Assignment no. 1

due: April 3rd, 2017

Exercise 1.1 Given a simple polygon with n vertices in the plane and a real parameter $w>0$, describe an efficient algorithm to compute the orientation in which the polygon should be placed on the base of a "two-dimensional" 3D printer of width w, such that its height is minimized. See the figures for examples.
Implement the algorithm and produce alphanumerical as well as graphic results, using ipe for instance. The implementation does not have to be of the most efficient algorithm. Any near-linear time algorithm will do. The alphanumerical output is the angle in radians that one needs to rotate the polygon counterclockwise in order to put it in the printer at a minimal-height position.

Figure 1: Top row from left to right: an input polygon and its placement in the printer. Bottom row from left to right: another input polygon, its placement in a wide printer and its placement in a narrow printer.

Notice that there is an additional exercise on the other side of the page.

Exercise 1.2 Write a program that reads an stl file and uniformly scales the model in the file such that the scaled model is the largest that could still fit into an axis-parallel box with dimensions $30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 10 \mathrm{~mm}$. Output the scaled model into a new stl file.
Download an stl file from one of the repositories, run your program on it, and 3D-print the resulting object (the stl that you produced) on an FDM printer like the course's Ultimaker 3.

