# Motion Planning via Manifold Samples\* (MMS)

#### Oren Salzman, Tel-Aviv University

TEL AVIV UNIVERSITY

\*Joint work with Michael Hemmer, Barak Raveh and Dan Halperin

### Outline

- Background
- Hybrid Motion Planners
- Motion Planning via Manifold Samples (MMS)
- Specific Implementation

### Outline

- Background
- Hybrid Motion Planners
- Motion Planning via Manifold Samples (MMS)
- Specific Implementation

## **Motion Planning - Definitions**

- Workspace A description of the (2D or 3D) world consisting of a robot and obstacles
- Configuration Space- (C) The space of parameters that define the robot's position and orientation in the workspace





### **Motion Planning - Definitions**

- Workspace A description of the (2D or 3D) world consisting of a robot and obstacles
- Configuration Space- (C) The space of parameters that define the robot's position and orientation in the workspace
- Degrees of Freedom- The minimal number of parameters required to uniquely define a position of the robot
- Free Space (C<sub>free</sub>)- Set of collision-free configurations
- Forbidden Space (C<sub>forb</sub>)- C \ C<sub>free</sub>

### **Motion Planning - Objective**

Find a path in C<sub>free</sub> from a free source configuration to a free target configuration



### **Motion Planning - Objective**

Find a path in C<sub>free</sub> from a free source configuration to a free target configuration



### **Algorithmic Approaches for Motion Planning**

#### Sampling-Based Planning

- Capture connectivity of C<sub>free</sub> by randomly sampling configurations
- Combinatorial Motion Planning
  - Analytically compute an explicit combinatorial representation of C<sub>free</sub>

### Algorithmic Approaches for Motion Planning

#### Sampling-Based Planning

Capture connectivity of C<sub>free</sub> by randomly sampling configurations

- Kavraki, Svestka, Latombe, Overmars 96: Probabilistic roadmaps for path planning in high dimensional configuration spaces (PRM)
- LaValle 98: Rapidly-exploring random trees: A new tool for path planning (RRT)
- Hsu, Latombe, Motwani 99: Path planning in expansive configuration spaces (EST)

- Multi query planner
- Preprocesses configuration space into a graph (roadmap)



- Multi query planner
- Preprocesses configuration space into a graph (roadmap)
  - Randomly sample n robot configurations



- Multi query planner
- Preprocesses configuration space into a graph (roadmap)
  - Randomly sample n robot configurations
  - Discard invalid configurations



- Multi query planner
- Preprocesses configuration space into a graph (roadmap)
  - Randomly sample n robot configurations
  - Discard invalid configurations
  - Connect close-by configurations by dense sampling ("local-planning")



- Multi query planner
- Preprocesses configuration space into a graph (roadmap)
  - Randomly sample n robot configurations
  - Discard invalid configurations
  - Connect close-by configurations by dense sampling ("local-planning")
  - Discard invalid edges



# **Combinatorial Motion Planning**

- Analytically compute an explicit combinatorial representation of C<sub>free</sub>
  - Using critical hyper-surfaces\*





\*Schwartz, Sharir 83: On the "piano movers" problem. II. General techniques for computing topological properties of real algebraic manifolds

# Combinatorial Motion Planning (cont.)

Minkowski Sums –

 $P\oplus Q=\{p+q|\ p\in P,q\in Q\}$ 



 Allow representation of the configuration space of a translating robot



# Combinatorial Motion Planning (cont.)

Minkowski Sums –

 $P \oplus Q = \{ p + q | \ p \in P, q \in Q \}$ 



 Allow representation of the configuration space of a translating robot



# **Combinatorial Motion Planning (cont.)**

Minkowski Sums –

 $P \oplus Q = \{ p + q | \ p \in P, q \in Q \}$ 



 Allow representation of the configuration space of a translating robot



#### Advantages and Limitations of Approaches

#### **Probabilistic planning**

- Easy to implement
- Applicable to highdimension C-spaces
- Sensitive to tight passages

#### **Combinatorial planning**

- Complex implementations
- Exponential in the number of degrees of freedom\*
- Analytic complete
  representation

\*Reif 79: Complexity of the mover's problem and generalizations

### Hybrid Planners

- S. Hirsch and D. Halperin. Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. WAFR 2002 [HH02]
- Liangjun Zhang, Young J. Kim, and Dinesh Manocha. A hybrid approach for complete motion planning. IROS 2007 [ZKM07]
- Jade Yang and Elisha Sacks. RRT path planner with 3 DOF local planner. ICRA, 2006 [YS06]
- Ming Lien, J.: Hybrid motion planning using Minkowski sums. RSS 2008 [Lie08]

# **Existing Hybrid Planners - Limitations**

Applicable for low dimensions

Applicable to specific instances

### Outline

- Background
- Hybrid Motion Planners
- Motion Planning via Manifold Samples (MMS)
- Specific Implementation

#### **Overview**

- Sampling-based multi-query planner
- Samples are entire manifolds of low dimensions
- Manifolds are decomposed analytically into cells
  - □ A cell in C<sub>free</sub> is a Free Space Cell (FSC)



#### Overview

- Preprocessing stage construct graph G = (V,E)
  - □ V FSCs
  - □ E Intersecting FSCs
- Query stage



### **Exploration Vs. Connection**

Manifold samples add
 vertices (new connected components)



### **Exploration Vs. Connection**

- Manifold samples add
  - vertices (new connected components)
  - edges (connect existing connected components)



### **Exploration Vs. Connection**

- Manifold samples add
  - vertices (new connected components)
  - edges (connect existing connected components)



### **Desired Properties of Manifolds**

- Simplicity: Easy representation, construction and decomposition
- Covering: Manifolds should be dense



#### **Comparison With PRM**



### Outline

- Background
- Hybrid Motion Planners
- Motion Planning via Manifold Samples (MMS)
- Specific Implementation

# The Setting

- Two-dimensional polygonal robot R
- Three-dimensional configuration space
  translation and rotation



### Families of Manifolds

#### Fixed rotation angle

Horizontal planes

#### Computation via Minkowski sums, details omitted



### Families of Manifolds

#### Fixed rotation angle

- Horizontal planes
- Computation via Minkowski sums,

#### Fixed reference point

- Vertical lines
- Computed analytically via critical angles



 $\theta_3$ 



### Fixed Rotation Angle (details)

- Let P and Q be two point sets
- If  $P \cap Q \neq \emptyset$  then  $(0,0) \in P \oplus (-Q)$



- Let  $p \in P \cap Q$ , thus  $p \in Q$  and  $-p \in -Q$
- Thus the Minkowski sum contains the origin as (0,0) = p + (-p)
- Symmetrically, if  $(0,0) \in P \oplus (-Q)$  then  $P \cap Q \neq \emptyset$

### Fixed Rotation Angle (details)

• For a robot R with its reference point at the origin and an obstacle O, the forbidden space is represented by  $-R \oplus O$ 



### Fixed Reference Point (details)

Parameterization:  $\alpha \in [0,1]$  reference point on segment



Parameterized critical angles are in the form of algebraic numbers\*

\*Algebraic number - a number that is a root of a non-zero polynomial in one variable with rational coefficients

### **Experimental Results**

Scenarios



OOPSMP PRM Implementation

| Scenario | MMS         |       |    | PRM |                |     | Speedup |
|----------|-------------|-------|----|-----|----------------|-----|---------|
|          | $n_{	heta}$ | $n_s$ | t  | k   | $\% 	ext{ st}$ | t   |         |
| Tunnel   | 40          | 512   | 38 | 20  | 0.0125         | 240 | 6.3     |
| Snake    | 80          | 512   | 94 | 20  | 0.025          | 550 | 5.8     |
| Flower   | 80          | 128   | 14 | 24  | 0.0125         | 20  | 1.4     |

### **Experimental Results**

#### Tightening the configuration space





### **Experimental Results**

#### Tightening the configuration space



