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Abstract

An underlying structure in several sampling-based methods for continuous multi-robot mo-
tion planning (MRMP) is the tensor roadmap, which emerges from combining multiple prob-
abilistic roadmap (PRM) graphs constructed for the individual robots via a tensor product.
We study the conditions under which the tensor roadmap encodes a near-optimal solution for
MRMP—satisfying these conditions implies near optimality for a variety of popular planners,
including dRRT*, and the discrete methods M* and conflict-based search, when applied to
the continuous domain. We develop the first finite-sample analysis of this kind, which speci-
fies the number of samples, their deterministic distribution, and magnitude of the connection
radii that should be used by each individual PRM graph, to guarantee near-optimality us-
ing the tensor roadmap. This significantly improves upon a previous asymptotic analysis,
wherein the number of samples tends to infinity. Our new finite sample-size analysis sup-
ports guaranteed high-quality solutions in practice within finite time. To achieve our new
result, we first develop a sampling scheme, which we call the staggered grid, for finite-sample
motion planning for individual robots, which requires significantly less samples than previ-
ous work. We then extend it to the much more involved MRMP setting which requires to
account for interactions among multiple robots. Finally, we report on a few experiments that
serve as a verification of our theoretical findings and raise interesting questions for further
investigation.
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1
Introduction

Multi-robot (MR) systems are already playing a crucial role in manufacturing, warehouse
automation, and natural resource monitoring, and in the future they will be employed in
even broader domains from space exploration to search-and-rescue. One of the most basic
ingredients necessary in all those applications are mechanisms for multi-robot motion plan-
ning (MRMP), which should quickly generate motion trajectories to move robots from their
origins to destinations, while avoiding collisions with the environment and between robots.
In many cases, it is desirable to develop MRMP approaches that provide strong guarantees
of completeness and near-optimality, to ensure that a high-quality solution would be found
(if one exists). To achieve this, methods for MRMP must accurately capture the continu-
ous state space of individual robots and the intricate interactions between multiple robots.
Those considerations make the task of designing efficient high-quality methods for MRMP
tremendously challenging [20, 22, 48, 53]

In this work we develop a general approach for centralized near-optimal sampling-based
motion planning using a finite number of samples, which is the first of its kind. Previous
solutions guarantee path quality for the multi-robot case only asymptotically, namely, as the
number of samples tends to infinity. In contrast, our new method explicitly prescribes finite
samples sets, and by that supports guaranteed high-quality solutions in practice, within
bounded running time.

Related work. This thesis focuses on centralized approaches for multi-robot motion co-
ordination where the planning is carried out by a single entity that knows the state of the
entire system. In the decentralized setting, which is outside the scope of this work, each
robot has autonomy in planning its motion typically based on local knowledge about the
system (say the state of its few neighboring robots) [4, 33, 37, 39, 60]. A common approach
to centralized MRMP, which is often taken in the AI research community, is to consider a
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discretized version of the problem, termed multi-agent pathfinding (MAPF), wherein robots
are assumed to move along vertices of a graph. A variety of methods were developed for
MAPF, including integer-programming formulations [15], path-based search methods [59],
and conflict-based search [42]. Those have been successfully applied to a variety of problems
involving multiple robots—from warehouse management [34] to multi-drone package deliv-
ery [7]. Unfortunately, MAPF methods provide no solution quality guarantees with respect
to the original continuous MRMP problem, since they usually employ a crude discretization
of the robots’ environment in the form of a regular lattice, where a cell size corresponds to
a robot’s bounding box.

Recent work extends conflict-based search to the continuous MRMP domain, by using PRM

graphs to capture the individual robots’ state space [19, 32, 45]. Nevertheless, no guidelines
are provided as to how to construct those roadmaps (in terms of number of samples, their
distribution, and connection radius) to guarantee completeness or optimality with respect
to the original MRMP problem.

In a different line of work, computational geometry methods are employed to explicitly
reason about the robots’ continuous state space. Such methods are quite powerful, in that
they guarantee polynomial runtime, completeness, and near-optimal solutions for different
quality metrics [1, 46, 52, 56]. However, those methods are typically restricted to disc-shaped
robots operating within a planar domain, and they require special separation constraints,
e.g., between the robots’ initial and terminal positions, in order to work correctly, which
limits their applicability in practice.

A promising direction, which aims to overcome the limitations of discrete and geometry-
based approaches, are sampling-based (SB) planners. SB-planners were initially developed to
the tackle the single-robot motion-planning problem for complex systems, by using random
sampling of states to capture the structure of the robot’s complex state space, which results in
a discrete graph representation. Many of those algorithms, including the celebrated PRM [24,
25, 31], and RRT [28, 30] algorithms are known to converge to a solution asymptotically with
the number of samples drawn. Some SB-planners are also guaranteed to converge to the
optimal solution as the number of samples tends to infinity [17, 21, 23, 27, 49].

Consequently, a variety of SB-MRMP approaches have emerged, from methods that aim
to apply PRM-based solutions [41, 58], to techniques that sample local instances of the MAPF
problem [29, 47]. A different method, termed discrete RRT (dRRT) [51], carefully explores
an implicitly-represented tensor roadmap (TR), which emerges from combining several PRM
roadmaps constructed for the individual robots, to effectively solve instances of MRMP
requiring tight coordination between multiple robots. A recent work further improves this
approach with the dRRT˚ method [44], which is also shown to yield a near-optimal MRMP
solution. To the best of our knowledge, this is the only scalable SB-MR planner with such
a guarantee. Unfortunately, this result is asymptotic and does not specify guarantees for a
finite number of samples.

Another topic we discuss in this thesis is that of finding an economical cover of a cube
of arbitrary dimension using (small) spheres. This problem is of interest to us as we aim to
sample points that represent the space with an accuracy of our choosing. In order to do so,
we use an ε-cover, which is the concept of covering a set with balls of radius ε [5, 35, 36].
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This concept is closely related to another problem, which is covering the whole domain with
spheres; in this context, the problem is referred to as cover density Cover density is the ratio
between the volume of the spheres and the volume of the covered object. In the unbounded
case (e.g., the entire plane) it is the limit of covering a ball with a radius tending towards
infinity [5, 8]. Finding a set that faithfully represents the underlying hypothesis space is
also related to the concept of ε-nets, namely approximating a general set by a collection of
simpler subsets [3, 38]. The latter is frequently used in AI to bound the size of the hypothesis
space [6, 12, 18, 40, 57].

Contribution. We develop a general framework for near-optimal SB-MRMP while using
a finite number of samples. To this end, we study the structure of the TR which is an
underlying ingredient in dRRT˚, MC-CBS [32] (a continuous-space extension of CBS), and M˚ [59]
(when applied to a continuous space). We develop conditions under which the TR encodes a
near-optimal solution to MRMP—if those conditions hold, it implies that the aforementioned
planners are guaranteed to be near-optimal as well. In particular, we prescribe a recipe for
constructing individual-robot PRM1 graphs, in terms of number of samples, their deterministic
distribution, and connection radius, so that the resulting TR encodes a near-optimal solution
for MRMP.

To achieve this we refine the asymptotic analysis that we developed in [44] (in the context
of the dRRT˚ algorithm) to the finite-sample regime. The latter requires a much more careful
study of the different ingredients of the problem, including the clearance parameter between
robots and obstacles, and the approximation factor, which were previously assumed to be
infinitesimally small. A key component in our result is a new sampling scheme that we
develop, which we call the staggered grid, for finite-sample motion planning for individual
robots. This sampling scheme requires significantly less samples than our previous work [55],
to achieve near-optimality for the single-robot case. We mention that we prove this result for
holonomic robotic systems, where the configuration space of each robot is r0, 1sd, for some
d ě 2.

The organization of this thesis is as follows. In Section 2 we provide basic definitions,
which we will use later throughout the thesis. In Section 3 we describe the single-robot
problem, introduce the staggered grid, and study the theoretical properties of PRM using this
sampling scheme. In Section 4 we describe our central contribution, namely the extension
of this theoretical result to the multi-robot setting. We provide experimental results in
Section 5. We then expand in Section 6 on the staggered grid as a covering for a cube, and
conclude with an outline of future work in Section 7. In the appendix we consider the special
case of systems with planar configuration spaces, i.e., R2, and describe a sampling scheme
that requires fewer samples than our staggered grid.

The main results of this thesis were published in IEEE ICRA 2021 [10], and can also be
found publicly online [9].

1Throughout the thesis we slightly abuse the term PRM to refer generally to maps of individual robots,
even when they are deterministic.
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2
Preliminaries

In this section we will formally define all the basic terminology, which will be used throughout
this thesis. These definitions are all elementary and are here mainly for completeness: metric
spaces, the space of free configurations, and trajectories of robots. First let us define a metric
function.

Definition 2.1. Given a set X, a function d : X ˆX Ñ r0,8q is called a metric function
if the following conditions hold:

(i) For all x, y P X, dpx, yq “ 0 ô x “ y.

(ii) For all x, y P X, dpx, yq “ dpy, xq.

(iii) For all x, y, z P X, dpx, zq ď dpx, yq ` dpy, zq.

A set for which a metric function exists is called a metric space. One of the common
metric spaces is Rn which is a metric space for all n P N`, we will use this space in this
thesis.

A common metric function for this space is the p-norm which is defined in the following
manner.

Definition 2.2. Let p P N`, we define the distance function d : Rn ˆ Rn Ñ r0,8q to be:

dpx, yq “

˜

n
ÿ

i“1

|xi ´ yi|
p

¸1{p

.

Note that for p “ 2 we get the Euclidean distance which we will use throughout this
paper. In particular we will use dpx, yq “

a

řn
i“1pxi ´ yiq

2. We will also use the concept of
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norm. The norm of a vector x is its distance from the origin, formally ‖x‖ “ dpx, 0q, for the
Euclidean distance this yields ‖x‖ “

a

řn
i“1 x

2
i . We will sometimes use ‖x´ y‖ to the denote

Euclidean distance between x and y, this is true as ‖x´ y‖ “
a

řn
i“1pxi ´ yiq

2 “ dpx, yq.

We denote by Brpcq the open ball with radius r centered at c. Formally Brpcq “ tx :
dpx, cq ă ru. As stated before, we are using the Eclidean distance thus yielding Brpcq “ tx :
řn
i“1 |xi ´ ci|

2
ă r2u.

We next define the configuration space and the free space. For a single robot R, its
configuration space C is the space of parametric representations of all the possible configu-
rations of the robot, namely every point in C represents one placement of the robot in the
physical world. Given a set of obstacles tO1, . . .Oku, we define the free space Cf to be the
set of all configurations in C in which the robot does not collide with the obstacles. Formally,
Cf “ tc P C : Rpcq X p

Ťk
i“1Oiq “ Hu, where Rpcq represents the physical placement of R at

configuration c. For multi-robot scenarios, the configuration space is simply the Cartesian
product of the configuration spaces of the individual robots. For the free space, an addi-
tional constraint is added, namely that the robots must not collide with one another; this is
formally defined in Section 4.1.

Next we define a trajectory. Given a configuration space C, a trajectory σ is a function
σ : r0, 1s Ñ C, where σptq is the configuration of the robot at time t P r0, 1s. A trajectory
will be called collision-free if it is contained in the free space. Formally, given a free space
Cf Ă C, σ will be called collision-free if σptq P Cf for all 0 ď t ď 1. We note that this
definition holds for both single and multi-robot systems, where the main difference between
the two cases is the underlying free space.
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3
Improved sampling distributions for a single

robot

We present improved sampling distributions for probabilistic roadmaps (PRM) for the single-
robot case. First, we introduce basic ingredients of the problem, then review the concept
of PRM, and introduce our staggered-grid sampling. We follow with our main theoretical
result for the single-robot case, pertaining to the quality of solutions obtained using PRM

with staggered-grid sampling. Finally we conclude with a comparison with previous work.

3.1 Basics of single-robot motion planning

Let C denote the configuration space of the robot, which we assume here to be r0, 1sd, where
d is the dimension, which is the number of degrees of freedom of the robot. The free space,
denoted by Cf Ă C, represents the set of all collision-free configurations. A motion planning
problem is a tuple M :“ pCf , xs, xgq, where Cf is the free space, and xs, xg P Cf are the
start and goal configurations, respectively. A solution of M is a continuous collision-free
trajectory σ : r0, 1s Ñ Cf that begins at σp0q “ xs and ends at σp1q “ xg. We measure the
quality of a trajectory σ by its length, which is denoted by ‖σ‖.

A crucial property of trajectories in sampling-based planning is the notion of clearance.
A trajectory σ has δ-clearance if

Ť

0ďtď1Bδpσptqq Ď Cf , for Bδpσptqq being the d-dimensional
closed Euclidean ball with radius δ centered at σptq. We say that M is δ-clear if there exists
a trajectory σ with clearance δ that solves M.
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3.2 Probabilistic roadmaps and sample sets

We provide a formal definition of the Probabilistic Roadmap (PRM) method [25], which
constructs a discrete graph that captures the connectivity of Cf via sampling. PRM plays a
critical role in various sampling-based planners (see, e.g., [50, 55]). PRM is also instrumental
to our result both on single-robot motion-planning in this section and on multi-robot motion-
planning in Section 4.

For a given motion-planning problem M “ pCf , xs, xgq, a sample (point) set X Ă Cf , and
a connection radius r ą 0, PRM generates a graph denoted by GMpX ,rq “ pV,Eq. The vertex
set V consists of all the collision-free configurations in X Y txs, xgu. The set of (undirected)
edges, E, consists of all vertex pairs v, u P V such that the Euclidean distance between them
is at most r, and the straight-line segment between them is collision-free. Formally, we define

V :“pX Y txs, xguq X Cf , and

E :“
 

tv, uu P V ˆ V : ‖v ´ u‖ ď r,CHptv, uuq Ă Cf
(

,

where CH denotes the convex hull of a point set.

To measure the quality of a sample set X and a connection radius r we use the following
definition [55].

Definition 3.1 (Single-robot (ε, δ)-completeness). Given a sample set X and connection
radius r, we say that pX , rq is (ε, δ)-complete for some stretch ε ą 0 and clearance parameter
δ ą 0 if for every δ-clear M “ pCf , xs, xgq it holds that

dpGMpX ,rq, x
s, xgqq ď p1` εqOPTδ,

where dpGMpX ,rq, x
s, xgq denotes the length of the shortest trajectory from xs to xg in the

graph GMpX ,rq, and OPTδ is the length of the shortest δ-clear solution to M.

3.3 Efficient sampling via a staggered grid

In preparation for our main result in this section we introduce a new sampling scheme
termed a staggered grid, which we denote by Xβ,γ, and study its implications with respect
to (ε, δ)-completeness of PRM. Refer to Figure 3.1 for an illustration. An important property
of this staggered grid, which we prove in Lemma 3.5 below, is that by placing β-radius
hyperspheres centered at the points Xβ,γ we obtain a coverage of the robot’s configuration
space. Moreover, the size of the set Xβ,γ is smaller than previously obtained sets with similar
coverage properties [55]. Notice that we use a slightly shrunk instance of the unit hyper-
cube; a solution path should not pass too close to the boundary of the hyper-cube to respect
the clearance condition—this is the role of the parameter γ.
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Definition 3.2 (Staggered grid). For given β ą 0, γ ą 0 the staggered grid Xβ,γ is the union
of two point sets X 1

β,γ,X 2
β,γ in r0, 1sd, where

X 1
β,γ “

"

pp1, p2, ..., pdq : pi “ γ ` p2k ´ 1qw, 1 ď k ď

R

1´ 2γ

2w

V

, 1 ď i ď d

*

,

X 2
β,γ “

"

pp1, p2, ..., pdq : pi “ γ ` 2kw, 0 ď k ď

R

1´ 2γ

2w

V

, 1 ď i ď d

*

,

and w “ β
?
2

?
d

.

Notice that both X 1
β,γ and X 2

β,γ are square grids of side length 2w, and the total number of

points in the construction is
´Q

p1´2γq
?
d

?
8β

U¯d

`

´Q

p1´2γq
?
d

?
8β

U

` 1
¯d

. We illustrate the staggered

grid in Fig 3.1. A detailed comparative size analysis for the staggered grid can be found in
Section 6.

Figure 3.1: Illustration of Definition 3.2 in two dimensions, for β “ 0.08, γ “ 0.1. On the left
we visualize the first layer X 1

β,γ of the staggered grid (green discs). On the right we add the
second layer X 2

β,γ (red discs). The centers of the discs are the points of Xβ,δ.

Next we make the connection between the staggered grid and a PRM graph that is (ε,
δ)-complete. Namely, we will show that given ε and δ, there is a sample set and radius
(Xβ,γ,r) that are (ε, δ)-complete, where each of β and r depends on both ε and δ, and γ is
equal to δ.

Theorem 3.3 (Sufficient conditions for (ε, δ)-completeness). Fix a stretch parameter ε ą 0
and clearance δ ą 0. For a sampling distribution X “ Xαδ,δ, where α “ ε?

1`ε2
, and the

radius r “ 2pε`1q
?
1`ε2

δ, it follows that pX , rq is (ε, δ)-complete.
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3.4 Proof of Theorem 3.3

In this section we provide a proof of Theorem 3.3. First, we introduce the concept of β-
cover1 [18]. Informally, a β-cover of a domain is a set X of points such that no point of the
domain is too far from some point in X (defined formally below). Next we show that the
staggered grid Xβ,δ is a β-cover of rδ, 1´ δsd. Then we exploit this property in the proof for
Theorem 3.3.

Definition 3.4. For a given β ą 0, a set X Ă Rd is a β-cover for a set A Ă Rd if for every
a P A, there exists s P X such that }a´ s} ď β

First, we prove that Xβ,γ forms a β-cover over rγ, 1´ γsd.

Lemma 3.5. Let β ą 0, γ ą 0 and define Aγ “ rγ, 1´ γsd. Then the staggered grid Xβ,γ is
a β-cover for Aγ.

Proof. Recall that the width w of a cell in each of the two grids that form the staggered grid
Xβ,γ is β

?
2{
?
d. We divide the d-dimensional p1´2γq-hypercube, Aγ, by hyperplanes as fol-

lows. For each coordinate xi we define the hyperplanes xi “ γ`2kw, for k P t0, 1, . . . ,
P

1´2γ
2w

T

u.
Jointly, those hyperplanes induce a partition of Aγ into a set of hypercubes H: each hyper-
cube h P H is of edge length 2w, its center is a point from X 1

β,γ, and its vertices are points
from X 2

β,γ. See Figure 3.2 for an illustration in R2.
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Figure 3.2: Illustration of the hyperplanes partition for Lemma 3.5 in two dimensions, for γ “ 0.1,
β “ 0.08, and w “ 0.08. In both sub-figures the yellow cube represents rγ, 1´ γsd, and the blue
lines are the hyperplanes orthogonal to xi. On the left we demonstrate how the cube is split into
smaller 2w-cubes. On the right we demonstrate that these 2w-cubes are covered with β-balls.
The green balls are β-balls centered at points of X 1

β,γ, while the red balls are β-balls centered at
points of X 2

β,γ.

1The common naming for this term is ε-cover. We use the letter β to avoid confusion with the stretch
factor which is called ε in this paper.
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We now prove that each h P H induced by our hyperplanes is fully covered using the
β-balls centered at its vertices and at its center. Formally, for a given h P H, let Sh be the
set of points comprising the vertices of h and the center point of h (i.e., |Sh| “ 2d ` 1). We
show that Sh is a β-cover for h.

Let s P Sh be the center point of h. Without loss of generality, assume that s is at the
origin. Let Bβpsq be the β-ball centered at s. Let p “ pp1, .., pdq be a d-dimensional point
such that p P h and p R Bβpsq. We further assume that @i P r1..ds, 0 ď pi ď w; all the other
cases can be handled symmetrically. See Figure 3.3 for an illustration in R2. Thus, since
p R Bβpsq we have that ‖s´ p‖ ą β, which implies that β2 ă

řd
i“1 p

2
i .

Next, recall that sw :“ pw, ..., wq P S since the hypercubes edge length is 2w. We upper
bound the distance of p from sw in the following manner:

‖sw ´ p‖2 “
d
ÿ

i“1

pw ´ piq
2
“

d
ÿ

i“1

pw2
´ 2wpi ` p

2
i q

ď

d
ÿ

i“1

pw2
´ 2p2i ` p

2
i q “

d
ÿ

i“1

w2
´

d
ÿ

i“1

p2i

ă

d
ÿ

i“1

w2
´ β2,

where the first inequality follows from the fact that pi ď w, and the second inequality follows
from β2 ă

řd
i“1 p

2
i .

Finally, by subsisting w “ β
?

2{
?
d, we obtain

‖sw ´ p‖2 ă
d
ÿ

i“1

2β2

d
´ β2

“ β2,

which implies that p is covered by the β-ball centered at sw.

We have proven that Xβ,γ provides a β-cover for each h P H, which also guarantees that
Xβ,γ is a β-cover for the larger hypercube rγ, 1´γsd. Thus we conclude that Xβ,γ is a β-cover
for Aγ.

Next, we exploit the above property for showing that by appropriately setting the values
of β, γ and r with respect to ε, δ, we obtain a good approximation of any collision-free trajec-
tory, which implies that pXβ,γ, rq is pε, δq-complete. To do so, we prove the following lemma,
which is an extended version of [55, Theorem 2]. This lemma, will also be instrumental in
extending the theory we develop for the single-robot case, to the multi-robot setting. In
order to state the theorem, we introduce additional notation regarding a sequence of points
along a given trajectory of certain spacing.

Definition 3.6. Let σ be a collision-free trajectory, and let ρ ą 0 be a step size such that
}σp0q ´ σp1q} ě ρ. Then the time sequence T ρσ “ pτ0, τ1, . . . , τ`q, where τ0 ă τ1 . . . ă τ`, is
defined in the following manner for some ` P Ną0: τ0 “ 0, τ` “ 1, for all 1 ď i ď ` ´ 1,
}σpτiq ´ σpτi´1q} “ ρ, and }σpτ`q ´ σpτ`´1q} ď ρ.
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Figure 3.3: Illustration of the covering of a 2w-hypercube of Lemma 3.5 in two dimensions.
The point p is the point tested in the lemma. The red balls are β-balls centered on the cube
vertices. The green ball is the β-ball centered in the cubes center called Bβpsq. The dashed line
represents the distance between p and pw,wq. We note that in higher dimensions the red balls
would overlap as w becomes smaller in relation to β.

Lemma 3.7. For given β, γ, ρ ą 0, such that β2 ` pρ{2q2 ď γ2, let σ be a γ-clear solution
for M “ pCf , xs, xgq, and let T ρσ “ pτ0, τ1, . . . , τ`q be a time sequence as in Definition 3.6.
Then there exists a point set Zρ

σ “ pz0, . . . , z`q, where zi P Xβ,γ Y tx
s, xgu for all 0 ď i ď `,

such that the following properties holds:

(i) }zi ´ σpτiq} ď β, for all 0 ď i ď `;

(ii) }z ´ σpτi´1q} ď β ` ρ, for all 1 ď i ď `, z P CH pzi´1, ziq;

(iii) }z ´ σpτiq} ď β ` ρ, for all 1 ď i ď `, z P CH pzi´1, ziq;

(iv) }zi ´ zi´1} ď 2β ` ρ, for all 1 ď i ď `;

(v) CH pzi´1, ziq is collision free, for all 1 ď i ď `. That is CH pzi´1, ziq Ă Cf , for all
1 ď i ď `;

(vi)
ř

1ďiď` }zi ´ zi´1} ď
´

1` 2β
ρ

¯

‖σ‖.

Proof. Define, as before, Aγ “ rγ, 1 ´ γsd. Notice that since σ is γ-clear then σptq P Aγ for
all 0 ď t ď 1 (and in particular for all τi P T

ρ
σ ). Next, we address each individual component

of the theorem.
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Property (i): This follows directly from Lemma 3.5 as Xβ,γ is a β-cover for Aγ and σpτiq P Aγ.

Properties (ii) and (iii): First, we upper bound the expression }zi ´ σpτi´1q} (the proof for
Property (iii) is symmetric). By definition of T ρσ we have that }σpτiq ´ σpτi´1q} “ ρ, for
1 ď i ď ` ´ 1. Thus, using Property (i), we have }zi ´ σpτiq} ď β. Using the triangle
inequality it follows that,

}zi ´ σpτi´1q} ď }zi ´ σpτiq} ` }σpτiq ´ σpτi´1q}

ď β ` ρ.

Let z P CH pzi´1, ziq, that is z “ λzi´1` p1´ λqzi for some λ such that 0 ď λ ď 1. Thus,

‖z ´ σpτi´1q‖ “ ‖λzi´1 ` p1´ λqzi ´ σpτi´1q‖
“ ‖λzi´1 ´ λσpτi´1q ` p1´ λqzi ´ p1´ λqσpτi´1q‖
ď ‖λzi´1 ´ λσpτi´1q‖` ‖p1´ λqzi ´ p1´ λqσpτi´1q‖
“ λ ‖zi´1 ´ σpτi´1q‖` p1´ λq ‖zi ´ σpτi´1q‖ ,

where the triangle inequality was used in the second-to-last transition. Due to Property (i)
and the fact that }zi ´ σpτi´1q} ď β ` ρ it follows that

‖z ´ σpτi´1q‖ ď λβ ` p1´ λqpβ ` ρq

“ β ` p1´ λqρ

ď β ` ρ.

Property (iv): This follows from properties (i) and (ii), and triangle inequality:

}zi ´ zi´1} ď }zi ´ σpτi´1q} ` }σpτi´1q ´ zi´1}

ď 2β ` ρ.

Property (v): Fix 1 ď i ď `. For any η P r0, 1s define uη “ ηzi´1 ` p1 ´ ηqzi. To prove that
Property (v) holds we will show that uη P Cf for every η P r0, 1s.

Fix η P r0, 1s. Since σpτi´1q, σpτiq are points on a γ-clear path, the γ-balls Bγpσpτi´1qq,
Bγpσpτiqq are collision-free. Thus it is sufficient to prove that uη P Bγpσpτi´1qq Y Bγpσpτiqq.
Next let vη be the closest point to uη on the straight line between σpτi´1q and σpτiq. That
is, vη “ arg minvPCHptσpτi´1q,σpτiuq

‖uη ´ v‖.

We also define v1η :“ ησpτi´1q ` p1´ ηqσpτiq, and prove that }uη ´ v
1
η} ď β. This implies

that }uη ´ vη} ď β as vη is at least as close as v1η to uη. Indeed, using Property (i) and the
triangle inequality we have

}uη ´ v
1
η} ď ‖ηzi´1 ` p1´ ηqzi ´ pησpτi´1q ` p1´ ηqσpτiqq‖
ď η ‖zi´1 ´ σpτi´1q‖` p1´ ηq ‖zi ´ σpτiq‖
“ β.
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Building upon this result, we consider several cases with respect to the position of vη. If
vη is one of the endpoints, that is vη “ σpτi´1q or vη “ σpτiq, we have that uη is in a β-ball
around this point. Since β2 ` pρ{2q2 ď γ2, and all are positive, we know that β ď γ. Thus
if vη is one of the endpoints we are done as uη P Bβpσpτi´1qq or uη P Bβpσpτiqq.

Assuming vη is not one of the endpoints we can write vη “ η˚σpτi´1q`p1´η
˚qσpτiq where

η˚ “ arg min
λPp0,1q

‖uη ´ λσpτi´1q ` p1´ λqσpτiq‖ .

In this case, the point vη is the projection of uη onto the line through σpτi´1q and σpτiq.
Therefore,

xσpτiq ´ σpτi´1q, uη ´ vηy “ 0.

Since tσpτi´1q, σpτiq, vηu are collinear we get that,

xvη ´ σpτi´1q, uη ´ vηy “ xvη ´ σpτiq, uη ´ vηy “ 0. (3.1)

Those equations are illustrated in Fig 3.4.

Figure 3.4: Illustration for the proof of Lemma 3.7. The purple curve represents the trajectory
σ. The green balls are the β-balls around σpτi´1q and σpτiq. The convex hull of the green
balls (namely, the green balls together with the red region in-between) contains the line segment
(in orange) CH ptzi´1, ziuq, and we show that this region is collision-free. The blue balls are
collision-free γ-balls around σpτi´1q and σpτiq. The black line is CH ptσpτi´1q, σpτiquq.

We now consider two separate cases with respect to η˚. First assume η˚ P p0, 1{2s. Using
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Equation (3.1) and Property (i), it follows that

‖uη ´ σpτiq‖2 “ ‖puη ´ vηq ` pvη ´ σpτiq‖2

“ ‖uη ´ vη‖2 ` ‖vη ´ σpτiq‖2

ď β2
` ‖η˚σpτi´1q ` p1´ η˚qσpτiq ´ σpτiq‖2

“ β2
` pη˚q2 ‖σpτi´1q ´ σpτiq‖2

“ β2
` pη˚q2ρ2

ď β2
` p1{2q2ρ2,

where the last inequality follows from η˚ ď 1{2. Finally by plugging-in β2 ` pρ{2q2 ď γ2 we
get ‖uη ´ σpτiq‖2 ď γ2, which implies that uη P Bγpσpτiqq.

Due to symmetry, we can show that for η˚ P p1{2, 1q, it follows that ‖uη ´ σpτi´1q‖2 ď γ2,
which again implies uη P Bγpσpτi´1qq. To conclude, we showed that for all η P r0, 1s it holds
that uη P Bγpσpτi´1qq YBγpσpτiqq, which implies that CH pzi´1, ziq Ă Cf .

Property (vi): Due to Property (iv) we have that, }zi ´ zi´1} ď 2β ` ρ for all 1 ď i ď `. By
construction, our solution path through the zi’s coincides with the starting and end points
of σ, namely, z0 “ σp0q, z1 “ σp1q. Hence, for the first and last segment of the motion we
have }zi ´ zi´1} ď β ` }σpτiq ´ σpτi´1q}. Using this we get,

ÿ

1ďiď`

}zi ´ zi´1} “ }z1 ´ z0} ` }z` ´ z`´1} `
ÿ

2ďiď`´1

}zi ´ zi´1}

ď β ` ρ` β ` }σpτ`q ´ σpτ`´1q} `
ÿ

2ďiď`´1

p2β ` ρq

“ 2β ` ρ` p`´ 2q ¨ p2β ` ρq ` }σpτ`q ´ σpτ`´1q}

“ p`´ 1q ¨ p2β ` ρq ` }σpτ`q ´ σpτ`´1q}.

Additionally, due to equality }σpτiq ´ σpτi´1q} “ ρ for all 1 ď i ď `´ 1, we have that

‖σ‖ ě p`´ 1q ¨ ρ` }σpτ`q ´ σpτ`´1q}.

Thus,

ř

1ďiď` }zi ´ zi´1}

‖σ‖
ď
p`´ 1q ¨ p2β ` ρq ` }σpτ`q ´ σpτ`´1q}

p`´ 1q ¨ ρ` }σpτ`q ´ σpτ`´1q}

“
p2β ` ρq

ρ
¨
p`´ 1q ` }σpτ`q ´ σpτ`´1q}{p2β ` ρq

p`´ 1q ` }σpτ`q ´ σpτ`´1q}{ρ

ď
p2β ` ρq

ρ

“ 1`
2β

ρ
,

thus concluding this proof.
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It remains to prove Theorem 3.3. To use Lemma 3.7, we set γ “ δ, β “ αδ, ρ “ 2?
1`ε2

δ,

and r “ 2pε`1q
?
1`ε2

δ, for α “ ε{
?

1` ε2, so that the condition β2 ` pρ{2q2 ď γ2 holds.

By setting r “ 2β ` ρ “ 2pα ` 1?
1`ε2

qδ “ 2pε`1q
?
1`ε2

δ, it follows from Lemma 3.7 (iv) that
for all 1 ď i ď ` the PRM edge connecting zi and zi´1 is considered in the PRM construction.
Additionally, since 2β

ρ
“ ε, it holds that ‖pσ‖ ď p1 ` εq ‖σ‖ where pσ denotes the piece-wise

linear trajectory induced by Zρ
σ, which concludes the proof.

3.5 Comparison with previous work

In this section we compare our results with the previous results, by Tsao et al [55]. We first
compare our result with their upper bound in the asymptotic case; in this comparison we
observe an exponential improvement by a factor of 1.3687d. We follow by comparing our
result with their lower bound for ε “ 8 (again in the asymptotic case); in this comparison
we observe that our result is exponentially worse than the lower bound by a factor of 1.4611d.
Finally, we present these comparisons for concrete values of δ and ε in Table 3.1.

We now compare the minimal sample size required to guarantee (ε, δ)-completeness for
the same single-robot setting, between the previous approach [55], and the staggered grid
as proposed here. We denote by Xprev the size of the minimal sample set needed using the
bound from [55], namely

Xprev «
?
πd

˜

c

2d

πe
¨

1´ p2´ αqδ

αδ

¸d

,

where, as above, α “ ε?
1`ε2

. We denote by Xcurr “ |Xαδ,δ| the size of the minimal sample set
needed using the bound for the staggered grid, as stated in Theorem 3.3, namely,

Xcurr “

˜S

p1´ 2δq
?
d

?
8αδ

W¸d

`

˜S

p1´ 2δq
?
d

?
8αδ

W

` 1

¸d

.

We compare the quantities Xprev and Xcurr for small values of ε and δ (we mention that

the radius derived in [55] is equal to the one we are using here). We consider the ratio Xprev

Xcurr

in the asymptotic regime where the values ε and δ tend to zero in the following equation (we
ignore the rounding errors for both results as they do not change the asymptotic results):
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Xprev

Xcurr

“

?
πd

´
b

2d
πe
¨
1´p2´αqδ

αδ

¯d

´

p1´2δq
?
d

?
8αδ

¯d

`

´

p1´2δq
?
d

?
8αδ

` 1
¯d

“

?
πd

´
b

2d
πe
¨ 1´2δ`αδ

αδ

¯d

´

p1´2δq
?
d

?
8αδ

¯d

`

´

p1´2δq
?
d

?
8αδ

` 1
¯d

paq
«

?
πd

´
b

2d
πe
¨ 1´2δ

αδ

¯d

2
´

p1´2δq
?
d

?
8αδ

¯d

“

?
πd

2

˜

c

16

πe

¸d

«

?
πd

2
1.3687d ,

(3.2)

where the approximation in paq is due to ignoring the highlighted αδ factor in the numerator
of the previous expression, and also ignoring the highlighted unit value 1 in the denominator
(the influence of both values tends to 0 as δ or ε tend to 0). This implies that our result
yields samples sets that are smaller by an exponential factor in d than the previous work.

Next, we compare between the number of points we need in order to find a (8, δ)-complete
trajectory and the lower bound derived in [55, Theorem 1] for this quantity, which was only
derived there for the case ε “ 8. We denote the latter by XLB, which is proved in [55] to be

XLB «

c

e

2

ˆ

1´
2δ

1´ 2δ

˙2
˜

c

d´ 1

2πe
¨

1´ 2δ

δ

¸d

. (3.3)

We compare the quantities XLB and Xcurr for small values of δ and using ε “ 8. We
consider the ratio Xcurr

XLB
in the asymptotic regime where the value of δ tends to zero in the

following equation (we ignore the rounding errors for both results as they do not change the
asymptotic results):
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Xcurr

XLB

“

´

p1´2δq
?
d

?
8αδ

¯d

`

´

p1´2δq
?
d

?
8αδ

` 1
¯d

a

e
2

`

1´ 2δ
1´2δ

˘2
´
b

d´1
2πe
¨ 1´2δ

δ

¯d

“

´

p1´2δq
?
d

?
8δ

¯d

`

´

p1´2δq
?
d

?
8δ

` 1
¯d

a

e
2

´

1´ 2δ
1´2δ

¯2 ´b
d´1
2πe
¨ 1´2δ

δ

¯d

paq
«

2
´

p1´2δq
?
d

?
8αδ

¯d

a

e
2

´
b

d´1
2πe
¨ 1´2δ

δ

¯d

“

c

8

e

ˆ
c

πe

4

˙d
d

ˆ

d

d´ 1

˙d

«

c

8

e

d

ˆ

d

d´ 1

˙d

¨ 1.4611d ,

(3.4)

where the approximation in paq is due to ignoring the highlighted unit value 1 in the numer-
ator of the previous expression, whose influence tends to 0 as δ tend to 0, and also ignoring
the highlighted squared value in the denominator, whose value tends to 1 as δ tend to 0.

Finally, by noticing that for d ě 2 it holds that

e ď

ˆ

d

d´ 1

˙d

ď 4,

it follows that

2
?

2 ¨ 1.4611d ď
Xcurr

XLB

ď 4

c

2

e
¨ 1.4611d.

This shows that our upper bound is at most a factor of roughly 1.4611d away from the
lower bound. These results may have further repercussions in the context of economical
covering of the cube. We discuss this issue below in Section 6.

To conclude this section, we provide in Table 3.1 a comparison of sufficient and necessary
samples sizes for pε, δq-completeness for various values of the clearance δ and the stretch ε
in dimensions d P t2, . . . , 6u. In particular, for each combination of parameter values we
report the following three quantities: (I) A lower bound (Eq. 3.3) on the necessary number
of samples for pε, δq-completeness, as was derived in [55, Theorem 1], which applies only to
the case ε “ 8. (II) The size of our sampling distribution, i.e., Xcurr, which guarantees pε, δq-
completeness, according to Theorem 3.3. (III) An upper bound on the sufficient number of
samples for pε, δq-completeness, denoted by Xprev above, as was derived in [55, Theorem 2].
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ε “ 8 ε “ 1 ε “ 0.25 ε “ 0.1
δ d lower bound (XLB) Xcurr Xprev Xcurr Xprev Xcurr Xprev Xcurr Xprev

0.25

2 0 5 12 13 19 61 109 265 567
3 0 35 52 35 108 559 1510 4941 1.79 ¨ 104

4 0 97 263 97 697 3697 2.37 ¨ 104 1.16 ¨ 105 6.43 ¨ 105

5 0 275 1478 1267 5000 4.96 ¨ 104 4.11 ¨ 105 2.47 ¨ 106 2.54 ¨ 107

6 0 793 9029 4825 3.90 ¨ 104 7.94 ¨ 105 7.74 ¨ 106 8.11 ¨ 107 1.09 ¨ 109

0.1

2 3 61 104 85 194 613 1471 3445 8437
3 15 341 1393 855 3566 1.99 ¨ 104 7.50 ¨ 104 2.58 ¨ 105 1.03 ¨ 106

4 88 3697 2.13 ¨ 104 1.07 ¨ 104 7.45 ¨ 104 7.22 ¨ 105 4.33 ¨ 106 2.19 ¨ 107 1.42 ¨ 108

5 595 4.96 ¨ 104 3.59 ¨ 105 1.59 ¨ 105 1.72 ¨ 106 3.16 ¨ 107 2.76 ¨ 108 2.23 ¨ 109 2.17 ¨ 1010

6 4459 3.80 ¨ 105 6.58 ¨ 106 2.77 ¨ 106 4.32 ¨ 107 1.32 ¨ 109 1.91 ¨ 1010 2.46 ¨ 1011 3.60 ¨ 1012

0.05

2 21 221 460 365 892 2965 7204 1.67 ¨ 104 4.21 ¨ 104

3 234 3925 1.31 ¨ 104 9009 3.54 ¨ 104 2.01 ¨ 105 8.13 ¨ 105 2.77 ¨ 106 1.15 ¨ 107

4 3152 6.70 ¨ 104 4.23 ¨ 105 2.35 ¨ 105 1.59 ¨ 106 1.64 ¨ 107 1.04 ¨ 108 5.45 ¨ 108 3.55 ¨ 109

5 4.82 ¨ 104 1.81 ¨ 106 1.51 ¨ 107 9.24 ¨ 106 7.88 ¨ 107 1.49 ¨ 109 1.46 ¨ 1010 1.26 ¨ 1011 1.21 ¨ 1012

6 8.13 ¨ 105 4.09 ¨ 107 5.83 ¨ 108 3.39 ¨ 108 4.25 ¨ 109 1.58 ¨ 1011 2.24 ¨ 1012 3.05 ¨ 1013 4.49 ¨ 1014

0.01

2 734 5101 1.25 ¨ 104 9941 2.48 ¨ 104 8.28 ¨ 104 2.09 ¨ 105 4.87 ¨ 105 1.24 ¨ 106

3 4.58 ¨ 104 4.65 ¨ 105 1.85 ¨ 106 1.25 ¨ 106 5.20 ¨ 106 3.07 ¨ 107 1.27 ¨ 108 4.42 ¨ 108 1.83 ¨ 109

4 3.36 ¨ 106 4.94 ¨ 107 3.11 ¨ 108 1.88 ¨ 108 1.23 ¨ 109 1.35 ¨ 1010 8.73 ¨ 1010 4.73 ¨ 1011 3.06 ¨ 1012

5 2.80 ¨ 108 5.96 ¨ 109 5.78 ¨ 1010 3.30 ¨ 1010 3.22 ¨ 1011 6.76 ¨ 1012 6.63 ¨ 1013 5.76 ¨ 1014 5.66 ¨ 1015

6 2.57 ¨ 1010 7.82 ¨ 1011 1.17 ¨ 1013 6.44 ¨ 1012 9.16 ¨ 1013 3.71 ¨ 1015 5.47 ¨ 1016 7.73 ¨ 1017 1.14 ¨ 1019

Table 3.1: Sufficient and necessary samples sizes for pε, δq-completeness. A comparison of the specific sample sizes for various values
for the attributes of clearance δ, stretch ε, and dimension d. The column “lower bound” reports the value from [55, Theorem 1]. For
every combination of attributes we report the value Xcurr from Theorem 3.3, and Xprev from [55, Theorem 2].
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As reported in Theorem 3.3 and [55, Theorem 2], both quantities Xcurr and Xprev increase
exponentially as the dimension increases, and as the clearance δ or the stretch ε decrease.
However, the value Xcurr is consistently smaller than Xprev. As the latter value increases
it grows more rapidly than Xcurr by at least one order of magnitude. Although in certain
cases the value of Xcurr is still quite large for some practical application (particularly when
the dimension is larger than 3), we hope that our work would motivate further study into
even smaller sampling distributions than our staggered grid, or a more refined version of
Theorem 3.3. In this context, we point out that the value Xcurr is larger than the lower
bound (where applicable) by one order of magnitude, which suggests that there is room for
improvement.
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4
Near-optimal tensor roadmaps for MRMP

We present our central contribution: we extend our results from the previous section to the
multi-robot setting.

4.1 Basics of multi-robot motion planning

We provide a definition of the multi-robot motion planning (MRMP) problem. We consider
the setting of R ě 2 identical robots operating in a shared workspace, and denote by Ci Ă
r0, 1sd the configuration space of robot i, 1 ď i ď R. We define Cfi , Coi Ă Ci to be the free
and forbidden spaces, respectively, of robot i. Since the robots are identical it holds that
Cfi “ Cfj for all 1 ď i ď j ď R.

The configuration space of the multi-robot system C, termed the composite configuration
space, is the Cartesian product of the individual robots’ configuration spaces, i.e., C “

C1ˆ . . .ˆ CR. That is, a composite configuration Q “ pq1, ..., qRq P C is an R-tuple of single-
robot configurations, where qi P Ci. For two distinct robots i, j, we denote by Iji pqjq Ă Ci the
set of configurations of robot i that lead to collision with robot j when j is at configuration
qj. The composite free space Cf Ă C consists of all composite configurations pq1, ..., qRq such

that (i) qi P Cfi for every 1 ď i ď R, and (ii) qi R I
j
i pqjq for every 1 ď i ‰ j ď R, which

ensure that robot-obstacle and robot-robot collisions are avoided, respectively.

Given start and goal positions xsi , x
g
i P Cfi , respectively, for each robot 1 ď i ď R, let

~xs “ pxs1, . . . , x
s
Rq and ~xg “ pxg1, . . . , x

g
Rq. The MRMP problem, denoted by M “ pCf , ~xs, ~xgq,

consists of finding trajectories for the R robots such that the robots begin their motion at
~xs, end at ~xg, and avoid collisions (both with obstacles and with each other) along the way.
Formally, the objective is to find a collision-free composite trajectory of the form Σ : r0, 1s Ñ
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Cf , where Σ is an R-tuple Σ “ pσ1, ..., σRq of single-robot trajectories σi : r0, 1s Ñ Cfi , such
that Σp0q “ ~xs,Σp1q “ ~xg, and Σpτq P Cf for all 0 ď τ ď 1.

In this work we are interested in finding high-quality solutions for the multi-robot prob-
lem. We consider as cost criterion the sum of single-robot trajectory lengths, denoted as
costpΣq “

řR
i“1 ‖σi‖. Our analysis applies more generally to cost functions having the fol-

lowing property. Let Σ1 “ pσ1
1, . . . , σ

1
Rq,Σ

2 “ pσ2
1, . . . , σ

2
Rq be multi-robot trajectories, such

that ‖σ1
i ‖ ď p1` εq ‖σ2

i ‖ for all i, 1 ď i ď R. Our analysis will work for any cost function c
for which cpΣ1q ď p1` εqcpΣ2q. For example, our analysis can be easily adapted to the case
where the cost criterion is the maximum of trajectory lengths, i.e., maxRi“1 ‖σi‖.

4.2 Tensor roadmaps

We provide a formal definition of the tensor roadmap (TR), which is implicitly explored by
sampling-based planners such as dRRT [51], dRRT˚ [44], as well as by search-based methods
such as MC-CBS [32] and M˚ [59].

For every robot i, 1 ď i ď R, let GipXi, riq “ pVi, Eiq be a PRM graph embedded in Cfi , for

some point set Xi and radius ri ą 0 (as defined in Section 3.2). The TR, denoted by pGp ~X , ~rq
= ppV , pEq, is the tensor product of G1, . . . , GR. In particular, each vertex of pGp ~X , ~rq describes

a simultaneous placement of the R robots, and similarly an edge of pGp ~X , ~rq describes a
simultaneous motion of the robots. Formally,

(i) pV “ tpv1, . . . , vRq : @i, vi P Viu, and

(ii) for two vertices W “ pw1, . . . , wRq, U “ pu1, . . . , uRq P pV , the edge set pE contains the
edge pW,Uq if for all i, wi “ ui or pwi, uiq P Ei.

Note that robots are allowed to stay put, which differs from prevalent definitions of
the tensor product of graphs [2, 14, 43]. Notice further that by the definition of Gi, the

motion described by each edge in pE represents a trajectory for the R robots in which the
robot-obstacle collisions are avoided. Next we consider a subgraph of the TR in which also
robot-robot collisions are avoided. Given an MRMP problem, M “ pCf , ~xs, ~xgq we will

denote as pGMp ~X ,~rqpx
s, xgq its TR constructed from the PRM graphs of the individual robots’

GMipXi,riq, but where we remove all edges of the TR representing transitions of the robots

that are not collision free. We denote by dp pGMp ~X ,~rq, ~x
s, ~xgq the minimal cost of collision-free

trajectories from ~xs to ~xg in the graph pGMp ~X ,~rq.

4.3 Multi-robot clearance and completeness

In preparation for defining the multi-robot equivalent of pε, δq-completeness, we first define
clearance for the multi-robot case. Given a trajectory Σ, recall that we define for each robot
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its forbidden space at time τ P r0, 1s to be its obstacle space Coi and the configurations that
will lead to collisions with other robots. Formally, Coi pτq “ Coi

Ť

j‰i I
j
i pσjpτqq is the forbidden

space for robot i at time τ . Notice that we define Coi pτq only for a given trajectory Σ as it
depends on the locations of the other robots.

Definition 4.1 (~δ-clearance). Given a trajectory Σ, we say that Σ has ~δ-clearance for ~δ “
pδ1, . . . , δRq if for each robot i, 1 ď i ď R and at any time τ P r0, 1s, the distance from i to

the obstacles and to each robot j ‰ i is at least δi. Formally, Σ has ~δ-clearance if, for all
1 ď i ď R, 0 ď τ ď 1, it holds that ‖σipτq ´ x‖ ą δi, for every x P Coi pτq.

Next we define the equivalent of single-robot (ε, δ)-completeness for MRMP:

Definition 4.2 (Multi-robot (ε, ~δ)-completeness). Given R robots, a stretch parameter ε ą

0, a vector of R sample sets ~X “ pX1, . . . ,XRq, and a vector of R connection radii ~r “

pr1, . . . , rRq, we say that the pair p ~X , ~rq is (ε, ~δ)-complete if for every ~δ-clear M “ pCf , ~xs, ~xgq
it holds that

dp pGMp ~X ,~rq, ~x
s, ~xgq ď p1` εqOPT~δ,

where OPT~δ is the minimal cost of a ~δ-clear M solution.

We are ready to state our main contribution.

Theorem 4.3 (Sufficient conditions for MRMP (ε, ~δ)-completeness). Let ε ą 0 be a stretch

factor, let ~δ be a clearance vector pδ1, . . . , δRq, and denote ω “ ε
2pε`2q

. Define the sampling

distributions ~X “ pX1, . . . ,XRq and radii vector ~r “ pr1, . . . , rRq, as

Xi “ Xωδi,δi , ri “ δipε` 1q{pε` 2q,

for every robot 1 ď i ď R. Then
´

~X , ~r
¯

is
´

ε, ~δ
¯

-complete.

Proof. Fix ε ą 0 and ~δ “ pδ1, . . . , δRq where δi ą 0 for all 1 ď i ď R. Let ~xs, ~xg be the

start and goal composite configurations, respectively. Let M “ pCf , ~xs, ~xgq be a ~δ-clear
MRMP problem. (This implies in particular that the start and goal configurations fulfill the

clearance requirements.) Let Σ˚ “ pσ˚1 , . . . , σ
˚
Rq be a ~δ-clear solution which minimizes the

expression costpΣq over all ~δ-clear solution trajectories Σ.

The overall structure of this proof is as follows. First, we generate for each robot i a
PRM graph Gi, which is induced by the sample set Xi and the radius ri. We show, using
Lemma 3.7, that each such Gi induces a collision-free trajectory σ̄i for robot i, which closely
follows σ˚i . Next we show, using additional properties following from Lemma 3.7, that we
can specify the arrival time of the individual robots along their corresponding vertices along
σ̄i, producing the path pσi such that robot-robot collisions are avoided. This implies that the
induced tensor graph contains a collision-free composite trajectory pΣ “ ppσ1, . . . , pσRq, whose
cost is at most p1` εqcostpΣ˚q. We fill in the details of the proof below.

For every 1 ď i ď R, define Xi “ Xβi,δi , where βi “ ωδi. Let Gi “ pVi, Eiq be the PRM

graph for robot i using pXi, riq, that is Gi “ GMipXi,riq for Mi “ pCi, xsi , x
g
i q. Let pG be the
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tensor product of G1, . . . , GR. Also, define ρi “
δi
ε`2

and let Ti :“ T ρi
σ˚i
“ pτ i0, . . . , τ

i
`i
q, as in

Definition 3.6. First, we show that the conditions for Lemma 3.7 hold for each robot i, i.e.,
β2
i ` pρi{2q

2 ď δ2i . Indeed,

β2
i `

´ρi
2

¯2

“ ω2δ2i `
δ2i

4pε` 2q2

“

ˆ

ε2 ` 1

pε2 ` 1q ` p3ε2 ` 8ε` 15q

˙

δ2i

ď δ2i .

Thus, we can apply Lemma 3.7 with the time sequence Ti for each robot i individually
to show that there exists a point set Zi :“ Zρi

σ˚i
“ pzi0, . . . , z

i
`i
q Ă Xi Y tx

s
i , x

g
i u, such that

Properties (i)-(vi) of Lemma 3.7 hold. In particular, we have that for all 1 ď i ď R,

(i’) }zik ´ σ
˚
i pτ

i
kq} ď βi, for all 0 ď k ď `i;

(ii’) }z ´ σ˚i pτ
i
k´1q} ď βi ` ρi, for all 1 ď k ď `i, z P CH

`

zik´1, z
i
k

˘

;

(iii’) }z ´ σ˚i pτ
i
kq} ď βi ` ρi, for all 1 ď k ď `i, z P CH

`

zik´1, z
i
k

˘

;

(iv’) }zik ´ z
i
k´1} ď 2βi ` ρi, for all 1 ď k ď `i;

(v’) CH
`

zik´1, z
i
k

˘

is collision free, for all 1 ď k ď `i. That is CH
`

zik´1, z
i
k

˘

Ă Cfi , for all
1 ď k ď `i;

(vi’)
ř

1ďkď`i
}zik ´ z

i
k´1} ď

´

1` 2βi
ρi

¯

‖σ˚i ‖.

By setting ri “ 2βi ` ρi “
δipε`1q
pε`2q

, and using Property (iv’), it follows that the edge

connecting zij and zij´1 is considered in the construction of Gi, and from (v’), it is in Gi. Next,
due to the fact that 2βi{ρi “ ε, and Property (vi’), it holds that ‖σ̄i‖ ď p1` εq ‖σ˚i ‖, for σ̄i
denoting the trajectory induced by Zρi

σ˚i
. Thus, each robot has a collision free path, which is a

p1`εq-approximation for its δi-clear path σ˚i . Finally, observe that costpΣ̄q ď p1`εqcostpΣ˚q,
where Σ̄ “ pσ̄1, . . . , σ̄Rq. Note that this last step also applies to a cost function that returns
the maximum length over the R single-robot trajectories.

As robots may collide with one another along the paths Σ̄, we leverage the above proper-
ties (i’)-(iv’) to show that pG, the TR where edges describe coordinated collision-free motion
where the robots avoid obstacles as well as each other, contains a high-quality composite tra-
jectory which avoids robot-obstacle and robot-robot collisions. To do so, we show that we can
adjust the positions of the robots along the trajectories σ̄1, . . . , σ̄R, to induce a collision-free
trajectory over pG, which we denote by pΣ “ ppσ1, . . . , pσRq.

First, define a list L of triplets of the following form:

L :“
R
ď

i“1

`i
ď

j“1

tpi, τ ij , z
i
jqu.

23



That is, L contains for every robot 1 ď i ď R, `i triplets of the form pi, τ ij , z
i
jq, where τ ij P Ti

is a timestamp, and zij P Zi is the corresponding configuration. Additionally, define Lo to be
a permutation of L, where the triplets are ordered according to the timestamp. That is,

Lo :“ tpi1, τi1 , zi1q, pi2, τi2 , zi2q, . . . , pi`, τi` , zi`qu,

where ` “
řR
i“1 `i, pij, τij , zijq P L for every 1 ď j ď `, and τij ď τij`1

for every 1 ď j ď `´1.
For simplicity, when several robots have the same timestamp, we order the corresponding
triplets in increasing order of the robot indices.

Next, we describe an iterative scheme that uses Lo for generating a sequence of com-
posite vertices V0, V1, . . . , V` P pV , such that pVj, Vj`1q P pE. First, define V0 “ ~xs. Next,
given that Vj “ pvj1 , . . . , vjRq has already been defined for some 1 ď j ď ` ´ 1, set
Vj`1 “ pvpj`1q1 , . . . , vpj`1qRq, where vpj`1qij`1

:“ zij`1
, and vpj`1qi1 “ vji1 for every i1 ‰ ij`1.

Namely, when transitioning from Vj to Vj`1 all the robots stay put, besides robot ij`1 whose
timestamp appeared in item j ` 1 of Lo.

To illustrate this, we provide the following example.

Example 1. We provide an example of L,Lo and V0, . . . , V` for a two-robot setting with T1 “
p0, 0.3, 0.5, 0.7, 1q, Z1 “ pz10 , z

1
1 , z

1
2 , z

1
3 , z

1
4q, T2 “ p0, 0.2, 0.4, 0.7, 1q, Z2 “ pz20 , z

2
1 , z

2
2 , z

2
3 , z

2
4q.

Note that zi0 is robot i’s starting point, and zi4 is its goal. In particular,

L “ tp1, 0.3, z11q, p1, 0.5, z12q, p1, 0.7, z13q, p1, 1, z14q,
p2, 0.2, z21q, p2, 0.4, z

2
2q, p2, 0.7, z

2
3q, p2, 1, z

2
4qu.

Lo “ tp2, 0.2, z21q, p1, 0.3, z11q, p2, 0.4, z22q, p1, 0.5, z12q,
p1, 0.7, z13q, p2, 0.7, z

2
3q, p1, 1, z

1
4q, p2, 1, z

2
4qu,

yielding the vertices V0 “ pz
1
0 , z

2
0q, V1 “ pz

1
0 , z

2
1q, V2 “ pz

1
1 , z

2
1q, V3 “ pz

1
1 , z

2
2q, V4 “ pz

1
2 , z

2
2q, V5 “

pz13 , z
2
2q, V6 “ pz

1
3 , z

2
3q, V7 “ pz

1
4 , z

2
3q, V8 “ pz

1
4 , z

2
4q.

To complete the proof, we first note that pVj, Vj`1q P pE for every 1 ď j ď ` ´ 1.
This follows from the values of the connection radii ~r we assigned, and Properties (iv’)
and (v’), which ensure that tvij, v

i
j`1u P Ei for every robot 1 ď i ď R, where pv1, . . . , vRq :“

Vj, pv
1
1, . . . , v

1
Rq :“ Vj`1.

It remains to prove that the robots do not collide with one another while they move
along the path represented by any such edge pVj, Vj`1q. First, recall that there is exactly one
robot moving for pVj, Vj`1q. In particular, this is the robot whose index is ij, which is the
first value of the jth triplet pij, τij , zijq P Lo. That is vij ‰ v1ij , whereas for any other robot
k ‰ ij it holds that vk “ v1k.

Notice that given two stationary robots k1, k2 ‰ ij, and assuming that they did not
collide for the previous edge pVj´1, Vjq, they do not collide with each other for pVj, Vj`1q as
well.

It remains to show that robot ij does not collide with any stationary robot k ‰ ij,
while moving from vij to v1ij . By definition of V0, . . . , V`, it must be that robot k resides in
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vk “ zkj1 P Zk such that τ kj1 ď τij ď τ kj1`1, for some 0 ď j1 ď `k ´ 1. Next, recall that σ˚k , σ
˚
ij

are δk and δij -clear, respectively. Thus, it suffices to prove that }σ˚ijpτijq ´ p} ď δij{2 for

every p P CH
´

vij , v
1
ij

¯

and }σ˚kpτijq ´ z
k
j1} ď δk{2.

Indeed, Property (iii’) implies that for p P CH
´

vij , v
1
ij

¯

we have that
∥∥∥p´ σ˚ijpτijq∥∥∥ ď

βij ` ρij ď δij{2. We also have that∥∥zkj1 ´ σ˚kpτijq∥∥ ď }zkj1 ´ σ˚kpτ kj1q} ` }σ˚kpτ kj1q ´ σ˚kpτijq}
ď βk ` ρk

ď δk{2.

Since at time τij both robots ij and k obey the clearance rules, they are at distance δmax “

maxpδij , δkq from one another. As we have shown that during the specified motion, robot ij
has not drifted more than δmax{2 from its position at time τij , and the stationary placement
of robot k during this motion is at most δmax{2 from its placement at time τij , we are
guaranteed that they do not collide with one another during this motion, which concludes
the proof.

We emphasize that even though our proof finds a trajectory which uses edges where a
single robot moves at a time, the solution that would be found in practice is not necessarily
restricted to individual-robot moves. This is due to the fact the tensor roadmap also includes
edges representing simultaneous motion of several robots.

4.4 Discussion

Theorem 4.3 implies that if a given MRMP planner is guaranteed to find an optimal collision-
free path over a TR, then it is also guaranteed to find a p1`εq-approximation of the optimal
~δ-clear trajectory (in the continuous domain), when each PRM graph is constructed using
the sample set Xωδi,δi and radius ri “ δipε` 1q{pε` 2q for each robot 1 ď i ď R, where
ω “ ε{p2pε` 2qq.

This statement applies, for instance, to M˚ and MC-CBS. The former can be viewed as a
refined version of A˚ for searching the TR. The latter implicitly explores the TR by incremen-
tally considering combinations of single-robot trajectories induced by the PRM graphs, until
a combination that yields a collision-free composite trajectory is found. The dRRT˚ planner
implicitly explores the TR via an RRT-style random exploration using a secondary sampling
procedure which is employed after the PRM graphs are constructed. Due to this additional
randomization step, dRRT˚ achieves a p1` εq-approximation only asymptotically. Neverthe-
less, our analysis simplifies the usage of this algorithm by derandomizing the construction
of PRM graphs used in dRRT˚.

Finally, we provide an example for the number of samples that should be used according
to Theorem 4.3 within each PRM roadmap for specific parameters. In particular, we report
in Table 4.1 the value |Xωδi,δi |, for varying values of the stretch parameter ε, dimension d,
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and clearance vector pδ1, . . . , δRq, where δi “ 0.1 for all robots. While these values are quite
large, particularly for higher dimensions, we emphasize that we do not expect our bounds
to be tight, as observed in Section 5. This suggests that smaller sample sets are sufficient
for pε, ~δq-completeness, which we aim to explore in future research (see Section 7).

d ε “ 8 ε “ 5 ε “ 1 ε “ 0.5 ε “ 0.25

2 181 313 1201 3281 1.05¨104

3 2331 6119 5.68¨104 2.43¨105 1.43¨106

4 4.93¨104 1.49¨105 2.83¨106 2.19¨107 2.21¨108

5 9.09¨105 4.37¨106 1.69¨108 2.23¨109 3.94¨1010

6 1.89¨107 1.5¨108 1.18¨1010 2.46¨1011 7.82¨1012

Table 4.1: Multi-robot sample complexity example for δ “ 0.1 with varying values for the
dimension of each robot, d, and the required maximal stretch factor, ε.
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5
Experimental results

We provide experimental results to support our theoretical findings, focusing on the case
of multiple disc robots operating in a planar domain. We study the effect that the stretch
parameter ε, which determines the structure of the underlying PRM graphs within the tensor
product graph pG in Theorem 4.3, has on the actual solution quality. We observe that the
resulting approximation factor is in fact significantly lower than 1`ε. This suggests that our
analysis can be further refined to support even sampling distributions with fewer samples
(see Section 7).

Concerning the design of the experiments, we were faced with two challenges. First,
current MRMP algorithms [32, 44, 59] (including our own) are limited in their ability to cope
with the large tensor roadmaps required to guarantee path quality according to our analysis;
this curbed our ability to go to large numbers of robots in the experiments, and strongly
motivates further improving of such algorithms. Secondly, in order to provide meaningful
experimental reports, we need yardsticks to compare to; the problem is that optimal MRMP
algorithms are not known to be tractable even for the simple case of two unit disc robots
moving amid obstacles in the plane, and it is highly non-trivial to calculate optimal solutions
when coordination is required. We explain below how we overcame this latter impediment.

5.1 Implementation

In this section we describe our software implementation with which the experimental results
were obtained. We describe what has been implemented, how it was implemented and where
to find it.

We implemented the code for moving discs among polygonal obstacles in the plane. In
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our implementation all the robots having the same value δ for the clearance parameter. The
code can be easily extended to support different δi values for the different robots, or work
for other identical two-dimensional shapes. Other extensions are possible but may be less
easy to implement using our code base.

Our code was added as a planner to DiscoPygal, a software environment for developing
and testing multi-robot motion planning algorithm in Python, developed at Tel Aviv Univer-
sity [13]. The reading of input files, testing the output for validity, and visualization of the
scenes and the robot motion, are implemented by the DiscoPygal framework. The collision
detection was implemented using python bindings to the arrangement package [11] of the
CGAL library [54], which are part of DiscoPygal. All the code beside that was implemented
by us for the research reported in this thesis.

The planner gets two inputs. The first input is a scene, which comprises: start and goal
positions for each robot, the radius of the robots (same radius for all the robots in our case),
and a set of polygonal obstacles. The second input is the configuration, namely the values
for ε and δ, the sample method to use (staggered grid or uniform random), and a few other
properties.

The planner can create two types of outputs. First it can create an input file for
MC-CBS [32]. The second output is a solution path, if one was found. We note that both
outputs can be generated at once.

In any case we first calculate the set of sample points (i.e., milestones), and the connection
radius, and then create a PRM graph for the robots (same one for all robots, although this is
easily extendable).

There is option to run our implementation of the A˚ algorithm [16] on the tensor roadmap.
During the running of A˚, we create the parts of the tensor roadmap, which are discovered
in our search. At each iteration we look at the best candidate we found so far, and only add
vertices that represent motion by a single robot—this is the easiest way to create new valid
nodes in the tensor roadmap, which still satisfy the optimality guarantees. It is possible to
move more than one robot at a time, and the code can easily be extended to support it.

Another option is to compute conflicts for MC-CBS; these include vertices conflicts, edge
and vertex conflicts, and edge to edge conflicts. Once all conflicts were calculated the output
is printed to a YAML file. This file is then the input file for our modified version of the
implementation of MC-CBS [32].

The code described here is publicly available on Git-hub, https://github.com/drorDayan/eps-
net.

A more user friendly version of the code containing only the A˚ option is also included in
DiscoPygal, which can be found in https://bitbucket.org/taucgl/python rmp framework/src/master.
This is the recommended version to use. Notice that DiscoPygal is currently undergoing a
major upgrade, and a new version is anticipated soon.
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5.2 Scenarios

The scenarios are illustrated in Figure 5.1. The first scenario, [Top-left], consists of two
robots in an obstacle-free environment. We use this simple example to benchmark our solu-
tion against an optimal δ-clear solution using a recent work that provides characterization
of optimal trajectories for two disc robots in the absence of obstacles [26]. The [Top-right]
scenario uses a more complicated workspace topology, which potentially requires more sam-
ples to achieve a near-optimal solution, since multiple straight-line segments are required to
approximate every single-robot trajectory. The third scenario, [Bottom-left], which consists
of four robots, aims to test our theory for a tight setting, which is obtained by tightly packing
the four robots inside a circular barrier. The fourth scenario, [Bottom-right], which consists
of seven robots, aims to test our theory for a larger number of robots, where additional
coordination is required to achieve a solution.

5.3 Results

To test our theory on the aforementioned scenarios, we constructed PRM graphs using our
staggered grid as the sample set, corresponding to different values of the stretch parameter
ε and clearance δ (for simplicity, we use the same value of δ across all robots, i.e., ~δ :“
tδ, . . . , δu). For all the scenarios, we set the value δ to be equal to the static clearance µ
(see caption of Figure 5.1). We set the stretch parameter ε to different values in the range
r0.75,8q. We then use A˚-search for the first three scenarios, and MC-CBS for the seven-robot
scenario, to obtain the best solution from the resulting tensor roadmap.
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Figure 5.1: Test scenarios for multiple disc robots, where a circle and a disc of the same color
represent the start and goal positions, respectively, of a robot. [Top-left] A 2-robot obstacle-free
scenario. The optimal trajectories, which were derived in [26], are drawn for each robot. The
robots’ radius is 0.09 and the static clearance µ is equal to 0.02. The latter value measures
the minimum over (i) the inter-robot distances at the initial placement, (ii) the distance of each
robot at the initial placement from the obstacles, and (iii,iv) the respective quantities for the
target placement. [Top-right] A 2-robot scenario with a spiral obstacle with robots’ radius 0.06
and static clearance µ “ 0.04. [Bottom-left] Four robots tightly placed within a circular barrier,
using robot radius 0.19 and static clearance µ “ 0.02. [Bottom-right] A 7-robot scenario with
robots’ radius 0.08 and the static clearance µ “ 0.04.
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Figure 5.2: We report for each of the four scenarios its approximation factors, which are rep-
resented by the ratio between the cost of the solution obtained from the tensor roadmap and
OPTδ. Notice that the tensor-roadmap solution is not necessarily δ-clear and thus can be of
lower cost than OPTδ, which explains why two of the plots get approximation factors smaller
than 1. Next to the points in each plot is the number of collision-free samples in the PRM graph
of an individual robot. Due to the prohibitive running times incurred by MC-CBS on the 7-robot
scenario and by our Python implementations of A˚ on the 4-robot scenario, we report the solution
quality for these scenarios only for a subset of values of ε.

The results are reported in Figure 5.2, where we plot the approximation ratio obtained
using the staggered grid Xωδ,δ set to guarantee an approximation factor of at most 1` ε (see
Theorem 4.3). The reported approximation factor represents the ratio between the cost of

the best solution obtained from the tensor roadmap, denoted by pΣ, and the optimal δ-clear
solution whose cost is denoted by OPTδ. For the first scenario we obtain the value OPTδ

using [26], as we reported earlier. For the [Top-right] scenario, OPTδ is equal to the sum
of the shortest δ-clear trajectories for the two individual robots, as one of the robots can
move after the other finishes its motion without increasing the overall cost of the solution.
For the [Bottom-left] scenario, OPTδ is equal to the perimeter of the circle going though the
robot centers at the initial positions (as each robot traverses a quarter of the circle). For
the [Bottom-right] scenario, OPTδ is equal to the sum of the Euclidean distances between
each robot’s origin and destination, as the robots can move one after the other to obtain an
optimal solution.

In all the experiments we obtain an approximation factor that is significantly lower than
what our worst-case analysis predicts. For instance, already when setting the stretch param-
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eter to ε “ 50 we obtain an approximation factor of at most 1.075. Moreover, for ε ď 1.5 we
obtain approximation factors below 1 in both two-robot scenarios. This is possible as the
solution obtained from the tensor roadmap is not necessarily δ-clear, which allows robots
to take shortcuts in proximity to obstacles and each other. The overall trend of the graphs
complies with our expectation: when the stretch parameter decreases, we obtain improved
solutions. The biggest improvement (at least for the two-robot scenarios) occurs when ε goes
below 2, due to the rapid increase in the number of samples in Xωδ,δ. In some cases using a
smaller number of samples may yield better solutions, as in the 2-robot spiral scenario for
stretch factors ε “ 50 and ε “ 20. The explanation is that the smaller sample set gets closer
to the (approximate) optimal solution by chance. Still, the worst-case approximation factor
is guaranteed to improve as the size of the staggered grid increases.

5.4 Comparing the staggered grid with random sam-

pling

The staggered grid offers good theoretical guarantees on the necessary sample size for ob-
taining near-optimal solution in the single robot case and consequently in the multi-robot
case as well. An important question is whether the staggered grid also provides an improve-
ment over the somewhat standard random uniform sampling in practice. In this section we
demonstrate that the staggered grid provides a practical improvement over random uniform
sampling especially for small sample sets.

Next, we show how the staggered grid outperforms random sampling in both of our test
scenes with 2 robots, those depicted in the [Top-left] and [Top-right] sub-figures of Figure 5.1.
The testing scheme we use is the following: for varying values of ε, we calculate the number
of points in the staggered grid, and the connection radius prescribed by Theorem 4.3. We
then randomly choose that same number of points uniformly and use the same connection
radius for solving the scene. This process is repeated 10 times to account for randomness.

We first look at the success rate. Using the staggered grid we are guaranteed to have
a perfect success rate as long as there exists a path with δ-clearance, for a given δ. For a
random set of points this is no longer the case—see the success rate reported in Figure 5.3.
Note that as ε decreases (and the number of samples increases) the success rate improves.
We also observe that the scene with obstacles has a very low success rate for small values of
ε.
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Figure 5.3: The success rate in finding a valid solution for the MRMP problem, using a sample
set consisting of random points (uniformly distributed in rδ, 1´δs2). The success rate is measured
for 10 runs.

Next we consider the cost of the resulting trajectory. We compare the average cost of
the path generated using the randomly sampled points with the cost of the path generated
using the staggered grid. As can be observed in Figure 5.4, for small sets of points (large ε
values) the staggered grid outperforms an average uniformly chosen random set of sample
points. This advantage decreases for smaller ε values. These results are not very surprising,
as we know that PRM can be near-optimal for infinitely large sets of random points; using a
suitable radius, this is proved for PRM˚ in [23].

To summarize, our results emphasize the strength of the staggered grid for large values
of ε, when compared with the standard random sampling both in terms of success rate and
solution quality.
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(a) obstacle-free (b) spiral

Figure 5.4: The average cost of successful runs for the MRMP problem, for the two scenarios of
two robots each. We show the average cost using randomly sampled points (blue line) and the
cost using the staggered grid (red line).
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6
Staggered grid: Comparative size analysis

In this section we present further comparative analysis of the size of the staggered grid.
We do that for two reasons. First, for completeness, and secondly because it raises some
interesting questions about the lower bound for both the cube cover and the motion-planning
problems. Our benchmarks (YLB, Yprev, defined below) will be the previous results from [55,
Theorem 3].

Let β, γ ą 0 be the parameters as described for Lemma 3.5, and d ě 2 the dimension
of the γ-cube and the β-spheres. We denote by YLB the lower bound for the cube cover
problem. Namely,

YLB «
?
πd

˜

c

d

2πe
¨

1´ 2γ

β

¸d

.

We denote by Yprev the previous upper bound for the cube cover problem. Namely,

Yprev «
?
πd

˜

c

2d

πe
¨

1´ 2γ ` β

β

¸d

.

Lastly, we denote by Ycurr the number of samples in the staggered grid as in Definition 3.2.
Namely,

Ycurr “

˜S

p1´ 2γq
?
d

?
8β

W¸d

`

˜S

p1´ 2γq
?
d

?
8β

W

` 1

¸d

.

To analyze our results we use both the asymptotic regime, where β and γ tend to 0, as
well as provide below a table with selected exact values.
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We first consider the ratio Ycurr

YLB
, where the values β and γ tend to zero.

Ycurr

YLB

“

´Q

p1´2γq
?
d

?
8β

U¯d

`

´Q

p1´2γq
?
d

?
8β

U

` 1
¯d

?
πd

´
b

d
2πe
¨
1´2γ
β

¯d

paq
«

2
´

p1´2γq
?
d

?
8β

¯d

?
πd

´
b

d
2πe
¨
1´2γ
β

¯d

“
2
?
πd

ˆ
c

πe

4

˙d

«
2
?
πd

1.4611d ,

(6.1)

where the approximation in paq is due to ignoring the highlighted unit value 1 in the nu-
merator and the roundups (the influence of both values tends to 0 as β or γ tend to 0).
This implies that our result yields cover sets that are bigger than the lower bound by an
exponential factor in d, but this factor is only 1.4611 compared to an exponential factor of
more than 2 in the previous work.

Recall the similar comparison for the motion-planning problem. Namely, the ratio Xcurr

XLB

between our bound on the number of samples required for motion planning over the lower
bound for the motion planning problem, as derived in Eq 3.4; we repeat it here for ease of
comparison.

2
?

2 ¨ 1.4611d ď
Xcurr

XLB

ď 4

c

2

e
¨ 1.4611d.

Note that the base of the exponent is exactly the same, while there is some difference in
the constants and the 1{

?
d in the cover ratio. The reason these lower bounds are not in an

exact same relation to our bound is that they are both derived from a volume based proof,
but these proofs are not identical [55].

Coxeter et al. [8] showed lower bounds on the density of a cover of Rd. While out of scope
for this thesis, it should not be too difficult to use their lower bounds to derive better lower
bounds for the cube cover problem. More interestingly, these alternative bounds might also
be used for deriving improved lower bounds for the motion-planning problem.

Next, we consider the ratio Yprev

Ycurr
, again for the case where the values β and γ tend to

zero.

Yprev

Ycurr

“

?
πd

´
b

2d
πe
¨
1´2γ`β

β

¯d

´Q

p1´2γq
?
d

?
8β

U¯d

`

´Q

p1´2γq
?
d

?
8β

U

` 1
¯d

«

?
πd

2
1.3687d ;

(6.2)

we omit the calculations as those are similar to Eq 3.2. Note that the cube cover improvement
ratio is exactly the same as the motion-planning improvement ratio (Eq 3.2).
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Lastly, in Table 6.1 we compare our results with the previous lower and upper bounds
for specific values. It shows that for most feasible cases (d ď 10) the staggered grid is closer
to the lower bound than to the previous upper bound.
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β “ 0.1 β “ 0.05 β “ 0.01
γ d YLB Ycurr Yprev YLB Ycurr Yprev YLB Ycurr Yprev

0.05

2 26 61 128 104 181 460 2579 4141 1.05 ¨ 104

3 175 559 1910 1393 3925 1.31 ¨ 104 1.74 ¨ 105 3.61 ¨ 105 1.44 ¨ 106

4 1330 6497 3.24 ¨ 104 2.13 ¨ 104 6.70 ¨ 104 4.23 ¨ 105 1.33 ¨ 107 3.46 ¨ 107 2.22 ¨ 108

5 1.12 ¨ 104 9.18 ¨ 104 6.08 ¨ 105 3.59 ¨ 105 1.81 ¨ 106 1.51 ¨ 107 1.12 ¨ 109 4.01 ¨ 109 3.79 ¨ 1010

6 1.03 ¨ 105 7.94 ¨ 105 1.24 ¨ 107 6.58 ¨ 106 4.09 ¨ 107 5.83 ¨ 108 1.03 ¨ 1011 4.68 ¨ 1011 7.03 ¨ 1012

7 1.01 ¨ 106 1.48 ¨ 107 2.71 ¨ 108 1.30 ¨ 108 1.02 ¨ 109 2.42 ¨ 1010 1.01 ¨ 1013 6.69 ¨ 1013 1.40 ¨ 1015

8 1.06 ¨ 107 1.43 ¨ 108 6.31 ¨ 109 2.72 ¨ 109 2.80 ¨ 1010 1.07 ¨ 1012 1.06 ¨ 1015 9.01 ¨ 1015 2.97 ¨ 1017

9 1.17 ¨ 108 3.36 ¨ 109 1.55 ¨ 1011 6.01 ¨ 1010 1.31 ¨ 1012 5.01 ¨ 1013 1.17 ¨ 1017 1.45 ¨ 1018 6.64 ¨ 1019

10 1.37 ¨ 109 8.79 ¨ 1010 4.02 ¨ 1012 1.40 ¨ 1012 4.32 ¨ 1013 2.46 ¨ 1015 1.37 ¨ 1019 2.32 ¨ 1020 1.56 ¨ 1022

0.01

2 31 61 149 123 221 541 3058 4901 1.25 ¨ 104

3 225 855 2406 1798 4941 1.67 ¨ 104 2.25 ¨ 105 4.65 ¨ 105 1.85 ¨ 106

4 1870 6497 4.41 ¨ 104 2.99 ¨ 104 8.90 ¨ 104 5.84 ¨ 105 1.87 ¨ 107 4.94 ¨ 107 3.11 ¨ 108

5 1.72 ¨ 104 9.18 ¨ 104 8.93 ¨ 105 5.50 ¨ 105 2.47 ¨ 106 2.26 ¨ 107 1.72 ¨ 109 5.96 ¨ 109 5.78 ¨ 1010

6 1.71 ¨ 105 1.53 ¨ 106 1.97 ¨ 107 1.10 ¨ 107 5.81 ¨ 107 9.46 ¨ 108 1.71 ¨ 1011 7.82 ¨ 1011 1.17 ¨ 1013

7 1.84 ¨ 106 2.95 ¨ 107 4.64 ¨ 108 2.35 ¨ 108 2.17 ¨ 109 4.26 ¨ 1010 1.84 ¨ 1013 1.16 ¨ 1014 2.53 ¨ 1015

8 2.10 ¨ 107 3.14 ¨ 108 1.17 ¨ 1010 5.37 ¨ 109 6.34 ¨ 1010 2.05 ¨ 1012 2.10 ¨ 1015 1.77 ¨ 1016 5.82 ¨ 1017

9 2.53 ¨ 108 7.52 ¨ 109 3.10 ¨ 1011 1.29 ¨ 1011 2.00 ¨ 1012 1.04 ¨ 1014 2.53 ¨ 1017 2.97 ¨ 1018 1.42 ¨ 1020

10 3.20 ¨ 109 8.79 ¨ 1010 8.67 ¨ 1012 3.28 ¨ 1012 6.80 ¨ 1013 5.53 ¨ 1015 3.20 ¨ 1019 5.43 ¨ 1020 3.63 ¨ 1022

0

2 32 61 155 128 221 562 3184 5101 1.30 ¨ 104

3 239 855 2543 1910 4941 1.77 ¨ 104 2.39 ¨ 105 4.88 ¨ 105 1.97 ¨ 106

4 2027 1.07 ¨ 104 4.75 ¨ 104 3.24 ¨ 104 1.16 ¨ 105 6.31 ¨ 105 2.03 ¨ 107 5.23 ¨ 107 3.37 ¨ 108

5 1.90 ¨ 104 9.18 ¨ 104 9.79 ¨ 105 6.08 ¨ 105 2.47 ¨ 106 2.48 ¨ 107 1.90 ¨ 109 6.76 ¨ 109 6.39 ¨ 1010

6 1.94 ¨ 105 1.53 ¨ 106 2.19 ¨ 107 1.24 ¨ 107 8.11 ¨ 107 1.06 ¨ 109 1.94 ¨ 1011 8.98 ¨ 1011 1.31 ¨ 1013

7 2.12 ¨ 106 2.95 ¨ 107 5.28 ¨ 108 2.71 ¨ 108 2.17 ¨ 109 4.88 ¨ 1010 2.12 ¨ 1013 1.35 ¨ 1014 2.90 ¨ 1015

8 2.46 ¨ 107 3.14 ¨ 108 1.35 ¨ 1010 6.31 ¨ 109 6.34 ¨ 1010 2.39 ¨ 1012 2.46 ¨ 1015 2.08 ¨ 1016 6.83 ¨ 1017

9 3.03 ¨ 108 7.52 ¨ 109 3.66 ¨ 1011 1.55 ¨ 1011 3.01 ¨ 1012 1.23 ¨ 1014 3.03 ¨ 1017 3.84 ¨ 1018 1.70 ¨ 1020

10 3.92 ¨ 109 2.00 ¨ 1011 1.04 ¨ 1013 4.02 ¨ 1012 1.05 ¨ 1014 6.70 ¨ 1015 3.92 ¨ 1019 6.50 ¨ 1020 4.44 ¨ 1022

Table 6.1: A comparison of the β-cover size for the d-dimensional p1´2γq-cube with various values for the attributes of γ, ball radius
β, and dimension d. For every combination of attributes we report the following values, YLB is the lower bound for the cube cover
problem, Yprev is the previous result, both are from [55, Theorem 3]. Ycurr is the number of points required to cover the cube using
the staggered grid. Note that γ “ 0 is the cover of the unit cube, and that for the motion-planning problem β ď γ.
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7
Discussion and future work

We developed sufficient theoretical conditions for finite-sample near-optimality of the tensor
roadmap, which is an underlying structure in several sampling-based algorithms for MRMP.
We also presented a new sampling scheme, termed the staggered grid, for near-optimal
motion planing for individual robots, which requires fewer samples than previous work.

Our work raises interesting questions for further investigation both in practice and the-
ory. The scalability issues we encountered when testing our theoretical finding on MC-CBS—a
continuous extension of a state-of-the-art method for MAPF—motivate the study of more
effective methods for exploring tensor roadmaps introduced by large PRM graphs. On the
positive side, the scenarios that we did manage to solve suggest that near-optimality can
be achieved with smaller sample sets than our theory prescribes. This motivates the devel-
opment of even more compact sampling-distributions for the single-robot case, and refining
our proof technique for the multi-robot case (Theorem 4.3).
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A
Better covering of a square

We present a covering for the two-dimensional case suggested by Coxeter et al. [8], which
is more economical than our staggered grid. We will compare the density of their covering
with the density of our staggered grid 3.2 asymptotically, namely when the radius of the
covering discs tends to zero.

First we define the density of a covering: It is the ratio between the volume of all objects
in the cover and the volume of the object being covered. For a region O covered by a finite

set of objects po1, . . . , okq, the density is defined as
řk

i“0 volpoiq

volpOq
. When covering unbounded

regions [8], other means are needed in order to calculate that ratio, as we discuss next.

Next we present the methodology used in [8]. In their paper they show a lower bound
on the density of covering Rd using spheres with radius 1. This lower bound is also an exact
bound for d “ 2 which is why we can compare our results to it. In their paper Coxeter et
al. show that locating such spheres with their centers at each vertex of a regular simplex of

edge length
b

2pd`1q
d

, will cover the simplex. The density is the volume of the sections of

these spheres that intersect the simplex divided by the volume of the simplex. Note that in
the plane this lower bound can be attained as it is possible to cover R2 by interior-disjoint
regular 2-simplices (namely, equilateral triangles), but this is not true for higher dimensions.
Thus only yielding a lower bound for the density of covering Rd for d ě 3. For d “ 2 the
density proven in [8] is 2π

3
?
3
« 1.209.

We now calculate the asymptotic density of the staggered grid when covering the rγ, 1´γs-
square, meaning for the case where the radius of the ball —β, tends to 0. This is the case
of interest for us and this will reduce the influence of the β-balls on the edges of the square.

As we state in Section 3, the number of β-balls in the staggered grid is
´Q

p1´2γq
?
d

?
8β

U¯d

`
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´Q

p1´2γq
?
d

?
8β

U

` 1
¯d

. The volume of each ball is πβ2. This yields the following expression for

the volume of the cover using the staggered grid,

˜

ˆR

p1´ 2γq

2β

V˙2

`

ˆR

p1´ 2γq

2β

V

` 1

˙2
¸

`

πβ2
˘

paq
« 2

ˆ

p1´ 2γq

2β

˙2
`

πβ2
˘

“ p1´ 2γq2
π

2
,

where the approximation in paq is due to ignoring the round-ups and the highlighted unit
value 1, whose influence tends to 0 as β tend to 0.

The volume of the rγ, 1´ γs-square is p1´ 2γq2, Thus, the density of the staggered grid
when covering the rγ, 1´ γs-square is,

p1´ 2γq2 π
2

p1´ 2γq2
“
π

2
« 1.5708.

Now we look at the density of the staggered grid divided by the density from [8]. This
yields the following ratio,

π
2
2π
3
?
3

“
π

2

3
?

3

2π
“

3
?

3

4
« 1.299 ,

which means that asymptotically, for d “ 2, the covering using [8] is more economical than
our staggered grid by a multiplicative factor of 1.299.

We leave the employment of the approach in [8] in higher dimensions (d ą 2) for future
research. In their approach they cover the space with regular simplices and then cover each
simplex with balls. This works well in two dimensions, where the equilateral triangles tile
the plane. This is no longer the case in higher dimensions. In dimensions three and higher,
there is a gap between the lower bound [8] and the best known covering.
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 תקציר 
 

תוך שימוש בכמות סופית של  לרובוטים  (motion planning) תכנון תנועה  בבעיית התיזה עוסקת

   .נקודות דגימה

בשיטה זו ממירים את הבעיה   .תכנון תנועה מבוסס דגימות התיזה הינהבסיס הגישה אשר עומדת ב

. שיטה זו  וחיבור בין נקודות שקרובות זו לזו מהעולם הרציף לעולם הבדיד בעזרת דגימות של נקודות

  רובוט תנועה עבורהינה השיטה הרווחת כיום לפתרון בעיות בהן מעורבים מספר רובוטים או בעיות 

 . מספר רב של דרגות חופש של תנועהבעל  בודד

( ע"י כדורים ברדיוס קטן  כללימימד בה בה עוסקת התיזה היא בעיית כיסוי קוביה )הבעיה הראשונ

ומוכיחים שהיא משפרת באופן   staggered grid-שיטה בשם המציעים כלשהו. עבור בעיה זו אנו  

בעבודה אנו מנתחים את השיטה שלנו אל מול    .(אינה אופטימלית אך) משמעותי תוצאות קודמות

   חתונים מעבודות קודמות.חסמים עליונים ות

תוצאות קודמות עבור  משמעותי למול  אנו מראים שיפור  ,תוך שימוש בשיטת הדגימה המצוינת לעיל

 תכנון תנועה לרובוט יחיד בעזרת מספר סופי של נקודות דגימה. בעיית 

מציגים תוצאה  זה אנו  בחלקם את התוצאה למספר כלשהו של רובוטים. יבילאחר מכן אנו מרח

  תוך  יםעם ערבויות על איכות המסלול כללייםתכנון תנועה למספר רב של רובוטים  ה:ראשונה מסוג

. חלק זה הינו החלק המרכזי של התיזה והוא מסתמך רבות על  דגימה נקודות של סופי במספר שימוש

אנו מראים כי התוצאות  בהם  בניסויים בתוכנהמגובה  התיאורטית התוצאההפרקים הקודמים. 

 הפרקטיות אף טובות ממה שהתיאוריה מבטיחה. 

בין דגימה  אשר עלו מהמחקר. ראשית אנו משווים נוספים  לסיום אנו סוקרים מספר נושאים מעניינים 

  אחידה ומראים את השיפור בסיכויי ההצלחה ובאיכות התוצאות. תבשיטתנו למול דגימה רנדומלי

מעלים רעיונות כיצד ניתן לשפר את שיטת הדגימה  , בנוסף אנו סוקרים יותר לעומק את בעיית הכיסוי

חסמים עבור בעיית  לנצל חסמים משופרים על כיסוי קוביה כדי לשפר את האיך ניתן משערים שלנו ו

 תכנון התנועה. 

 :ICRA 2021התפרסם בכנס את תוצאות התזה מאמר המסכם 

D. Dayan, K. Solovey, M. Pavone, and D. Halperin. Near-Optimal Multi-Robot Motion 

Planning with Finite Sampling. In IEEE International Conference on Robotics and 

Automation (ICRA), 2021. 
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