
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler

Faculty of Exact Sciences

The Blavatnik School of Computer Science

Lines Tangent to Four Polytopes in R3

Thesis submitted in partial fulfillment of the requirements for the M.Sc.

degree in the School of Computer Science, Tel-Aviv University

by

Asaf Porat

This work has been carried out at Tel-Aviv University
under the supervision of Prof. Dan Halperin

May 2012

2

i

Acknowledgments

Many people had great influence on this thesis and its author during the research period. I
deeply thank my advisors, Dr. Efi Fogel and Prof. Dan Halperin, for their help in guidance,
support, and encouragement, and for introducing me to the field of applied computational
geometry. Special thanks are given to Efi for providing the basis for the player software,
which enabled the creation of the 3D figures of this thesis.

I would also like to thank all other members of the applied computational geometry lab at the
computer science school of Tel-Aviv University who provided support and useful suggestions.
Special thanks are given to Michael Hemmer for introducing and helping with the field of
computational algebra.

I also thank Linqiao Zhang who provided us with Redburn’s code that was used for the
experiments. Zhang used it as part of an implementation of an algorithm that constructs
the visibility skeleton.

Finally, I would like to express my love and gratitude to my beloved family; to my dear
spouse Ganit for her support and patience over the last two years.

Work on the thesis has been supported in part by the 7th Framework Programme for Research
of the European Commission, under FET-Open grant number 255827 (CGL—Computational
Geometry Learning), by the German-Israeli Foundation (grant no. 969/07), and by the
Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

ii

iii

Abstract

We present a method for computing all lines tangent to four geometric objects taken from a
set of n geometric objects in three-dimensional Euclidean space. The problem of finding all
lines tangent to four geometric objects arises in many fields of computation such as computer
graphics (visibility computations), computational geometry (line transversal), robotics and
automation (assembly planning), and computer vision.

The first type of geometric objects that we handle are line segments. The number of lines
tangent to four line segments is either 0, 1, 2, 3, 4, or infinite. We present an exact implemen-
tation of an efficient output-sensitive algorithm, such that given a set S = {S1, S2, ..., Sn}
of n line segments, it finds all the lines tangent to at least four line segments of S. We
do not assume general position. Namely, the algorithm and its implementation are robust
and the code properly handles all degenerate cases, e. g., a line segment may degenerate to
a point, several segments may intersect, be co-planar, parallel, concurrent, lie on the same
supporting line, or even overlap. Additionally, we enhance the output sensitive algorithm
and its implementation to solve the problem where the given objects are convex polytopes.
Given a set P = {P1, P2, ..., Pk} of k strictly pairwise disjoint convex polytopes, with a total
number of n edges, the algorithm finds all the lines tangent to at least four elements of P.

Theoretical bounds for the algorithms are O((n3+I) log n) running time, and O(n logn+
J) working storage, where n is the input size, I is the output size, and J is the maximum
number of intersection in a single arrangement; J is bounded by O(n2). I is bounded by
O(n4) when the input is of n line segments, and by O(n2k2) when the input is of k polytopes
with n edges in total.

iv

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Definitions . 9

2.2 Representation . 10

2.3 Cgal and the 2D Arrangements Package . 11

3 From R3 to Two-Dimensional Surfaces 13

3.1 Directions Are Linearly Independent . 13

3.2 Directions Are Not Linearly Independent . 15

3.2.1 Directions of L1 and L2 are Linearly Independent 15

3.2.2 Directions of L1 and L2 Are Dependent 17

3.2.3 S1 and S2 Intersect . 17

3.2.4 S1 and S2 Are Collinear . 17

4 Algorithmic and Implementation Details 19

4.1 Algorithm Overview . 19

4.1.1 The Processing of Arrangements in the Plane 21

4.1.2 The Processing of Arrangements on the Sphere 22

4.1.3 The Processing of Collinear Line Segments 23

4.1.4 Complexity Analysis . 24

4.2 Implementation with Cgal . 24

4.3 Application Interface . 25

4.3.1 Output Elements . 26

5 Lines Tangent to Four Strictly Disjoint Polytopes 29

5.1 Algorithm Overview . 29

5.2 Constructing the Arrangement . 30

5.3 Removing Cells From the Arrangement . 33

5.3.1 Degeneracies . 33

v

vi CONTENTS

5.4 Complexity Analysis . 34

5.5 Implementation with Cgal. 34

6 Experiments 37

6.1 Grid . 37

6.1.1 Transformed Grid . 38

6.2 Random Input . 39

7 Conclusions and Future Work 41

List of Figures

1.1 Hyperbolic paraboloid and hyperboloid of one sheet. 2

1.2 Infinite lines tangent to four lines . 3

3.1 The mapping of a hyperboloid of one sheet 13

3.2 Mappings of three line segments in various configurations 15

3.3 Mappings of three coplanar line segments . 16

6.1 Two grids parallel to the z = 0 plane. 38

vii

viii LIST OF FIGURES

1
Introduction

In this thesis we study lines in three-dimensional Eu-
clidean space. Our interest focuses at lines tangent to
four geometric objects. These objects can be line seg-
ments, or convex bounded polyhedra (referred to as con-
vex polytopes) including convex polygons1. When the
input consists of line segments, we refer to the prob-
lem as the lines-tangent-to-segments problem, or LTS for
short. When the input consists of polytopes, we refer to
the problem as the lines-tangent-to-polytopes problem, or
LTP for short. The figure to the right depicts four lines
(drawn in green) tangent to four line segments (drawn in
blue with a halftone pattern). LTS and LTP are funda-
mental problems that arise in a variety of domains and
in many fields of computation such as computer graphics
and computer vision (visibility computations), computa-
tional geometry (line transversal), and robotics and au-
tomation (assembly planning). Computing visibility information, for example, is crucial to
many problems in computer graphics, vision, and robotics, such as computing umbra and
penumbra cast by a light source [DDE+09].

The lines tangent to a single line in R3 have three degrees of freedom; those tangent
to two lines have two degrees of freedom; those tangent to three lines have one degree of
freedom. The number of lines tangent to four lines in R3 is 0, 1, 2, or infinite. The problem
of finding the line transversals to line segments (the set of lines tangent to all given line
segments) was studied by H. Brönnimann, et al. [BEL+05]. They showed that the number

1By definition in three or higher dimensions any point of intersection between two lines is also a tangency
point.

1

2 Chapter 1. Introduction

(a) A hyperbolic paraboloid. (b) A hyperboloid of one sheet.

Figure 1.1: Three skew lines in R3 form one of these ruled surfaces. They are all on the same ruling. All
the lines on the other ruling are tangent to the three lines.

of lines tangent to four arbitrary line segments in R3 is 0, 1, 2, 3, 4, or infinite. The latter
may happen only if the segments lie in one of the following configurations:2 (i) The four line
segments are coplanar. (ii) Three line segments lie in the same plane P , which is pierced
by the fourth segment. (iii) Two line segments lie in the same plane P , while the other two
pierce P at the same point; see Figure 1.2b. (iv) At least three line segments intersect at
the same point; see Figure 1.2a. (v) At least two line segments overlap. (vi) All four line
segments are contained in the same ruling of a hyperbolic paraboloid or a hyperboloid of one
sheet ; see Figure 1.1a and Figure 1.1b, respectively. In addition, Brönnimann et al. showed
that the lines lie in at most four maximal connected components, see definition in Section 2.1.

A straightforward method to find all the lines that intersect four lines, given a set of n
lines, examines each quadruplet of lines. The examination is simplified using the Plücker
coordinate representation. The Plücker coordinates of a line L, defined by a sample point p on
the line and a vector ~u that expresses the direction of the line, are the six-tuple < ~u, ~u×p >.
The side product of two lines La and Lb with Plücker coordinates a = [a1, . . . , a6] and
b = [b1, . . . , b6], is defined as [TH99]: a⊙ b = (a1b4 + a2b5 + a3b6 + a4b1 + a5b2 + a6b3). The
side product is zero whenever La and Lb intersect or are parallel and non zero otherwise.
The method of finding intersecting lines using the Plücker coordinates representation was
used by Hohmeyer and Teller [TH99] and also described by Redburn [Red03]. This method
was later used by Everett et al. [ELLZ09] as a building block for the problem of finding line
transversals. The use of Plücker coordinates simplifies the algebra but does not obviate the
need to process each quadruplet of lines. The running time of this method is O(n4).

2Some conditions are omitted, e. g., no pair of the line segments are collinear.

3

(a) Three concurrent line segments. (b) Two coplanar line segments lying in a plane P , and two
additional line segments intersecting P at the same point.

Figure 1.2: Configurations of line segments in which infinite number of lines are tangent to four line
segments.

The combinatorial complexity of all the lines that inter-
sect four line segments of a set of n line segments is Θ(n4)
(counting maximal connected components). The lower bound
can be established by placing two grids of n/2 line segments
each in two parallel planes and passing a line through ev-
ery two intersection points, one from each grid. However,
in many cases the number of output lines is considerably
smaller. The size of the output tends to be even smaller,
when the input consists of line segments (as opposed to lines), which is typically the case
in practical problems, and it is expected to decrease with the decrease of the lengths of the
input line segments; see Chapter 6.

Related Work

Much research has been devoted to finding all lines tangent to four geometric objects in R3.
For a scene of n triangles in R3 the combinatorial complexity is O(n4) in the worst case, even
when the triangles form a terrain [CS89]. For n disjoint convex polytopes of constant size
each, De Berg et al. [dBEG98] showed a lower bound of Ω(n3). The upper bound remains
O(n4). For k convex polytopes of total complexity of n with k ≪ n, where the convex
polytopes may intersect, Brönnimann et al. [BDD+07] proved the tight bound of Θ(n2k2).
Glisse [GL10] showed a Θ(n4) bound for the number of lines tangent to four balls of a set of
n unit balls.

Implementations

Using Plücker coordinate representation, Hohmeyer and Teller [TH99] implemented an O(n4)
algorithm, which finds all the lines tangent to four of n lines. J. Redburn implemented an

4 Chapter 1. Introduction

O(n4) algorithm, which finds all the lines tangent to four of n triangles in R3 [Red03]. Brön-
nimann et al. [BDD+07] suggested an O(n2k2 log n) time and O(nk2) space algorithm, for the
LTP problem, where k is the number of polytopes. This algorithm was later implemented by
Zhang et al. [ZEL+08] as part of the computation of the 3D visibility skeleton. They exper-
imentally measured the running time of their algorithm and showed that it is proportional
to n3/2k log k, while the algorithm’s worst-case running time complexity is O(n2k2 log k).

Background and Motivation

Our interest in finding solutions to the LTP problem is motivated among the other by
assembly-planning problems.

An assembly is a collection of pairwise interior disjoint polyhedra in some relative position
in R3. Assembly partitioning is the application of a sequence of transforms to partition an
assembly into its basic polyhedra. Each transform partitions a subset of the assembly, say
A, referred to as a sub-assembly, into ℓ subsets of A, {A1, A2, ..., Aℓ}, such that

⋃ℓ
i=1Ai = A

and for i 6= j, Ai∩Aj = ∅; ℓ is referred to as the number of hands. The assembly-partitioning
problem is to find a sequence of partitioning transforms along with the corresponding sub-
assemblies, or announce that such a sequence does not exist. In general, the problem reduces
to finding a single transform. It turns out that if we confine ourselves to R3, treat each
polyhedron as a rigid body, use only two hands, and consider each transform as a sequence
of translations only, the problem can be solved, but the solution is based on the geometric
operation at hand, that is, finding all lines tangent to four line segments of a given set.
Finding the solution for the reduced assembly-partitioning problem, is the topic of ongoing
research. In the following three paragraphs we highlight the motivation, showing how a
solution to the problem at hand can help in finding a solution to the reduced assembly-
partitioning prblem.

Finding a single transform in our context is formally stated as follows: Given an assembly
A = {P1, . . . , Pm} in R3 find a proper subset A′ (A and a sequence τ1, . . . , τk of translations,
where τk is a translation to infinity, such that A′ can be moved to infinity as a rigid body
applying τk ◦ · · · ◦ τ1 without intersecting the interior of a polyhedron from A \ A′.

When the transform consists of a single translation (k = 1), it can be represented as a
direction in R3. Such approach was described by Halperin et al. [HLW00] and by Wilson
and Latombe [WL94]. The motion-space arrangement (see definition in Section 2.1) in this
case is a two-dimensional arrangement embedded on the unit sphere. Consider a cell C in
this arrangement. For all 1 ≤ i < j ≤ m, if Pi intersects Pj when Pi is translated along

some direction ~d ∈ C, then Pi intersects Pj when Pi is translated along any direction ~d ∈ C.
Every cell of the arrangement is associated with the directional blocking graph (DBG). The
vertex set of this graph is A, and there is an edge from Pi to Pj if Pi intersects Pj when
translated along any of the corresponding directions. If the DBG for any region has at least
two strongly connected components, the corresponding subsets of objects can be moved apart
from the rest using a single translation to infinity. Note that considering all subsets of parts
in isolation would lead to an exponential runtime; hence, resorting to the DBG is essential
to achieve a polynomial time algorithm.

5

Due to the low number of degrees of freedom (DOF) for the case k = 1 the entire motion-
space arrangement can be computed [FH08]. However, computing the complete motion-space
arrangement in the general case where the number of DOF is 3k − 1 is infeasible for any
k larger than 1. Observe that if there exists any sequence of translations that move a sub-
assembly to infinity, then there is also a sequence of translations such that at least one
moving polyhedron and one stationary polyhedron touch each other along the way during
each translation of the sequence. In other words, it is sufficient to consider only vertices of
the arrangement. Instead of using a full dimensional configuration-space, the idea is to solve
the problem in a three-dimensional configuration space that contains the Minkowski sums
M = {Pi ⊕ Pj | 1 ≤ i < j ≤ m}. A sequence of partitioning translations in this space is a
polyline unbounded on one end. Each line segment (or ray) that composes the polyline is
contained in a line that is tangent to four edges of four different polyhedra fromM.

Finding all lines tangent to four polytopes can also be used to solve visibility problems. In
visibility problems the scene is represented as a union of not necessarily disjoint polygonal
or polyhedral objects. Some objects can be seen from a moving view-point, others are
occluded. This moving view-point lies on a line segment S in R3. Just like as in the assembly-
partitioning problem, the lines of sight emanate from S are tangent to three polytopes in
the scene. That is, the critical points on S are all the points of intersection between lines
tangent to S and three other line segments in the scene, each from a different polytope.
Computing visibility information is crucial to many problems in computer graphics, vision,
and robotics, such as computing umbra and penumbra cast by a light source [DDE+09].

Software

Generic Programming

The software described in this thesis is written in the C++ programming language and adheres
to the generic-programming paradigm. Generic programming is a discipline that consists
of the gradual lifting of concrete algorithms abstracting over details, while retaining the
algorithm semantics and efficiency [MS88]. This capability allows reuse of the software
components in a variety of situations. In C++ generic programming is characterized by
extensive use of template functions and classes.

A generic implementation can be described by a concept and its models. A concept is
a set of requirements that determine the properties of a type. A model of a concept is an
actual type that satisfies the requirements of the concept. A refinement of a concept is an
extension of the requirements of another concept. A traits is a class that provides a way
to associate information, typically a type or several types and possibly operations on these
types, with a compile-time entity. It is often a model of some specific concepts called traits
concept. For example, let’s look at the class template std::iterator_traits<T>.
template <class Iterator> struct iterator_traits{

typedef typename Iterator::difference_type difference_type;

typedef typename Iterator::value_type value_type;

typedef typename Iterator::pointer pointer;

6 Chapter 1. Introduction

typedef typename Iterator::reference reference;

typedef typename Iterator::iterator_category iterator_category;

}

One of the iterator associated types is the value type. Pointers are also iterators, for exam-
ple, the pointer int* is an iterator, its value type is int. A generic algorithm that accepts as
an input, an iterator may need to declare a variable that its type is the iterator value type
as in the following example:
template <class Iterator>

bool contain(Iterator begin, Iterator end, iterator_traits<Iterator>::value_type val)

{

for (++begin; begin != end; ++begin){

if (val == *begin)

return true;

}

return false;

}

The class iterator_traits implements a mechanism that allows such declarations. At first
glance it seems that the class iterator_traits is redundant and it is sufficient to require that
each iterator will contain nested types. This cannot work, since it is impossible to declare
Iterator::value_type when Iterator is of type int*. In order to overcome this problem,
the standard template library (STL) provides specialized versions for pointers and pointers
to const:
template <class T> struct iterator_traits<T*> {

typedef ptrdiff_t difference_type;

typedef T value_type;

typedef T* pointer;

typedef T& reference;

typedef random_access_iterator_tag iterator_category;

}

template <class T> struct iterator_traits<const T*> {

typedef ptrdiff_t difference_type;

typedef T value_type;

typedef const T* pointer;

typedef const T& reference;

typedef random_access_iterator_tag iterator_category;

}

Computational Geometric Software

The Computational Geometry Algorithms Library (Cgal) [2]3 is an open-source software
library of efficient and reliable geometric algorithms. The code of the library is written in

3Throughout the thesis a number in brackets (e.g., [3]) refers to the link list on page 47, and an alphanu-
meric string in brackets (e.g., [FSH08]) is a standard bibliographic reference.

7

C++ and rigorously adheres to the generic-programming paradigm. It also follows the exact
geometric-computation paradigm [Yap04, YD95] to achieve robustness and efficiency with
exact results.

The implementation presented in this thesis is based on a package of Cgal called 2D
Arrangements [FWH11]. It supports the robust construction and maintenance of arrange-
ments induced by curves embedded on certain two-dimensional parametric surfaces in three-
dimensional space4 [BFH+10], and robust operations on them. The implementation uses in
particular arrangements induced by geodesic arcs embedded on the sphere [BFH+10] and
arrangements induced by hyperbolic arcs in the plane. We plan to make our new component
available as part of a future public release of Cgal. The ability to robustly construct such
arrangements and carry out exact operations on them using (multi-precision) rational and
algebraic arithmetic is a key property that enables our efficient and certified implementation.

Contribution of the Thesis

We present exact, complete, and robust implementation of efficient output-sensitive algo-
rithms to solve the LTS and LTP problems.

The algorithm utilizes the idea of McKenna and O’Rouke [MO88] to represent the set
of lines that intersect three lines in R3 as a rectangular hyperbola with a vertical and a
horizontal asymptotes in R2. This idea was later on used by Olivier Devillers et al. [DGL08]
to solve predicates for line transversals to lines and line segments. First, we show how to
use this approach to solve the LTS problem. Then, we show how to enhance this approach
to solve the LTP problem. The algorithm is implemented on top of the Cgal library [2],
and is mainly based on the 2D Arrangements package of the library [WFZH07, FWH11].
The implementation for line segments is complete and robust, as it handles all degenerate
cases and guarantees exact results. We also report on the performance of our algorithm and
implementation compared to others. Two number types of arbitrary precision are required
for the implementation of the algorithm. The coefficients of the input objects must be repre-
sented by rational numbers, of unlimited precision. However, a rational number type cannot
represent the coefficients of the output lines in an exact manner; thus, an algebraic number
type of unlimited precision is necessary. In our algorithm and implementation of the LTS
problem we do not assume general position. Namely, the algorithm and its implementation
are robust and handle all cases. Examples of degenerate cases are: A line segment may
degenerate to a point, several segments may intersect pairwise, be coplanar, parallel, concur-
rent, lie on the same supporting line, or even overlap. The enhancement to convex polytopes
does not handle all degenerate cases; it is restricted to strictly disjoint (non-touching) poly-
topes. This restriction is due to implementation issues and can be lifted with some extra
programming effort. The algorithm of the LTP problem computes only lines tangent to at
least four polytopes, while in some cases three, two, or even one polytope determines tangent
lines.

Theoretical bounds for the algorithms are O((n3+I) log n) running time, and O(n logn+
J) working storage, where n is the input size, I is the output size, and J is the maximum

4Arrangements on surfaces are supported as of Cgal version 3.4, albeit not documented.

8 Chapter 1. Introduction

number of intersection in a single arrangement; J is bounded by O(n2). I is bounded by
O(n4) when the input is of n line segments, and by O(n2k2) when the input is of k convex
polytopes with n edges in total.

This is the first time an exact and efficient algorithm is implemented for the LTP problem.
Other implementations are not as efficient (running time O(n4)) and do not handle all
degenerate cases [TH99,Red03].

2
Preliminaries

In this chapter we review some basic mathematical properties used in this thesis. Section 2.1
provides general definitions concerning lines in space. Section 2.2 describes the mapping of
three pairwise skew lines in R3 to the (two-dimensional) plane. Software components and
additional technical background are reviewed in Section 2.3.

2.1 Definitions

Definition 2.1 (2D Arrangement). A finite collection C of geometric objects (e. g., lines
or hyperbola) contained in a two-dimensional parametric surface (e. g., the plane and the
sphere) subdivides the ambient space into (i) cells of dimension 0 (vertices) embedded as
points, (ii) cells of dimension 1 (edges) embedded as continuous curves, which are pairwise
disjoint in their interiors, and (iii) cells of dimension 2 (faces). The arrangement A(C) is
a data structure that maintains the incidence relations on the cells of the subdivision.

Definition 2.2 (Plane Sweep). Given a finite collection C of x-monotone curves in the
plane, the plane-sweep is an algorithmic framework that sweeps the plane using a vertical
line and triggers an event for every endpoint and intersection point of the curves in C.

Definition 2.3 (Map Overlay). The map overlay of two subdivisions S1 and S2, embedded
in a surface Σ, is a subdivision S embedded in Σ, such that there is a face f in S iff there
are faces f1 and f2 in S1 and S2, respectively, such that f is a maximal connected subset of
f1 ∩ f2.

We represent a line L ⊂ R3 by a point p ∈ L and a direction d ∈ R3\{O} as L(t) = p+t·d,
where O denotes the origin and t ∈ R. Clearly, this representation is not unique. A segment
S ⊂ L ⊂ R3 is represented by restricting t to the interval [a, b] ⊂ R. We refer to S(a) and

9

10 Chapter 2. Preliminaries

S(b) as the source and target points, respectively, and set a = 0 and b = 1. We denote
the underlying line of a line segment S by L(S). Two line segments, S1 and S2, in R3 are
intersecting if there exist a point q, such that q ∈ S1 and q ∈ S2. Two line segments in
R3 are coplanar if their supporting lines intersect or they are parallel. Two line segments
overlap if they share a line segment. Three or more line segments are concurrent if they all
intersect at a common intersection point. Two lines are skew if they are not coplanar; i. e.,
their supporting lines do not intersect and are not parallel.

Two lines tangent to the same four line segments are at the same connected component (of
lines) iff one of the lines can be continuously moved into the other while remaining tangent
to the same four line-segments. A convex polytope is the convex hull of a point set in R3.
A plane is tangent to a polytope if it intersects the polytope at either a facet, an edge, or a
vertex, and one of the closed half-spaces defined by the plane contains the polytope. A line
is tangent to a polytope if it intersects the polytope and it is contained in a tangent plane.

A surface S is ruled if through every point p on S there exist a straight line that passes
through p and lies on S. A surface S is doubly ruled if through every point p on S, there
exist two distinct lines, L1 and L2, that pass through p and lie on S. It is well known that
all the lines tangent to three pairwise disjoint skew lines in R3 are on one ruling of a doubly
ruled surface [PW01]. This surface is either a hyperbolic paraboloid or a hyperboloid of one
sheet ; see Figure 1.1. All the lines on the other ruling of one of these ruled surfaces are
tangent to the three lines. A fourth line may be on the same ruling. In that case the number
of lines tangent to the four lines is infinite. Otherwise, it may cross the surface in 0, 1, or 2
points, such that, there are respectively 0, 1, or 2 lines tangent to the four lines.

2.2 Representation

Given two lines L1 and L2 we define a map ΨL1L2
as follows:

ΨL1L2
(p3) = {(t1, t2) ∈ R2 |L1(t1), L2(t2), and p3 are collinear} .

That is, ΨL1L2
maps a point in R3 to a set in R2. This set, which might be empty, corresponds

to all lines that contain p3 and intersect L1 and L2. Now consider the pair (t1, t2) ∈ R2. If
L1(t1) 6= L2(t2), then this pair uniquely defines a line, namely, the line that intersects L1

and L2 at L1(t1) and L2(t2), respectively. Thus, for skew lines L1 and L2 there is a canonical
bijective map between R2 and all lines that intersect L1 and L2. It follows that for disjoint
lines L1 and L2 and a third line L3 the set ΨL1L2

(L3) is sufficient to represent all lines that
intersect L1, L2, and L3, where ΨL1L2

(L3) = {ΨL1L2
(q) | q ∈ L3}.

The characterization of ΨS1S2
(S3) serves as the theoretical foundation of the algorithm

that solves the LTS problem. Since ΨS1S2
(x) = ΨL(S1)L(S2)(x) ∩ [0, 1]2, it is sufficient to

analyze ΨL1L2
(S3) for a line segment S3.

2.3. Cgal and the 2D Arrangements Package 11

2.3 Cgal and the 2D Arrangements Package

Implementers of computational geometry algorithms typically face two challenges: (i) Achiev-
ing efficiency and robustness at the same time, and (ii) successfully handling degenerate
cases.

Geometric algorithms in theory are based on the machine model named “real RAM” [PS85].
This model assumes that arithmetic computation is performed with unlimited precision in
real numbers and each operation costs constant time. In practice, these assumptions do not
hold, as almost always constant time arithmetic operations and accurate arithmetic com-
putation can not be supported at the same time for most common number types. Using
floating-point arithmetic yields incorrect (intermediate) results due to inevitable rounding
errors, which impairs the robustness of the application. Consider for example the orientation
predicate; given three points, p1, p2, and p3, in R2, their orientation is left turn if p3 lies
to the left of the oriented line l defined by p1 and p2, right turn if p3 lies to the right of l,
and collinear if p3 lies on l. The evaluation of this predicate may be incorrect when using
floating-point arithmetic. Incorrect results are obtained when the points are collinear or
near collinear. Kettner et al. [KMP+08] show an example of the disastrous consequence this
violation may have on the computation of the convex hull of a set of points, which relies on
the orientation predicate. A naive attempt could realize this by carrying out each and every
arithmetic operation using an expensive unlimited-precision number type. However, only
the discrete decisions in an algorithm, namely the predicates, must be correct. This is a sig-
nificant relaxation from the naive concept of numerical exactness, as it is possible to use fast
inexact arithmetic (e. g., double-precision floating-point arithmetic [DP03]), while analyzing
the correctness. Cgal in general, and the Cgal 2D Arrangements package in particular,
follow the exact geometric-computation (EGC) paradigm to achieve efficiency with exact re-
sults. EGC, as summarized by Yap [Yap04], simply amounts to ensuring that we never err
in predicate evaluations. EGC represents a significant relaxation from the naive concept of
numerical exactness. Here, computation is carried out using a number type that supports
only inexact arithmetic (e. g., double-precision floating-point arithmetic), while analyzing the
computation correctness. If the computation reaches a stage of uncertainty, the computation
is redone using unlimited precision. In cases where such a state is never reached, expensive
computation is avoided, while the result is still certified.

Additional difficulty lies in the successful handling of degenerate cases. A degenerate
case may be provided as input or generated during the execution of the algorithm. Many
geometric algorithms assume general position. General position is commonly assumed while
describing an algorithm, or analyzing its running time. However, degenerate input is com-
monplace in reality. We have invested a significant amount of effort to successfully handle
all possible degenerate cases that may arise in the input or in intermediate data.

Cgal is a software library that provides robust, efficient, and reliable generic implemen-
tations of algorithms and data structures in computational geometry, such as triangulations,
Voronoi diagrams, Boolean operations on polygons and polyhedra, and arrangements of
curves. The Cgal kernel consists of constant-size geometric objects, such as points, lines,
and segments, and operations on objects of these types. Different coordinate systems are
offered, i. e., Cartesian and homogeneous. The kernel provides certified geometric predicates,

12 Chapter 2. Preliminaries

such as, determining whether two geometric objects intersect, determining whether two ob-
jects are parallel, and computing the orientation of two geometric objects. The kernel also
provides exact constructions of geometric objects, such as, the intersection of two geometric
objects and the distance between two geometric objects. Certified predicate evaluation and
exact construction are crucial for achieving robust implementation.

The implementation presented in this thesis heavily uses the 2D Arrangements pack-
age, which supports arrangements embedded in the plane and arrangements embedded in
the sphere. The 2D Arrangements package supports the constructions and maintenance of
two-dimensional arrangements embedded in certain orientable parametric surfaces in three
dimensions [BFH+10]. In addition to the ability to construct arrangements, the package sup-
ports various operations on arrangements, including traversing an arrangement, answering
point-location queries on an arrangement, and overlaying two arrangements [FWH11]. The
2D Arrangements package provides a convenient mechanism that uses observers [FWH11] to
notify on arrangement-topology transformations an arrangement is subject to. The observer
is an abstract class, which is attached to the arrangement, and receives notifications when
the arrangement is modified. The notification functions are virtual, and can be overridden
by the concrete observer classes that inherit from the base class. They are used to notify on
local or global changes. All these operations are exploited by our implementation.

In the implementation we use arrangements induced by hyperbolas in the plane and
arrangements induced by geodesic arcs on the sphere. The arrangement induced by the set of
input curves C is stored as a doubly-connected edge list (DCEL) data structure [dBvKOS08,
Chapter 2]. Each cell can be extended with additional information [FWH11, Chapter 6];
this functionality is intensively used by our implementation.

3
From R3 to Two-Dimensional Surfaces

In this chapter we describe how to map three line segments, S1, S2, and S3 in R3 to a two-
dimensional curve in the general case and to a point or a two-dimensional surface patch in
degenerate cases. Section 3.1 describes the general position case, where the directions of S1,
S2, and S3 are linearly independent. Section 3.2 covers the case, where the directions are
not linearly independent.

3.1 Directions Are Linearly Independent

(a) (b)

Figure 3.1: (a) Three surface patches the
lines of which intersect three skew line seg-
ments, S1, S2, and S3, in R3. These surface
patches are contained in a hyperboloid of one
sheet. (b) The point set ΨS1S2

(S3).

In this section we discuss all cases in which the di-
rection vectors of the underlying lines of the seg-
ments are linearly independent. In this setting
we can always apply a rational affine transforma-
tion such that the three segments are given by
Si(ti) = pi+ ti ·di, i ∈ {1, 2, 3}, where p1 = (a, b, c),
p2 = (d, e, f), p3 = O and di = ei (where ei de-
notes the unit vector along the ith axis). Thus, we
continue with a refined case distinction that only
depends on the coordinates of p1 and p2.

b 6= 0, d 6= 0, and c 6= f : All three lines are pair-
wise skew. Consider the points L1(t1), L2(t2), and
L3(t3). These points are collinear iff

|(L1(t1)− L2(t2))× (L3(t3)− L2(t2))| = 0 . (3.1)

These are three dependent equations in three unknowns. Eliminating t3, we obtain the

13

14 Chapter 3. From R3 to Two-Dimensional Surfaces

following expression for t2 in terms of t1:

t2(t1) =
e · t1 + (a · e− d · b)

t1 + a
. (3.2)

It implies that ΨL1L2
(L3) is a rectangular hyperbola with a vertical asymptote at t1 = −a

and a horizontal asymptote at t2 = −e. The point (d − a, b − e) corresponds to the line
that is parallel to L3 and (by definition) intersects L1 and L2. Thus, this point is not in
ΨL1L2

(L3), as we consider affine space. Nonetheless, we are interested in ΨL1L2
(S3), where

S3 = {L3(t3) | t3 ∈ [0, 1]}. Solving the system of Equation 3.1 for t1 in terms of t3 yields

t1(t3) =
(d− a)t3 + fa− dc

t3 − f
. (3.3)

As t3 is restricted to [0, 1], t1 is restricted to T = {t1(t3) | t3 ∈ [0, 1]}. ΨL1L2
(S3) is not

defined for values of t1 6∈ T . Let t′ = min(t1(0), t1(1)) and t′′ = max(t1(0), t1(1)), where
t1(0) = (dc − af)/f and t1(1) = (dc + a − fa − d)/(f − 1). t1(t3) is a hyperbola with a
vertical asymptote at t3 = f . If f ∈ [0, 1], then T = (−∞, t′]∪[t′′,∞). Otherwise, T = [t′, t′′].
Recall that ΨL1L2

(S3) is also not defined for the value t1 = −a due to the vertical asymptote
of t2(t1). It follows that ΨS1S2

(S3) consists of at most three maximal connected components,
where each component represents a patch of a ruled surface as depicted in Figure 3.1.

b 6= 0, d 6= 0, and c = f : L1 and L2 intersect at p = (d, b, c) = (d, b, f). L3 is skew to both
and intersects the z = c plane (which is spanned by L1 and L2) at q = (0, 0, c) = (0, 0, f). As
in the previous case, ΨL1L2

(L3) is a rectangular hyperbola. However, the point (d−a, b−e) ∈
ΨL1L2

(L3) represents all lines containing p and intersecting L3; see also Section 3.2.3. In case
q 6∈ S3, ΨL1L2

(S3) degenerates to {(d− a, b− e)}.
b = 0, d 6= 0, and c 6= f : L1 intersects L3 at p = (0, 0, c). L2 intersects the xz-plane at
q = (d, 0, f). Eliminating t3 from Equation 3.1 we obtain (e + t2)(a + t1) = 0. Thus,
ΨL1L2

(L3) is a vertical line at t1 = −a and a horizontal line at t2 = −e. t1 = −a represents
all lines containing p and L2. t2 = −e represents all lines in the xz-plane that contain q.
Since we consider an affine space, the point (d−a,−e) 6∈ ΨL1L2

(L3). The point set ΨL1L2
(S3)

(i) includes the vertical line only if p ∈ S3, and (ii) includes the horizontal line only if q ∈ S2.
As t3 is restricted to [0, 1], t1 is restricted to T = {t1(t3) | t3 ∈ [0, 1]}. The horizontal line
is not defined for values of t1 6∈ T . Let t′ = min(t1(0), t1(1)) and t′′ = max(t1(0), t1(1)),
where t1(0) = (dc − af)/f and t1(1) = (dc + a − fa − d)/(f − 1). t1(t3) is a hyperbola
with a vertical asymptote at t3 = f . If f ∈ [0, 1], then T = (−∞, t′] ∪ [t′′,∞). Otherwise,
T = [t′, t′′]. For symmetry reasons this case essentially also covers the case b 6= 0, d = 0,
where the characters of the vertical and horizontal lines exchange.

b = 0, d = 0, and c 6= f : L1 and L2 are pairwise skew and intersect L3 at p = (0, 0, c) and
q = (0, 0, f), respectively. ΨL1L2

(L3) consists of a vertical line at t1 = −a and a horizontal
line at t2 = −e. ΨL1L2

(S3) includes the vertical and horizontal lines if S3 contains p = (0, 0, c)
and q = (0, 0, f), respectively.

b = 0, d 6= 0, and c = f : L1 and L2 intersect at p = (d, 0, c) = (d, 0, f). L1 and L3 intersect
at q = (0, 0, c) = (0, 0, f). ΨL1L2

(L3) consists of a vertical line at t1 = −a and a horizontal
line at t2 = −e. The latter is included in ΨL1L2

(S3) if q ∈ S3. t1 = −a corresponds to all lines

3.2. Directions Are Not Linearly Independent 15

(a) (b) (c) (d)

1
2

5
6

9
14

1
2

(e)

4
5

1
5

(f) (g) (h)

Figure 3.2: Mappings of three line segments, S1, S2, and S3, in various configurations. The bottom
figures depict the corresponding mapping ΨS1S2

(S3). A point inside the yellow faces represents a line
tangent to the three line segments. (a) S1 and S2 are skew, and S1 and S3 intersect at q. (e) ΨS1S2

(S3)
consists of two collinear horizontal line segments and one vertical line segment. (b) S1 and S2 are skew,
and S1 and S3 overlap. (f) ΨS1S2

(S3) is an axis parallel rectangle. (c) S1 and S2 are coplanar, and S3

intersects the plane that contains S1 and S2 at a point. (g) ΨS1S2
(S3) consists of two hyperbolic arcs.

(d) S1 and S2 are parallel, and S3 intersects the plane that contains S1 and S2 at a point. (h) ΨS1S2
(S3)

consists of a single line segment.

containing q and intersecting L2. All points on t2 = −e correspond to L1. For symmetry
reasons this essentially also covers the case b 6= 0, d = 0.

b = 0, d = 0, and c = f : The three lines are concurrent at p = (0, 0, c) = (0, 0, f).
ΨL1L2

(L3) = {(−a,−e)}. (−a,−e) represents all lines that contain p.

3.2 Directions Are Not Linearly Independent

3.2.1 Directions of L1 and L2 are Linearly Independent

We consider the case where L1 and L2 are linearly independent. Thus, we can assume that
d1 = e1, d2 = e2, d3 = (u, v, 0), p1 = (a, b, c), p2 = (d, e, f) and p3 = O.

c 6= 0, f 6= 0 and c 6= f : The three lines are skew. ΨL1L2
(L3) is the line t2 = (−fvt1 −

cue+ ufb+ cdv − fav))/(cu). ΨL1L2
(S3) is a segment defined between t1 = −a + cd/f and

t1 = u − a + c(d − u)/f . Note that this also covers the case v = 0 (L3 parallel to L1) for
which the line becomes horizontal. For u = 0 (L3 parallel to L2) ΨL1L2

(S3) is the vertical
line segment t1 = −a + cd/f , define between t2 = −e + bf/c and t2 = v − e + f(b− v)/c.

c 6= 0, f 6= 0 and c = f : L1 and L2 intersect at p = (d, e, c) = (d, e, f). Since L3 does not
intersect the plane spanned by L1 and L2, ΨL1L2

(L3) consists only of the point (d− a, b− e)
representing all lines containing p and L3.

16 Chapter 3. From R3 to Two-Dimensional Surfaces

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Mappings of three coplanar line segments, S1, S2, and S3 in various configurations. The
bottom figures depict the corresponding mapping ΨS1S2

(S3). A point inside the yellow face represents a
line tangent to the three line segments. (a) S1, S2, and S3 are pairwise disjoint. (b) S1 and S2 intersect,
and S3 is disjoint from both. (c) S1, S2, and S3 are pairwise disjoint. (d) S1, S2, and S3 form a triangle.
(e) ΨS1S2

(S3) consists of a single connected component. (f) ΨS1S2
(S3) consists of four interior disjoint

components. (g) ΨS1S2
(S3) consists of three disconnected components. (h) ΨS1S2

(S3) consists of the
boundary of the unit square.

c = 0, f 6= 0 and c 6= f :

• v 6= 0 : L1 intersects L3 at p = (bu/v, b, 0). ΨL1L2
(S3) is the vertical line t1 = −a+bu/v

if p ∈ S3 or empty otherwise.
• v = 0 ∧ b 6= 0 : L1 is parallel to L3 and since L2 does not intersect the plane spanned

by L1 and L2; it is obvious that ΨL1L2
(L3) = ∅.

• v = 0 ∧ b = 0 : S3 overlaps with L1; thus ΨL1L2
(S3) is a two dimensional point set,

namely, the vertical slab with t1 between −a and u− a.

This essentially also covers case c 6= 0, f = 0 for symmetry reasons.

c = f = 0: L3 is contained in the plane spanned by L1 and L2, thus ΨL1L2
(L3) = R2 \ ℓ,

where ℓ is the line representing those lines that are parallel to L3. However, ΨL1L2
(S3) is a

bit more complex. ΨL1L2
(L3(t3)) is the rectangular hyperbola with additional parameter t3

t2(t1, t3) =
−((e− t3v)t1 + (bu− eu+ dv − av)t3 + ea− db)

(t1 + a− t3u)
.

This family has two fixed points that do not depend on t3 as follows: p′ = (d − a, b − e),
which represents the intersection of L1 and L2, and p′′ = (−a + bu/v,−e + dv/u), which
corresponds to the line L3. Since two such hyperbolas can only intersect in at most two
points, we can conclude that the two-dimensional region ΨL1L2

(L3([0, 1] = S3)) is bounded
by the hyperbolas ΨL1L2

(L3(0)) and ΨL1L2
(L3(1)); see also Figure 3.3. In the case u = 0

(v = 0) p′′ is at infinity, since all hyperbolas in the family have the same vertical (horizontal)
asymptote.

3.2. Directions Are Not Linearly Independent 17

3.2.2 Directions of L1 and L2 Are Dependent

We consider the case where L1 and L2 are linearly dependent. Thus, we can assume that
d1 = (1, 0, 0), d2 = (u, 0, 0) 6= O, d3 = (0, 1, 0), p1 = (a, b, c), p2 = (d, e, f) and p3 = O.

c 6= 0, f 6= 0: L1 and L2 are parallel and do not intersect L3. L3 intersects the plane spanned
by L1 and L2 in p = (0, (ce− fb)/(c− f), 0). ΨL1L2

(L3) is the line t2 = (fa+ ft1− cd)/(cu).
ΨL1L2

(S3) = ∅ iff p 6∈ S3.

c = 0, f 6= 0: L1 and L2 are parallel. L1 intersects L3 at p = (0, b, 0). ΨL1L2
(L3) is the

vertical line t1 = −a. ΨL1L2
(S3) = ∅ iff p 6∈ S3.

c 6= 0, f = 0: L1 and L2 are parallel. L2 intersects L3 at p = (0, e, 0). ΨL1L2
(L3) is the

horizontal line t2 = −d/u. ΨL1L2
(S3) = ∅ iff p 6∈ S3.

c = 0, f = 0: L1 and L2 are parallel and intersect L3 at p′ = (0, b, 0) and p′′ = (0, e, 0). Thus
ΨL1L2

(L3) = R2 \ ℓ, where ℓ is the line representing those lines that are parallel to L3. This
case is similar to the one in Subsection 3.2.1. ΨL1L2

(L3(t3)) is a line u(b − t3)t2 = (−at3 −
t1t3 + dt3 − db+ et1 + ea). The family has a fixed point p = (−a,−d/u), which corresponds
to the line L3. ΨL1L2

(L3([0, 1])) is a wedge that is bounded by the lines ΨL1L2
(L3(0)) and

ΨL1L2
(L3(1)).

3.2.3 S1 and S2 Intersect

Assume L1 and L2 intersect, and let
q = L1(t̃1) = L2(t̃2) be the intersec-
tion point. The point (t̃1, t̃2) represents
all lines that contain q. We represent
these lines by points on a semi open up-
per hemisphere centered at q. We define
the additional map Ξq : R

3 \ {q} → H2

and Ξq(p) 7−→ d = s(p − q)/|p − q|, with s ∈ {±1}, such that d ∈ H2 = {p | p ∈
S2 and p is lexicographically larger than O}.

In the generic case a segment S maps to one or two geodesic arcs on H2. If S3 is a point,
or L(S3) contains q and S3 does not, Ξq(S) consists of a single point. If q ∈ S3, we define
Ξq(S3) = H2. The left image of the figure depicts three line segments, S1, S2, and S3, such
that S1 and S2 intersect at q (and S3 does not). The right image depicts the mapping Ξq(S3),
where Ξq(S3) = {Ξq(p) | p ∈ S3}. It consists of two geodesic arcs on H2.

3.2.4 S1 and S2 Are Collinear

The case where S1 and S2 are collinear completes the list of possible cases. If S1 and S2 do
not overlap, the only line that can possibly intersect S1 and S2 is the line containing S1 and
S2. Otherwise, the number of degrees of freedom of all the lines that intersect S1 and S2 is
three. The handling does not involve a mapping to a two-dimensional surface, as explained
in the next chapter.

18 Chapter 3. From R3 to Two-Dimensional Surfaces

Corollary 3.1. ΨS1S2
(S3) ⊂ R2 is either a point, a one-dimensional set consisting of line

segments or arcs of rectangular hyperbolas with horizontal and vertical asymptotes, or a
two-dimensional set bounded by linear segments or arcs of such hyperbolas.

We are now ready to describe our algorithm for solving the LTS problem in its full
generality.

4
Algorithmic and Implementation Details

In this chapter we give a detailed description of the algorithm that solves the LTS problem.
In section 4.1 we describe the algorithm and how it handles all of the degenerate cases. In
Section 4.2 we describe some aspects of the implementation related to Cgal.

4.1 Algorithm Overview

The input is a set S = {S1, . . . , Sn} of n line segments in R3. In general an input line segment
imposes an intersection constraint. In our implementation we assume that every input line
segment imposes exactly a single constraint. It is possible to alter the implementation to
follow the assumption that a sub-segment that is the intersection of multiple overlapping line
segments imposes a single constraint, and a point that is either the intersection of multiple
line segments, or simply a degenerate line segment, imposes two constraints. The output is
a set of at most O(n4) (one-dimensional) lines or (two-dimensional) ruled surface patches in
R3, such that each line abides by exactly four intersection constraints imposed by the line
segments in S, and all lines of each ruled surface patch abide by exactly four such intersection
constraints. The line segments that impose the constraints of an output element are referred
to as the generating line segments of that element. The generating line segments of every
output surface patch or line are provided as part of the output. An element of the output is
thus a pair of (i) a line or a surface patch and (ii) a quadruple of generating line segments.

Next, we describe the complete algorithm, which handles all degenerate cases, e. g., line
segments that degenerate to points, concurrent line segments, and collinear, including over-
lapping, line segments. We transform the original three-dimensional LTS problem into a
collection of two-dimensional problems and use two-dimensional arrangements to solve them,
exploiting the plane-sweep algorithmic framework, which is output sensitive.

We set the line segments that degenerate to points apart from the rest. Let S ′ denote the

19

20 Chapter 4. Algorithmic and Implementation Details

subset of such degenerate line segments, and S ′′ denote the full-dimensional line segments,
S = S ′∪S ′′. The entire algorithm consists of three phases. During the first phase we go over
all points in S ′. For each point S ′

i ∈ S ′ we find every line that contains S ′

i, possibly contains
other points in S ′, and possibly intersects line segments in S ′′, such that the total number of
imposing constraints is at least four. During the second phase, we go over pairs of the full-
dimensional line segments in S ′′ that are not collinear. For each pair, (Si, Sj), Si, Sj ∈ S ′′,
we find lines that intersect Si and Sj and other line segments in S ′′ that have not been found
yet in previous iterations, such that the total number of imposing constraints is at least
four. These constraints, however, might be imposed by collinear input line segments. The
processing of groups of four or more collinear line segments is deferred to the third phase.
Such groups can easily be detected by lexicographically sorting the line segments by their
normalized Plücker coordinates. W. l. o. g. assume that S consists of S ′′ sorted accordingly
preceded by S ′. Also, assume that S ′ consists of m points; see Algorithm 1 for pseudo code.

Algorithm 1 Compute lines that intersect line segments in S = {S1, . . . , Sn}.
Phase I

1.1 for i = 1, . . . , m,
1.2.1 Construct the arrangement As

Si
induced by {ΞSi

(Sk) | k = i+ 1, . . . , n}.
1.2.2 Extract lines that intersect Si from As

Si
.

Phase II

2.1 for i = m+ 1, . . . , n− 3,
2.2 for j = n, . . . , i+ 3,
2.3 if Si and Sj are collinear, break.
2.5.1 Construct the arrangement ASiSj

induced by {ΨSiSj
(Sk) | k = i+ 1, . . . , j − 1}.

2.5.2 Extract lines that intersect Si and Sj from ASiSj
.

2.6 if Si and Sj intersect,
2.7.1 Construct the arrangement As

Si∩Sj
induced by {ΞSi∩Sj

(Sk) | k = i+ 1, . . . , j − 1}.
2.7.2 Extract lines that intersect Si and Sj from As

Si∩Sj
.

Phase III

3.1 i← m+ 1.
3.2 while i ≤ n− 3,
3.3 j ← i+ 1.
3.4 while j ≤ n,
3.5 if Si and Sj are not collinear,
3.6 if i+ 3 < j,
3.7 Process the set of collinear line segments Si, . . . , Sj−1.
3.8 i← j.
3.9 break.
3.10 j ← j + 1.
3.11 if i+ 3 < j,
3.12 Process the set of collinear line segments Si, . . . , Sj−1.
3.13 i← j.

We defer the description of Phase I to Section 4.1.2, and proceed with the description of

4.1. Algorithm Overview 21

Phase II.

4.1.1 The Processing of Arrangements in the Plane

(a) (b)

Figure 4.1: (a) Five line segments, S1, . . . , S5, such
that the first four are coplanar, and S5 pierces the
plane containing the first four. (b) The arrange-
ment AS1S2

. The pink face represents a ruled
surface patch the lines of which intersect the four
coplanar line segments. The red curve represents a
ruled surface patch the lines of which intersect S1,
S2, S3, and S5.

In Step 2.5.1 of Algorithm 1 we construct
the arrangement ASiSj

induced by the set
Cij = {ΨSiSj

(Sk) | k = i + 1, . . . , j − 1}. No-
tice that Si and Sj are not collinear. We
distinguish between two disjoint subsets C′ij
and C′′ij of Cij , such that C′ij consists of one-
dimensional hyperbolic arcs restricted to the
unit square (see Chapter 3) and C′′ij consists of
a two-dimensional regions bounded by hyper-
bolic arcs and the unit square. (Recall that
ΨSiSj

(Sk) consists of two-dimensional regions
if either Si or Sj overlap with Sk, or Si, Sj,
and Sk are coplanar; see Chapter 3.)

We process the line segments Si+1,
. . . , Sj−1 one at a time to produce the induc-
ing point sets C′ij and C′′ij . Next, using a plane-
sweep algorithm, we construct the arrange-
ment A′

SiSj
induced by C′ij . The processing of C′′ij is different, because C′′ij consists of two-

dimensional regions. For each maximal two-dimensional point set Rk ∈ C′′ij , Rk ⊆ ΨSiSj
(Sk),

we construct the arrangement Ak
SiSj

induced by Rk. Then, we construct A′′

SiSj
by overlaying

all the arrangements in {Ak
SiSj
| Rk ∈ C′′ij}. The 2D Arrangements package of Cgal supports

an overlay operation, which computes the overlay of two given arrangements. In practice, we
apply this operation several times to compute A′′

SiSj
. Finally, we overlay the arrangements

A′

SiSj
and A′′

SiSj
to produce the final arrangement ASiSj

; see Figure 4.1.

We store with each vertex and edge of the arrangement A′

SiSj
the sorted sequence of

input line segments that are mapped through ΨSiSj
to the points and curves that induce

that cell. The segments are sorted by their indexes. Similarly, we store with each face
of the arrangement A′′

SiSj
the sorted sequence of the line segments mapped through ΨSiSj

to the regions that induce that face. Each cell, i. e., vertex, edge, or face, of ASiSj
stores

the sequence of the line segments obtained during the overlay from the corresponding cell
in A′

SiSj
and A′′

SiSj
. We store only the minimal necessary set of line segments in every

sequence. A member of a sequence of a vertex is a line segment that maps to a (zero-
dimensional) point p ∈ C′ij . A member of a sequence of an edge is a line segment that maps
to a (one-dimensional) curve C ∈ C′ij . A member of a sequence of a face is a line segment
that maps to a (two-dimensional) region R ∈ C′′ij . For example, consider a curve C ∈ C′ij ,
such that C ⊆ ΨSiSj

(S). The sequences of all edges induced by C contain S. However, the
sequences of line segments of all vertices incident to these edges do not contain S, as this
information is immediately accessible from the incident edges. Similarly, the sequences of
all faces induced by a region R ⊆ ΨSiSj

(S) contain the line segment S, but the sequences of
all vertices and edges incident to these faces do not. When a new face, f , is formed while

22 Chapter 4. Algorithmic and Implementation Details

overlaying two arrangements, say A1 and A2, we merge the sequence of line segments of
the two faces, f1 and f2 of A1 and A2, respectively, that induce f , and store the resulting
sequence with f .

(a) (b)

Figure 4.2: (a) Four line segments,
S1, S2, S3, S4, supported by four lines of
one ruling of a hyperbolic paraboloid, respec-
tively; see also Figure 1.1a. (b) The arrangement
AS1S2

. The edge drawn in purple is induced by
two overlapping curves, one in ΨS1S2

(S3) and
the other in ΨS1S2

(S4).

The generating line segments of every out-
put element are immediately available from the
sequences of line segments stored with vertices
and edges. However, the role of these sequences
extends beyond reporting. It turns out that
some intersection points do not represent lines
that intersect four line segments. An example
of such a case occurs when either Si or Sj in-
tersects a third line segment, Sk. In such a
case ΨSiSj

(Sk) consists of horizontal and ver-
tical line segments; see Section 3.2.1. The in-
tersection point of the vertical and horizontal
line segments does not represent a line that in-
tersects four line segments and, thus, must be
ignored. This case is detected by examining the
sorted sequences of line segments.

In Step 2.5.2 of Algorithm 1 we extract the information and provide it to the user in a
usable format. We refer to an arrangement cell that represents a valid output element as
an eligible cell. The eligibility of a given cell is immediately established from the sequence
of line segments stored with that cell. We provide the user with the ability to iterate over
eligible cells of different dimensions separately. This way, for example, a user can choose to
obtain only the vertices that represent valid output lines. By default we consider a surface
patch of the output represented by an edge or a face open. For example, consider an edge e
that satisfies the output criteria, and let C denote its geometric embedding. The curve C is
provided to the user as part of the iteration over the one-dimensional output elements. The
two endpoints of C are provided to the user as part of the iteration over the zero-dimensional
output elements. The user can override this setting, and choose to consider surface patches
closed. In this case the iteration over the zero-dimensional output elements results with only
eligible vertices that are not incident to eligible edges.

4.1.2 The Processing of Arrangements on the Sphere

Consider the case where two input line segments intersect at a point, say p. In this case we
must output every line that contains p and abides by two additional intersection constraints.
In Step 2.7.1 of Algorithm 1 we construct an arrangement on the sphere centered at p,
the point of intersection between Si and Sj . The arrangement is induced by the point set
Csij = {ΞSi∩Sj

(Sk) | k = i + 1, . . . , j − 1}. We process the line segments Si+1, . . . , Sj−1 one
at a time to produce the inducing set Csij . When the underlying line of a line segment Sk

contains the sphere center, ΞSi∩Sj
(Sk) consists of a single point. For each k, i < k < j,

ΞSi∩Sj
(Sk) consists of either an isolated point or at most two geodesic arcs on the sphere;

see Section 3.2.3. The pairwise intersections of the points and arcs in Csij represent lines that

4.1. Algorithm Overview 23

are tangent to at least four input line segments. Next, using a plane-sweep algorithm on the
sphere, we construct the arrangement As

Si∩Sj
induced by Csij . When ΞSi∩Sj

(Sk) consists of a
single point it induces a single vertex in the arrangement.

We maintain a set, Qij , of all the line segments Sk, i < k < j that contain p. If Sk

contains the sphere center p, we insert Sk into Qij and proceed. Assume that Qij contains N
line segments. If 2 ≤ N then we account that the point p abides by at least four intersection
constraints.

Similarly, in Step 1.2.1 of Algorithm 1, we construct the arrangement As
Si

on the sphere
centered at Si to account for every line that contains the point Si and abides by at least
three additional constraints. The arrangement is induced by the sets C′si and C′′si . We process
the points Si+1, . . . , Sm one at a time to produce the inducing set C′si = {ΞSi

(Sk) | k =
i + 1, . . . , m}, which consists of points. We process the (full-dimensional) line segments
Sm+1, . . . , Sn one at a time to produce the inducing set C′′si = {ΞSi

(Sk) | k = m+ 1, . . . , n}.
As in the case above, we maintain a set, Qi, of all the line segments from Sm+1, . . . , Sn that
contain the point Si. If Sk contains the point Si, we insert Sk into Qi and proceed. When
the underlying line of a line segment Sk contains the sphere center, ΞSi

(Sk) consists of a
single point. Next, using a sweep of the sphere algorithm, we construct the arrangement As

Si

induced by Csi = C′si ∪ C′′si .

In both cases we extend the vertex and edge records. In the former case we store with
each vertex and edge of the arrangement As

Si∩Sj
the sorted sequence of line segments that

are mapped through ΞSi∩Sj
to the points and geodesic arcs that induce that cell. In the

latter case we store with each vertex and edge of the arrangement As
Si

the sorted sequence of
input (zero and full-dimensional) line segments that are mapped through ΞSi

to the points
and geodesic arcs that induce that cell.

As with the planar arrangements, we store only the minimal necessary set of line segments
in every sequence. A member of a sequence of a vertex is a line segment that maps to a
(zero-dimensional) point p ∈ CsSi∩Sj

. A member of a sequence of an edge is a line segment
that maps to a (one-dimensional) geodesic arc C ∈ CsSi∩Sj

.

We extract the information from the arrangements on the sphere and provide it to the
user in a usable format. All the settings that apply to the processing of the arrangements in
the plane apply to the processing of the arrangements on the sphere as well; see Section 1.
As with the aforementioned processing of the arrangements in the plane, we provide the user
with the ability to iterate over eligible vertices and over eligible edges separately.

4.1.3 The Processing of Collinear Line Segments

Let L = {S1, ..., Sℓ} be a set of 4 ≤ ℓ collinear line segments and let L be their underlying
line. Assume L is processed in Step 3.7 or Step 3.12 of Algorithm 1. We generate

(

ℓ
4

)

output elements. Every output element consists of the line L and a different quadruple of
line segments from L.

We need to account for all lines that intersect sub-segments that are the intersections of at
least four input line segments. We construct a one-dimensional arrangement Aℓ, embedded
in the line L, induced by the line segments in L. We store with each vertex and edge

24 Chapter 4. Algorithmic and Implementation Details

of Aℓ the inducing line segments of that cell. As with the aforementioned processing of
two-dimensional arrangements, we provide the user with the ability to iterate over eligible
vertices and over eligible edges separately.

4.1.4 Complexity Analysis

Setting apart the subset S ′ of line segments that degenerate to points is naturally done
in linear time. Sorting the subset S ′′ of full-dimensional line segments according to their
normalized Plücker coordinates is done in O(n logn) time. Constructing the arrangement
As

Si
for a given point Si ∈ S ′ is done in O((n+ki) logn) time using a plane-sweep algorithm,

where ki in the number of intersections of the inducing geodesic arcs. The total time it takes
to construct all arrangements {As

Si
| i = 1, . . . , m} is O((mn + I1) logn), where I1 is the

total number of respective intersections. Extracting the output lines from all arrangements
{As

Si
| i = 1, . . . , m} takes O((mn + I1)) time in total. Given two line segments Si, Sj ∈

S ′′, constructing the arrangement A′

SiSj
is done in O((n + k′

ij) logn) time using a plane-
sweep algorithm, where k′

ij in the number of intersections of the inducing hyperbolic arcs.
Constructing the arrangement A′′

SiSj
can also be done in O((n+ k′′

ij) log n), where k′′

ij in the
number of intersections of the inducing hyperbolic arcs. Computing the overlay of A′

SiSj

and A′′

SiSj
is done in O((n+ kij) logn) time, where kij in the number of intersections of the

curves of the two arrangements. If Si and Sj intersect, we also construct the arrangement
AS

SiSj
in O((n + ks

ij) log n) time, where ks
ij in the number of intersections of the geodesic

arcs. Thus, the total time it takes to construct and process all arrangements in Phase II is
O((n3 + I2) logn), where I2 is the total number of respective intersections. The asymptotic
resource-consumption of Phase III is negligible compared to those of the other phases. In
summary, the process can be performed in O((n3 + I) logn) running time. Where n is the
input size and I is the output size. I is bounded by O(n4). As only one arrangement must
be retained at a time, the required storage space is O(n logn+ J), where J is the maximum
number of intersections in a single arrangement. J is bounded by O(n2).

4.2 Implementation with Cgal

This section describes the packages of Cgal used in the implementation and the interface of
the software for the computation of all lines tangent to four line segments taken from a set
of n line segments. We assume in this section some familiarity of the reader with the C++

programming language [Str04] and the generic programming paradigm [Aus99].

Cgal follows the generic programming paradigm [Aus99], that is, algorithms are formu-
lated and implemented such that they abstract away from the actual types, constructions,
and predicates. Using the C++ programming language this is realized by means of class and
function templates. Cgal’s arrangement class template [FWH11] is parametrized by a traits
class that handles the specific family of curves required by the application.

For the arrangement of geodesic arcs on the sphere we use the existing traits class [BFH+10].
As this only requires a linear kernel, it uses Cgal’s efficient Lazy Kernel [BBP01]. However,
in order to compute the planar arrangements of rectangular hyperbolic arcs with horizontal

4.3. Application Interface 25

and vertical asymptotes, Cgal offered only a general traits class for rational functions, which
was introduced in [SHRH11]. The class uses the general univariate algebraic kernel [BHK11]
of Cgal, which does not offer lazy constructions.

The aforementioned traits class is capable of representing rectangular hyperbolic arcs
with horizontal and vertical asymptotes. However, since it was developed for general rational
functions, the code is written assuming arbitrary degree in the numerator and denominator
polynomials of the rational function. In our case the degree of both is just one. It follows that
the degree of the polynomial, the roots of which represent the x-coordinates of intersection
points of two hyperbolas, is at most 2. That is, the solution to these polynomials, and thus
the coordinates of the intersection points, are numbers of algebraic degree 2. The square-
root extension type of Cgal represents such a number as a + b

√
c, where a, b, c ∈ Q. This

explicit representation makes it possible to use the number type in conjunction with the lazy
mechanism.

In order to benefit from the square-root extension type, we implemented a univariate
algebraic kernel that is, similar to the one introduced in [dCCLT09], restricted to polynomials
of degree 2. Enabling the use of Cgal’s square-root extensions and in particular the use
of lazy mechanism speeds up the computation significantly. In addition, we enhanced the
implementation of the existing rational function traits, such that it is capable of using any
algebraic kernel that complies with the requirements listed in [BHL+11]. This traits class,
instantiated with the new algebraic kernel, uses lazy constructions and is thus able to handle
hyperbolic arcs with horizontal and vertical asymptotes in a more efficient manner than the
one presented in [SHRH11], as shown by experiments in Chapter 6 below.

4.3 Application Interface

Given a set S = {S1, S2, ..., Sn} of n line segments, Lines Through Segments is a new package
that provides the means to find all the lines tangent to at least four line segments of S. The
class template Lines_through_segments_3<Traits> is a functor the parenthesis operator of
which accepts as input the set S and returns a list of connected components of lines, each
tangent to four line segments of S. When instantiated, the template parameter Traits must
be substituted with a model of the concept LinesThroughSegmentsTraits_3 . The new concept
defines the following types of geometric primitives.

• A model of the concept GeodesicTraits_2 , which is a refinement of the concept Arrange-

mentTraits_2 , used to construct and maintain arrangements of geodesic arcs embedded
on the sphere.

• A model of the concept HyperbolicTraits_2 , which is a refinement of the concept Ar-

rangementTraits_2 , used to construct and maintain arrangements of hyperbolic arcs in
the plane.

Every instance of the traits class template Lines_through_segments_traits_3< Rational_kernel,

Algebraic_kernel> is a model of the concept LinesThroughSegmentsTraits_3 ; currently, it is
the only model supplied with the package. The template parameters Rational_kernel and

26 Chapter 4. Algorithmic and Implementation Details

Algebraic_kernel must be substituted by two exact geometric kernels when the class is in-
stantiated. The first is a rational kernel, which is used for the input line segments, and the
second is an algebraic kernel, which is used for the output objects.

4.3.1 Output Elements

Recall that we provide the user with the ability to iterate over eligible cells of different
dimensions separately. We provide alternative option to the user to directly obtain the
output elements; we describe the details for this alternative in this section.

Each element of the output is of type Transversal. The Transversal is defined as a
boost variant [1] of the following types:

• Line_3 — A rational line in three-dimensional Euclidean space.

• Mapped_2 — A geometric object on a two-dimensional arrangement that represents
a connected components of lines tangent to four input line segments. Mapped_2 is
implemented as a boost variant of the following types:

– Mapped_point_2 — The class contains an algebraic point on a planar arrangement
ASiSj

and the two rational line segments Si and Sj .

– Mapped_x_monotone_curve_2 — The class contains a hyperbolic arc on a planar
arrangement ASiSj

and the two rational line segments Si and Sj . Each point on
the hyperbolic arc represents a tangent line to four input line segments.

– Mapped_general_polygon_2 — The class contains a face as a General_polygon_2 on
a planar arrangement ASiSj

and the two rational line segments Si and Sj. Each
point on the face represents a tangent line to four input line segments.

• Through_3 — A geometric object in three-dimensional Euclidean space that all the lines
that pass through this object are tangent to four input line segments. Through_3 is
implemented as boost variant of the following types:

– Through_point_3 — An intersection point of four or more concurrent line seg-
ments.

– Through_point_3_segment_3 — A pair of a point p and a line segments S. All the
lines that pass through p and S pass through four input line segments.

– Through_segment_3 — A common rational line segment to four or more overlapping
input line segments.

In some cases the four originating line segments that the transversal is tangent to are required.
A compile-time flag is used to control the inclusion of the four originating line segments. If
the flag is set, each element of the output is a pair of Transversal and an array of four input
line segments.

Additional useful information for debugging is the arrangements that were constructed
during the computation. The class template Lines_through_segments_3_with_arrangements

4.3. Application Interface 27

inherits from the class Lines_through_segments_3 and stores these arrangements in a con-
tainer. In this configuration the Mapped_2 object is enhanced with a pointer to the arrange-
ment that the mapped object lies on.

28

5
Lines Tangent to Four Strictly Disjoint

Polytopes

We present a robust implementation of an efficient
output-sensitive algorithm that solves the LTP problem.
In particular, given a set P = {P1, ..., Pk}, of pairwise dis-
joint convex polytopes in R3, we find all lines tangent to
four or more polytopes. Let L be an output line tangent to the polytopes Pi1, . . . , Pim, 4 ≤ m.
Our implementation solves a variant of this problem where L may pierce Pj , j /∈ {i1, . . . , im}.
It is not hard to extend the implementation and filter out lines that pierce any input poly-
hedron. The figure to the right depicts two tetrahedra and two cubes and four lines, each
tangent to the four of them.

5.1 Algorithm Overview

The algorithm that solves the LTP problem resembles Algorithm 1. We go over unordered
pairs of polytopes. For each pair of polytopes (Pi, Pj), i < j, we go over all pairs of edges
(e′, e′′) such that e′ ∈ E(Pi) and e′′ ∈ E(Pj), where E(P) denotes the set of edges of P . For
each pair of edges (e′, e′′), we go over the polytopes Pj+1, . . . , Pk and we compute the sets
Ce′e′′Pℓ

= {Ψe′e′′(e) | e ∈ E(Pℓ)}, ℓ = j + 1, . . . , k. Points in the set Ce′e′′Pℓ
represent lines

that are tangent to e′ and e′′. These lines either intersect Pℓ in its interior or are tangent
to Pℓ. Note that a single curve c ∈ Ce′e′′Pℓ

may comprise sub-curves of points of both types.
Let He′e′′Pℓ

denote the set of all points that represent lines tangent to e′, e′′, and Pℓ. We
compute He′e′′Pℓ

from Ce′e′′Pℓ
for ℓ = j+1, . . . , k. Next, we construct the arrangement Ae′e′′Pℓ

induced by He′e′′Pℓ
, ℓ = j + 1, . . . , k, and eliminate cells associated with lines that intersect

the interior of Pi or of Pj. Finally, we construct the arrangement Ae′e′′ by overlaying all the

29

30 Chapter 5. Lines Tangent to Four Strictly Disjoint Polytopes

arrangements Ae′e′′Pℓ
, ℓ = j + 1, . . . , k and extract from the arrangement the lines tangent

to Pi at e′, Pj at e′′, and at least two additional polytopes; see Algorithm 2 for pseudo code.

Algorithm 2 Find all lines tangent to four strictly disjoint convex polytopes in P.

1 for i = 1, . . . , k − 3,
2 for j = i+ 1, . . . , k − 2,
3 foreach e′ ∈ E(Pi), e

′′ ∈ E(Pj),
4 for ℓ = j + 1, . . . , k,
5 Construct the set Ce′e′′Pℓ

.
6 Construct the set He′e′′Pℓ

from the set Ce′e′′Pℓ
.

7 Construct the arrangement Ae′e′′Pℓ
induced by He′e′′Pℓ

.
8 Eliminate cells of Ae′e′′Pℓ

associated with lines that intersect the interior
of Pi or of Pj.

9 Construct the arrangement Ae′e′′ from the arrangements Ae′e′′Pℓ
, ℓ =

j + 1, . . . , k.
10 Extract tangent lines from Ae′e′′ .

5.2 Constructing the Arrangement

In line 7 of Algorithm 2 we construct the arrangement induced by the sets He′e′′Pℓ
, where

He′e′′Pℓ
represents lines tangent to e′, e′′, and Pℓ. In line 6 of Algorithm 2 we construct the

set He′e′′Pℓ
from the set Ce′e′′Pℓ

= {Ψe′e′′(e) | e ∈ E(Pℓ)}. In this section we show that He′e′′Pℓ

is subset of Ce′e′′Pℓ
and describe how to compute it efficiently. Consider the arrangement

induced by the point set Ce′e′′Pℓ
. Each pair of adjacent edges (two edges are adjacent if they

share a common vertex) in the arrangement are the images of two adjacent edges in Pℓ;
see Figure 5.1. In the following we omit the subscript letter ℓ in all notations for clarity.

(a) (b)

Figure 5.1: (a) An icosahedron I. (b) The
arrangement induced by the point set
{ΨS1S2

(e) | e ∈ E(I)}, where S1 and S2

are two skew segments (omitted in the figure).
The color of each edge of the arrangement is
the same as the color of its generating edge.

Lemma 5.1. Given a polytope P and two skew
lines L1 and L2, the points in the set CL1L2P =
{ΨL1L2

(e) | e ∈ E(P)} comprise at most three
connected components. They represent lines di-
vided into at most three connected components
of lines respectively.

Proof. Let Q1 denote the plane that contains
L1 and does not intersect L2. Since L1 and L2

are skew, such a plane exists. Similarly, let Q2

denote the plane that contains L2 and does not
intersect L1. As Q1 and Q2 are parallel, they
divide R3 into three parts. None of the lines
contained in Q1 or in Q2 are tangent to both

5.2. Constructing the Arrangement 31

Figure 5.2: An arrangement induced by the
point set {ΨS1S2

(e) | e ∈ E(I)}, where
S1 and S2 are two line segments care-
fully chosen, so that the points in the set
{ΨL(S1)L(S2)(e) | e ∈ E(I)} represent lines di-
vided into three connected components of lines.

L1 and L2 and all other lines are. As P is convex, Q1 and Q2 may divide P into at most
three parts. In particular, the intersection P ∩ {Q1 ∪Q2} consists of points that cannot lie
on lines simultaneously tangent to L1 and L2. Moreover, a line tangent to L1, L2, and P
at r1 cannot be moved to a line tangent to L1, L2, and P at r2, while holding the tangency
constraints, if r1 and r2 are not in the same part. We conclude that, the set of lines tangent
to L1 and L2, and intersect P , is divided into at most three connected components of lines;
see Figure 5.2.

Lemma 5.2. Let P be a convex polytope and let CL1L2P = {ΨL1L2
(e) | e ∈ E(P)} be the set

of all planar points that represent lines that intersect P , and two skew lines L1 and L2. Let
C1, C2, and C3 be (possibly empty) maximal connected component, C1 ∪C2 ∪C3 = CL1L2P . For
i = 1, 2, 3, the intersection of every vertical line with Ci is either a segment, a ray, or empty.

Proof. Let V denote a vertical line in the plane. V represents the group L of all the lines
that intersect L1 at a point, say q, and the line L2. Since P is convex, the intersection of
P and the plane that contains q and L2 is either a convex polygon or empty. If the line
parallel to L2 that contains q also intersects P , L is either empty or contains two connected
components of lines. Thus, L contains zero, one, or two connected components of lines,
which implies that the intersection of V with Ci is either a segment, a ray, or empty.

Corollary 5.3. The upper and lower boundaries of Ci, i = 1, 2, 3, are x-monotone.

Lemma 5.4. Let L be a line tangent to two skew lines L1 and L2, and let p be a planar point
that represents L. Let P be a convex polytope. Let CL1L2P = {ΨL1L2

(e) | e ∈ E(P)} be the
set of all planar points that represent lines that intersect L1, L2, and P . Let C1, C2, and C3
be (possibly empty) maximal connected component, C1 ∪ C2 ∪ C3 = CL1L2P . Finally, consider
the point set HL1L2P , and let Hi ⊂ H be the union of the lower and the upper envelopes, if
exist, of Ci, for i = 1, 2, 3. L is also tangent to P iff p lies on Hi′ for some 1 ≤ i′ ≤ 3.

p

Proof. All the points in the plane represent lines tangent to L1 and
L2. A line tangent to P must intersect the closed segment associated
with an edge of P . Thus, all the points in every face of the arrange-
ment induced by CL1L2P have the same invariant—all the lines they
represent either intersect P or they do not.

(⇐), W.l.o.g, let p be a point on the lower envelope of one of Ci′
for some 1 ≤ i′ ≤ 3. Let V denote the vertical line in the plane that
contains p. From Lemma 5.2 we get that V intersects Ci′ at either

32 Chapter 5. Lines Tangent to Four Strictly Disjoint Polytopes

a segment or a ray. Since P is bounded, the face below p represents lines that do not
intersect P (while the points above p represent lines that do intersect P). If V intersects
additional point set say, C′j , j′ 6= i′, then since Ci′ and Cj′ represent lines in different connected
components, we come to the same conclusion; that is, the face below p represents lines that
do not intersect P . Thus, L is tangent to P .

(⇒), Let L be a line tangent to P , L1, and L2. Let q be the intersection point of L
with L1. Let Q be the plane defined by q and L2. Q intersects P at a convex polygon. All
the lines on Q that intersect both q and P are mapped to a line segment or to two rays
on a vertical line, L is mapped to an endpoint p on the line segment or on one of the rays.
Thus, p is on the boundary of some Ci. From Corollary 5.3 we know that the boundary is
x-monotone, hence, p ∈ Hi′ for some 1 ≤ i′ ≤ 3.

Given two line segments, S1 and S2, and a polytope, P , let HS1S2P be the set of all
points in the plane that represent lines tangent to S1, S2, and P . Let H1, H2, and H3 be
(possibly empty) maximal connected component, H1 ∪ H2 ∪ H3 = HL(S1)L(S2)P . Consider
the point set C = {ΨL(S1)L(S2)(e) | e ∈ E(P)}, and let Ci ⊂ C be the point set that contains
Hi, for i = 1, 2, 3. First, from Lemma 5.4 we get that the union of the envelopes of C1, C2,
and C3 yields HL(S1)L(S2)P , which represents lines tangent to L(S1), L(S2), and P . Secondly,
the desired point set HS1S2P is simply the result of clipping HL(S1)L(S2)P to the unit square.
Since, HL(S1)L(S2)P consists of arcs of a rectangular hyperbola with horizontal and vertical
asymptotes, clipping does not yield additional connected components.

First, we compute C = {ΨL(S1)L(S2)(e) | e ∈ E(P)}. Next, we set apart the vertical lines
in C to yield C′. Such lines are generated in each case where an edge in E(P) intersects
L(S1); see Section 3.2.1. Next, we identify the connected component of every curve in C′
as follows: We calculate the two parallel planes Q1 and Q2. For every curve C ∈ C′ (that
was mapped by an edge e ∈ E(P)) we pick a representative point p ∈ C, calculate the
intersection point q of the line represented by p and the edge e, and locate p in one of the
volumes induced by Q1 and Q2. This yields the identity of the connected component of
the lines represented by C. Naturally, if neither Q1 nor Q2 intersect P , there is only one
connected component, and there is no need to perform the point location at all. Moreover,
if a curve C represents lines of a certain connected component, then all curves connected to
C represent lines of the same connected component. We detect connectivity at endpoints
to expedite the connected component identification. Next, we compute the upper and lower
envelope of every connected component to obtain the boundary. Finally, we add the vertical
lines back and clip the resulting curves to the unit square. It is possible to reverse the
order of operations; that is, first clip the curves in C to the unit square to yield CS. Next,
identify the connected component of the curves in CS. Next, compute the boundary of the
connected components. The last step becomes more complicated, since faces bounded by
the unit square may represent lines that intersect P . Thus, on the one hand it is necessary
to identify the connected component of lines represented by these faces. On the other hand,
clipping may substantially decrease the number of curves.

We collect the set HS1S2P and insert it into the arrangement AS1S2P using a plane-sweep
algorithm.

5.3. Removing Cells From the Arrangement 33

5.3 Removing Cells From the Arrangement

The geometric embeddings of the edges of the arrangement AS1S2P represent all lines tan-
gent to S1, S2, and P . Some of these lines may intersect the interior of Pi or of Pj . Their
representation must be removed from the arrangement. We construct two additional ar-
rangements, Ai

S1S2
and Aj

S1S2
. Each has (at most three) marked faces, such that all points

inside these faces represent lines tangent to S1 and S2, and intersect Pi and Pj, respec-
tively. We slightly modify the algorithm described in the previous section used to con-
struct each of these two arrangements as follows: (i) To construct Ai

S1S2
and Aj

S1S2
we

start with the point sets CiL(S1)L(S2)
= {ΨL(S1)L(S2)(e) | e ∈ E(Pi) \ {S1}} and CjL(S1)L(S2)

=

{ΨL(S1)L(S2)(e) | e ∈ E(Pj) \ {S2}}, respectively. (ii) We find the connected components Ci1,
Ci2, and Ci3, Ci1 ∪ Ci2 ∪ Ci3 = CiL(S1)L(S2)P

and Cj1, Cj2, and Cj3, Cj1 ∪ Cj2 ∪ Cj3 = CjL(S1)L(S2)P
.

(iii) We compute the lower and upper envelopes of Ci1, Ci2, and Ci3 to obtain Hi
L(S1)L(S2)

.

(iv) We compute the lower and upper envelopes of Cj1, Cj2, and Cj3 and to obtain Hj
L(S1)L(S2)

.

(v) We construct the arrangements Ai
S1S2

and Aj
S1S2

induced by the point sets Hi
L(S1)L(S2)

and Hj
L(S1)L(S2)

, respectively. (vi) We mark the faces of Ai
S1S2

and Aj
S1S2

that represent lines

that intersect Pi and Pj, respectively. Then, we compute the union of the marked faces Ai
S1S2

and Aj
S1S2

via their overlay A′

S1S2
. Finally, in line 8, we compute the overlay of AS1S2P and

A′

S1S2
and remove all edges in AS1S2P that are overlaid with marked cells in A′

S1S2
.

Notice that each one of the two endpoints of S1 is also the endpoint of at least two other
edges of Pi. It implies that the set CiS1S2

consists of vertical and horizontal lines. This case

is adequately handled; see previous section. The same holds for CjS1S2
. This observation can

be used to optimize line 8 of the algorithm, which is not implemented though.

We overlay the arrangements AS1S2Pℓ
, ℓ = j+1, . . . , k, and obtain the arrangement AS1S2

.
We need to account for all lines that are tangent to S1, S2, and two additional polytopes.
We store with each edge of AS1S2

the inducing polytope of that edge. We only report on
vertices that are the result of the intersection of two edges of distinct polytopes. Some of
the vertices are the result of the intersection of two edges of the same polytope, there are
O(n) such vertices. Since we have only O(n2) arrangements, handling these vertices do not
effect the asymptote complexity of the algorithm.

5.3.1 Degeneracies

In this section we go over degenerate cases. The code that handles these degeneracies has
not been implemented yet, and is suggested as future work. Let S denote an edge of Pℓ.

L(S1) contains S. In case L(S1) contains S, the point set {ΨL(S1)L(S2)(p) | p ∈ S} is a
bounded face between two vertical lines. This face does not intersect the unit square and
hence it can be ignored.

L(S2) contains S. In case L(S2) contains S, the point set {ΨL(S1)L(S2)(p) | p ∈ S} is a
bounded face between two horizontal lines. This face does not intersect the unit square and

34 Chapter 5. Lines Tangent to Four Strictly Disjoint Polytopes

hence it can be ignored.

S1 and S2 are coplanar. When S1 and S2 are coplanar we can reduce the problem to
the plane PS1S2

that contains both S1 and S2. Each polytope intersect PS1S2
at either an

empty intersection, a vertex, an edge, a facet, or a convex polygon. When the intersection
is either a facet, an edge or a vertex, PS1S2

is tangent to the polytope. If the intersection
is a vertex, a segment of a hyperbola is added to the arrangement; in case of an edge, a
face is added to the arrangement. If the intersection is a facet, several faces are added to
the arrangement, one for each edge. The union faces of all of these faces are added to the
arrangement. The union can be found output-sensitively using envelopes. Since each point
on these faces represents a line tangent to three polytopes, they are marked and a counter
of the face is set to one. If two such faces overlap then the counter of the overlapping face is
set to two. If the intersection is a convex polygon (that is not a face), no special treatment is
needed. We compute C = {ΨL(S1)L(S2)(e) | e ∈ E(P)} and apply the procedure we described
above for the general case.

5.4 Complexity Analysis

Computing C = {ΨL(Si)L(Sj)(e) | e ∈ E(P)} is done in O(n) time. Identifying the connected
components take O(n) time as well. Computing the upper and lower envelope of every
connected components takes O(λ2(n) log n) (O(λ2(n)) = 2n − 1), since the curves in C′
are all arcs of rectangular hyperbolas with vertical and horizontal asymptotes or horizontal
lines and the maximal number of intersections between two such curves is 2. Collecting the
set HSiSj

and inserting it into the arrangement ASiSj
using a plane-sweep algorithm takes

O(n logn + I1), where I1 is the total number of respective intersections. Thus, the total
time it takes to construct and process all arrangements is O((n3 + I2) logn), where I2 is
the total number of respective intersections. In summary, the process can be performed
in O((n3 + I) logn) running time. Where n is the input size and I is the output size. I
is bounded by O(n4). As only one arrangement must be retained at a time, the required
storage space is O(n logn+ J), where J is the maximum number of intersections in a single
arrangement. J is bounded by O(n2).

5.5 Implementation with Cgal.

We use the Polyhedron_3 class of Cgal to represent an input polytope. The output is tem-
plate of the same format as the format of the output of the Lines_through_segments_3<Traits>
functor; see Section 4.3. However, since we do not handle all degenerate cases, the output
will always be of type Mapped_point_2.

Lines_through_polytopes_3 is a new class template that provides the means to find all
lines tangent to four polytopes. The class Lines_through_polytopes_3<Traits> is a functor
that accepts as input a set P of k convex polytopes and returns a list of connected com-
ponents, each tangent to four polytopes of P. When instantiated, the template parameter

5.5. Implementation with Cgal. 35

Traits must be substituted with model of the concept LinesThroughSegments_3 , which is
described in Section 4.2. The new concept lists the set of requirements that must be fulfilled
by an instance of the traits template-parameter of the class Lines_through_polytopes_3.

The class uses the Envelopes of Surfaces in 2D package of Cgal, in order to compute
the lower and upper envelopes of each component.

36

6
Experiments

In this chapter we report on several experiments that show the strength of the algorithm
and its implementation. We have conducted experiments on three types of data sets. The
first produces the worst-case combinatorial output and has many degeneracies. The second
consists of transformed versions of the first and has many near-degeneracies. The third
comprises random input. We report on the time consumption of our implementation, and
compare it to those of other implementations. All experiments were performed on a Pentium
PC clocked at 2.40 GHz.

6.1 Grid

The Grid data set comprises 40 line segments arranged in two grids
of 20 lines segments each lying in two planes, P1 and P2, parallel
to the yz-plane; see Chapter 1. Each grid consists of ten vertical
and ten horizontal line segments. The output consists of several
planar patches each lying in P1 or P2 and exactly 10, 000 lines, such that each contains one
intersection point in one plane and one in the other plane. Table 6.1 lists all output elements.
703 arrangements in the plane and 200 arrangements on the sphere were constructed during
the process. All single output lines are represented by vertices of arrangements on the
sphere. Such an arrangement is depicted in the figure above. The origin of the sphere is the
intersection point of two line segments S1 and S40 in the same plane. The arrangement is
induced by the point set {ΞS1∩S40

(Si) | i = 2, . . . , 39}. The figure on the next page depicts
an arrangement in the plane constructed during the process. The arrangement is induced
by the point set {ΨS1S40

(Si) | i = 2, . . . , 39}. Each face of the arrangement represents a ruled
surface patch, such that each line lying in the surface intersects at least 6 and up to 20 line
segments. Different colors represent different number of originating line segments.

37

38 Chapter 6. Experiments

Figure 6.1: Two grids parallel to the z = 0 plane.

Table 6.1: Grid Output

Number of lines Number of curves Number of arcs Number of gen-
eral polygons

Time (in sec-
onds)

10,000 36 1,224 17,060 20.74

6.1.1 Transformed Grid

We conducted three additional experiments using a transformed ver-
sion of the Grid data set. First, we slightly perturbed the input line
segments, such that every two line segments became skew and the di-
rections of every three line segments became linearly independent. We
refer to this input as Perturbed Grid. Secondly, we translated the
(perturbed) horizontal line segments of one grid along the plane that
contains this grid (referred to as Perturbed Grid 1), increasing the
distance between the (perturbed) vertical and horizontal line segments
of that grid. This drastically reduced the number of output lines. Thirdly, we translated the
(perturbed) horizontal line segments of that grid even more along the plane (referred to as
Perturbed Grid 2), further reducing the number of output lines; see Figure 6.2. Table 6.2
shows the number of output lines and the time it took to perform the computation using
our implementation, referred to as LTS. The monotonic relation between the output size
and time consumption of our implementation is prominent. The table also shows the time

6.2. Random Input 39

(a) (b)

Figure 6.2: Translation of the horizontal lines at the lower grid.

it took to perform the computation using two instances of a program developed by J. Red-
burn [Red03], which represents lines by their Plücker coordinates and exhaustively examines
every quadruple of input line segments. One instance, relies on a number type with unlimited
precision, while the other resorts to double-precision floating-point numbers. As expected,
when limited precision numbers were used, the output was only an approximation. Notice
that the influence of the output size on the time consumption of Redburn’s implementation
is negligible.1

Table 6.2: Perturbed Grid. Time is measured in seconds.

Input

Unlimited Precision Double Precision

Time
Lines

Time
Lines

LTS Redburn Redburn

Perturbed Grid 23.72 140.17 12,139 0.70 12,009
Translated Grid 1 11.83 132.80 5,923 0.69 5,927
Translated Grid 2 6.90 128.80 1,350 0.70 1,253

6.2 Random Input

The Random data set consists of 50 line segments drawn uniformly at random. In partic-
ular, the endpoints are selected uniformly at random within a sphere. We experimented
with three different radii, namely, Short, Medium, and Long listed in increasing lengths.
We verified that the line segments are in general position; that is, the directions of every
three are linearly independent and they are pairwise skew. Table 6.3 shows the number of

1Redburn’s implementation does not handle well degenerate input. Thus, we were unable to experiment
with the original Grid data set using this implementation.

40 Chapter 6. Experiments

output lines and the time it took to perform the computation using (i) our implementation
referred to as LTS, (ii) our implementation enhanced with the lazy mechanism referred to
as LLTS (see Section 4.2), and (iii) the instance of Redburn’s implementation that relies
on unlimited precision. Once again, one can clearly observe how the time consumption of
our implementation decreases with the decrease of the output size, which in turn decreases
with the decrease in the line-segment lengths. Adversely, the time consumption of Redburn’s
implementation hardly changes.

Table 6.3: Random Input, 50 segments.

Input
Time

Lines
LTS LLTS Redburn

Short 3.04 1.06 300.4 0
Medium 6.80 2.82 314.0 20,742
Long 12.36 5.15 327.0 64,151

7
Conclusions and Future Work

We presented an efficient output-sensitive algorithm and an implementation with Cgal

which finds all the lines tangent to four geometric objects taken from a set of n geometric
objects in three-dimensional Euclidean space. In our algorithm and implementation of the
LTS problem we do not assume general position. Namely, the algorithm and its implemen-
tation are robust and handle all cases. In order to improve the implementation of the LTP
problem, the following future work can be done:

1. Support the degenerate case of two coplanar edges of two distinct polytopes.

2. Enhance the algorithm to support possibly intersecting polytopes.

3. Enhance the algorithm to find all the lines tangent to four non-convex polyhedra.

The approach of using two-dimensional arrangements in order to output-sensitively find
all the lines tangent to four geometric objects can be enhanced to other smooth objects such
as spheres. All the lines tangent to three spheres in three-dimensional Euclidean space have
one degree of freedom. Moreover, Macdonald et al. showed that the number of lines tangent
to four unit spheres in three-dimensional space whose centers are not colinear have at most
twelve common tangent lines [MPT01]. In degenerate cases where the centers are colinear
an infinite number of lines may be tangent to the four spheres. Future work is to develop
and implement an algorithm, which finds all the lines tangent to four elements taken from a
set of n spheres.

41

42

Bibliography

[Aus99] Matthew H. Austern. Generic Programming and the Stl. Addison-Wesley,
1999. 24

[BBP01] Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. Interval arithmetic
yields efficient dynamic filters for computational geometry. Discrete Applied
Mathematics, 109:25–47, 2001. 24

[BDD+07] Hervé Brönnimann, Olivier Devillers, Vida Dujmovic, Hazel Everett, Marc
Glisse, Xavier Goaoc, Sylvain Lazard, Hyeon-Suk Na, and Sue Whitesides.
Lines and free line segments tangent to arbitrary three-dimensional convex
polyhedra. SIAM Journal on Computing, 37(2):522–551, 2007. 3, 4

[BEL+05] Hervé Brönnimann, Hazel Everett, Sylvain Lazard, Frank Sottile, and Sue
Whitesides. Transversals to line segments in three-dimensional space. Discrete
and Computational Geometry, 34:381–390, 2005. 1

[BFH+10] Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter. Ar-
rangements on parametric surfaces II: Concretizations and applications. Math-
ematics in Computer Science, 4:67–91, 2010. 7, 12, 24

[BHK11] Eric Berberich, Michael Hemmer, and Michael Kerber. A generic algebraic
kernel for non-linear geometric applications. In Proceedings of the 27th annual
symposium on computational geometry, pages 179–186, New York, NY, USA,
2011. Association for Computing Machinery (ACM) Press. 25

[BHL+11] Eric Berberich, Michael Hemmer, Sylvain Lazard, Luis Penaranda, and
Monique Teillaud. Algebraic kernel. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.9 edition, 2011. http://www.cgal.org/Manual/3.

9/doc_html/cgal_manual/packages.html#Pkg:AlgebraicKerneld. 25

[CS89] Richard Cole and Micha Sharir. Visibility problems for polyhedral terrains.
Journal of Symbolic Computation, 7(1):11 – 30, 1989. 3

[dBEG98] Mark de Berg, Hazel Everett, and Leonidas J. Guibas. The union of moving
polygonal pseudodiscs–combinatorial bounds and applications. Computational
Geometry, 11(2):69 – 81, 1998. 3

43

http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:AlgebraicKerneld
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:AlgebraicKerneld

44 BIBLIOGRAPHY

[dBvKOS08] Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Schwarzkopf.
Computational geometry: algorithms and applications. Springer, 3nd edition,
2008. 12

[dCCLT09] Pedro M.M. de Castro, Frédéric Cazals, Sébastien Loriot, and Monique Teil-
laud. Design of the Cgal 3D spherical kernel and application to arrangements
of circles on a sphere. Computational Geometry: Theory and Applications,
42(6–7):536–550, 2009. 25

[DDE+09] J. Demouth, O. Devillers, H. Everett, M. Glisse, S. Lazard, and R. Seidel. On
the complexity of umbra and penumbra. Computational Geometry — Theory
and Applications, 42:758–771, 2009. 1, 5

[DGL08] Olivier Devillers, Marc Glisse, and Sylvain Lazard. Predicates for line transver-
sals to lines and line segments in three-dimensional space. In Proceedings of the
twenty-fourth annual symposium on computational geometry, pages 174–181,
New York, NY, USA, 2008. ACM. 7

[DP03] Olivier Devillers and Sylvain Pion. Efficient exact geometric predicates for
Delaunay triangulations. In Proceedings of the 5th Workshop Algorithm Engi-
neering and Experiments., pages 37–44, 2003. 11

[ELLZ09] Hazel Everett, Sylvain Lazard, William Lenhart, and Linqiao Zhang. On the
degree of standard geometric predicates for line transversals in 3D. Computa-
tional Geometry — Theory and Applications, 42(5):484 – 494, 2009. 2

[FH08] Efi Fogel and Dan Halperin. Polyhedral assembly partitioning with infinite
translations or the importance of being exact. In Proceedings of the 8th In-
ternational Workshop on Algorithmic Foundations of Robotics, pages 417–432,
2008. 5

[FSH08] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrange-
ments of geodesic arcs on the sphere with applications. In Abstracts of the 24th
European Workshop on Computational Geometry, pages 83–86, 2008. 6

[FWH11] Efi Fogel, Ron Wein, and Dan Halperin. Cgal Arrangements and Their Ap-
plications, A Step-by-Step Guide. 2011. 7, 12, 24

[GL10] Marc Glisse and Sylvain Lazard. On the complexity of sets of free lines and
line segments among balls in three dimensions. In Proceedings of the 26th
annual symposium on computational geometry, pages 48–57, New York, NY,
USA, 2010. ACM. 3

[HLW00] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for as-
sembly planning: The motion space approach. Algorithmica, 26:577–601, 2000.
4

BIBLIOGRAPHY 45

[KMP+08] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap.
Classroom examples of robustness problems in geometric computations. Com-
putational Geometry — Theory and Applications, 40:61–78, 2008. 11

[MO88] M. McKenna and J. O’Rourke. Arrangements of lines in 3-space: a data
structure with applications. In Proceedings of the fourth annual symposium on
computational geometry, pages 371–380, New York, NY, USA, 1988. ACM. 7

[MPT01] I. G. Macdonald, J. Pach, and T. Theobald. Common tangents to four unit
balls in. Discrete and Computational Geometry, 26:1–17, 2001. 41

[MS88] David A. Musser and Alexander A. Stepanov. Generic programming. In Pro-
ceedings of the International Conference on Symbolic and Algebraic Computa-
tion, volume 358 of LNCS, pages 13–25. Springer-Verlag, 1988. 5

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, NY, USA, 1985. 11

[PW01] H. Pottmann and J. Wallner. Computational line geometry. Mathematics and
visualization. Springer, 2001. 10

[Red03] J. Redburn. Robust computation of the non-obstructed line segments tangent to
four amongst n triangles. PhD thesis, Williams College, Massachusetts, 2003.
2, 4, 8, 39

[SHRH11] Oren Salzman, Michael Hemmer, Barak Raveh, and Dan Halperin. Motion
planning via manifold samples. In Algorithms - ESA 2011, pages 493–505.
2011. 25

[Str04] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Boston, MA, USA, 3rd edition, 2004. 24

[TH99] Seth Teller and Michael Hohmeyer. Determining the lines through four lines.
Journal of graphics, GPU, and game tools, 4(3):11–22, 1999. 2, 3, 8

[WFZH07] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced pro-
gramming techniques applied to Cgal’s arrangement package. Computational
Geometry: Theory and Applications, 38(1–2):37–63, 2007. Special issue on
Cgal. 7

[WL94] Randall H. Wilson and Jean-Claude Latombe. Geometric reasoning about
mechanical assembly. Artificial Intelligence, 71(2):371–396, 1994. 4

[Yap04] Chee-Keng Yap. Robust geomtric computation. In Jacob E. Goodman and
Joseph O’Rourke, editors, Handbook of Discrete and Computational Geome-
try, chapter 41, pages 927–952. Chapman & Hall/CRC, Boca Raton, FL, 2nd
edition, 2004. 7, 11

46 BIBLIOGRAPHY

[YD95] Chee-Keng Yap and Thomas Dubé. The exact computation paradigm. In D.-Z.
Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of
LNCS, pages 452–492. World Scientific, Singapore, 2nd edition, 1995. 7

[ZEL+08] Linqiao Zhang, Hazel Everett, Sylvain Lazard, Christophe Weibel, and Sue
Whitesides. On the size of the 3d visibility skeleton: Experimental results.
In Dan Halperin and Kurt Mehlhorn, editors, Algorithms - ESA 2008, volume
5193 of LNCS, pages 805–816. Springer Berlin / Heidelberg, 2008. 4

Links

[1] Boost — portable C++ libraries.
http://www.boost.org. 26

[2] Cgal — computational geometry algorithms library.
http://www.cgal.org. 6, 7

[3] Gmp — GNU multiple precision arithmetic library.
http://gmplib.org. 6

47

http://www.boost.org
http://www.cgal.org
http://gmplib.org

	Introduction
	Preliminaries
	Definitions
	Representation
	Cgal and the 2D Arrangements Package

	From R3 to Two-Dimensional Surfaces
	Directions Are Linearly Independent
	Directions Are Not Linearly Independent
	Directions of L1 and L2 are Linearly Independent
	Directions of L1 and L2 Are Dependent
	S1 and S2 Intersect
	S1 and S2 Are Collinear

	Algorithmic and Implementation Details
	Algorithm Overview
	The Processing of Arrangements in the Plane
	The Processing of Arrangements on the Sphere
	The Processing of Collinear Line Segments
	Complexity Analysis

	Implementation with Cgal
	Application Interface
	Output Elements

	Lines Tangent to Four Strictly Disjoint Polytopes
	Algorithm Overview
	Constructing the Arrangement
	Removing Cells From the Arrangement
	Degeneracies

	Complexity Analysis
	Implementation with Cgal.

	Experiments
	Grid
	Transformed Grid

	Random Input

	Conclusions and Future Work

