
Algorithmic Robotics and Motion Planning — Fall 2021/22 — Dan Halperin

Assignment no. 1

due: November 1st, 2021

The letter (p) after the exercise number indicates that this exercise has a programming component.
The number (2) after the exercise number indicates that students may work in pairs on the exercise
and submit their solution jointly.

Exercise 1.1 (p) Write a program that solves Oskar’s cube. The matrices that describe the faces
of the cube appear in the course’s website, together with specifications how to output a solution path
from start to goal.

Exercise 1.2 We are given a convex polygonal robot P with m vertices that is free to translate inside
a convex polygonal room Q with n vertices. The only obstacles to the motion of P are Q’s walls. What
is the maximum combinatorial complexity of the free space in this case? Describe an efficient algorithm
to compute a representation of the free space.

Exercise 1.3 (2) Recall that you are expected to be familiar with the contents of Chapter 2, Line
Segment Intersection, of the Computational Geometry book by de Berg et al. Specifically, for the
current exercise you will need to employ the DCEL data structure and the sweep-line algorithm.

We are given a rectangular room with non-overlapping disc-like obstacles, and a Roomba robot together
with free start and goal positions for it. We wish to plan a collision-free motion for the Roomba from
start to goal. You may assume general position here, namely that you do not need to handle degenerate
situations. In particular, you may assume that the boundary curves of three distinct expanded obstacles
do not meet in a single point.
(a) Design an exact algorithm to solve this motion-planning problem, based on computing the union
of the expanded obstacles. Describe it in detail, and analyze its running time.
(b) optional (bonus) One can mimic the proof of the combinatorial bound on the complexity of
the free space as we saw in class, to derive an exact O(n log n)-time algorithm for solving the motion-
planning problem at hand. Describe such an algorithm in detail, and show that its running time is
indeed O(n log n). You have at your disposal a procedure, which given n planes in 3-space returns all
the edges (segments and rays) of their upper envelope, and does that in O(n log n) time—no need to
describe the details of this procedure.


