.

[16] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002, pages
61-62.

[17] https://en.wikipedia.org/wiki/Covering_space

[18] https://math.stackexchange.com/questions/1364880/smallest-cylinder-into-which-a-
regular-tetrahedron-can-fit

[19] L. E. Kavraki, P. Sestka, J.-C. Latombe and M. H. Overmars, Probabilistic roadmaps for
path planning in high dimensional configuration spaces, IEEFE Transactions on Robotics

12(4) (1996), 566-580.

. J. Kuffner and S. M. Lavalle, -Connect: An efficient approach to single-query

20] J. J. Kuff d S. M. Lavalle, RRT-C An effici h ingl
path planning, IEEE International Conference on Robotics and Automation (ICRA)
(2000), 995-1001.

[21] S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006

[22] W. H. Plantinga and C. R. Dyer, Visibility, occlusion, and the aspect graph, Int. J.
Computer Vision 5 (1990), 137-160.

[23] O. Salzman, M. Hemmer and D. Halperin, On the power of manifold samples in explor-

ing configuration spaces and the dimensionality of narrow passages, IEEFE Trans Autom.
Sci. Eng. 12(2) (2015), 529-538.

[24] O. Salzman, M. Hemmer, B. Raveh and D. Halperin, Motion planning via manifold
samples, Algorithmica, 67(4) (2013), 547-565.

[25] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Ap-
plications, Cambridge University Press, New York, 1995.

[26] J. Snoeyink and J. Stolfi, Objects that cannot be taken apart with two hands, Discrete
Comput. Geom. 12 (1994), 367-384.

[27] G. Toussaint, Movable separability of Sets, Comput. Geom. 2 (1985) 335-375.



9800

Y1 IN) NOON NMY1 (the sofa problem) 7907 n»ya Sv M T1PR-NON NONA NPOIIW NN

NN DY DOYWWYN NIV YSHNI NHYI NNDISNNY ,NPPONRNNA NPYNY MY NN (NADN NN
71729 OY NN AN PNITONA NAYD NDIDOYW MIDMYOPNN NN NNIDNL NPOIW MPYIAN .DNTIPN
N 7T NAYD DNDY DINNIPN DNINON NINON PN NN N2 DT NNRY 7PYAN .MOYNI 90 Hv
INOPN PP OY ("NON) 232010

TIT N2YY ©1PYW DXNNP DN KV NPNIIN MNDN : DINPD MW 7PYIAN NN DXIPIN NMIN
0P N DTN 573D NYNN NIOND DIV DNIMINONY NONN

11N ,7PY2N HY DXVINYT NN DPOIW NAIN

LIPONNY) TN NI NNND P NN DYNNNYD e
,(0>212>°0 552) NN P NN NYNNIYD e
L7VYY) NPODIN N NONN DY MYON IV e

IDVN ONNYD e

YTV GO NN NRNND NI, )M NOY 1985 mywn Toussaint YW 99NN NNVYRID MIXIN 1IN

O N0 dYId

: 9D NN NNNIND NINNIND

NONN TIT ININ DY NPONN DPPY DIXRINI DN NON TITNIPONNIDNTNIN 2 P19 @
DY . NIONN NYIND THIRNY NI ,(NINNK IIN) NPONN DY DPP NI IDNN DNV Y0INn
VPO 279 DIINON DINXND NNY,NNINP NN PYN NPONN D30 DIRNND 1D IWINND

MIN XINNY 10 DX, NNIOY NPOND NP ONN

2y DIDNN D) WY TIT (07212201 M) NP9 NYNN DY NIPHN IR DIPIN DN 3 P19 e
YYD TIT PIRON DY NYNN DPPY DIRIND NNIN . (NIMDN XD MDMIAPN MYON NV T
JINTOW NYIN PNIDND DOV DNININ DAPD DP NI ,IYWN TIT WY NPONN DYP NI

WY OO 19T NIAYD D10 PRONY DD NON PAY PN DY DXTOIY DNIN G P19 @
T DY) d TVIP DY 1PN NAYY 91D NNON DNY DININ PNIN .I1DTT NYD 91D )onnv
591 79 7292 ¥ 2220 RN NN 310D IWANR T 1119 999 IN,(PNWDD 1YY nynn

-9 TINDY NN SY NNV d 2y3a WY 7T 9NNY



DONIN NMIN .TAZ2 MITTNN NN ,A0N NON TIT PRI DY NYNN ONT NN 59192
DIINMINI YINOY IWINRNDY NN, 1IN TIT NPONN DY DPP NI NINIOY NYNN DPPY
.22 P92 MNNVY

NX,TPVIPNP . PON TIT PR PAYND O1NION DMIYIY DYDY DIXRIN NN 6 P92
D>212°01 NADMNN NYNNA (PPN NWYND) 75N NON TIT 1IYND 1NNV IR DIPNN
7252 MTINN NAINNN NYNNA )ION2 I1PAYND 1N KD TN, 7NN

, 7292 IV DY NYNN ,NPYNN—NYNNN IND NYIDY P2 DDTINN NN DONN DN 7 P92
2197 (1 YN TN DY) KON NYAINNY DININD NN 20N 1ION NAY—HHD Nym
NI DY NYNNI MNYD D100 TN PXoNNY 5192 1PN, 1 MND YIVIPY NoN TIT PONND

2127 TN 7252 MDA NAYY 9152 1R ,0.901388-1 51T TN 1-0 YOP IVIPY NN TIT 7202
955 912yY 9157 1KY ,0.901388-H 0.895611 1>2 HVIPN DX D10 NHDN NYNNA NAYO
MY VP IVIPN DX






The Raymond and Beverly Sackler 0'j7'1'Tn D'VTNT n0T71790
Faculty of Exact Sciences 7RO "2 TN WY
Tel Aviv University 2N TN NOOT2IIN

ON T N RPN

N22PO MYAITN NN PHND WIN DT NN
?230192 Wy AWNNN YY1 1900 M2 (M.Sc.) 7DoyTHYd TR0’ ININN
IAN-DN NVIOININA
7"”

N7 YIIN

AN NVIDIVNIND MNN NTIAYN
PIY 11220 NONND PI9YN T NI YW DNIITNA
9"WNMN AN



	Introduction
	Translation in a Fixed Direction
	The Existence of an Orthogonal Sliding Motion
	Finding a Sliding Motion
	Implicitly Constructing All the Silhouettes
	Improved Algorithm

	Unbounded Windows
	From Passing Through an Arbitrary Convex Window to Sliding Through a Gate
	Purely Translational Motions
	Rotations Are Needed
	The Case of a Circular Window
	Purely Translational Motion
	General Motion

	Conclusion

