Multi-Robot Motion Planning

Kiril Solovey

TAU

March 6, 2011

Kiril Solovey Multi-Robot Motion Planning

イロン イヨン イヨン イヨン

Multi-Robot Motion Planning

- Introduction
- Decoupled Approach
- Centralized Approach

2 Centralized Path Planning for Multiple Robots

- Preliminaries
- Incremental Discovery of Coupling
- Results
- Project

< 🗇 🕨

4 B K 4 B K

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

• Given:

Kiril Solovey Multi-Robot Motion Planning

Э

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

• Given:

m robots

3

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

• Given:

- m robots
- common k dimensional workspace with obstacles

・ロン ・回と ・ヨン・

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

• Given:

- m robots
- common k dimensional workspace with obstacles
- each robot has a start and goal configurations

<ロ> (日) (日) (日) (日) (日)

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

- Given:
 - m robots
 - common k dimensional workspace with obstacles
 - each robot has a start and goal configurations
- Find:

イロン 不同と 不同と 不同と

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

- Given:
 - m robots
 - common k dimensional workspace with obstacles
 - each robot has a start and goal configurations
- Find:
 - a path for each robot, from start to goal

イロト イヨト イヨト イヨト

3

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

- Given:
 - m robots
 - common k dimensional workspace with obstacles
 - each robot has a start and goal configurations
- Find:
 - a path for each robot, from start to goal
 - while avoiding collision with obstacles and other robots

Introduction Decoupled Approach Centralized Approach

What is Multi-Robot Motion Planning?

- Given:
 - m robots
 - common k dimensional workspace with obstacles
 - each robot has a start and goal configurations
- Find:
 - a path for each robot, from start to goal
 - while avoiding collision with obstacles and other robots

Introduction Decoupled Approach Centralized Approach

Example

Introduction Decoupled Approach Centralized Approach

Main Approaches

Decoupled VS Centralized

Kiril Solovey Multi-Robot Motion Planning

・ロン ・回 と ・ヨン ・ヨン

Э

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

• Decompose the general problem into small sub-problems

・ロト ・回ト ・ヨト ・ヨト

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

- Decompose the general problem into small sub-problems
- Merge the results of the sub-problems into a global result

イロト イポト イヨト イヨト

3

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

- Decompose the general problem into small sub-problems
- Merge the results of the sub-problems into a global result
- This approach is usually very efficient

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

- Decompose the general problem into small sub-problems
- Merge the results of the sub-problems into a global result
- This approach is usually very efficient
- Unfortunately it's not complete

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

- Decompose the general problem into small sub-problems
- Merge the results of the sub-problems into a global result
- This approach is usually very efficient
- Unfortunately it's not complete

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

The following problem cannot be solved using decoupled planners:

・ロン ・回と ・ヨン・

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

The following problem cannot be solved using decoupled planners:

イロン イヨン イヨン イヨン

Introduction Decoupled Approach Centralized Approach

Decoupled Planners

The following problem cannot be solved using decoupled planners:

The two robots have to exchange positions.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- E - - E -

Introduction Decoupled Approach Centralized Approach

Centralized Approach

• The robots are treated as a group and sometimes as one composite robot.

イロン 不同と 不同と 不同と

Introduction Decoupled Approach Centralized Approach

Centralized Approach

- The robots are treated as a group and sometimes as one composite robot.
- Usually yields a *complete* planner.

イロン イヨン イヨン イヨン

Introduction Decoupled Approach Centralized Approach

Centralized Approach

- The robots are treated as a group and sometimes as one composite robot.
- Usually yields a *complete* planner.
- Known techniques applicable only for small-scale problems with low degrees of freedom.

Introduction Decoupled Approach Centralized Approach

Centralized Approach

イロン イヨン イヨン イヨン

э

Introduction Decoupled Approach Centralized Approach

Centralized Approach

イロン イヨン イヨン イヨン

э

Preliminaries Incremental Discovery of Coupling Results Project

Introduction

Centralized Path Planning for Multiple Robots: Optimal Decoupling into Sequential Plans Jur van den Berg Jack Snoeyink Ming Lin Dinesh Manocha

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Introduction

• The algorithm decomposes the multi-robot motion planning problem into lower-dimensional sub-problems that can be executed **sequentially**.

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Introduction

- The algorithm decomposes the multi-robot motion planning problem into lower-dimensional sub-problems that can be executed **sequentially**.
- In these sub-problems, individual robots will be coupled and considered as composite robots.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Introduction

Э

Preliminaries

Preliminaries Incremental Discovery of Coupling Results Project

Notations:

▲□→ ▲圖→ ▲厘→ ▲厘→

Preliminaries

Preliminaries Incremental Discovery of Coupling Results Project

Notations:

• *n* robots, r_1, \ldots, r_n , common workspace.

<ロ> (四) (四) (三) (三) (三) (三)

Preliminaries

Notations:

- *n* robots, r_1, \ldots, r_n , common workspace.
- $C(r_i)$: Configuration space of robot r_i .

Preliminaries Incremental Discovery of Coupling Results Project

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Incremental Discovery of Coupling Results Project

Preliminaries

Notations:

- *n* robots, r_1, \ldots, r_n , common workspace.
- $C(r_i)$: Configuration space of robot r_i .
- $s_i, g_i \in C(r_i)$: start and goal configurations of robot r_i .

イロン イヨン イヨン イヨン

2

Preliminaries Incremental Discovery of Coupling Results Project

Preliminaries

Notations:

- *n* robots, r_1, \ldots, r_n , common workspace.
- $C(r_i)$: Configuration space of robot r_i .
- $s_i, g_i \in C(r_i)$: start and goal configurations of robot r_i .

Goal

Compute a path $\pi : [0,1] \to C(r_1) \times \ldots \times C(r_n)$ such that initially $\pi(0) = (s_1, \ldots, s_n)$, finally $\pi(1) = (g_1, \ldots, g_n)$, and for every $t \in (0,1)$ $\pi(t)$ describes a collision free (obstacles, robots) position.

イロン イ部ン イヨン イヨン 三日

Coupled Relation

Preliminaries Incremental Discovery of Coupling Results Project

Definition

For a robot r_i the Active Interval τ_i is defined as the open interval from the first time r_i leaves its start position to the last time it reaches its goal position.

Coupled Relation

Preliminaries Incremental Discovery of Coupling Results Project

Definition

For a robot r_i the Active Interval τ_i is defined as the open interval from the first time r_i leaves its start position to the last time it reaches its goal position.

Definition

Two robots r_i, r_j are coupled if their active intervals intersect, $\tau_i \cap \tau_j \neq \emptyset$.
Example

Preliminaries Incremental Discovery of Coupling Results Project

Consider the following active intervals for a given path π :

イロン イヨン イヨン イヨン

Example

Preliminaries Incremental Discovery of Coupling Results Project

Consider the following active intervals for a given path π :

→ E → < E →</p>

Preliminaries Incremental Discovery of Coupling Results Project

Example

Consider the following active intervals for a given path π :

The coupled robots are $\{r_1, r_3\}, \{r_1, r_4\}, \{r_3, r_4\}.$

< 1[™] >

Preliminaries Incremental Discovery of Coupling Results Project

Execution Sequence

Definition

A Composite Robot R is a subset of $\{r_1, \ldots, r_n\}$.

イロン 不同と 不同と 不同と

Preliminaries Incremental Discovery of Coupling Results Project

Execution Sequence

Definition

A Composite Robot R is a subset of $\{r_1, \ldots, r_n\}$.

Definition

Execution Sequence is an ordered partition of the *n* robots into a sequence $S = (R_1, ..., R_k)$ of composite robots, such that

•
$$R_1 \cup \ldots \cup R_k = \{r_1, \ldots, r_n\}$$

• For every
$$i \neq j \ R_i \cap R_j = \emptyset$$
.

Preliminaries Incremental Discovery of Coupling Results Project

Execution Sequence

Definition

S is *valid* if it describes the *coupled* relation of the robots in some solution path.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Execution Sequence

Definition

S is *valid* if it describes the *coupled* relation of the robots in some solution path.

Definition

S is *optimal* if it is the solution sequence with the lowest degree of its largest *composite robot*.

Example

Preliminaries

Incremental Discovery of Coupling Results Project

Example

Preliminaries

Incremental Discovery of Coupling Results Project

$$S=[r_3,r_2,r_1]$$

Example

Preliminaries Incremental Discovery of Coupling Results Project

$$S = [r_3, r_2, r_1]$$

Example

Preliminaries

Incremental Discovery of Coupling Results Project

$$S = [r_3, r_2, r_1]$$

$$S = [r_3, r_1r_2]$$

Preliminaries Incremental Discovery of Coupling Results Project

Validating Execution Sequences

Theorem

S is valid if, for all $i \in [1, k]$, robot $R_i \in S$ can move from start to goal without colliding with

() < </p>

Preliminaries Incremental Discovery of Coupling Results Project

Validating Execution Sequences

Theorem

S is valid if, for all $i \in [1, k]$, robot $R_i \in S$ can move from start to goal without colliding with

• $\{R_1, \ldots, R_{i-1}\}$ in their goal positions

Preliminaries Incremental Discovery of Coupling Results Project

Validating Execution Sequences

Theorem

S is valid if, for all $i \in [1, k]$, robot $R_i \in S$ can move from start to goal without colliding with

- $\{R_1, \ldots, R_{i-1}\}$ in their goal positions
- $\{R_{i+1}, \ldots, R_n\}$ in their start positions

Preliminaries Incremental Discovery of Coupling Results Project

Validating Execution Sequences

Theorem

S is valid if, for all $i \in [1, k]$, robot $R_i \in S$ can move from start to goal without colliding with

- $\{R_1, \ldots, R_{i-1}\}$ in their goal positions
- $\{R_{i+1}, \ldots, R_n\}$ in their start positions

For example, $S = [r_3, r_1r_2]$ is valid for the scene

Preliminaries Incremental Discovery of Coupling Results Project

Key Observation

• How do we construct valid execution sequences?

・ロト ・回ト ・ヨト ・ヨト

Preliminaries Incremental Discovery of Coupling Results Project

Key Observation

- How do we construct valid execution sequences?
- Consider the following scene:

Preliminaries Incremental Discovery of Coupling Results Project

Key Observation

- How do we construct valid execution sequences?
- Consider the following scene:

• Assume we found the blue trajectory for *r*₁ and we want to use it in the global solution.

Image: A matrix

Preliminaries Incremental Discovery of Coupling Results Project

Key Observation

- How do we construct valid execution sequences?
- Consider the following scene:

- Assume we found the blue trajectory for *r*₁ and we want to use it in the global solution.
- What will be the order of r_1, r_3, r_4 in the solution sequence?

Image: A matrix

Preliminaries Incremental Discovery of Coupling Results Project

Order Constraints

• Consider a specific trajectory for the robot *R*.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Order Constraints

- Consider a specific trajectory for the robot *R*.
- If this trajectory collides with a goal configuration of the robot r_j we write R ≺ r_j.

イロン イヨン イヨン イヨン

2

Preliminaries Incremental Discovery of Coupling Results Project

Order Constraints

- Consider a specific trajectory for the robot *R*.
- If this trajectory collides with a goal configuration of the robot r_j we write R ≺ r_j.
- If the trajectory collides with the start configuration of r_i we write $r_i \prec R$.

・ロン ・回と ・ヨン ・ヨン

Example

Preliminaries

Incremental Discovery of Coupling Results Project

<ロ> (四) (四) (三) (三) (三) (三)

Example

Preliminaries Incremental Discovery of Coupling Results Project

For the first trajectory

$r_2 \prec r_1 \wedge r_1 \prec r_4$

Э

Example

Preliminaries Incremental Discovery of Coupling Results Project

For the first trajectory

 $r_2 \prec r_1 \wedge r_1 \prec r_4$

The second trajectory:

 $r_1 \prec r_3 \wedge r_4 \prec r_1$

・ロト ・回ト ・ヨト ・ヨト

Example

Preliminaries Incremental Discovery of Coupling Results Project

For the first trajectory

 $r_2 \prec r_1 \wedge r_1 \prec r_4$

The second trajectory:

 $r_1 \prec r_3 \wedge r_4 \prec r_1$

And combined:

 $P(r_1) = (r_2 \prec r_1 \land r_1 \prec r_4) \lor (r_1 \prec r_3 \land r_4 \prec r_1)$

イロン イロン イヨン イヨン 三日

Preliminaries Incremental Discovery of Coupling Results Project

Constraints from an Execution Sequence

Let P(R) be the collection of all collision of R for **all** paths, in DNF formula, separated by "OR".

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Constraints from an Execution Sequence

Let P(R) be the collection of all collision of R for **all** paths, in DNF formula, separated by "OR".

If we AND the constraints for all robots in an execution sequence, we get the expression that must be satisfied for it to be a solution sequence.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Constraints from an Execution Sequence

Let P(R) be the collection of all collision of R for **all** paths, in DNF formula, separated by "OR".

If we AND the constraints for all robots in an execution sequence, we get the expression that must be satisfied for it to be a solution sequence.

Observation

An execution sequence $S = (R_1, ..., R_k)$ is a solution sequence iff S satisfies the constraints expression $P(R_1) \land ... \land P(R_k)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries Incremental Discovery of Coupling Results Project

The CR Planner

• How do we find the ordered constraints?

▲□→ ▲圖→ ▲厘→ ▲厘→

3

Preliminaries Incremental Discovery of Coupling Results Project

The CR Planner

- How do we find the ordered constraints?
- The CR planner produces constraints on the execution sequence induced by small subsets of robots.

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

The CR Planner

- How do we find the ordered constraints?
- The CR planner produces constraints on the execution sequence induced by small subsets of robots.
- Our algorithm incrementally calls the planner on higher and higher degree sub-problems, using the discovered constraints to determine what robots must be coupled.

Preliminaries Incremental Discovery of Coupling Results Project

The CR Planner

- How do we find the ordered constraints?
- The CR planner produces constraints on the execution sequence induced by small subsets of robots.
- Our algorithm incrementally calls the planner on higher and higher degree sub-problems, using the discovered constraints to determine what robots must be coupled.

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• The algorithm maintains the obtained constraints obtained in a constraint expression *E*.

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

- The algorithm maintains the obtained constraints obtained in a constraint expression *E*.
- *E* is in a DNF form, i.e. $E = J_1 \vee J_2 \vee \ldots$, of conjunctions J_i .

・ロン ・回と ・ヨン ・ヨン

2

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

- The algorithm maintains the obtained constraints obtained in a constraint expression *E*.
- *E* is in a DNF form, i.e. $E = J_1 \vee J_2 \vee \ldots$, of conjunctions J_i .
- Each conjunction J can be represented as a constraints graph G(J).
Preliminaries Incremental Discovery of Coupling Results Project

Conjunction as a Directed Graph

Each conjunction can be represented as a directed graph.

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Conjunction as a Directed Graph

Each conjunction can be represented as a directed graph. Example:

$$(r_2 \prec r_1 \land r_1 \prec r_4) \lor (r_1 \prec r_3 \land r_4 \prec r_1)$$

・ロン ・回と ・ヨン ・ヨン

Preliminaries Incremental Discovery of Coupling Results Project

Conjunction as a Directed Graph

Each conjunction can be represented as a directed graph. Example:

$$(r_2 \prec r_1 \land r_1 \prec r_4) \lor (r_1 \prec r_3 \land r_4 \prec r_1)$$

・ロト ・回ト ・ヨト ・ヨト

3

Preliminaries Incremental Discovery of Coupling Results Project

Conjunction as a Directed Graph

Each conjunction can be represented as a directed graph. Example:

$$(r_2 \prec r_1 \land r_1 \prec r_4) \lor (r_1 \prec r_3 \land r_4 \prec r_1)$$

・ロト ・回ト ・ヨト ・ヨト

3

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

• There is a contradiction!

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

- There is a contradiction!
- This means that the involved robots need to be coordinated.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

- There is a contradiction!
- This means that the involved robots need to be coordinated.
- Let $G^{SCC}(J)$ denote the *component graph* of G(J), which contains a node for each *strongly connected component* in G(J).

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

- There is a contradiction!
- This means that the involved robots need to be coordinated.
- Let $G^{SCC}(J)$ denote the *component graph* of G(J), which contains a node for each *strongly connected component* in G(J).
- Each node in $G^{SCC}(J)$ corresponds to a (composite)robot.

・ロン ・回と ・ヨン ・ヨン

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

- There is a contradiction!
- This means that the involved robots need to be coordinated.
- Let $G^{SCC}(J)$ denote the *component graph* of G(J), which contains a node for each *strongly connected component* in G(J).
- Each node in $G^{SCC}(J)$ corresponds to a (composite)robot.
- Topologically sorting $G^{SCC}(J)$ gives an execution sequence S(J) of composite robots.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Constraint Graphs

• What happens if the graph contains a cycle?

- There is a contradiction!
- This means that the involved robots need to be coordinated.
- Let $G^{SCC}(J)$ denote the *component graph* of G(J), which contains a node for each *strongly connected component* in G(J).
- Each node in $G^{SCC}(J)$ corresponds to a (composite)robot.
- Topologically sorting $G^{SCC}(J)$ gives an execution sequence S(J) of composite robots.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence

• E is initialized to be T (true).

・ロン ・回と ・ヨン・

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence

- E is initialized to be T (true).
- The algorithm selects iteratively the smallest composite robot $R_{min} \in E$ that haven't been planned yet.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence

- E is initialized to be T (true).
- The algorithm selects iteratively the smallest composite robot $R_{min} \in E$ that haven't been planned yet.
- CR planner is invoked on R_{min} and returns $P(R_{min})$.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence

- E is initialized to be T (true).
- The algorithm selects iteratively the smallest composite robot $R_{min} \in E$ that haven't been planned yet.
- CR planner is invoked on R_{min} and returns $P(R_{min})$.
- $P(R_{min})$ is incorporated into E.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence

- E is initialized to be T (true).
- The algorithm selects iteratively the smallest composite robot $R_{min} \in E$ that haven't been planned yet.
- CR planner is invoked on R_{min} and returns $P(R_{min})$.
- $P(R_{min})$ is incorporated into E.
- We stop when there exists $J \in E$ for which all robots in S(J) have been planned.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

We will run the algorithm on the problem:

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

 r_3

Iteration 1. $L = \emptyset$, $R_{\min} = r_1$, $\mathcal{P}(r_1) = (r_2 \prec r_1 \land r_1 \prec r_4) \lor (r_1 \prec r_4)$ $r_3 \wedge r_4 \prec r_1$).

イロト イヨト イヨト イヨト

2

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Iteration 2. $L = \{r_1\}, R_{\min} = r_2, \mathcal{P}(r_2) = r_2 \prec r_4 \lor (r_1 \prec r_2 \land r_2 \prec r_3 \land r_4 \prec r_2).$

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Iteration 4. $L = \{r_1, r_2, r_3\}, R_{\min} = r_4, \mathcal{P}(r_4) = \top$, so no change to graphs.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Iteration 4. $L = \{r_1, r_2, r_3\}, R_{\min} = r_4, \mathcal{P}(r_4) = \top$, so no change to graphs.

• After the 4th iteration, $L = \{r_1, r_2, r_3, r_4\}$.

イロト イポト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Iteration 4. $L = \{r_1, r_2, r_\beta\}, R_{\min} = r_4, \mathcal{P}(r_4) = \top$, so no change to graphs.

- After the 4th iteration, $L = \{r_1, r_2, r_3, r_4\}$.
- J_1, J_2, J_4, J_5 have all their SCC in L.

イロト イポト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

Incrementally Building the Execution Sequence: Example

Iteration 4. $L = \{r_1, r_2, r_\beta\}, R_{\min} = r_4, \mathcal{P}(r_4) = \top$, so no change to graphs.

- After the 4th iteration, $L = \{r_1, r_2, r_3, r_4\}$.
- J_1, J_2, J_4, J_5 have all their SCC in L.
- The algorithm terminates and returns $S(J_1)$.

Preliminaries Incremental Discovery of Coupling Results Project

Scene 1

Preliminaries Incremental Discovery of Coupling Results Project

Scene 1

• Each robot r_i changes position with $r_{(i+8) \mod 16}$

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results Project

Scene 1

- Each robot r_i changes position with $r_{((i+8) \mod 16)}$
- The algorithm returned

 $(r_0r_7r_8r_{15}, r_1r_9, r_2r_{10}, r_3r_{11}, r_4r_5r_{12}r_{13}, r_6r_{14}, r_7r_{15})$

- ∢ ≣ ▶

Preliminaries Incremental Discovery of Coupling Results Project

Scene 2

Kiril Solovey

Multi-Robot Motion Planning

Э

Scene 2

Preliminaries Incremental Discovery of Coupling Results

65 robots

æ

Kiril Solovey

Preliminaries Incremental Discovery of Coupling Results

Scene 2

65 robots

★ E > < E >

 Solution sequence involves only individual robots!

Multi-Robot Motion Planning

Preliminaries Incremental Discovery of Coupling Results Project

Project

• Two possible settings, two possible CR Planners:

Preliminaries Incremental Discovery of Coupling Results **Project**

Project

- Two possible settings, two possible CR Planners:
 - Grid workspace: motion planning on graphs.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results **Project**

Project

- Two possible settings, two possible CR Planners:
 - Grid workspace: motion planning on graphs.
 - ► Polygonal robots and obstacles (harder): sampling-based techniques.

イロン イヨン イヨン イヨン

Preliminaries Incremental Discovery of Coupling Results **Project**

Project

- Two possible settings, two possible CR Planners:
 - Grid workspace: motion planning on graphs.
 - Polygonal robots and obstacles (harder): sampling-based techniques.
- In both cases, the main algorithm remains the same.

イロト イヨト イヨト イヨト

Preliminaries Incremental Discovery of Coupling Results Project

The End

"... and the robots lived happily ever after."

・ロト ・回 ト ・ヨト ・ヨト