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Abstract

Fixtures for constraining the movement of parts have been extensively investigated in robotics,
since they are essential for using robots in automated manufacturing. This thesis deals with
the design and optimized synthesis of a special type of fixtures, which we call snapping fix-
tures. Given a polyhedral workpiece P with n vertices and of constant genus, which we need
to hold, a snapping fixture is a semi-rigid polyhedron G, made of a palm and several fingers,
such that when P and G are well separated, we can push P toward G, slightly bending the
fingers of G on the way (exploiting its mild flexibility), and obtain a configuration, where
G is back in its original shape and P and G are inseparable as rigid bodies. We prove the
minimal closure conditions under which such fixtures can hold parts, using Helly’s theorem.
We then introduce an algorithm running in Opn3q time, which produces a snapping fixture,
minimizing the number of fingers and optimizing additional objectives, if a snapping fixture
exists. We also provide an efficient and robust implementation of a simpler version of the
algorithm, which produces the fixture model to be 3D printed; this algorithm runs in Opn4q

time. We have deployed a public website that serves to construct snapping fixtures for given
workpieces. The website design is described in the thesis as well. We describe two appli-
cations with different optimization criteria: Fixtures to hold add-ons for drones, where we
aim to make the fixture as lightweight as possible, and small-scale fixtures to hold precious
stones in jewelry, where we aim to maximize the exposure of the stones, namely minimize
the obscuring of the workpiece by the fixture.
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1
Introduction

A fixture is a device that holds a part in place. Constraining the movement of parts is a
fundamental requirement in manufacturing [1],[2, Section 3.5]. There are many types and
forms of fixtures; they range from modular fixtures synthesized on a lattice to fixtures gen-
erated to suit a specific part. A fixture possesses some grasp characteristics. For example, a
grasp with complete restraint prevents loss of contact, prevents any motion, and thus may
by considered secure. Two primary kinematic restraint properties are form closure and force
closure [3]. Both properties guarantee maintenance of contact under some conditions. How-
ever, the latter typically relies on contact friction; therefore, achieving force closure typically
requires fewer contacts than achieving form closure. Fixtures with complete restraint are
mainly used in manufacturing processes where preventing any motion is critical. Other types
of fixtures can be found anywhere, for example, in the kitchen where a hook holds a cooking
pan, or in the office where a pin and a bulletin board hold a paper still. This thesis deals
with a specific problem in this area; here, we are given a rigid object, referred to as the
workpiece, and we seek for an automated process that designs a semi-rigid object, referred
to as the snapping fixture, such that, starting at a configuration where the workpiece and
the holding fixture are separate, they can be pushed towards each other, applying a linear
force and exploiting the mild flexibility of the fixture, into a configuration where both the
workpiece and the fixture are inseparable as rigid bodies. A generated fixture has a base
part, referred to as the palm, and fingers connected to the palm; see Section 2.1 for formal
definitions. Without additional computational effort, a hook, a nut, or a bolt can be added
to the palm resulting in a generic fixture that can be utilized in a larger system. Another
advantage of the single-component flexible fixture is that it can easily be 3D-printed. We
have 3D-printed several fixtures that our generator has automatically synthesized for some
given workpieces. The common objective of the presented algorithms is obtaining snapping
fixtures with the minimal number of fingers. With additional care that also accounts for
properties of the material used to produce the fixtures, the smallest or lightest possible fix-
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ture can be synthesized, for a given workpiece. This can (i) expedite the production of the
fixture using, e.g., additive manufacturing, (ii) minimize the weight of the produced fixture,
and (iii) maximize the exposed area of the boundary of the workpiece when held by the
fixture.

1.1 Background

The arts of fixturing, grasping, and maintaining force closure have been studied by many
researches over the years. This section provides background on central topics related to our
problem.

Static fixtures

Form closure has been studied since the 19th century. Early results showed that at least four
frictionless contacts are necessary for grasping an object in the plane, and seven in 3D space.
Specifically, it has been shown that four and seven contacts are necessary and sufficient for
the form-closure grasp of any polyhedron in the 2D and 3D cases, respectively [4, 5].

Automatic generation of various types of fixtures, and in particular, the synthesis of
form-closure grasps, are the subjects of a diverse body of research. Brost and Goldberg [6]
proposed a complete algorithm for synthesizing modular fixtures of polygonal workpieces by
locating three pegs (locators), and one clamp on a lattice. Their algorithm is complete in the
sense that it examines all possible fixtures for an input polygon. Their results were obtained
by generating all configurations of three locators coincident to three edges, for each triplet of
edges in the input polygon. For each such configuration, the algorithm checks whether form
closure can be obtained by adding a single clamp. Our work uses a similar strategy to obtain
all possible configurations. In subsequent work Zhuang, Goldberg, and Wong [7] showed that
there exists a non-trivial class of polygonal workpieces that cannot be held in form closure by
any fixture of this type (namely, a fixture that uses three locators and a clamp). They also
considered fixtures that use four clamps, and introduced two classes of polygonal workpieces
that are guaranteed to be held in form closure by some fixture of this type. Wallack and
Canny [8] introduced the vise fixture and proposed an algorithm that automatically designs
such fixtures. The vise fixture includes two lattice plates mounted on the jaws of a vise and
pegs mounted on the plates. Then, the workpiece is placed on the plates, and form closure
is achieved by activating the vise and closing the pins from both sides on the workpiece.
The main advantage in this type of fixture is its simplicity of usage. Brost and Peters [9]
extended the approach exploited in [6] to three dimensions. They provided an algorithm
that generates suitable fixtures for three-dimensional workpieces. Wagner, Zhuang, and
Goldberg [10] proposed a three-dimensional seven-contact fixture device and an algorithm
for planning form-closure fixtures of a polyhedral workpiece with pre-specified pose. A
summary of the studies in the field of flexible fixture design and automation conducted in
the last century can be found in [11]. Subsequent works studied other types of fixtures and
provided algorithms for computing them, for example, unilateral fixtures [12], which are used
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to fix sheet-metal workpieces with holes.

Auto-generated holders oriented for 3D printing

Koyama et al [13] describe a complete system, called AutoConnect, for producing customiz-
able, 3D-printable connectors attaching two physical objects together. They distinguish
between two types of objects (to be attached). The first type is structured objects, objects
in which their attachment area can be well approximated by a standard shape like a cylinder,
a rectangular-prism, and a flat-plane. The second type of objects are free-form objects, which
do not have standard shapes. They separately deal with the two types of objects. In order
to hold a structured object, a mechanical holder is chosen from a database of six holders
prepared in advance. The mechanical holder is customized by changing static parameters
like width and thickness. In contrast, a specifically generated shell is created in order to hold
a free-form object. The shell is created by extruding a set of connected facets of the input
object. Their algorithm starts with a single facet of the input polyhedron, and accumulates
neighboring facets until the so-called holdability criterion is met. The holdability criterion
is an extension of the form-closure criterion discussed earlier.

The work in this thesis shares a similar goal with that of the AutoConnect approach:
Generating a tailored 3D-printable holder for a given polyhedron. One major difference
between the two approaches, is the method of solving the assembly problem, namely how
the object and its holder are brought together. Notice that if the a fixture (or holder), blocks
all moving directions, the workpiece cannot be assembled into the fixture. In our approach
we address this problem by designing flexible snapping fixtures, which allow the fingers of
the fixtures to bend during the assembly. The AutoConnect approach allows the user to
choose one of two solutions. The first solution is leaving an exit direction and giving up on
obtaining full form-closure. The second solution is dividing the holder into different pieces,
connected together by snap-fit mechanisms. This difference leads to different fixture 3D
design, and therefore different algorithms and correspondingly different analyses . Another
difference is that our fixture is designed to be as lightweight or as less obscuring as possible,
which is not necessarily a goal of AutoConnect when approaching free-formed objects.

Robotic grasping

While the thesis deals with fixturing, we see a similarity between methods of robot grasping
and static fixturing and hence we briefly review several results in grasping. In grasp-synthesis
with autonomous robotic fingers, a single robotic hand manipulated by motors, is used to
grasp different workpieces; an overview of algorithms for such grasp synthesis can be found
in [13]. In an early study, Hanafusa and Asada [14] proposed the use of flexible or elastic
fingers in robotic grasping. They proposed a versatile robot hand with three fingers, which
are driven by three individual motors through coil springs. Their goal was to handle two-
dimensional objects dexterously by controlling finger forces. In later works [15, 16, 17]
researchers suggested the use of robotic flexure-joints arms with semi-rigid fingers, where
each finger is made from several joints connected by a hinge and a string. Each finger can be
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bent separately by pulling its string with the relevant motor. Ma and Dollar even suggested,
in a similar way to our work, the use of 3D printed fingers. They proposed a specific design1

for such four-fingers robotic arm with flexure-joints [18].

A common dilemma for all the grasping and fixture design algorithms is defining and
finding the optimal grasp. Several works, e.g., [19] and [20], discuss such objective functions
and their optimization. Summary of the theoretical framework, analytical results, and open
problems in robotic grasping can be found at [21]. In their recent book, Rimon and Bur-
dick [22] comprehensively cover the design and analysis of multi-finger robot grasps. The
book provides a detailed introduction to robot grasping principles, analyzes a variety of fric-
tional and frictionless robot grasps, and discusses the grasping mechanisms. The book can
provide inspiration for static fixtures as well. Few recent studies propose different approaches
for the grasping problem. Pagoli et al [23] propose a soft robotic gripper with re-configurable
fingers. The proposed fingers are made of silicone elastomer and are composed of three pneu-
matic chambers, which can be inflated independently. Therefore, the fingers can be bent,
inflated and transformed in many ways achieving high flexibility in the grasping process. An-
other work [24] proposes roller based fingers. An active roller is embedded at the fingertip
of each finger allowing easy manipulation of the workpiece mid-grip.

Deformable objects

We present some kind of deformable fixtures, which snap around solid workpieces. The
studies of the dual problem, that is, grasping deformable objects with solid fingers, has some
interesting insights that might help in accurate modeling of our deformable fixtures. Cui,
Xiao and song [25] described a simulation for grasping of deformable convex objects. They
modelled a realistic human hand and simulated the contact force and shape deformation
during the process of grasping of an elastic object, achieving convincing simulated results.
Later works [26, 27] proposed different strategies to grasp 3D deformable objects using multi-
fingered robotic hands. They analyzed the contact model, described the object deformation,
and characterized the grasp quality.

1.2 Our Results

We introduce properties of minimal snapping fixtures of given workpieces. Formally, we
are given a closed polyhedron P of complexity n and of a constant genus that represents
a workpiece. The surface of a polyhedron of genus zero is homeomorphic to a sphere. In
our work we allow more complicated polyhedra; see, for example, Figure 6.1a.2 In our
analysis in the sequel we assume that the genus is bounded by a constant. We introduce
two algorithms. The first algorithm finds all valid fixtures for an input polyhderon P . This

1The 3D design and other details are available at https://www.eng.yale.edu/grablab/openhand/

model_q.html
2The genus counts the number of “handles” in the polyhedron; see, e.g., https://mathworld.wolfram.

com/Genus.html.
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algorithm runs in Opn4q time. The second algorithm determines whether a fixture exists
for an input polyhderon P , and if so, it constructs one in Opn3q time. We also provide
an efficient and robust implementation of the former. In addition, we present two practical
cases that utilize our implemented algorithm: One is the generation of a snapping fixture
that mounts a device to an unmanned aerial vehicle (UAV), such as a drone. The other is the
generation of a snapping fixture that mounts a precious stone to a jewel, such as a ring. The
common objective in both cases is, naturally, the firm holding of the workpiece. In the first
case, we are interested in a fixture with minimal weight. In the second case we are interested
in a fixture that minimally obscures the precious stone. We are not aware of similar works
on semi-rigid one-part fixtures to compare to, but we provide benchmark statistics we have
obtained while executing our generator. Note that, in theory, the generated fixtures prevent
any linear motion, but do not necessarily prevent angular motion; however, fixtures that
do not posses the form closure property are rarely obtained in practice. Handling angular
motion is left for future research. An abridged summary of our work was published in 14th
International Workshop on the Algorithmic Foundations of Robotics (WAFR) [28], and is
available at https://link.springer.com/book/10.1007/978-3-030-66723-8.

1.3 Outline

The rest of this thesis is organized as follows. The geometric design of the snapping fixtures
is described in Section 2. The analysis, theorems, and proofs regarding the geometric and
combinatorial properties of the snapping fixtures are presented in Section 3. The synthesis
algorithms are described in Section 4 along with the analysis of their complexity. Imple-
mentation details about the 3D design of the fixtures and about the website is provided in
Section 5. Two applications are presented in Section 6. We report on experimental results
in Section 7 and reflecting thoughts about future research in Section 8. Appendix featuring
3D printing consideration, and assortment of interesting workpieces and fixtures is provided
in Sections A, and B.

1.4 Conventions

The following lists typical notations.

• A, Ā—general open and closed unit semicircles, respectively

• H, H̄—general open and closed unit hemispheres, respectively

• P1—the affinely extended real number line

• P2—a generalization of the affinely extended real number line to the plane

• S1—the unit circle

• S2—the unit sphere
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• f—a facet

– fp—the base facet of the palm of a fixture

– fbi—the base facet of the body of finger i

– fti—the base facet of the fingertip of finger i

• s, s̄—instances of an open and a closed unit semicircle, respectively

• h, h̄—instances of an open and a closed unit hemispheres, respectively

• C, E , R, S—sets

• F—a set of facets

– FP—the singleton that consists of the base facet of the palm of a fixture

– FB—the set of the base facets of the bodies of the fingers of a fixture

– FT—the set of the base facets of the fingertips of the fingers of a fixture

– FPBT—the union of the above three sets

– FP—the facets of a polyhedron P

• P ,G—polyhedra, a workpiece and a snapping fixture, respectively

• hpfq—a mapping from a facet to the hemisphere that consists of the blocking directions
induced by f

• HpFq—a mapping from a set of facets to the corresponding hemispheres
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2
Design

This chapter presents the structure of snapping fixtures and reviews considerations in their
construction. The first section describes the structure of snapping fixtures, the next section
refers to the assembly configurations of fixtures and workpieces, the third section addresses
the restriction coming from the fixed distance between the palm facet and the fingertip facet,
and the last section sets guiding lines for our fixture finding algorithms.

2.1 Fixture Structure

Consider an input polyhedron P that represents a workpiece, such as
the one transparently rendered in blue in the figure to the right. The
structure of a fixture of P , rendered in orange in the figure, resembles
the structure of a hand; it is the union of a single polyhedral part
referred to as the palm, several polyhedral parts, referred to as fingers,
which are extensions of the palm, and semi-rigid joints that connect the palm and the fingers.
Each finger consists of two polyhedral parts, namely, body and fingertip, and the semi-rigid
joint between the body and the fingertip. The various parts, i.e., palm, bodies, and fingertips,
are disjoint in their interiors. In the following we describe these parts in detail.
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Definition 2.1 (α-extrusion of a polygon and base polygon of an α-extrusion). Let L denote
a polygon, let v denote a normal to the plane containing L, and let vα denote the normal
scaled to length α. The α-extrusion of L is a polyhedron Q, which is the extrusion of L along
vα. The polygon L is referred to as the base polygon of Q; see the figure below.

α

v

We use the abbreviation α-extrusion of a facet f of some polyhe-
dron to refer to the α-extrusion Q of the geometric embedding of the
facet f , and we refer to the facet of Q that overlaps with f as the base
facet of the α-extrusion Q.

Our formal computational model is oblivious to the thickness of
the various parts. In this model the parts are flat and if two parts
are connected by a joint, they share an edge, which is the axis of the
joint. Our generator, though, synthesizes solid models of fixtures. We
use α-extrusion to inflate the various parts.

Let G denote a snapping fixture made of a palm, k fingers F1, F2, . . . , Fk, and correspond-
ing joints. The palm is an αp-extrusion of a facet fp of the workpiece P . (The various α
values are discussed below.) Consider a specific finger F “ Fi of G. The body of F is defined
by one of the neighboring facets of fp, denoted fb. The fingertip of F is defined by one of
the neighboring facets of fb, denoted ft, ft ‰ fp. Let epb denote the common edge of fp and
fb, and let ebt denote the common edge of fb and ft. Note that in some degenerate cases
epb and ebt are incident to a common vertex. The body of a finger is an αb-extrusion of fb.
Let v denote the cross product of the vector that corresponds to ebt and the normal to the
plane containing ft of length αt. Let qt denote the quadrilateral defined by the two vertices
incident to ebt and their translations by v. The fingertip is an αt-extrusion of qt. The axis
of the joint that connects the palm and the body of F coincides with epb and the axis of the
joint that connects the body of F with its fingertip coincides with ebt. The value αp and the
values αb and αt for each finger determine the trade-off between the strength and flexibility
of the joints.1 They depend on the material and shape of the fixture. In our implementation
they can be determined by the user.2

For a complete view of a workpiece and a snapping fixture consider Figure 2.1. Observe
that both the palm and the fingers of the fixture in the figure differ from the formal definitions
above. The differences stem from practical considerations. In particular, the parts in the
figure have smaller volumes, which (i) reduces fabrication costs, and (ii) resolves collision
between distinct fingers. In some degenerate cases (see Figure 2.1d) distinct fingers could
have overlapped. In the figure, the base facet of the fingertip of one finger, ft1 , coincides
with f , a facet of the workpiece. Likewise, the base facet of the body of the other finger,
fb2 , also coincides with f . Avoiding overlaps is achieved by simultaneously shrinking the
base facets ft1 and fb2 . Now, the fingertip grips only the tip of f and the body is stretching
only on a small portion of the workpiece facet. As another example, consider the body of
a finger depicted in Figure 2.1(c); it is the αb-extrusion of a quadrilateral defined by two
points that lie in the interior of epb and two points that lie in the interior of ebt, as opposed

1Typically, these values are identical.
2For example, in several of the fixtures that we produced, they were set to 5mm.
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to the formal definition above, where the body is the αb-extrusion of the entire facet of P .
Also, in reality, parts are not fabricated separately, and the entire fixture is made of the
same flexible material. Instead of rotating about the joint axes, the entire fingers bend. The
differences, though, have no effect on the correctness of the proofs and algorithm (which
adhere to the formal definitions) presented in the sequel. These structural changes and the
extrusion values, merely determine the degree of flexibility and strength of the fixture.

P

Palm Fingers

(a)

FingertipBody

(b)

epb ebt

(c)

ft1

fb2

f

(d)

Figure 2.1: (a), (b), (c) Different views of a truncated cuboctahedron (blue) and a snapping
fixture (orange). (d) A transparent cube (blue) and a snapping fixture (orange).

2.2 The Configuration Space

The workpiece and its snapping fixture form an assembly. Each joint in the fixture connects
two parts; it enables the rotation of one part with respect to the other about an axis. Each
joint adds one degree of freedom (DOF) to the configuration space of the assembly.

In our context, the workpiece and its snapping fixture are considered assembled, if they
are infinitesimally inseparable. When two polyhedra are infinitesimally inseparable, any
linear motion applied to one of the polyhedra causes a collision between the polyhedra

9



interiors. The workpiece and the fixture are in the serving configuration if (i) they are
separated (that is, they are arbitrarily far away from each other), and (ii) there exists a
vector v, such that when the fixture is translated by v, as a result of some force applied in
the direction of v, exploiting the flexibility of the joints of the fixture, the workpiece and
the fixture become assembled. When the workpiece and its snapping fixture are separated,
the fixture can be transformed without colliding with the workpiece to reach the serving
configuration.3

2.3 Spreading Degree

The spreading degree is the number of facets involved in the definition of
a finger. In this thesis we restrict ourselves to snapping fixtures that have
fingers with spreading degree two, which means that the body of every
finger is based on a single facet of P . Every finger (the body and the
fingertip) stretches over two facets of P . Naturally, fingers with a higher
spreading-degree reach further. An icosahedron, for example, (depicted in
the figure above) does not admit a valid fixture with spreading degree two. This is proven
by exhaustion running our implemented algorithm.

2.4 Fixture Planning

The basic objective of our fixture algorithms is obtaining fixtures with the minimal number
of fingers. Our generator is of the exhaustive type. As explained in Section 4, it examines
many different possible candidates of fingers, before it reaches a conclusion. The simple (and
implemented) algorithm, for example, visits every valid fixture (of 2, 3, or 4) fingers; thus, it
can be used to produce all or some valid fixtures according to any combination of optimization
criteria. As aforementioned, the generator synthesizes fixtures of spreading degree two.
Extending the generator to enable the synthesis of fixtures with an increased spreading
degree (without further modifications) will directly increase the search space exponentially.

3The video clip available at http://acg.cs.tau.ac.il/projects/ossf/snapping_fixtures.mp4 illus-
trates the snapping operation.
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3
Combinatorial Analysis

The combinatorial analysis is organized as follows. In the first section of this chapter we
convert the decision problem on validity of fixtures into a covering-set problem. The second
section analyzes the properties of covering sets, setting the ground for the proofs and insights
presented in the third section.

3.1 Valid Fixtures and Covering Sets

Definition 3.1 (open semicircle, open hemisphere). An open semicircle is a semicircle ex-
cluding its two endpoints. An open hemisphere is a hemisphere excluding the great circle that
comprises its boundary curve.

Definition 3.2 (Covering set). Let S “ ts1, ..., s|S|u be a finite set of subsets of Rd and C

be a set of points in Rd. If
Ť|S|

i“1 si Ě C then S is a covering set of C.

A pair of open unit semicircles (respectively, hemispheres) are called antipodal if the
closure of their union is the entire unit circle (respectively, sphere).

When a facet f of the workpiece partially coincides with a facet of the fixture, the
workpiece cannot translate in any direction that forms an acute angle with the (outer) normal
to the plane containing f (without colliding with the fixture). This set of blocking directions
comprises an open unit hemisphere denoted as hpfq. Similarly, HpFq “ thpfq | f P Fu

denotes the mapping from a set of facets to the set of corresponding open unit hemispheres;
see, e.g., [29]. Let F 1 denote the set of facets of the workpiece that are coincident with facets
of the fixture in some fixed configuration. If the union of all blocking directions covers the
unit sphere in that configuration, formally stated S2 “

Ť

HpF 1q, then the workpiece cannot
move away from the fixture by translation.
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Let F denote the set of all facets of the fixture G. Let FP denote the singleton that
consists of the base facet of the palm of G, and let fbi and fti , 1 ď i ď k, denote the base
facet of the body and the base facet of the fingertip, respectively, of the i-th finger of G,
where k indicates the number of fingers. Let FB “ tfbi | 1 ď i ď ku and FT “ tfti | 1 ď i ď ku

denote the set of the base facets of the body parts of the fingers of G and the set of the
base facets of the fingertip parts of the fingers of G, respectively. Let FPBT denote the set
of all base facets of the parts of G, that is FPBT “ FP

Ť

FB

Ť

FT . Let FPB denote the
set of all base facets of the parts of G excluding the base facets of the fingertips, that is,
FPB “ FP

Ť

FB.

If the fixture resists any linear force applied on the workpiece while in the assembled
state and there exists a collision free path (in the configuration space) between any sepa-
rated configuration and the assembled configuration then our fixture is valid. We relax the
second condition for practical reasons; instead of requiring a full path, we require a path of
infinitesimal length. Formally we get:

Condition 1 S2 “
Ť

HpFPBT q.

Condition 2 S2 ‰
Ť

HpFPBq.

If the second condition holds, a serving state exists, assuming that the flexibility of the
joints cancels out the obstruction induced by the presence of the fingertips.

3.2 Covering Set Properties

Theorem 3.3 (Helly’s theorem [30]). Let S “ tX1, ..., Xnu be a finite collection of convex
subsets of Rd, with n ą d. If the intersection of every d ` 1 of these sets is nonempty, then
the whole collection has a nonempty intersection; that is,

Şn
j“1Xj ‰ H.

The contrapositive formulation of the theorem follows. If
Şn

j“1Xj “ H then there exists

a subsetR “ tXi1 , ..., Xid`1
u Ď S such that |R| “ d`1 and

Şd`1
j“1 Xij “ H. In the succeeding

proofs we use the following corollary:

Corollary 3.4. Let S “ tX1, ..., Xnu be a finite set of convex subsets of Rd. If
Ťn

j“1Xj “ Rd

then there exists a subset R “ tXi1 , ..., Xid`1
u Ď S such that |R| “ d`1 and

Ťd`1
j“1 Xij “ Rd.

The corollary holds because the intersection of a set of subgroups of Rd is empty iff the
union of their complement in Rd is Rd.

The following four lemmas, namely, 3.5–3.8, are based on the analysis in [29].

Lemma 3.5. Let S be a finite set of open unit semicircles. If S is a covering set of a closed
unit semicircle Ā, then there exists R Ď S such that R is a covering set of Ā and |R| P t2, 3u.

Proof. It is obvious that one open unit semicircle cannot cover a closed unit semicircle.
Let A denote the interior of Ā. (A is an open unit semicircle.) There are two cases: (i)
A P S and A P R for every covering set R Ď S of Ā. It implies that every covering set
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R Ď S must contain two additional open semicircles that cover the two boundary points
of Ā, respectively. These two semicircles together with A constitute a covering set of Ā of
size three. (ii) There exists a covering set S 1 Ď S, where A R S 1. Let S 1

Ā “ ts
Ş

Ā | s P S 1u

be the set of intersections of the elements of S 1 and Ā. Let Π1 denote the extended central
projection that maps the closed semicircle Ā to the affinely extended real number line,1,
Π1ppq “ px,wq : Ā Ñ P1, where the points in P1 are represented in homogeneous coordinates
px,wq. Notice that for every s P S 1

Ā, s covers one of the boundary points of Ā; therefore,
Π1psq is an open ray covering either p´1, 0q or p`1, 0q. S 1

Ā covers Ā; therefore, the set of its
images S 1

Π1 “ tΠ1psq | s P S 1

Āu covers P1. By Helly’s theorem, there exists a subsetR1
Π1 Ď S 1

Π1

of size two that covers R1. Thus, the set of preimages of R1
Π1 covers Ā.

Lemma 3.6. Let S be a finite set of open unit semicircles. If S is a covering set of the unit
circle S1, then there exists R Ď S such that R is a covering set of S1 and |R| P t3, 4u.

Proof. Let s P S be an arbitrary open unit semicircle in S. The remaining elements Sztsu

of S must cover ŝ, the complement of s in the unit circle. Notice that ŝ is a closed unit
semicircle. By lemma 3.5, there exists R1 Ď Sztsu that covers s̄, and |R1| P t2, 3u. Thus,
R1

Ť

tsu covers S1, and |R1
Ť

tsu| P t3, 4u.

Lemma 3.7. Let S be a finite set of open unit hemispheres. If S is a covering set of a
closed unit hemisphere H̄, then there exists R Ď S, such that R is a covering set of H̄ and
|R| P t3, 4, 5u.

Proof. Let H denote the interior of H̄ (H is an open unit hemisphere) and BH denote the
boundary of H̄ (BH is a great circle). Similar to the proof of Lemma 3.5, there are two cases:
(i) H P S and H P R for every covering set R Ď S of H̄. It implies that every covering set
R Ď S must contain additional open hemispheres that cover BH. Let SBH “ ts

Ş

BH | s P Su

be the set of intersections of the elements of S and BH. Note that an intersection of a unit
open hemisphere and a great circle is either empty or an open unit semicircle. Therefore
SBH is a set of open unit semicircles lying on the same plane. By Lemma 3.6, there exists a
covering set RBH Ă SBH of BH “ S1, such that |RBH | P t3, 4u. This implies that there exists
a covering set R Ď S of H̄, such that |R| P t4, 5u.

Ā1

Ā2

(ii) There exists a covering set S 1 Ď S, where H R S 1. Let
S 1

H̄ “ ts
Ş

H̄ | s P S 1u be the set of intersections of the elements
of S 1 and H̄.

Let Π2 denote the extended central projection that maps
the closed hemisphere H̄ to an extended plane obtained by
adjoining all signed slopes to R2 (a generalization of the affinely
extended real number line, to the plane), Π2ppq “ px, y, wq :
H̄ Ñ P2, where the points in P2 are represented in homogeneous coordinates px, y, wq.

Notice that every s P S 1

H̄ is a semi-open spherical wedge; see the figure in the previous
page. The wedge is bounded by two semicircles Ā1 and Ā2 (in the figure above), where Ā1

lies in BH. The intersection of Ā2 and s is empty, and the intersection of Ā1 and s is an

1The set R1
Ť

t`8,´8u is referred to as the affinely extended real number line.
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open semicircle; therefore, Π2psq is an open halfplane. S 1

H̄ covers H̄; therefore, the set of
its images S 1

Π2 “ tΠ2psq | s P S 1

H̄u covers P2. By Helly’s theorem, there exists a minimal
subset R1

Π2 Ď S 1
Π2 of size at most three that covers R2. If |R1

Π2 | “ 2, that is, two open
halfplanes, say h1 and h2 comprise R1

Π2 , then they must be parallel: h1 : ax ` by ` c1 ą 0
and h2 : ax ` by ` c2 ą 0. In this case they do not cover the points p´b, aq and pb,´aq in
P2. Thus, the pair of preimages of R1

Π2 covers H̄ except for two antipodal points. Covering
these antipodal points requires two additional elements from S 1

H̄, which yields a covering set
of size four. If |R1

Π2 | “ 3, then none of the halfplanes in R1
Π2 (which cover R2) are parallel,

and they also cover P2. Thus, the set of preimages of R1
Π2 covers H̄, which yields a covering

set of size three.

Lemma 3.8. Let S be a finite set of open unit hemispheres. If S is a covering set of the unit
sphere S2, then there exists R Ď S such that R is a covering set of S2 and |R| P t4, 5, 6u.

Proof. Let s P S be an arbitrary open unit hemisphere in S. The remaining elements Sztsu of
S must cover ŝ the complement of s in the unit sphere. Notice ŝ is a closed unit hemisphere.
By lemma 3.7, there exists R1 Ď Sztsu that covers ŝ, and |R1| P t3, 4, 5u. Thus, R1

Ť

tsu

covers S2, and |R1
Ť

tsu| P t4, 5, 6u.

Corollary 3.9. Let R be a set of four open unit semicircles that cover the unit circle S1.
R is minimal (i.e., for every open semicircle s P R, Rztsu is not a covering set of S1) iff it
consists of two antipodal pairs of open unit semicircles.

Proof. pñq Assume, by contradiction, that R contains an open unit semicircle a, such that
the interior of its complement is not in R. Observe that the complement of a is a closed unit
semicircle. This is exactly case (ii) in the proof of Lemma 3.5. Here, there exists a covering
set R1 of the closed unit semicircle, such that |R1| “ 2. It implies that |R| is at most three,
a contradiction.

pðq If R consist of two antipodal pairs of open unit hemispheres, then the removal of any
one of the four hemispheres leaves one point on S1 uncovered.

Corollary 3.10. Let S be a set of distinct open unit semicircles that covers S1; if |S| ě 5,
then there exists R Ă S, |R| “ 3 and R covers S1.

Proof. Assume, for contradiction, that a subset R Ă S, |R| “ 3 that covers S1 does not
exist. By Lemma 3.6, there exists a minimal subset R of S that covers S1 and |R| “ 4.
By Corollary 3.9, R consists of two antipodal pairs of open unit semicircles. Let â denote
the complement of the sole semicircle in SzR. Observe that â is equivalent to the closed
semicircle Ā, and that the interior of â, is not in R. This is exactly case (ii) in the proof
of Lemma 3.5 where a semicircle Ā is left to be covered and the interior of its complement
is not in the covering set. Here, there exists a covering set R1 of Ā, such that |R1| “ 2. It
implies that |R| “ 3, a contradiction.

Generalizing Corollaries 3.9 and 3.10 to 3-space yields the following.
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Corollary 3.11. Let R be a set of six open unit hemispheres that cover the unit sphere S2.
R is minimal iff it consist of three antipodal pairs of open unit hemispheres.

Proof. pñq Assume, by contradiction, that R contains an open unit hemisphere a, such that
the interior of its complement is not in R. Observe that the complement of a is equivalent
to H2. This is exactly case (ii) in the proof of Lemma 3.7. Here, there exists a covering set
R1 of H2, such that |R1| P t3, 4u. It implies that |R| is at most five, a contradiction.

pðq R consists of three antipodal pairs of open unit hemispheres that cover S2. Arbitrarily
pick one antipodal pair. There is a great circle c that it not covered by the pair. By
corollary 3.9 two antipodal pairs of open unit semicircles are required to cover c; they must be
the intersections of the remaining two antipodal pairs of open unit hemispheres, respectively.
Thus, six open hemispheres are required in total.

Corollary 3.12. Let S be a set of distinct open unit hemispheres that covers S2; if |S| ě 7,
then there exists R Ă S, |R| “ 5 and R covers S2.

Proof. Assume, for contradiction, that a subset R Ă S, |R| “ 5 that covers S2 does not
exist. By Lemma 3.6, there exists a minimal subset R of S that covers S2 and |R| “ 6. By
Corollary 3.11, S consists of three antipodal pairs of open unit hemispheres. Let ĥ denote
the complement of the sole hemisphere in SzR. Observe that ĥ is equivalent to H̄, and that
the interior of ĥ, is not in R. This, again, is exactly case (ii) in the proof of Lemma 3.7.
Here, there exists a covering set R1 of H̄, such that |R1| P t3, 4u. It implies that |R| ď 5, a
contradiction.

3.3 Insights on Snapping Fixtures

A candidate finger of an input polyhedron P is a valid finger of at least one possible fixture
G of P .

Definition 3.13 (genus of a polyhedron). The genus of a polyhedron P is the genus of the
graph induced by the vertices and edges of all the facets of P [31].

Observation 3.14. The number of candidate fingers of an input polyhedron P is linear in
the number of vertices of P .

Proof. Let e be an edge of P and let fe and f 1
e be the two faces incident to e. Two fingers

can be built on e. The base facet of the body and the base facet of the tip of one finger
coincides with fe and f 1

e, respectively. In order to construct the other finger, the roles of
these facets exchange; that is, the base facet of the body and the base facet of the fingertip
coincides with f 1

e and fe, respectively. Every candidate finger is built on a single edge. Thus,
the number of candidate fingers is at most 2|E|. From Euler’s formula we know that the
number of edges in a polyhedron of genus zero with n vertices is at most 3n ´ 6. Thus, the
number of candidate fingers is at most 6n ´ 12.
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Theorem 3.15. Every valid snapping fixture can be converted into a four-finger snapping
fixture. Sometimes four fingers are necessary.

Proof. Consider a polyhedron P . Let G be a valid fixture of P , and assume that G has
more than four fingers. We show that it is possible to construct a valid snapping fixture of
P that has (i) the same palm as G, and (ii) four fingers that are a subset of the fingers of
G. Consider the closed hemisphere H̄ “ S2zHpFP q. By Condition 1 defined in Section 3.1,
S2 “

Ť

HpFPBT q. We get that H̄ Ď
Ť

HpFBT ). In other words, HpFBT q is a covering set
of H̄. By Lemma 3.7, there exists a subset R Ă HpFBT q, such that (i) R is a covering set,
and (ii) |R| P t3, 4, 5u. We prove separately for |R| P t3, 4u and |R| “ 5.

If |R| P t3, 4u, there exist i P t3, 4u hemispheres that correspond to i base facets of i
bodies or fingertips, respectively, of at most four fingers, which we choose as the fingers of
G1.

If |R| “ 5, then R contains an open hemisphere Ht, such that Ht “ hpftq and the
base facet of the palm and ft are parallel.2 In a polyhedron, two parallel facets cannot be
neighbors; thus, ft must be the base facet of a fingertip of some finger F . Let fb denote
the base facet of the body of the finger F and set Hb “ hpfbq. Observe, that R1 “ RztHtu

must be a covering set of the unit circle BHt, and |R1| “ 4. Observe that BHb ‰ BHt;
thus, R2 “ R1ztHbu is a covering set of a closed semicircle Ā and |R2| “ 3. Following a
deduction similar to the above, there exist three hemispheres that correspond to three base
facets of three bodies or fingertips, respectively, of at most three fingers, which we choose as
the fingers of G1 in addition to F .

A polyhedron that admits the lower bound is depicted in Figure 3.1. Proving that a
snapping fixture for this polyhedron with less then four fingers does not exists is done using
our generator (see Section 7). We exhaustively searched the configurations space and did
not find a valid snapping fixture with less than four fingers.

Observation 3.16. A single-finger fixture does not exist.

Proof. Let G be a fixture with only one finger. Then, |HpFPBT q| “ 3. However, by
Lemma 3.8 the minimum size of a covering set of S2 is four.

A polyhedron that admits the lower bound is depicted in Figures 3.1a, 3.1b, and 3.1c.
There exists a polyhedron that has a snapping fixture that has only two fingers; see Fig-
ure 3.1d.

2Similar conditions are described in the proof of Lemma 3.7.
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(a) (b)

(c) (d)

Figure 3.1: (a), (b), (c) Different views of a polyhedron that has snapping fixtures with four
fingers only and one of its four-finger fixtures. (d) A snapping fixture with two fingers.
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4
Algorithms

A snapping fixture G (of spreading degree two) is formally defined by a pair that consists
of (i) an index i of a facet of P , and (ii) a set of pairs of indices pj1, ℓ1q, pj2, ℓ2q, ...pjk, ℓkq of
facets of P . The palm of G is the αp-extrusion of the facet fi. Each member pair of indices
pj, ℓq define a finger of G. The body and fingertip of the finger are the αb- and αt-extrusion
of the facets fj and fℓ, respectively.

We introduce two algorithms. The first algorithm exhaustively searches and outputs all
valid snapping fixtures with 2, 3, or 4, fingers, of a given polyhedron and runs in Opn4q time.
The second algorithm is more parsimonious; it uses a different method to generate 4-finger
fixtures, producing one fixture if exists with the minimal number of fingers and runs in Opn3q

time.

4.1 Simple Algorithm

Procedure 1. (minimalSnappingFixturespP q) The procedure accepts a polyhedron P
as input and returns all fixtures of P with the minimal number of fingers; see Algorithm 1.
The algorithm consists of two phases. In the first phase we compute a data structure M that
associates palms and candidate fingers that extend from them. The second phase consists
of three subphases in which we extract subsets of fingers of size, 2, 3, and 4, respectively, for
each palm stored in M and examine whether the palm and the subset of fingers form a valid
fixture. Once we strike one, we accumulate it to the list of valid fixtures.

Procedure 2. (neighborspfq) The procedure accepts a facet f of a polyhedron and returns
all the neighboring facets of f .
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Algorithm 1 Minimal snapping fixtures generation

Input: A polyhedron P with m facets tf1, f2, ..., fmu.
Output: All minimal snapping fixtures of P .
1: procedure minimalSnappingFixtures(P )
2: fixtures Ð H

3: for i Ð 1,m do
4: M ris Ð H

5: for all j, fj P neighborspfiq do

,

/

/

/

/

.

/

/

/

/

-

Phase 1
6: for all ℓ, fℓ P neighborspfjq& ℓ ‰ i do
7: M ris Ð M ris

Ť

tpj, ℓqu

8: for i Ð 1,m do
9: for all S,S P subsetspM ris, 2q do // |S| “ 2
10: F Ð pfi,Sq // Define a fixture

,

/

/

.

/

/

-

Subphase 2.1

11: if validFixturepF q then
12: fixtures Ð fixtures

Ť

tF u

13: if fixtures ‰ H then return fixtures

14: for i Ð 1,m do
15: for all S,S P subsetspM ris, 3q do // |S| “ 3
16: F Ð pfi,Sq // Define a fixture

,

/

/

.

/

/

-

Subphase 2.2

17: if validFixturepF q then
18: fixtures Ð fixtures

Ť

tF u

19: if fixtures ‰ H then return fixtures

20: for i Ð 1,m do
21: for all S,S P subsetspM ris, 4q do // |S| “ 4
22: F Ð pfi,Sq // Define a fixture

,

/

/

.

/

/

-

Subphase 2.3

23: if validFixturepF q then
24: fixtures Ð fixtures

Ť

tF u

25: return fixtures

Procedure 3. (subsetspC, kq) The procedure accepts a set C and a positive integer k; it
returns all subsets of C of cardinality k.

Procedure 4. (validFixturepF q) The procedure accepts a snapping fixture and determines
whether it is a valid snapping fixture based on Conditions 1 and 2 defined in Section 3.

In each one of the subphases of the second phase we iterate over all facets of P and treat
each facet as a potential base facet of the palm of a valid fixture. We accumulate all the valid
fixtures during the process. The complexity of the algorithm is the accumulated complexities
of Phase 1 and Subphases 2.1, 2.2, and 2.3. The efficiency (low running-time complexity) of
Subphase 2.2 stems from an observation on the maximum number of possible candidates for
this subphase, which in turn relies on the genus of the polyhedron, as we discuss next.

Lemma 4.1 (Genus of complete bipartite graphs [32]). The genus of the complete bipartite
graph, km,n, with m nodes in one side and n in the other, is rpm ´ 2qpn ´ 2q{4s.
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Lemma 4.2. Given an input polyhedron P of genus g. Let τ be a triplet of candidate
fingers. Let P be the set of palms, such that all fingers in τ extend every palm in P. Then,
|P | ď 4 ¨ g ` 2.

Proof. Let A be the set of three facets of P that correspond to the three base facets of the
bodies of the fingers in τ . Let B be the set of facets of P that correspond to the base facets
of the palms in P . Let V,E, F denote the vertices, edges, and facets of P , respectively. Let
P ˚ “ pV ˚, E˚, F ˚q be the dual graph of P , where each facet is represented as a node, and
two nodes are connected by an arc if the corresponding two facets are neighbors. According
to Euler characteristic, the genus of P ˚ is given by 1´ p|V ˚| ´ |E˚| ` |F ˚|q{2, which is equal
to 1´p|F |´|E|`|V |q{2 “ g. Consider the subgraph H of P ˚ that consists of the nodes that
correspond to the facets in A and in B. The genus of H is at most g. Since each facet in A
and each facet in B are neighbors, H is a complete bipartite graph kp3,|B|q. By Lemma 4.1,
the genus of H is rp3 ´ 2qp|B| ´ 2q{4s “ rp|B| ´ 2q{4s ď g. Hence, |B| ď g ¨ 4 ` 2.

Theorem 4.3. Algorithm 1 runs in Opn4q time, where n is the number of vertices of the
input polyhedron.

Proof. During the first phase we list all the potential palms, each palm together with all
the fingers that can be connected to it. The overall number of potential fingers is twice
the number of edges in the polytope; see Observation 3.14. Since the number of facets
and the number of edges in a polytope with n vertices is linear in n, the number of palm-
finger combinations created in Phase 1 is Opn2q. The second phase dominates the time
complexity. We examine each subphase separately. Recall, that a potential fixture passed
to validFixturepF q (encoded by pf, Sq, where f denotes a facet and S denotes a set, the
cardinality of which is fixed, i.e., 2, 3, or 4) has a fixed number of fingers. Therefore, every
execution of the function consumes constant time. In the first subphase for every possible
palm the function validFixture is invoked once per every subset of candidate fingers of
size 2. As the number of candidate fingers is linear in n, the number of pairs of fingers is
in Opn2q. Thus, the total complexity of this subphase is Opn ¨ n2q “ Opn3q. In the second
subphase for every possible palm the function validFixture is invoked once per every
subset of candidate fingers of size 3. By Lemma 4.2 and the assumption that the genus of
the input polyhedron is constant, while iterating over all possible fixtures that have exactly
three fingers, each triplet of fingers is considered a constant number of times. Therefore, the
total time consumed processing potential fixtures of three fingers is bounded by Opn3q. In
the third subphase for every possible palm the function validFixture is invoked once per
every subset of candidate fingers of size 4. For every candidate quadruple that is considered
for a palm in the third subphase, each triplet of fingers in the quadruple was considered
for the same palm in the second subphase. Each triplet of fingers is considered a constant
number of times, therefore each quadruple of fingers is considered a constant number of
times. Therefore, the total time consumed processing potential fixtures of four fingers is
bounded by Opn4q. The overall time complexity is thus Opn4q.
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4.2 Improved Algorithm

The following procedure finds a four-fingers fixture if exists, assuming fixtures with two or
three fingers do not exist. The procedure runs in Opn3q time.

In the following, we narrow down the search space for fixtures with four fingers, once it
has been established that our workpiece does not have a fixture with two or three fingers.
Consider a polyhedron P that does have a valid fixture, say G (with an arbitrary number of
fingers). There exists a subset R Ă HpFBT q, such that (i) R is a covering set of the closed
hemisphere S2zHpFP q, and (ii) |R| P t3, 4, 5u. (This follows the same reasoning as in the
proof of Theorem 3.15) The composition of R can be categorized into four cases listed below.
We show that only one of theses cases, namely Case IV, must be considered when searching
for a fixture with four fingers.

(a) (b)

(c) (d)

Figure 4.1: (a) A tetrahedron and a two-finger snapping fixture. (b) A cube and a three-
finger snapping fixture. (c) A triangular prism and a two-finger snapping fixture. (d) A
square pyramid and a two-finger snapping fixture.

Case I: |R| “ 3. The tetrahedron and the fixture depicted in Figure 4.1a demonstrate this
case. At most three distinct fingers of G are needed; it implies that finding a fixture similar
to G, but only with these three fingers, during the first or second subphases is guaranteed.

Case II: |R| “ 5. The tetrahedron and the fixture depicted in Figure 4.1b demonstrate
this case. By Corollary 3.11, R

Ť

HpFP q consists of three antipodal pairs of open unit
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hemispheres. As R
Ť

HpFP q is a covering set of S2 and |R
Ť

HpFP q| “ 6, by Corollary 3.12,
HpFPBT q “ R

Ť

HpFP q. It implies that the facets in FPBT can be divided into three pairs
of non-empty sets, such that each set is a collection of all facets with the same normal,
and the two sets of every pair correspond to opposite normals, respectively. Without loss
of generality, we assume that P does not have coplanar facets that are neighbors, because
such facets can be merged. Next, observe that the facets in FPBT must be parallelograms.
Assume, for contradiction, that there exists a facet f that is not a parallelogram. It implies
that f has at least three neighboring facets that are pairwise non-parallel, which implies
that, together with hpfq, R contains at least four open hemispheres that are pairwise non-
antipodal, a contradiction.

G must have at least one finger, say F1, such that the normal to the base facet of its
fingertip, say ft1 , is opposite to the normal of the base facet of the palm fp. Let fb1 denote
the base facet of the body of F1. Consider the set R1 “ Rzthpfb1q, hpft1qu. Observe that
|R1| “ 3. Let hpf̄b1q be the antipodal counterpart of hpfb1q. Consider the finger F2, such that
f̄b1 is either the base facet, fb2 , of the body of F2 or the base facet, ft2 , of the fingertip of F2.
Naturally, hpf̄b1q is a member of R1. (i) If f̄b1 “ ft2 , then, since fb2 is a neighbor of fp and
ft2 , hpfb2q must be a member of R1 as well. Now, consider the set R2 “ R1zthpfb2q, hpft2qu,
and observe that |R2| “ 1. (ii) If f̄b1 “ fb2 , then let ft1 be one of the neighbors of fb2 that
is not parallel to fp. Recall, that the facet fb2 has four neighbors—two pairs of parallel
facets. As fb2 and fb1 are parallel, hpft1q must be a member of R1 as well. If ft1 ‰ ft2 ,
replace the fingertip of F2 with a fingertip, the base of which is ft1 . Now, consider the set
R2 “ R1zthpfb2q, hpft1qu, and observe that |R2| “ 1. It follows that there exists a third
finger, say F3 ‰ F1, F2, such that either hpfb3q P R2 or hpft3q P R2, where fb3 and ft3 are
the base facets of the body and fingertip, respectively, of F3, which obviates the need for
further fingers. It implies that finding a valid fixture during the first or second subphases is
guaranteed.

Case III: |R| “ 4 and there exists a facet f P R, such that hpfq and hpfpq are antipodal.
The triangular prism and the fixture depicted in Figure 4.1c demonstrate this case. As in
the previous case, G must have at least one finger, say F1, such that the normal to the base
facet of its fingertip, say ft1 , is opposite to the normal of the base facet of the palm fp. Let
fb1 denote the base facet of the body of F1. Consider the set R1 “ Rzthpfb1q, hpft1qu. Since
|R1| “ 2, at most two additional distinct fingers of G are needed; it implies that finding
a fixture similar to G, but only with three fingers, during the first or second subphases is
guaranteed.

Case IV: |R| “ 4 and R does not contain an open hemisphere, such that this hemisphere
and hpfpq are antipodal. The square pyramid and the fixture depicted in Figure 4.1d demon-
strate this case. Observe that the fixture in the figure has two fingers. However, sometimes
four fingers are necessary as established by Theorem 3.15; see, e.g., Figure 3.1a. This is the
only case we need to consider when searching for a fixture with four fingers. Notice, that in
this case, the intersections of at least two open hemispheres in R with the great circle Bhpfpq

are pairwise antipodal open unit semicircles.

Procedure 5. (fourFingersFixturespf, Cq) The procedure accepts a facet f of a potential
palm and a set of pairs of facets, where each pair defines the base facets of the body and
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fingertip of a candidate finger, as input. It returns a valid fixture of P with four fingers,
if there exists one, such that f is the base facet of its palm, and its configuration matches
Case IV above. Let C 1 denote the set of unique facets in C. Let h̄ “ S2zhpfq denote the
closed hemisphere that must be covered by the open hemispheres HpC 1q. The procedure
first divides all the hemispheres in HpC 1q into equivalence classes, such that the intersections
of all hemispheres in a class with the unit circle C “ Bh̄ is a unique open semicircle. Let
spEq “ x

Ş

C, x P E denote the unique open semicircle associated with the equivalence class
E . There is a canonical total order of hemispheres within each class: Let h1 and h2 be two
hemispheres in some class; then h1 ă h2 iff h1

Ş

h̄ Ă h2

Ş

h̄. Then, the procedure identifies
pairs of equivalence classes pE1, E2q, such that spE1q and spE2q are antipodal open semicircles.
For each pair, the procedure traverses all other equivalence classes twice searching for two
additional equivalence classes E3 and E4, such that the set tspE1q, spE2q, spE3q, spE4qu covers
C. If it finds such four equivalence classes, it implies that there exists a valid fixture with
four fingers F1, F2, F3, F4, such that the maximal hemisphere associated with Ei is either
hpfbiq or hpfgiq. In this case the procedure returns such a fixture.

Algorithm 2 Minimal snapping fixture generation

Input: A polyhedron P with m facets tf1, f2, ..., fmu.
Output: A snapping fixture G of P , if exists, with minimal number of fingers.

procedure minimalSnappingFixture(P )
for i Ð 1,m do

M ris Ð H

for all j, fj P neighborspfiq do

,

/

/

/

/

.

/

/

/

/

-

Phase 1
for all ℓ, fℓ P neighborspfjq& ℓ ‰ i do

M ris Ð M ris
Ť

tpj, ℓqu

for i Ð 1,m do
for all S,S P subsetspM ris, 2q do // |S| “ 2

F Ð pfi,Sq // Define a fixture

,

/

/

.

/

/

-

Subphase 2.1

if validFixturepF q then return F

for i Ð 1,m do
for all S,S P subsetspM ris, 3q do // |S| “ 3

F Ð pfi,Sq // Define a fixture

,

/

/

.

/

/

-

Subphase 2.2

if validFixturepF q then return F

for i Ð 1,m do
F Ð fourFingersFixturepfi,M risq
if F ‰ null then return F

,

/

/

.

/

/

-

Subphase 2.3

return null

In each one of the first two subphases of the second phase we iterate over all facets of
P and treat each facet as a potential base facet of the palm of a valid fixture, this time,
stopping after the first valid fixture found.

Theorem 4.4. Algorithm 2 runs in Opn3q time, where n is the number of vertices of the
input polyhedron.
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Proof. The time complexity analysis of phase 1, subphase 2.1 and subphase 2.2 is the same
as in Theorem 4.3. The sole difference in the time analysis is the substitution of the orig-
inal subphase 2.3 with the fourFingersFixtures(f, C) procedure. fourFingersFix-
tures(f, C) is invoked once for every facet in the input polyhedron. Building the equiva-
lence classes and finding the maximum of each class takes Opnq time. Matching maximal
hemispheres of equivalence classes to form pairs of associated antipodal semicircles takes
Opn2q time. Finally, examining every pair, traversing all other equivalence classes for each
pair, also takes Opn2q time. Thus, the total complexity of this subphase is Opn ¨n2q “ Opn3q.
The cumulative time complexity is thus Opn3q.
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5
Implementation Details

This chapter provides additional details on the 3D modeling process of the fixtures, the
website and user-interface considerations. Our code is based on two open-source libraries
that helped us manipulating geometrical figures and generate 3D models of the fixtures. The
first library is Cgal (available at https://www.cgal.org/); it provides easy access to efficient
and reliable geometric algorithms and data structure. The second library is SGAL (available
at https://bitbucket.org/efifogel/sgal); it provides merging of coplanar facets, 3D formats
conversions and additional utilities. We also used the code base of covering set validation
by Shahar Shamai. The website was developed using standard libraries and tools, such
as, Flask (https://flask.palletsprojects.com/en/2.0.x/), Nginx (https://www.nginx.com/),
Docker (https://www.docker.com/), three.js (https://threejs.org/), supervisord
(http://supervisord.org/), gunicorn (https://gunicorn.org/).

5.1 3D Modeling

We describe the 3D modeling process that outputs a ready-for-printing fixture from a set of
palm, fingers, and fingertips facets. This process can be separated into several steps. The
first step accepts four parameters from the user, namely palm thickness, finger thickness,
fingertip depth and fingertip thickness in order to generate custom fixtures that suits the
user requirements. Before reading the next section it is recommended to have a brief look
at Section 2.1.
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Palm Generation

The palm of the fixture is bounded by several facets. We start with the base facet, the second
is an extrusion of the first facet. The extrusion is built from the same vertices of the first
facet, translated in the direction of the normal to the palm facet; its length is palm thickness.
Except from preserving the shape of the palm facet, the second facet also supports connection
of fingers to the palm; this connection is described later. In order to reduce the volume of
the fingers and avoid collisions, the finger body’s facet is defined to be the convex hull of
part of the segment epb and of part of segment ebt. In our implementation we shrank each of
the segments symmetrically to the length of 0.4 ¨ L, where L is the segment original length;
see Figure 2.1(c). The first distinction is between connections for blunt body fingers and
sharp body fingers; see Figure 5.1. For sharp body fingers the palm extends epb. For blunt
body fingers the palm creates a rebate in epb that the finger can connect to without colliding
with the workpiece. Note that the extrusion or rebate are at length of finger thickness; see
Figure 5.1(b).

Sharp body finger
Blunt body finger

(a)

Sharp body finger
Blunt body finger

(b)

Figure 5.1: (a) Workpiece and fixture with two fingers, one has blunt body and one sharp
body. (b) Same workpiece and fixture, but the fixture has no fingers.

The last step of generating the palm is filling the space between the two facets with the
palm side facets.

Finger and Fingertip Generation

Every finger is extruded from its related connection (extrusion or rebate), at the palm, until
intersected with the fingertip facet’s plane. Then the fingertip is extruded from the finger
in the direction normal to fingertip facet’s plane and in length of fingertip thickness . A
second distinction is made between blunt fingertip fingers and sharp fingertip fingers. While
sharp fingertip bend towards the workpiece such that the inner facet of the finger snaps onto
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the workpiece, blunt fingertips bend towards the workpiece such that the outer facet of the
finger pushes the workpiece outwards; See Figure 5.2a.

Blunt fingertip finger Sharp fingertip finger

(a)

Figure 5.2: Blunt and Sharp fingertip fingers and their way of grasping the workpiece

Either the inner fingertip facet or outer fingertip facet, the one which is in direct contact
with the workpiece, is set to be in length of fingertip depth and while the other facet is set
to match in length. The last part is completing the side facets for both the finger body and
fingertip.

Blunt Body Finger Size

While experimenting and generating fixtures for different workpieces with different param-
eters we noticed the following constraint. Blunt body fingers’ size was defined by finger
thickness. However, when finger thickness is larger than the palm facet’s dimensions, the
rebate extends outside of the palm and the fixture becomes undefined. Therefore, if the
rebate extends outside of the palm an error message appears alerting the user to decrease
the finger thickness.

Angle Based Normalization

During our experiments we noticed that some fingers are thicker than other. However, all
the fingers should have the same finger thickness parameter. The reason for this gap is
illustrated in Figure 5.3(a), that the real thickness of a finger is not determined only by the
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length of the connector lconn, but by lconn ¨ sinpθpbq where θpb is the angle between the palm
facet and the body facet. In order to be fully convinced it is helpful to think about the edge
case where the body and palm facets are near coplanar and the real thickness of the finger
tends to zero. In order to normalize the thickness of all the fingers we multiply the length
of the inner connector by 1{ sinpθpbq. This addition creates a joint or wrist-like connector, as
seen in Figure 5.3(b).

(a)

Wrist-like connector

(b)

Figure 5.3: (a) Before normalizing the palm connector. (b) After normalizing the palm
connector.

Format Support and Coplanar Facets

Working with VRML and OFF file formats to represent the polyhedron and the fixture
was straight-forward. In order to support the common STL format we had to apply few
enhancements. The first change was in the data encoding. Both VRML and OFF formats
are textual formats, but STL has a binary encoding that does not work well when sending
the data over http textual protocol. The solution was to encode the data before sending
it, using Base64 encoding scheme.1 The major problem with the STL format is the lack of
combinatorial information. When STL is generated every facet is triangulated and added
to the collection of triangles; there is no data available regrading each triangle original
facet. In the parsing process the code builds a polyhedron from the STL file, trying to
merge coplanar triangles into a single facet. The limited precision of STL makes it hard to
recognize which triangles are coplanar and originate from the same facet. Our solution is
setting a threshold—only triangles with normal vectors n1, n2 that are ϵ close to each other
are considered coplanar (|cos´1pn1 ¨ n2{|n1||n2|q ´ π| ă ϵ). Another issue we had to address
is handling vertices of non-triangular facets that are not coplanar. Fear of complex “fixing”
algorithms, which might destroy the fragile details of the polyhedron surface while trying
to avoid non-coplanar facets, led us to preserve the polyhedron with non-coplanar facets.
The advantage of this approach is that we can generate fixtures without worrying that they

1Additional details about Base64 encoding can be found at https://en.wikipedia.org/wiki/Base64
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might not fit the original workpiece. The disadvantage is that the algorithm loses its ability
to determine if two facets are parallel, which is required for an accurate analysis of covering
sets. Note that only when the service is fed with a model in the STL format the algorithm
loses its ability to distinguish between parallel and almost parallel facets, when using VRML
and OFF formats the user can exploit the accurate version of the algorithm.

Special Cases Topology

In some special cases, the set of facets that defines the fixture is valid (that is, conditions 1
and 2, from Section 3 hold), but the described modeling process outputs an unprintable 3D
model. The first example is of a fixture that can be 3D modeled, but the generated fixture
skips the body facet of the finger. As seen in Figure 5.4 below, the relative position of the
palm, body and fingertip facets outputs a finger that does not cover the body facet; therefore,
the fixture will not counter a translation in the direction of the outer normal of the body’s
facet. The next examples, illustrated in Figure 5.5, present a valid fixture, and two facet

palm facet
body facet

fingertip facet

Figure 5.4: A non-convex workpiece with its degenerated fixture.

(original and new), such that if we replace the original facet in the fixture with the new one,
we get an unprintable 3D model that cannot be rendered. Since the 3D model cannot be
rendered to an image, we demonstrate these fixtures by showing a valid fixture, and how it
can be changed into a fixture that cannot be rendered. The first example in Figure 5.5 (a)
illustrates a fixture of a boxed torus. When selecting the new fingertip facet as proposed
in the figure, the new finger covers the hole of the torus, and therefore collides with any
finger that uses the facets of the hole, creating self-intersecting fixture. The second example,
depicted in Figure 5.5 (b) illustrates a fixture of a T-shaped block. When selecting the new
fingertip facet as proposed in the figure, the new finger’s body segment (epb) and fingertip
segment (ebt) are coincident to a single line. Therefore, the finger body facet, defined as the
convex hull of the two segments, is a degenerated quadrilateral of 0-width.

All the above examples can be solved by a more accurate design of the fingers, based on
the exact shapes and relations between the facets and by using collision detection to avoid
collisions between fingers. Although we believe it is possible to define this accurate design,
it is out of scope of our current work.
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original fingertip

new fingertip

(a)

original fingertip

new fingertip

(b)

Figure 5.5: (a) A boxed torus with two related fixtures. (b) A T-shaped block with a related
fixture. All figures present a small change in the facet selection that results in a fixture that
can not be built the standard way described in the thesis so far.

5.2 Website

Instant Output

The implemented algorithm runs in Opn4q time in the worst-case and in Opn3q time in most
cases; therefore, waiting for the algorithm to end might be tedious. Luckily, the user does
not need to wait for the process of examining all possible fixtures to complete. The execution
stops after the first valid fixture is found, then, it generates the fixture and saves its current
configurations. The service allows the user to change the palm or the fingers selections. In
most cases the response is immediate, which creates a pleasant user experience. The primary
exception is when the user inputs a workpiece that does not have a valid fixture at all. In
this case the procedure must examine all possible fixtures in order to conclude that a valid
fixture does not exists.

Palm Selection

In order to improve the user experience, we supply an option to choose the palm base facet
by clicking on it with the mouse. The option is enabled by picking the selection tool from
the palm menu, and clicking on the desired facet. In order to implement this option, the
algorithm merges coplanar (or near coplanar) facets, triangulates them, and generates a
mapping in the process from every resulting triangle facet to its original root facet. The
mapping is forwarded to the client, that renders two instances of the workpiece. First, the
colored workpiece is rendered onto a visible buffer. Second, the workpiece is rendered onto
an invisible buffer used for picking. When a triangle facet f is projected onto the invisible
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buffer, the colors of the rendered fragments are assigned with the id of the root facet of f .
When a facet is selected the client pulls the id of the selected facet from the invisible buffer
and sends it back to the server, which generates an appropriate fixture based on the selected
facet.
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6
Two Applications

We present two applications that utilize our algorithms and their implementation.

6.1 Minimal Weight Fixtures

(a) (b) (c)

Figure 6.1: (a) Synthetic micro-switch sensor and a snapping fixture assembled. (b) A micro-
switch sensor held by a fabricated snapping fixture. (c) A drone with the snapping fixture
attached to it.

Generating lightweight fixtures that could be mounted on a UAV has been a major
challenge ever since the first UAV was introduced. The desire for robust and efficient solutions
to this problem rapidly scaled up during the last decade with the introduction of small drones,
the weight of devices that can be mounted on which, is limited. Naturally, the device must
be securely attached to the drone; however, at the same time, the holding mechanism should
weigh as little as possible. Figure 6.1 shows a fixture generated for a micro-switch sensor,
a common sensor in the field of robotics and automation. Figure 6.1c shows the fabricated
fixture (3D printed) permanently attached to a drone. It holds a micro-switch. While the
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micros-switch is firmly held during flight, it can be easily replaced.

6.2 Minimal Obscuring Fixtures

One of the objectives of jewelry making is to expose the gems mounted on a jewel, such as
a ring, and reveal their allure. As with the minimal-weight fixture, the mounted gem must
be securely attached to the jewel; however, the weight of the holding mechanism can be
compromised. Here we seek to find a fixture that obscures the gem as little as possible, so
that the gem surface is exposed as much as possible. Figure 6.2b shows a pendant with an
integrated fixture synthesized by our generator. The fixture in Figure 6.2a is generated for
an emerald cut; it reveals a surprising portion of the front facets of the stone.

(a) (b) (c)

Figure 6.2: (a) An emerald cut—a common cut for precious stones. (b) A synthetic pendant
with an integrated snapping fixture. (c) The fabricated pedant holding a precious stone.
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7
Experimental Results

The generator was developed in C++; it depends on the Polygon Mesh Processing package
of Cgal [33]. Table 7.1 (on the next page) lists some of the workpieces we fed as input,
and provides information about the generation of the corresponding snapping fixtures. The
coordinates of the vertices of the input models were given in floating point numbers. The
generator was executed on an Intel Core i7-2720QM CPU clocked at 2.2 GHz with 16 GB
of RAM.

1Limited precision coordinates render the actual models non-regular.
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Table 7.1: Information related to snapping fixture generation of various workpieces. Verts,
Tris, and Fixts stand for Vertices, Triangles, and Fixtures, respectively. The column
entitled Merged indicates the number of facets after the merging of coplanar triangular
facets. The last column indicates the number of fixtures that admit the minimal number of
fingers.

Workpiece Fixture # Fixts

Name
# # # Facets

Genus
# Min Time Min

Verts Edges Tris Merged Fingers (ms) Fingers

tetrahedron 4 6 4 4 0 2 3 36

dodecahedron1 20 30 36 12 0 2 15 50

emerald 34 96 64 25 0 2 39 8

square pyramid 5 8 6 5 0 2 4 24

micro switch 594 1,806 1,204 305 2 2 42,761 263,895

cube 8 18 12 6 0 3 20 216

octahedron 6 12 8 8 0 3 3 16

torus 32 64 32 10 1 3 307 2,760

4-finger 26 64 42 41 0 4 45 17

truncated cuboctahedron1 48 72 92 26 0 2 163 29

icosahedron 12 30 20 20 0 8 22 0

8-base cylinder 16 42 28 10 0 2 44 106

28-base cylinder 56 162 108 30 0 2 984 4,396

48-base cylinder 96 282 188 50 0 2 4,672 24,456

68-base cylinder 136 402 268 70 0 2 13,008 71,892

88-base cylinder 176 522 348 90 0 2 27,233 159,124

108-base cylinder 216 642 428 110 0 2 50,122 297,956
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8
Limitations and Future Research

8.1 Form Closure

Our generator synthesizes fixtures that do not necessarily prevent angu-
lar motion. Such fixtures are rarely obtained. Nevertheless, the figure to
the right depicts a workpiece and a snapping fixture (synthesized by our
generator), such that the workpiece can escape the assembled configura-
tion using torque. However, other snapping fixture of this workpiece that
guarantee form-closure of the workpiece do exist (and offered by our generator). Devising
efficient synthesis algorithms for guaranteeing form closure is left for future research.

8.2 Spreading Degree

Increasing the spreading degree (see Section 2.3) will enable the synthesis of fixtures for a
larger range of workpieces. Future research could result with (i) a classification of polyhedra
according to the minimal spreading degree required for their snapping fixtures, and (ii)
algorithms for synthesis of fixtures with a larger fixed spreading degree or even unlimited.

8.3 Joint Flexibility

The flexibility of the joints is an important consideration in the design. In order to construct
a snapping fixture, the joint that connects the body of a finger to the palm, and the joint that
connects the fingertip of a finger to its body must allow the rotation of the respective parts
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about the respective axes when force is applied. Some of the subtleties of this flexibility are
discussed below. For simplicity we move the discussion to the plane, where our workpiece
and snapping fixture are polygons.

a

b

θ a

η η

Palm

Axis

Let’s focus on one finger. Consider the configuration where the fin-
ger is about to snap. Assume, for further simplicity, that the joint that
connects the body and the fingertip of the finger is rigid, and consider
only the joint that connects the finger with the palm, as depicted in
the figure to the right. This configuration occurs a split second before
the assembly reaches the assembled state when translated, starting at
the serving configuration. Let θ denote the angle between the finger
and the workpiece. Note that in the assembled configuration θ equals
0 for all fingers. Let θc denote the joint threshold angle, that is, the
maximum bending angle the finger can tolerate without breaking. The
threshold angle of every joint depends on the material and thickness of the region around
the joint. θ is an angle of a triangle with one edge lying on the fixture’s finger body inner
facet and another edge lying on the fixture’s fingertip inner facet. Let a and b denote the
lengths of these edges, respectively, and let η be the angle between them. The finger will
break when θ ą θc. Applying the law of sines, we get b “ a sin θ

sinpπ´θ´ηq
“ a sin θ

sinpθ`ηq
, which implies

a maximal value b ď
minpaq sin θ
sinpθ`ηq

. On the other hand, the characteristics of the material of the
finger determine the minimal value of b that guarantees a secured grasp of the workpiece by
the fingertip. The construction of a fixture G is feasible, only if selecting a proper value b
for every finger of G is possible. We remark that the full analysis in space is more involved,
and for now our generator does not take into account material properties such as flexibility.

8.4 Gripping Strength

Another consideration in the fixture design is the gripping strength. The gripping strength
of a finger is based on the angle between the palm and the body of the finger and on the
angle between the body of the finger and the fingertip of the finger. The gripping strength
is in opposite relation with these angles; that is, the smaller each one of these angles is the
stronger the gripping is. While our generator currently does not take in account strength
considerations, it could be used as a criterion in ranking valid snapping fixtures of a given
workpiece.
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A
3D Printing Considerations

We used various materials for generating snapping fixtures, such as, ABS, PLA, PETG,
Nylon 12, and Sterling silver.1 All generated fixtures properly snapped and firmly held the
workpieces. However, low quality prints (made of ABS, PLA, or PETG) occasionally broke
after repeated or incautious use. We noticed that increasing the infill density and orienting
the prints such that the joint axes and the printing plate are not parallel increase the fixture
durability. Also, we compensated for the limited precision of printers by scaling up the
fixture to create a gap of up to 0.2mm between the fixture and the workpiece.

Finger thickness

The finger-thickness parameter affects the flexibility of the finger. Our experiments show
that narrow fingers are more flexible and wide fingers are more solid. If the finger is too
flexible, the grip of the workpiece becomes weaker and the finger might slip off the workpiece.
If the finger is to wide, the finger might not be flexible enough to stretch, bend, and snap
onto the workpiece. We recommend matching the thickness of the fingers to the flexibility
of the material, for example, more flexible materials (Nylon 12) should be used with wider
fingers.

Printing orientation

3D objects can be printed in different orientations on the printing platform. Our 3D printer
(as well as many others), fills a 2D layer of the object and then continues to the next layer.
The slicer program itself chooses how to fill each 2D layer, but can be configured. The

13D printed wax and lost-wax were used to generate fixtures made of Sterling silver.
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connection between the layers is weaker than the forces connecting each string of filament.
Therefore, we recommend 3D printing the fixture such that the fingers span as few layers as
possible; this way stronger fingers are printed, less likely to break.
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B
Assortment of Interesting Workpieces and

Fixtures

Figure B.1 depicts (three views of) a polyhedron P and a fixture with three fingers that
snaps onto P . It demonstrates case I in Section 4. Here, we fix the base facet of the palm.
It holds that for every possible fixture of P with the fixed palm in the figures |R| “ 3. To
construct the polyhedron P in the figure we start with a regular tetrahedron (such as the
one depicted in Figure 4.1a), fix the bottom facet, subdivide each one of the remaining three
facets into three identical triangles, and slightly translate the newly introduced vertex in the
direction of the outer normal to the original facet, ensuring that the dihedral angle between
the bottom facet and its neighbor remains acute.

(a) (b) (c)

Figure B.1: Three different views of a polyhedron with 10 facets and a three-finger snapping
fixture.
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(a) (b) (c)

Figure B.2: (a),(b) Two polyhedra and their snapping fixtures, respectively. (c) A polyhe-
dron that does not have a valid snapping fixture.

Figures B.2a and B.2b depict two polyhedra, P1 and P2, and their snapping fixtures,
respectively. They demonstrate case I in Section 4. The number of facets of each polyhedron
is larger than six; however, it holds that for every possible fixture of Pi, |R| “ 5, where
R Ă HpFBT q and R is a covering set of the closed hemisphere S2zHpFP q.

There exists a polyhedron P that does not have a valid fixture and the cardinality of the
minimal covering set of HpFP q is 6, where FP is the set of all facets of the polyhedron P ;
see the Figure B.2c.

(a) (b) (c)

Figure B.3: (a),(b) Two different views of an octahedron and a three-finger snapping fixture.
(c) An octagonal-pyramid and a two-finger snapping fixture.

Figures B.3a and B.3b depict an octahedron and a snapping fixture with three fingers,
which is the minimum in this case. Figure B.3c depict an octagonal pyramid and a snapping
fixture with two fingers.
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 תקציר 
 

. קיבוע היא משימה  םשל פאונים על ידי תופסנים ייעודיי (fixturingהתיזה עוסקת בבעיית קיבוע )

משתמשים בשיטות קיבוע כדי לחבר חיישנים לרובוטים, לבצע   .אופיינית בתחום הרובוטיקה והייצור

פעולות ייצור כמו כרסום או הרכבה ועוד. בעבודה זו אנחנו מתמקדים באפיון סוג חדש של תופסנים  

, בהוכחת תכונות על אותם  (snapping fixtures)להלן  ננעליםתופסנים להם אנחנו קוראים בשם  

שניתן להזין   תופסניםה ים שלילמודלים דיגיטומימוש אלגוריתם אשר מייצר  פיתוחתופסנים ו

ייחודים   יתרונות snapping fixtures-ל .המדפיסות בחומרים פלסטיים ישירות למדפסות תלת ממד

  בנוילהיות  לכל תופסןעל פני שיטות קיבוע קלאסיות, כמו הסתמכות על תכונת הגמישות המאפשרת  

 ת לאפשר הכנסת והוצאת הפאון אל הקיבוע.מחלק בודד ובכל זא

 המחקר מתעסק בשאלה הבאה:

 snapping , האם קייםעל ידי קבוע בגודל חסום (genus) קודקודים וגנוס nעם  Pבהינתן פאון 

fixture קשיח -חציG כך שניתן לדחוף את  אצבעות -ו כף יד-העשוי מP   לכיווןG  ותוך כיפוף קטן של

  בלתי ניתנים להפרדה כחלקים קשיחים G- ו Pלהגיע לתצורה חדשה שבה   G אצבעות התופסן

 .)מקובעים(

בתופסן   אצבעותקריטריון אופטימיזציה ראשון של הבאה למינימום של כמות  ה גדירהמחקר מ

בעל  snapping fixtureאנו מוכיחים כי תמיד ניתן לייצר נוספים.  הומאפשר קריטריוני אופטימיזצי

אך מביאים דוגמאות נגדיות של פאונים  , לקבע בשיטה זאתעבור פאון שניתן צבעות א  4לכל היותר 

 כלל. snapping fixturesעבורם לא ניתן לייצר 

עבור פאון   snapping fixtureאשר מייצר   𝑂(𝑛3)אנו מציגים אלגוריתם בסיבוכיות זמן ריצה של  

ומך בפונקציית אופטימיזציה  ת, מביא למינימום את כמות האצבעות  ,קודקודים  nבעל  Pקלט 

אלגוריתם   . בנוסף מימשנוPעבור  snapping fixtureחזיר תשובה שלילית אם לא קיים נוספת, ומ

ומנגישים אותו לציבור   אשר מייצר מודל תלת מימדי של התופסן 𝑂(𝑛4)פשוט יותר שרץ בסיבוכיות 

 ייעודי שהקמנו.  הרחב בעזרת אתר אינטרנט

  תופסנים במדפסות  לבסוף אנו מציגים פרטי מימוש, שימושים, תוצאות ניסויים והנחיות להדפסת

 תלת מימד.

 בכנסוהוצג מאמר המסכם את תוצאות התזה התקבל לפרסום 

14th International Workshop on the Algorithmic Foundations of Robotics (WAFR), 2020. 
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