
Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces∗

Eric Berberich† Efi Fogel‡ Dan Halperin‡ Ron Wein‡

Abstract

We introduce a general framework for processing a
set of curves defined on a continuous two-dimensional
parametric surface, while sweeping the parameter
space. A major goal of our work is to maximize
code reuse in implementing algorithms that employ
the prevalent sweep-line paradigm, and consequently
to minimize the effort needed to extend the implemen-
tation of the paradigm to various surfaces and fami-
lies of curves embedded on them. We show how the
sweep-line paradigm is used to construct an arrange-
ment of curves embedded on an orientable parametric
surface, and explain how the arrangement package of
Cgal, which previously handled only arrangements of
bounded planar curves, is extended to handle curves
embedded on a general surface. To the best of our
knowledge, this is the first software implementation
of generic algorithms that can handle arrangements
on general parametric surfaces.

1 Introduction

We are given a surface S in IR3 and a set C of curves
that all lie on this surface. The arrangement of the
curves of C, denoted A(C) is the subdivision these
curves induce on the surface S into cells of dimension
0 (vertices), 1 (edges) and 2 (faces).

Cgal, the Computational Geometry Algorithms
Library,1 is the product of a collaborative effort of
several sites in Europe and Israel, aiming to provide
a generic and robust, yet efficient, implementation
of widely used geometric data structures and algo-
rithms. The arrangement package [?] included in the
latest public release of Cgal (Version 3.2) is capable
of constructing and maintaining planar arrangements
of bounded curves. That is, the surface S is the xy-
plane, and all curves in C are bounded. When working
with unbounded curves, users are required to properly
clip them as a preprocessing step, so that no essen-
tial information about the arrangements (e.g., a finite

∗This work has been supported in part by the IST Pro-
gramme of the EU as Shared-cost RTD (FET Open) Project
under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes), by the Israel Science Foundation (grant no. 236/06),
and by the Hermann Minkowski–Minerva Center for Geometry
at Tel Aviv University.

†Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, eric@mpi-inf.mpg.de .

‡School of Computer Science, Tel-Aviv University, Israel,
{efif,danha,wein}@post.tau.ac.il .

1http://www.cgal.org/ .

intersection point) is lost. However, this solution is
insufficient for some applications. For example, it is
possible to represent the minimization diagram of a
set of surfaces in IR3 as a planar arrangement, where
each face is labeled with the surface that induces the
lower envelope over that face [?]. As an arrangement
of bounded curves has only a single unbounded face, it
is impossible to represent the minimization diagram of
a set of unbounded surfaces, where several unbounded
faces might be required.

We have recently enhanced the arrangement pack-
age to support planar arrangements of unbounded
curves. This extension will be included in the forth-
coming release of Cgal (Version 3.3). The same
principles we used for handling unbounded curves,
or more precisely curve-ends that lie at infinity, can
be nicely generalized for the case of a set of curves
embedded on a parametric surface. An orientable
parametric surface S is a surface defined by para-
metric equations involving two parameters u and v,
namely: fS(u, v) = (x(u, v), y(u, v), z(u, v)). Thus,
fS : IP −→ IR3 and S = fS(IP), where IP is a continu-
ous and simply connected two-dimensional parameter
space. The general case is currently implemented as
a prototypical package in Cgal.

Related work: Effective algorithms for manip-
ulating arrangements of curves have been a topic of
considerable interest in recent years, with an empha-
sis on exactness and efficiency of implementation [?].
Mehlhorn and Seel [?] propose a general framework
for extending the sweep-line algorithm to handle un-
bounded curves. Note that they do not address the
case of surfaces other than the plane. Andrade and
Stolfi [?] develop exact algorithms for manipulating
circular arcs on a sphere. Cazals and Loriot [?]
compute exact arrangements of circles on a sphere.
Halperin and Shelton [?] incrementally construct ar-
rangements of circles on a sphere, using floating-point
arithmetic and assuming general position. The latter
two works are motivated by molecular modeling.

2 Sweeping on Surfaces

Recall that the main idea behind the Bentley-
Ottmann sweep-line algorithm [?] is to sweep a verti-
cal line starting from x = −∞ onward and maintain
the set of x-monotone curves that intersect it. These
curves are ordered according to the y-coordinate of
their intersection with the vertical line and stored in a
balanced search tree named the status structure. The

1



contents of the status line change only at a finite num-
ber of event points, where an event point may corre-
spond to a curve endpoint or to an intersection of two
curves. The event points are sorted in ascending xy-
lexicographic order and stored in an event queue. This
event queue is initialized with all curve endpoints, and
is updated dynamically during the sweep process as
new intersection points are discovered.

2.1 Augmenting the Parameter Space

Our goal is to study the subdivision induced on a
parametric surface by sweeping over its parameter
space. However, to conveniently do so, we must con-
sider a subspace of IP. Sweeping over the entire pa-
rameter space raises, in general, several difficulties ei-
ther when the parameter space is unbounded, or when
there is no inverse mapping from the surface to the
parameter space. We eliminate these difficulties by
cutting out portions of the parameter space and sym-
bolically keeping track of these modifications.

We next formally define three aspects that require
special attention when generalizing the sweep proce-
dure. In all cases, S is a parametric surface defined
over IP in the uv-plane. We give the definitions using
the u-parameter; the definitions with respect to the
v-parameter are similar.

Definition 1 (Infinite boundary:) Let û be one of
the values defining the u-range of IP (û may be finite
or û = ±∞). We say that the surface has an infinite
boundary in u if: ∀v limu→û fS(u, v) = ±∞ .

Definition 2 (Curve of discontinuity:) If u is de-
fined over a bounded parameter range [umin, umax)
such that: ∀v limu→umax

fS(u, v) = fS(umin, v) , then
the curve defined by fS(umin, v) forms a curve of dis-
continuity in u on the surface S.

Definition 3 (Singularity point:) A point p0 =
fS(u0, v0) ∈ S is a singularity point in u if u0 is
either umin or umax, and for each δ > 0 we have:
∀v ∃u ‖fS(u, v) − p0‖ < δ .

The xy-plane (see Fig. ??(a)), for example, has
an infinite boundary in the minimal and the max-
imal values of u and in the minimal and maximal
values of v. A canonical 3D cylinder of radius r

(see Fig. ??(b)), parameterized for IP = [−π, π) × IR
such that fS(u, v) = (r cosu, r sin u, v), contains a
line of discontinuity that is parallel to the z-axis
and passes through (−r, 0, 0). The unit sphere (see
Fig. ??(c)), parameterized over IP = [−π, π)× [−π

2
, π

2
]

using fS(u, v) = (cos u sin v, sin u sin v, cos v), con-
tains a semicircle of discontinuity that connects the
two poles (0, 0,−1) and (0, 0, 1) through (−1, 0, 0). In
addition, the two poles are singularity points in v.

Given a surface containing curves of discontinuity
and singularity points we modify the parameter space

as follows: In case of discontinuity in u, we consider
the open u-range (umin + ε, umax − ε) for an infinites-
imally small ε > 0. In case of a singularity point in
umin we augment the u-parameter range to be lower
bounded by umin + ε (or upper bounded by umax − ε

in case of a singularity point in umax), for an infinites-
imally small ε > 0. We handle singularities in v in a
similar fashion. As a result, we obtain an augmented
parameter space ĨP, for which it is possible to define
the inverse mapping f−1

S : IR3 −→ ĨP.

It is now possible to apply an augmented sweep-
line algorithm to our parametric surface, where we
actually perform a plane sweep over ĨP. Let S̃ denote
the image of the augmented parameter space, namely
fS(ĨP). Given a set C of curves defined on S, we start
by computing C′ = C ∩ S̃ for each C ∈ C, and by
subdividing C′ into u-monotone subcurves. We refer
to the resulting subcurves as sweepable curves. Note
that in particular, the interior of a sweepable curve
cannot intersect a curve of discontinuity or contain
a singularity point. However, the curve-ends may be
incident to the modified surface boundaries.

We start the sweep with the curve fS(u0, v), for
some initial fixed u-value u0 (e.g., u0 = umin + ε in
the example of the cylinder). We now sweep the curve
over the surface S̃. For each u-value u′, a subset
of the sweepable curves induced by C intersect the
sweep-curve fS(u′, v), at the points p1, . . . , pk ∈ S.
The status structure stores these curves ordered in
ascending v of f−1

S (p1), . . . , f
−1

S (pk). Similarly, when
we detect an intersection point p, we insert it into the
event queue, considering the lexicographic uv-order of
f−1

S (p). The event queue must contain events associ-
ated with curve-ends incident to the surface bound-
aries for its proper maintenance.

2.2 Sweeping Unbounded Curves

The main difficulty in adapting the Bentley-Ottmann
sweep algorithm [?] to the unbounded case, lies in
handling its initialization step, and symmetrically in
completing the sweep after all the finite event points
were encountered. Let us revise the terminology used
so far. Instead of considering the endpoints of a curve,
we refer to the two curve-ends. A curve-end may be
unbounded or bounded, and only in the latter case we
have a valid endpoint. In order to perform the sweep-
line procedure, we require the two following compar-
isons involving unbounded curve-ends (in addition to
the operations listed in [?] for bounded curves): (i) de-
termine the relative vertical position of two curve-ends
defined at x = ±∞,2 and (ii) determine the relative
horizontal positions of two curve-ends with finite x-
coordinates that lie at y = ±∞.

2For two lines this amounts to comparing their slopes, and
in case of equality we can compare their vertical position at
x = 0. Other curves may require more careful analysis.

2



h2

h1

`2

`1

c
r

2

c
r

1
c
`

2

c
`

1

w
c2

c1

(a) (b) (c)

Figure 1: Comparing curve-ends with boundary conditions: (a) Comparing at infinity. (b) Comparing near the
line of discontinuity. (c) Comparing near a singularity point.

Having defined the geometric primitives, we are
ready to modify the sweep-line algorithm to handle
infinite curves. First, we store extra information with
the events: an event may be associated with a (finite)
point, or it may be associated with an unbounded
curve-end at x = ±∞ or at y = ±∞. We begin
the sweep process by constructing events that repre-
sent all unbounded and bounded curve-ends. To sort
these events we use a simple procedure based on the
two primitive comparison operations listed above: if
one event lies at x = −∞ and the other is a (finite)
point, then the first event is obviously smaller; if both
events lie at x = −∞ we compare their associated
curve-ends there, etc. For instance, in Fig. ??(a) we
have `1 < `2 < h1 when the sweep is initialized. We
omit further details of the process in this abstract, and
remark that whenever infinity in x or in y is involved,
barely any geometric operations are required.

2.3 Sweeping on General Surfaces

We can now generalize the sweep-line procedure for
sweeping over curves embedded on a surface in IR3.
So far we swept over the parameter space IP = IR2,
and treated curve-ends that coincide with the infi-
nite boundaries symbolically. We can use the same
set of geometric primitives for sweeping over a set of
curves on a surface. However, we have to re-interpret
the geometric predicates as if they are given on the
uv-plane. For instance, instead of comparing two
points p1 and p2 by their xy-lexicographic order, we
compare f−1

S (p1) and f−1

S (p2) according to their uv-

lexicographic order in ĨP.
A sweepable curve-end may have boundary condi-

tions. In the previous subsection we have already en-
countered curves with unbounded ends, and we say
that the boundary condition of such an end in x

(or in y) is of type minus infinity or plus infinity.
In the general case, we may also encounter curve-
ends whose boundary condition is leaving disconti-

nuity (or approaching discontinuity), or leaving sin-

gularity (or approaching singularity). For instance,
in the example depicted in Fig. ??(b), all sweepable

curve-ends may start right after the line of disconti-
nuity or may end right before this line, as we have
removed the line of discontinuity from S̃. The two
curves C1 and C2 are split at the line of disconti-
nuity, forming the sweepable curves c`

1, c
r
1 and c`

2, c
r
2,

respectively. Yet when we compare the curve-ends we
consider an ε-neighborhood around the line of discon-
tinuity (shaded). Thus, c`

1 is above c`
2 after the line of

discontinuity, when the sweep starts. Fig. ??(c) shows
how we symbolically handle curve-ends that are inci-
dent to a singularity point (the north pole of a sphere
in this case): c1 lies to the left of c2, as we compare
the ends of sweepable curves in an ε-neighborhood
below the north pole (shaded). Note that this means
that we have a different event for every curve-end that
coincides with a pole.

3 Constructing Arrangements on Surfaces

Constructing an arrangement of curves on a paramet-
ric surface boils down to properly handling the sub-
curves the sweep-line procedure detects and inserting
them into the doubly-connected edge-list (Dcel for
short) that represents the arrangement; see, e.g., [?,
Chap. 2]. As the only modification of the sweep-line
algorithm involves curve-ends with boundary condi-
tions, we have to augment the curve-insertion proce-
dures to properly handle such curve-ends.

Already when moving to unbounded curves we
should consider a representation of the arrange-
ment that caters for more than one unbounded face.
Fig. ??(a) demonstrates one possibility, where we use
an implicit bounding rectangle embedded in the Dcel

structure using fictitious edges that are not associated
with any concrete planar curve. It is also possible to
choose a different representation of a planar arrange-
ment of bounded curves that uses a single vertex at
infinity vinf , such that all unbounded curve-ends are
incident to this vertex; see illustration in Fig. ??(b).

Aiming for modularity, we wish to decou-
ple the implementation of the basic arrangement
operations (e.g., inserting a new edge associ-
ated with a subcurve, removing an edge, etc.)

3



vbl v4
vbr

v6

v7

v8

f8
f1

f2

f3

f4

f5

f6

vtrvtl

v5

v2

v3

v1

f7

f̃

f7

f8

f6

f5
f4

f3

f2

f1

vinf

(a) (b)

Figure 2: Possible Dcel representations of an arrangement of four lines in the plane.

from the actual representation of the arrange-
ment. We do this by introducing the class-
template Arrangement on surface 2<GeomTraits,

TopTraits>, which should be instantiated by two
types. The first is the geometry-traits class, which
defines the family of curves that induce the arrange-
ment, and encapsulates all primitive geometric pred-
icates and constructions (e.g, comparing two points
by their uv-lexicographic order, computing intersec-
tion points, etc.) on curves of this family. The second
type is a topology-traits class, which encapsulates the
topology of the surface on which the arrangement is
embedded, and determines the underlying Dcel rep-
resentation of the arrangement. It does so by supply-
ing predicates and operations related to curve-ends
with boundary conditions. For example, it is respon-
sible for initializing a Dcel structure that represents
an empty arrangement, and for locating the Dcel fea-
ture that represents a given curve-end (this feature
may be a fictitious edge as in Fig. ??(a), a vertex at
infinity as in Fig. ??(b), etc.). Using the topology-
traits primitives, we can use the sweep-line procedure
to construct the arrangement of a set of curves on a
surface: When we detect a subcurve with boundary
conditions, we query the topology-traits class to ob-
tain the Dcel feature containing the curve-end, then
insert the subcurve accordingly. For example, if we
sweep over the cylinder depicted in Fig. ??(b), a ver-
tex w is created on the line of discontinuity when we
insert c`

1 into the arrangement. The topology-traits
class keeps track of this vertex, so it will associate w

as the minimal end of c`
2 and as the maximal end of cr

1

and cr
2. Similarly, in the example shown in Fig. ??(c),

the north pole will eventually be represented as a sin-
gle Dcel vertex, with c1 and c2 incident to it.

We have already implemented a topology-traits
class for handling unbounded curves on the plane,
along with geometry-traits classes for handling lines
and rays, and with Exacus3 based geometry-traits
classes for algebraic curves. We have also designed
and implemented two other topology-traits classes

3http://www.mpi-sb.mpg.de/projects/EXACUS/ .

along with corresponding geometry-traits classes, that
define curves on surfaces: the first maintains arrange-
ments of arcs of great circles embedded on a sphere,
and the other constructs arrangements of intersec-
tion curves between quadric surfaces embedded on a
quadric surface. For lack of space, we omit the imple-
mentation details.

References

[1] M. V. A. Andrade and J. Stolfi. Exact algorithms for
circles on the sphere. Internat. J. Comp. Geom. Appl.,
11(3):267–290, 2001.

[2] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.

on Computers, 28(9):643–647, 1979.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algo-

rithms and Applications. Springer, Berlin, Germany,
2nd edition, 2000.

[4] F. Cazals and S. Loriot. Computing the exact arrange-
ment of circles on a sphere, with applications in struc-
tural biology. Technical Report 6049, INRIA Sophia-
Antipolis, 2006.

[5] E. Fogel, D. Halperin, L. Kettner, M. Teillaud,
R. Wein, and N. Wolpert. Arrangements. In J.-D.
Boissonnat and M. Teillaud, editors, Effective Com-

putational Geometry for Curves and Surfaces, chap. 1,
pages 1–66. Spinger, 2006.

[6] D. Halperin and C. R. Shelton. A perturbation scheme
for spherical arrangements with application to molec-
ular modeling. Comput. Geom. Theory Appl., 10:273–
287, 1998.

[7] K. Mehlhorn and M. Seel. Infimaximal frames: A tech-
nique for making lines look like segments. Internat. J.

Comp. Geom. Appl., 13(3):241–255, 2003.

[8] M. Meyerovitch. Robust, generic and efficient con-
struction of envelopes of surfaces in three-dimensional
space. In Proc. 14th Europ. Sympos. Alg., pages 792–
803, 2006.

[9] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
Advanced programming techniques applied to Cgal’s
arrangement package. Comp. Geom. Theory Appl. To
appear.

4


