
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler

Faculty of Exact Sciences

The Blavatnik School of Computer Science

Minkowski Sum Construction and
other Applications of Arrangements

of Geodesic Arcs on the Sphere

Thesis submitted for the degree of “Doctor of Philosophy”

by

Efraim Fogel

This work has been carried out under the supervision of
Prof. Dan Halperin

Submitted to the Senate of Tel-Aviv University
October 2008

i

Acknowledgements

This research project would not have been possible without the support of many people.
I wish to express my gratitude to my advisor, Prof. Dan Halperin who was abundantly
helpful and offered invaluable assistance, support, insights, and guidance. This sentense is
far short of describing the magnitude of positive influence Danny had on this research and
this researcher.

I would like to thank Ron Wein and Ophir Setter from Tel-Aviv University and Eric Berberich
from Max-Planck-Insitut für Informatik, for ongoing and fruitful collaboration. I would also
like to thank all other members of the applied computational geometry group at the computer
science school in Tel-Aviv University who made the study duration festive.

I would like to thanks the members of the Cgal Editorial Board in particular and all
members of the Cgal developers’ community in general for sharing their wisdom through
many useful advises and rich discussions.

During the years I participated in the EU-funded projects Ecg (Effective Computational
Geometry for Curves and Surfaces; contract No. IST-2000-26473), Movie (Motion Planning
in Virtual Environments, contract No. IST-2001-39250) and Acs (Algorithms for Complex
Shapes; contract No. IST-006413) projects. I wish to thank all the other participants in
these projects, with whom I enjoyed working.

Finally, I would like to express my love and gratitude to my beloved families; for their
understanding and endless love, through the duration of my studies.

ii

iii

Abstract

We present two exact implementations of efficient output-sensitive algorithms that compute
Minkowski sums of two convex polyhedra in R3. We do not assume general position. Namely,
we handle degenerate input, and produce exact results. We provide a tight bound on the
exact maximum complexity of Minkowski sums of polytopes in R3 in terms of the number of
facets of the summand polytopes. The complexity of Minkowski sum structures is directly
related to the time consumption of our Minkowski sum constructions, as they are output
sensitive. We demonstrate the effectiveness of our Minkowski-sum constructions through
simple applications that exploit these operations to detect collision between, and answer
proximity queries about, two convex polyhedra in R3.

The algorithms employ variants of a data structure that represents arrangements embed-
ded on two-dimensional parametric surfaces in R3, and they make use of many operations
applied to arrangements in these representations. We have developed software components
that support the arrangement data-structure variants and the operations applied to them.
These software components are generic, as they can be instantiated with any number type.
However, our algorithms require only (exact) rational arithmetic. These software components
together with exact rational-arithmetic enable a robust, efficient, and elegant implementation
of the Minkowski-sum constructions and the related applications. These software compo-
nents are provided through a package of the Computational Geometry Algorithm Library
(Cgal) [5] called Arrangement on surface 2 [WFZH07a]. The code of Cgal in general,
the Arrangement on surface 2 package in particular, and all the rest of the code developed
as part of this thesis adhere to the Generic Programming paradigm and follow the Exact
Geometric Computation paradigm.

We also present exact implementations of other applications that exploit arrangements
of arcs of great circles, also known as geodesic arcs, embedded on the sphere. For example,
we implemented robust polyhedra central-projection and Boolean set-operations applied to
point sets embedded on the sphere bounded by geodesic arcs. We use them as basic blocks in
an exact implementation of an efficient algorithm that partitions an assembly of polyhedra
in R3 with two hands using infinite translations. This application makes extensive use of
Minkowski-sum constructions and other operations on arrangements of geodesic arcs embed-
ded on the sphere. It distinctly shows the importance of exact computation, as imprecise
computation might result with dismissal of valid partitioning-motions.

We have produced three movies that explain some of the concepts portrayed in this
thesis [20].1 The first movie [FFHL02] explains what Minkowski sums are and demonstrates
how they are used in various applications. The second movie [FH05] demonstrates the first
method we have developed to construct Minkowski-sums of convex polyhedra. The third
movie [FSH08b] illustrates exact construction and maintenance of arrangements induced by
geodesic arcs and applications that exploit such arrangements.

Additional information is available at the following web sites:
http://acg.cs.tau.ac.il/projects/internal-projects/gaussian-map-cubical

1Throughout the thesis a number in brackets (e.g., [20]) refers to the link list starting on page 118, and
an alphanumeric string in brackets (e.g., [FFHL02]) is a standard bibliographic reference.

http://acg.cs.tau.ac.il/projects/internal-projects/gaussian-map-cubical

iv

http://acg.cs.tau.ac.il/projects/internal-projects/arrangements-on-surfaces,
http://acg.cs.tau.ac.il/projects/internal-projects/exact-complexity-of-

minkowski-sums, and
http://acg.cs.tau.ac.il/projects/internal-projects/arr-geodesic-sphere

Auxiliary programs, source code, data sets, and documentation can be downloaded from
http://www.cs.tau.ac.il/~efif/Minkowski-sum.

http://acg.cs.tau.ac.il/projects/internal-projects/arrangements-on-surfaces
http://acg.cs.tau.ac.il/projects/internal-projects/arr-geodesic-sphere

Contents

1 Introduction 1

1.1 Main Contribution . 1

1.2 Background: Minkowski Sums . 3

1.3 Background: Programming . 5

1.3.1 Generic Programming . 5

1.3.2 Geometric Programming . 9

1.3.3 Computational Geometry Algorithms Library 11

1.4 Thesis Outline and Related Publications . 14

2 Arrangements on Surfaces 17

2.1 Related Work . 18

2.2 Parametric Surfaces . 19

2.3 The Arrangement Package Architecture . 21

2.3.1 The Data Structure . 21

2.3.2 Member Operations . 23

2.3.3 Cell Extension . 24

2.4 The Arrangement Facilities . 24

2.4.1 Sweep Line . 24

2.4.2 Map Overlay . 25

2.4.3 Zone Construction . 26

2.4.4 Observers . 26

2.4.5 Point Location . 28

2.5 Geometry-Traits Concepts . 29

2.5.1 The Geometry-Traits Adaptor . 33

2.5.2 Geometry-Traits Models . 34

2.5.3 Geometry-Traits Extension . 35

2.5.4 A Geometry-Traits Model that Handles Polylines 35

2.6 Arrangements of Geodesic Arcs on the Sphere 36

2.6.1 The Geometry-Traits Model . 37

v

vi CONTENTS

2.7 Applications . 39

2.7.1 Regularized Boolean Set-Operations 39

2.7.2 Envelopes . 41

2.7.3 Voronoi Diagrams . 41

3 Minkowski Sum Construction 45

3.1 Gaussian Maps . 46

3.2 The (Spherical) Gaussian-Map Method . 47

3.2.1 The Representation . 48

3.2.2 Exact Minkowski Sums . 50

3.3 The Cubical Gaussian-Map Method . 51

3.3.1 The Representation . 51

3.3.2 Exact Minkowski Sums . 56

3.4 Exact Collision Detection . 57

3.5 Minkowski Sum Complexity . 59

3.6 Experimental Results . 60

4 Exact Complexity of Minkowski Sums 65

4.1 The Upper Bound for k = 2 . 67

4.2 The Lower Bound for k = 2 . 69

4.2.1 Constructing P5 . 70

4.2.2 Constructing Pi, i ≥ 5 . 71

4.2.3 Constructing P4 . 73

4.3 Maximum Complexity of Minkowski Sums of Many Polytopes 74

4.3.1 The Lower Bound . 74

4.3.2 The Upper Bound . 74

5 Assembly Planning 77

5.1 Introduction . 78

5.1.1 Split Star Puzzle . 79

5.1.2 Chapter Outline . 80

5.2 The Partitioning Algorithm . 80

5.3 Implementation Details . 82

5.3.1 Convex Decomposition . 83

5.3.2 Sub-part Gaussian Map Construction 83

5.3.3 Sub-part Gaussian Map Reflection 84

5.3.4 Pairwise Sub-part Minkowski Sum Construction 84

5.3.5 Pairwise Sub-part Minkowski Sum Projection 85

CONTENTS vii

5.3.6 Pairwise Minkowski Sum Projection 86

5.3.7 Motion-Space Construction . 88

5.3.8 Motion-Space Processing . 88

5.4 Additional Optimization . 89

5.5 Experimental Results . 90

6 Conclusion and Future Work 91

6.1 Arrangements on Two-Dimensional Surfaces 91

6.1.1 Generic Observers . 92

6.1.2 Property Maps . 92

6.1.3 Point Location for Surfaces . 93

6.1.4 Geometry-Traits Models . 93

6.2 Three-Dimensional Arrangements . 94

6.3 Boolean Set-Operations . 94

6.3.1 Fixing the Data . 95

6.3.2 Improving the Efficiency . 97

6.3.3 Non Regularized Operations . 97

6.3.4 Operating in 3-Space . 97

6.4 Collision Detection . 98

6.5 Reflection Mapping and GIS . 98

6.6 Exact Complexity of Minkowski Sums . 99

A Software Components, Libraries, and Packages 101

A.1 Visual Simulation . 101

A.2 Software Availability . 102

viii CONTENTS

List of Figures

2.1 Various types of arrangements . 17

2.2 The arrangement immediate insertion methods 23

2.3 Geometry-traits concept basic refinement hierarchy 29

2.4 Geometry-traits concept abstract refinement hierarchy 31

2.5 Geometry-traits concept refinement hierarchy for Boolean set-operations . . 39

2.6 Lower envelopes of various types of surfaces 41

2.7 Voronoi diagrams on the sphere . 42

2.8 Arrangements on the sphere . 43

3.1 Gaussian maps of polytopes . 46

3.2 The cubical Gaussian map of a tetrahedron 48

3.3 Gaussian maps of various polytopes . 48

3.4 The Minkowski sum of two polyhedra . 50

3.5 Gaussian maps of Minkowski sums . 51

3.6 The cubical Gaussian map data structure . 53

3.7 Cubical Gaussian maps of polyhedra . 54

3.8 Simulation of motion . 58

3.9 The Minkowski sum (of two polytopes) the complexity of which is maximal . 59

3.10 The Minkowski sum of two geodesic spheres level 2 60

3.11 The Minkowski sum of two orthogonal squashed dioctagonal pyramids 60

3.12 Cubical Gaussian maps and Minkowski sums of polyhedra 63

4.1 Gaussian maps of summands of Minkowski sums with maximal complexities 65

4.2 The overlay of G5 and G5 rotated about the Y axis 70

4.3 Different views of P5 . 71

4.4 Views of P10 and P11 . 72

4.5 The Minkowski sum of M11,11 and M11,11 rotated about the Y axis 73

4.6 The overlay of the Gaussian maps of three rotated tetrahedra 74

5.1 The Split Star assembly . 77

ix

x LIST OF FIGURES

5.2 Decomposition of the Split Star assembly . 83

5.3 Samples of the Gaussian maps of sub-parts of the Split Star assembly 84

5.4 Samples of the pairwise Minkowski sums of the Split Star assembly sub-parts 85

5.5 Peg-in-the-hole Minkowski sum projections 87

6.1 A relatively simple polygon . 95

6.2 A polygon with holes . 95

6.3 A self crossing polygon . 96

6.4 The union of eight discs . 97

6.5 Environment mapping . 98

List of Tables

2.1 Geometry-traits models . 34

3.1 The coordinate systems and the cyclic chains of corner vertices 53

3.2 The complexity of the dioctagonal pyramid Cgm planar maps 55

3.3 Complexities of primal and dual representations 56

3.4 Complexities of primal and dual Minkowski-sum representations 61

3.5 Time consumption of the Minkowski-sum computation 61

5.1 Split Star partitioning directions and corresponding subassemblies 88

5.2 Time consumption of assembly partitioning of the Split Star 90

xi

xii LIST OF TABLES

The Guide is definitive. Re-

ality is frequently inaccurate.

Douglas Adams

1
Introduction

Let P and Q be two closed convex polyhedra in Rd. The Minkowski sum of P and Q is the
convex polyhedron M = P ⊕ Q = {p + q | p ∈ P, q ∈ Q}. A polyhedron P translated by a
vector t is denoted by P t. Collision Detection is a procedure that determines whether P and
Q overlap. The Separation Distance π(P, Q) and the Penetration Depth δ(P, Q) defined as

π(P, Q) = min{‖t‖ |P t ∩ Q 6= ∅, t ∈ R
d} ,

δ(P, Q) = inf{‖t‖ |P t ∩ Q = ∅, t ∈ R
d}

are the minimum distances by which P has to be translated so that P and Q intersect or
become interior disjoint, respectively. The problems of finding the distances above can also
be posed given a normalized vector r that represents a direction, in which case the minimum
distance sought is in direction r. The Directional Penetration-Depth, for example, is defined
as

δr(P, Q) = inf{α |P α~r ∩ Q = ∅, α ∈ R} .

1.1 Main Contribution

We present two exact and robust implementations of efficient output-sensitive algorithms
to compute the Minkowski sum [FFHL02] of two convex polyhedra, polytopes for short, in
R3 [FH05, FH07, FSH08a, BFH+09a]. The implementations are exact and robust, as they
handle all degenerate cases, and guarantee exact results. We demonstrate the effectiveness
of our Minkowski-sum computations through simple applications that exploit these opera-
tions to detect collision, and compute the Euclidean separation-distance between, and the
directional penetration depth of, two polytopes in R3.

1

2 Chapter 1. Introduction

We compare our Minkowski-sum constructions with three other methods that produce
exact results we are aware of. One is a simple method that computes the convex hull of the
pairwise sums of vertices of two polytopes. The second is based on Nef polyhedra embedded
on the sphere, and the third is based on linear programming. We conducted experiments
with a broad family of polytopes and compared the performance of our methods with the
performance of the other. The results reported in Table 3.5 clearly shows that both our
methods are significantly faster.

Each method we have developed uses a different variant of Gaussian maps, also known
as normal diagrams or slope diagrams, to maintain dual representations of polytopes. Each
method employs a different variant of a generic data-structure that represents arrangement
embedded on two-dimensional parametric surfaces in R3 to maintain the dual representations.
(Arrangements embedded on two-dimensional parametric surfaces are subdivisions of the
surface, as induced by curves embedded on the surface. They play a central role in this
thesis; see Chapter 2 for a formal definition and Figure 2.1 for an illustration.) Each method
makes use of many operations applied to arrangements in the corresponding representations.

We present a tight bound on the exact maximum complexity of Minkowski sums of
polytopes in R3 [FHW07]. In particular, we prove that the maximum number of facets
of the Minkowski sum of k polytopes with m1, m2, . . . , mk facets respectively is bounded
from above by

∑
1≤i<j≤k(2mi − 5)(2mj − 5) +

∑
1≤i≤k mi +

(
k

2

)
. Given k positive integers

m1, m2, . . . , mk, we describe how to construct k polytopes with corresponding number of
facets, such that the number of facets of their Minkowski sum is exactly

∑
1≤i<j≤k(2mi −

5)(2mj − 5) +
∑

1≤i≤k mi +
(

k

2

)
. When k = 2, for example, the expression above reduces to

4m1m2 − 9m1 − 9m2 + 26.

We also present an exact implementation of an efficient algorithm that partitions an as-
sembly of polyhedra in R3 with two hands using infinite translations [FH08]. This application
makes extensive use of Minkowski-sum constructions and other operations on arrangements
of arcs of great circles, also known as geodesic arcs, embedded on the sphere, such as poly-
hedra central-projection and Boolean set-operations of point sets embedded on the sphere
bounded by geodesic arcs. The assembly partitioning demonstrates the importance of exact
computation, as imprecise computation might result with dismissal of valid partitioning-
motions.

Both methods that construct Minkowski sums and the related applications are imple-
mented on top of the Computational Geometry Algorithms Library (Cgal) [FT07], and
are mainly based on the arrangement package of the library [FWH04, WFZH07b, FHK+07,
BFH+07, BFH+09b], which supports arrangements embedded on two-dimensional paramet-
ric surfaces and operations on them. We have redesigned, re-implemented, and significantly
extended the package exploiting advanced programming techniques to yield a package that
is easy to use, to extend, and to adapt to a variety of applications.

The package contains a general framework for computing the zone of a single curve em-
bedded on a two-dimensional parametric surface and a general framework for sweeping a set
of such curves. The former framework is used, for example, to insert curves one at a time into
the arrangement. The latter framework is used, for example, to compute the arrangement
induced by a collection of curves, and to compute the overlay of two arrangements. Other

1.2. Background: Minkowski Sums 3

operations, such as point location and vertical ray shooting, are supported as well.

The design dictates the separation between the topological and geometric aspects of
the two-dimensional subdivision. This separation is advantageous, as it allows users to
employ the package with their own representation of any special family of curves. They
must however supply a relevant component called geometry traits class that handles the
specific family of curves they are interested in, which mainly involves algebraic computation.
The separation is enabled by a modular design and conveniently implemented within the
generic-programming paradigm. The separation is a key aspect of the package, as well as of
other central Cgal components, such as the various triangulation packages [BDTY00] and
convex-hull algorithms (see [cga07] for more details), has been forced since its early stages,
and heightened by our new design.

The package comes with many geometric traits classes that handle all kinds of curves
organized in a structured hierarchy. In particular, we mention the geometric traits class that
handles continuous piecewise linear curves, referred to as polylines and the geometric traits
class that handles geodesic arcs embedded on the sphere [FSH08b, FSH08a, BFH+09a]. The
former are of particular interest, as they can be used to approximate more complex curves
in the plane. At the same time they are easier to deal with in comparison to higher-degree
algebraic curves, as rational arithmetic is sufficient to carry out exact computations on
polylines. The latter is broadly used by the assembly-partitioning application and by the
second method that constructs Minkowski sums.

The implementation of the package as well as the implementation our Minkowski-sum
constructions, collision detection, and assembly partitioning applications handle degener-
ate input and produce exact results, as long as the underlying number type supports the
arithmetic operations +, −, ∗, and / in unlimited precision over the rationals,1 such as the
rational number type CGAL::Gmpq based on GMP — Gnu’s Multi Precision library [12].

1.2 Background: Minkowski Sums

Minkowski sums are closely related to proximity queries [LM04]. For example, the mini-
mum separation distance between two polytopes P and Q is equal to the minimum distance
between the origin and the boundary of the Minkowski sum of P and the reflection of Q
through the origin [CC86]. Computing Minkowski sums, collision detection and proximity
calculation constitute fundamental tasks in computational geometry [HKL04, LM04, Sha04].
These operations are ubiquitous in robotics, solid modeling, design automation, manufac-
turing, assembly planning, virtual prototyping, and many more domains; see, e.g., [BdLT97,
EOR92, KR91, Lat91, VKSM05].

The wide spectrum of ideas expressed in the massive amount of literature published about
the subject during the last three decades has inspired the development of quite a few useful
solutions. For an extensive overview about the subject and a comprehensive list of packages
see [LM04]. However, only recent advances in the implementation of computational-geometry
algorithms and data structures made our exact, robust, and efficient implementation possi-

1Commonly referred to as a field number type.

4 Chapter 1. Introduction

ble. The exact geometric-computation paradigm [Yap04] designed for implementing compu-
tational geometry algorithms particularly prevails in Cgal. While in general the underlying
arithmetic is highly time consuming compared to machine floating-point arithmetic, major
efficiency is gained by computing predicates only to sufficient precision to evaluate them
correctly; see Section 1.3.2 and e.g., [PF06].

Various methods to compute the Minkowski sum of two polyhedra in R3 have been
proposed. The goal is typically to compute the boundary of the sum provided in some
representation. The combinatorial complexity of the Minkowski sum of two polyhedra of m
and n features respectively can be as high as Θ(m3n3). One common approach to compute
it is to decompose each polyhedron into convex pieces, compute pairwise Minkowski sums of
pieces of the two, and finally the union of the pairwise sums. Computing the exact Minkowski
sum of non-convex polyhedra is naturally expensive. Therefore, researchers have focused on
computing an approximation that satisfies some criteria, such as the algorithm presented by
Varadhan and Manocha [VM06]. They guarantee a two-sides Hausdorff distance bound on
the approximation, and ensure that it has the same number of connected components as the
exact Minkowski sum. Computing the Minkowski sum of two convex polyhedra remains a
key operation, and this is what we focus on. The combinatorial complexity of the sum can be
as high as Θ(mn) when both polyhedra are convex. For the complexity of the intermediate
case, where only one polyhedron is convex, cf. [AS97, Sha04].

Convex decomposition is not always possible, as in the presence of non-convex curved
objects. In these cases other techniques must be applied, such as approximations using
polynomial/rational curves in 2D [kLsKE98]. Seong at al. [SKS02] proposed an algorithm
to compute Minkowski sums of a subclass of objects; that is, surfaces generated by slope-
monotone closed curves. Flato and Halperin [AFH02] presented algorithms based on Cgal

for robust construction of planar Minkowski sums. While the citations in this paragraph
refer to computations of Minkowski sums of non-convex polyhedra, and we concentrate on
the convex cases, the latter is of particular interest, as our method makes heavy use of
the same software components, in particular the Cgal arrangement package, which went
through a few phases of improvements [FWH04, WFZH07b, BFH+07, BFH+09b] since its
usage in [AFH02]; see Section 1.3.3 for more details.

A particular accomplishment of the kinetic framework in two dimensions introduced by
Guibas et al. [GRS83] was the definition of the convolution operation in two dimensions, a
superset of the Minkowski sum operation, and its exploitation in a variety of algorithmic
problems. Basch et al. extended its predecessor concepts and presented an algorithm to
compute the convolution in three dimensions [BGRR96]. An output-sensitive algorithm
for computing Minkowski sums of polytopes was introduced in [GS87]. Gritzmann and
Sturmfels [GS93] obtained a polynomial time algorithm in the input and output sizes for
computing Minkowski sums of k polytopes in Rd for a fixed dimension d, and Fukuda [Fuk04]
provided an output-sensitive polynomial algorithm for variable d and k. Ghosh [Gho93]
presented a unified algorithm for computing 2D and 3D Minkowski sums of both convex and
non-convex polyhedra based on a slope diagram representation. Computing the Minkowski
sum amounts to computing the slope diagrams of the two objects, merging them (see details
in Section 3.2.2,) and extracting the boundary of the Minkowski sum from the merged
diagram. Wu et al. [WSD03] introduced an improved version of Ghosh’ algorithm for convex

1.3. Background: Programming 5

polyhedra using vector operations. Bekker and Roerdink [BR01] provided a variation on the
same idea. The slope diagram of a 3D convex polyhedron can be represented as a 2D object,
essentially reducing the problem to a lower dimension. We follow the same approach, but
use exact computation.

We postpone a formal definition of arrangements to the next chapter. In fact, we tem-
porary put Minkowski sums and arrangements aside to provide relevant programming back-
ground material.

1.3 Background: Programming

1.3.1 Generic Programming

Several definitions of the term generic programming have been proposed since it was first
coined around the early sixties, along with the introduction of the Lisp programming lan-
guage. Here we confine ourself to the classic notion first described by Musser et al. [MS88],
who considered generic programming as a discipline that consists of the gradual lifting of
concrete algorithms abstracting over details, while retaining the algorithm semantics and
efficiency. Within this context, several approaches have been put into trial through the in-
troduction of new features in existing computer languages, or even new computer languages
all together. The software described in this thesis is written in C++, a programming language
that is well equipped for writing software according to the generic-programming paradigm
through the extensive use of class templates and function templates.

Concepts and Models

One crucial abstraction supported by all contemporary computer languages is the subroutine
(also known as procedure or function, depending on the programming language). Another
abstraction supported by C++ is that of abstract data typing, where a new data type is
defined together with its basic operations. C++ also supports object-oriented programming,
which emphasizes packaging data and functionality together into units within a running
program, and is manifested in hierarchies of polymorphic data-types related by inheritance.
It allows referring to a value and manipulating it without needing to specify its exact type. As
a consequence, one can write a single function that operates on a number of types within an
inheritance hierarchy. Generic programming identifies a more powerful abstraction (perhaps
less tangible than other abstractions). It is a formal hierarchy of polymorphic abstract
requirements on data types referred to as concepts, and a set of classes that conform precisely
to the specified requirements, referred to as models. Models that describe behaviors are
referred to as traits classes [Mye98]. Traits classes typically add a level of indirection in
template instantiation to avoid accreting parameters to templates.

A generic algorithm has two parts: The actual instructions that describe the steps of the
algorithm, and a set of requirements that specify which properties its argument types must
satisfy. The following swap() function is an example of the first part of a generic algorithm.

6 Chapter 1. Introduction

template <typename T> void swap(T & a, T & b) {
T tmp = a; a = b; b = tmp;

}

When the function call is compiled, it is instantiated with a data type that must have an
assignment operator. A data type that fulfils this requirement is a model of a concept
commonly called Assignable [Aus99]. The int data type, for example, is a model of this
concept, so it can be used to instantiate the function template [Aus99] [25].

A concept is a set of requirements divided into four categories, namely, associated types,
valid expressions, invariants, and complexity guarantees. When a type meets all requirements
of a concept, the type is considered a model of the concept. When a concept extends the
requirements of another concept, the former is said to be a refinement of the latter.

Associated Types are auxiliary types. For example, a type that represents a two-dimensional
point, namely Point 2, is required by the arrangement geometry traits concept; see
Section 2.5.

Valid Expressions are C++ expressions that must compile successfully. For example, p =

q, where p and q are both objects of type Point 2. Valid expressions identify the set
of operations a model of the concept must be able to perform.

Invariants are run-time characteristics such as time and space complexity bounds. In our
context invariants typically take the form of preconditions and postconditions, which
must always be satisfied. For example, a condition that requires that an input point
p lies on an input curve c on invocation to a predicate that accepts both p and c as
parameters. Having preconditions typically minimizes the concept, as the operations
provided by a model must operate only on restricted arguments. Formally, removing
preconditions from, and introducing postconditions to, a requirement set results with
a refined concept.

Complexity Guarantees are maximum limits on the computing resources consumed by
the various expressions.

Traits Classes

The name “traits class” comes from a standard C++ design pattern [Mye98], which provides
a way of associating information with a compile-time entity (typically a type). For example,
the standard class-template std::iterator traits<T> looks roughly like this:

template <typename Iterator> struct iterator traits {
typedef ... iterator category;

typedef ... value type;

typedef ... difference type;

typedef ... pointer;

typedef ... reference;

};

Iterators play an important role in generic programming: A function that operates on a
range of objects usually accepts two iterators that specify this range. The traits’ value type

1.3. Background: Programming 7

specifies the type of object the iterators are pointing at, while the iterator category can
be used to select more efficient algorithms depending on the iterator’s capabilities.

A key property of trait classes is that they are non-intrusive. Namely, they allow us to
associate information with arbitrary types, without interfering with the internal representa-
tion of those types. Thus, it is possible to define a traits class also for built-in types and
types defined in third-party libraries.

Within the context of Cgal, for example, a typical traits class is required to define nested
types of geometric objects and support predicates involving objects of these types. Some
algorithms also require the provision of constructions by the traits class.

Let us continue with an easy geometric example. Consider a function that accepts a
set of points, given by the range [pts begin, pts end),2 and computes the minimal axis-
parallel rectangle that contains all points in the range. It does so by locating the points with
extremal x and y-coordinates, and then constructs the bounding iso-rectangle accordingly:

template <typename InputIterator, typename Traits>

typename Traits::Iso rectangle 2

bounding rectangle(InputIterator pts begin, InputIterator pts end) {
Traits traits;

InputIterator curr = pts begin;

InputIterator left, right, top, bottom;

left = right = top = bottom = curr++;

while (curr++ != pts end) {
if (traits.compare x(*curr, *left) == SMALLER) left = curr;

else if (traits.compare x(*curr, *right) == LARGER) right = curr;

if (traits.compare y(*curr, *bottom) == SMALLER) bottom = curr;

else if (traits.compare y(*curr, *top) == LARGER) top = curr;

}
return traits.construct iso rectangle(*left, *right, *bottom, *top);

}

The requirements that an instantiated traits class must satisfy in this case are as fol-
lows: It has to defined the nested type Iso rectangle 2 (and implicitly also a point type
say Point 2). Moreover, it should supply two three-valued predicates3 that compare two
points by their x-coordinates and by their y-coordinates, respectively. It should also support
the construction of an axis-parallel iso-rectangle from four points that specify its extremal
x and y-coordinates. Note, however, that the actual representation of points and rectan-
gles (the coordinate system, the number-type used to represent the coordinates, etc.) and
the implementation of the traits-class operations is entirely decoupled from the function
bounding rectangle() we have introduced.

Consider an imaginary generic implementation of a data structure that handles ge-
ometric arrangements embedded on two-dimensional parametric surfaces in space called
Arrangement on surface 2. Its prototype is listed below. This template class must be

2This notation means that pts begin points to the first point in the range, while pts end points after
the range ends (it is therefore called a past-the-end iterator, and need not point to any valid point object).

3The predicate return value is SMALLER, EQUAL, or LARGER.

8 Chapter 1. Introduction

instantiated with a traits class that in turn defines a type that represents a certain family of
curves, and some functions (or function objects; see [10] for an exact definition) that operate
on curves of this family.

template <typename Traits> class Arrangement on surface 2 { ... };

Traits classes that handle families of curves embedded on parametric surfaces are intricate, as
they model involved concepts. The precise definitions of these concepts and their refinement
hierarchy are described in Section 2.5.

One important objective is to minimize the set of requirements the traits concept imposes.
A tight traits concept may save tremendously in analysis and programming of classes that
model the concept. Another important reason for striving for the minimal set of requirements
is to avoid computing the same algebraic entity in different ways. The importance of this
is amplified in the context of computational geometry, as a non tight model that consists of
duplicate, but slightly different, implementations of the same algebraic entity, can lead to
artificial degenerate conditions, which in turn can drastically impair the performance.

Most traits classes in Cgal are parameterized by a model of the Kernel concept. The
choice of a particular model determines, among the other, the type of arithmetic used, as
explained in the following sections. One can easily switch between different models of the
Kernel concept, but here lies a trap, as Section 1.3.2 reveals. A kernel model that supports
exact arithmetic must be used to ensure robustness, although inexact arithmetic could be
used at a certain risk.

Libraries

Alexander Stepanov began exploring the potential of compile-time polymorphism for rev-
olutionizing software development in 1979. With the help of several other researchers his
work evolved into a prime generic-programming library — the Standard Template Library
(STL). This library had became part of the C++ standard library in 1994, approximately
one year before early development of Cgal started; see Section 1.3.3 for details about the
evolution of Cgal.

Through the years a few other generic-programming libraries emerged. One notable li-
brary in the context of computational geometry is Leda (Library of Efficient Data Types and
Algorithms), a library of combinatorial and geometric data types and algorithms [MN00] [17].
Early development of Leda started in 1988, ten years before the first public release of Cgal

became available. In some sense Leda is a predecessor of Cgal, although the two libraries
are headed in different directions. While Leda is mostly a large collection of fundamental
graph related and general purpose data-structures and algorithms, Cgal is a collection of
large and complex data-structures and algorithms focusing on geometry.

A noticeable influence on generic programming is conducted by the Boost online commu-
nity, which encourages the development of free C++ software gathered in the Boost library
collection [3]. It is a large set of portable and high quality C++ libraries that work well
with, and are in the same spirit as, the C++ Standard Template Library. The Boost Graph
Library (BGL) [SLL02], which consists of generic graph-algorithms, serves a particularly
important role in our context. An arrangement instance, for example, can be adapted as a

1.3. Background: Programming 9

BGL graph, and passed as input to generic algorithms already implemented in the BGL,
such as the Dijkstra shortest path algorithm. We use the BGL to compute the strongly con-
nected components of a directed graph — a phase in the assembly partitioning operation;
see Section 5.3.8 for more details about the application of this operation.

1.3.2 Geometric Programming

Implementing geometric algorithms and data structures is notoriously difficult, much harder
than may seem when just considering the algorithm as described in a paper or a book.
In the traditional computational-geometry literature two assumptions are usually made to
simplify the design and analysis of geometric algorithms. First, inputs are in “general po-
sition”. That is, degenerate input (e.g., three curves intersecting at a common point) is
precluded. Secondly, operations on real numbers yield accurate results (the “real Ram”
model [PS85], which also assumes that each basic operation takes constant time). Unfortu-
nately, these assumptions do not hold in practice, as degenerate input is commonplace in
practical applications and numerical errors are inevitable. Thus, an algorithm implemented
without keeping this in mind may yield incorrect results, get into an infinite loop, or just
crash, while running on a degenerate, or nearly degenerate, input (see [KMP+08, Sch00] for
examples). These pitfalls have become well known, and have been the subject of intensive
research [Sch00, Yap04].

Indeed, the last decade has seen significant progress in the development of software for
computational geometry. The mission of such a task, which Kettner and Näher [KN04]
call geometric programming, is to develop software that is correct, efficient, flexible (namely
adaptable and extensible4), and easy to use.

Separation of Topology and Geometry

The use of the generic-programming paradigm enables a convenient separation between the
topology and the geometry of data structures.5 This is a key aspect in the design of ge-
ometric software, and is put into practice, for example, in the design of Cgal polyhedra,
Cgal triangulations, and our Cgal arrangements. This separation allows the convenient
abstraction of algorithms and data structures in combinatorial and topological terms, re-
gardless of the specific geometry of the objects at hand and the algebra used to represent
them. This abstraction is realized through class and function templates that represent spe-
cific data-structures and algorithmic frameworks, respectively. Consider again our imaginary
Arrangement on surface 2 class template from the previous section; its improved prototype
is listed below. It is instantiated with two classes. The first, referred to as a geometric traits
class, defines the set of geometric-object types and the operations on objects of these types.
The second, defines the topological-object types and the operations required to maintain the

4Adaptability refers to the ability to incorporate existing user code, and extendibility refers to the ability
to enhance the software with more code in the same style.

5In this context, we sometimes say combinatorics instead of topology, and say algebra or numerics instead
of geometry. We always mean the same thing: The separation between the abstract, graph-like structure
(the topology) from the actual embedding on the surface (the geometry).

10 Chapter 1. Introduction

incident relations among objects of these types.

template <typename Geometry traits, typename Topology traits>

class Arrangement on surface 2 { ... };

An immediate advantage of the separation between the topology and the geometry of data
structures is that users with limited expertise in computational geometry can employ the
data structure with their own special type of objects. They must however supply the relevant
traits class, which mainly involve algebraic computations. A traits class also encapsulates the
number types used to represent coordinates of geometric objects and to carry out algebraic
operations on them. It encapsulates the type of coordinate system used (e.g., Cartesian,
Homogeneous), and the geometric or algebraic computation methods themselves. Naturally,
a prospective user of the package that develops a traits class would like to face as few
requirements as possible in terms of traits development.

Another advantage gained by the use of generic programming is the convenient handling
of numerical issues to expedite exact geometric computation. We arrive at this conclusion at
the end of the next section. In a geometric algorithm each computational step is either a con-
struction step or a conditional step based on the result of a predicate. The former produces
a new geometric object such as the intersection point of two segments. The latter typically
computes the sign of an expression used by the program control. Different computational
paths lead to results with different combinatorial characteristics. Although numerical errors
can sometimes be tolerated and interpreted as small perturbations in the input, they may
lead to invalid combinatorial structures or inconsistent state during a program execution.
Thus, it suffices to ensure that all predicates are evaluated correctly to eliminate inconsis-
tencies and guarantee combinatorially correct results. This is easier said than done, but
nowadays possible, as the next section exposes.

Exact Geometric Computation

The need for robust software implementations of computational-geometry algorithms has
driven many researchers over the last decade to develop variants of the classic algorithms that
are less susceptible to degenerate inputs. The approaches taken to overcome the difficulties
in robustly implementing geometric algorithms can be roughly divided into two categories:
(i) Exact computing, and (ii) fixed-precision approximation. In the latter approach the
algorithms are modified so that they can consistently cope with the limited precision of
computer arithmetic. In the former, which is the approach taken by Cgal in general and the
arrangement package in particular, ideal computer arithmetic is emulated for the specific type
of objects being manipulated, and the code is prepared for successfully handling degenerate
input.

Advances in computer algebra enabled the development of efficient software libraries
that offer exact arithmetic manipulations on unbounded integers, rational numbers (GMP

— Gnu’s multi-precision library [12]), and algebraic numbers (the Core library [KLPY99] [6]
and the numerical facilities of Leda [MN00, Chapter 4] [17]). These exact-number types
serve as fundamental building-blocks in the robust implementation of many geometric ap-
plications in general (see [Yap04] for a review) and of those that employ arrangements in
particular.

1.3. Background: Programming 11

Exact Geometric Computation (EGC), as summarized by Yap [Yap04], simply amounts to
ensuring that we never err in predicate evaluations. EGC represents a significant relaxation
from the naive concept of numerical exactness. We only need to compute to sufficient
precision to make the correct predicate evaluation. This has led to the development of several
techniques such as precision-driven computation, lazy evaluation, adaptive computation, and
floating-point filters, some of which are implemented in Cgal, such as numerical filtering.
Here, computation is carried out using a number type that supports only inexact arithmetic
(e.g., double-precision floating-point arithmetic), while applying a filter that checks whether
the computation has reached a stage of uncertainty, an event referred to as a filter failure
in the hacker’s jargon. When a filter failure occurs, the computation is re-done using exact
arithmetic.

Switching between number types and exact computation techniques, and choosing the
appropriate components that best suit the application needs, is conveniently enabled through
the generic-programming paradigm, as it typically requires only a minor code change reflected
in the instantiating of just a few data types.

1.3.3 Computational Geometry Algorithms Library

Cgal Chronicles

Several research groups in Europe started to develop small geometry libraries on their own
in the early 1990s. A consortium of several sites in Europe and Israel was founded in
1995 to cultivate the labor of these groups and gather their produce in a common library
called Cgal — the Computational Geometry Algorithms Library. The goal was to promote
the research in computational geometry and translate the results into useful, reliable, and
efficient programs for industrial and academic applications [Ove96, cga07, KN04, FGK+00],
the very same goal that governs Cgal development efforts to date.

An INRIA startup, Geometry Factory [11] was founded in January 2003. The com-
pany sells Cgal commercial licenses, support for Cgal, and customized developments based
on Cgal.

In November 2003, when Version 3.0 was released, Cgal became an Open Source
Project [5], allowing new contributions from various resources. Most parts of Cgal are
now distributed under the GNU Lesser General Public License (GNU LGPL).

Cgal has evolved through the years and is now representing the state-of-art in imple-
menting computational geometry software in many areas. The implementations of the Cgal

software modules described in this thesis are complete and robust, as they handle all de-
generate cases. They rigorously adhere to the generic-programming paradigm to overcome
problems encountered when effective computational geometry software is implemented. A
glimpse at the structure of Cgal is given in the following subsection.

Cgal Content

Cgal is written in C++ according to the generic-programming paradigm described above.
It has a common programming style, which is very similar to that of the STL. Its ap-

12 Chapter 1. Introduction

plication programming-interface (API) is homogeneous, and allows for a convenient and
consistent interfacing with other software packages and applications. The library consists
of about 900,000 lines of code divided among approximately 4,000 files. Cgal also comes
with numerous examples and demos. The manual comprises about 3,500 pages. There are
approximately 65 chapters arranged in 14 parts. The Arrangement on surface 2 package,
for example, consists of about 140,000 lines of code divided among approximately 300 files,
described in about 300 pages of a didactic manual.

One distinguished piece consists of the geometric kernels [FGK+00]. A geometric kernel
consist of types of constant size non-modifiable geometric primitive objects (e.g., points,
lines, triangles, circles, etc.) and operations on objects of these types.

Another distinguished piece, referred to as the “Support Library” consists of non-geometric
facilities, such as circulators, random generators, and I/O support for interfacing Cgal with
various visualization tools (i.e., input and output streams). An important contribution of
this piece is the number-type support. This piece also contains extensive debugging utilities
that handle warnings and errors that may result from unfulfilled conditions.

The rest of the library offers a collection of geometric data structures and algorithms such
as convex hull, polygons and polyhedra and operations on them (Boolean operations, polygon
offsetting), 2D and 3D triangulations, Voronoi diagrams, surface meshing and surface subdi-
vision, search structures, geometric optimization, interpolation, and kinetic data-structures.
The 2D arrangements and its related data-structures naturally fit in. These data structures
and algorithms are parameterized by traits classes that define the interface between them
and the primitives they use. In many cases, a kernel can be used as a traits class, or at least
the subtypes of a kernel can be used as components of traits classes for these data structures
and algorithms.

Cgal Arrangement Package History

Cgal contains an elaborate and efficient implementation of a generic data-structure that
represents an arrangement induced by general types of curves embedded on a two-dimensional
parametric surface in R3, but it has not been like this from the beginning. The first version
of the Cgal arrangement package supported only line segments, circular arcs, and restricted
types of parabolas embedded in the plane.

While the first version supported only limited types of curves, it was originally designed
with the vision of supporting general curves [FHH+00, Han00, HH00]. This vision was
reflected, among the other, through the separation between the topological and the geometric
aspects enabled by the generic-programming paradigm (see Section 1.3.2). Most of the
principles related to the topology, e.g., the use of a doubly-connected edge list (Dcel) to
maintain the incident relations between the arrangement cells (i.e., vertices, halfedges, and
faces) were conceived from the start. However, the types of curves that induce arrangements
(see Section 2.5) gradually expanded. A couple of years after the introduction of Cgal

arrangement Wein extended its implementation to support arcs of conics [Wei02]. The
arsenal of geometric traits continues to grow to date.

1.3. Background: Programming 13

Following the requirements that emerged from the ECG project6, together with Wein
we improved and refined the software design of the Cgal arrangement package [FWH04].
This new design formed a common platform for a preliminary comparison between different
approaches to handle arcs of conics [FHW+04]. Two years later in a joint effort with Wein
and Zukerman the whole package was revamped [WFZH05] leading to more compact, easier-
to-use, and efficient code.

Cgal Version 3.2 released in 2006 included an arrangement package that supported only
bounded curves in the plane. This forced users to clip unbounded curves before inserting
them into the arrangement; it was the user responsibility to clip without loss of information.
However, this solution is generally inconvenient and outright insufficient for some applica-
tions. For example, representing the minimization diagram defined by the lower envelope of
unbounded surfaces in R3 [Mey06] generally requires more than one unbounded face, whereas
an arrangement of bounded clipped curves contains a single unbounded face.

Cgal Version 3.3 released a year later in 2007 already included an arrangement pack-
age that handled unbounded planer curves. As a matter of fact it included much more.
Together with Berberich, Melhorn, and Wein we observed the possibility to maximize code
reuse by generalizing the various algorithms applied to arrangements and their implementa-
tions so that they could be employed on a large class of surfaces and curves embedded on
them [BFH+07, BFH+09b]. Indeed, the algorithms and their implementations were designed
with the vision of supporting general curves embedded on parametric surfaces. However, only
a few geometric traits-classes that supported unbounded curves in the plane were included
in Version 3.3.

A future version of Cgal, expected to be released in 2010, is planned to include an ar-
rangement package that constructs, maintains, and operates on arrangements embedded on
certain two-dimensional orientable parametric surfaces. The package already exists as a pro-
totypical Cgal package under the new name Arrangement on surface 2 to better reflect
its capabilities. For example, it includes (i) a geometric traits that handles geodesic arcs em-
bedded on the sphere [FSH08b, BFH+09a], (ii) a geometric traits that handles intersections
between quadric surfaces embedded on a quadric [BFH+07, BFH+09a], and (iii) a geometric
traits that handles intersections between arbitrary algebraic surfaces and a parameterized
Dupin cyclide embedded on the Dupin cyclide [BK08, BFH+09a]. The references to the
arrangement software in this thesis in general and in Chapter 2 in particular pertain to this
latest version.

The leap in arrangement technology expressed by the ability to construct and maintain
arrangements embedded on two-dimensional parametric surfaces immediately affects other
components in Cgal, such as the Boolean set operations 2 package. Only little effort
is now required to support Boolean set-operations on point sets bounded by general curves
embedded on two-dimensional parametric surfaces.

6ECG is a Shared-Cost RTD (FET Open) Project of the European Union devoted to Effective Compu-
tational Geometry for curves and surfaces [7].

14 Chapter 1. Introduction

1.4 Thesis Outline and Related Publications

The rest of this thesis is organized as follows. In Chapter 2 we give an overview of the Cgal

arrangement package, which provides the common infrastructure for all software solutions
described in this thesis. This chapter contains selected sections from several papers and
from a book chapter we have co-authored, and it provides new material that has not been
published yet. In particular, the chapter contains a description of the architecture of the ar-
rangement generic data-structure, part of which also appeared in the chapter Arrangement
of the book Effective Computational Geometry for Curves and Surfaces [FHK+07]. The
chapter contains a description of advanced programming techniques applied in the context
of arrangement, parts of which appeared in a joint work with R. Wein and B. Zukererman,
and published in the journal Computational Geometry — Theory and Application (special
issue on Cgal) [WFZH07b]. Preliminary results were first introduced in (i) the proceed-
ings of the 12th Annual European Symposium on Algorithms (ESA) [FWH04] and (ii) the
1st Workshop of Library-Centric Software Design [WFZH05]. The chapter also presents ar-
rangements induced by general curves and embedded on parametric surfaces, and it offers
a detailed description of a particular type of arrangement, namely arrangements of geodesic
arcs on the sphere. The presentation of general arrangements embedded on parametric sur-
faces is based on a joint work with E. Berberich, K. Melhorn, and R. Wein. Preliminary
results of this work were first published at the 23rd European Workshop on Computational
Geometry (EWCG) [BFHW07]. Improved results appeared in the proceeding of the 15th

Annual European Symposium on Algorithms (ESA) [BFH+07], and mature results were pre-
sented in a manuscript [BFH+09b]. The discussion about particular arrangements embedded
on spheres is based on joint work with O. Setter. Preliminary results of this work were first
published at the 24th European Workshop on Computational Geometry (EWCG) [FSH08a].
A movie rendering the results of this work was presented at the 24th Annual Symposium on
Computational Geometry (SoCG). The proceeding of this symposium contains the related
extended abstract [FSH08b]. Mature results were presented in a manuscript [BFH+09a].

In Chapter 3 we present two different complete, yet efficient, implementations of output-
sensitive algorithms to compute the Minkowski sum of two polytopes in R3. We describe
how the input polytopes in polyhedral-mesh representation both methods accept are con-
verted into the corresponding internal representations unique to each method. We provide
the theoretical concepts both methods rely on, and detailed descriptions specific to each
method. The first method was also published in the journal Computer Aided Design [FH07].
A preliminary version of this paper appeared in the proceedings of the 8th Workshop on
Algorithm Engineering and Experimentation (Alenex’06) [FH06]. The second method ap-
peared in the publications [FSH08a, FSH08b, BFH+09a] mentioned above. We compare our
Minkowski-sum constructions with other methods that produce exact results, and provide a
summary of a performance analysis of our methods.

Chapter 4 provides a tight bound on the exact maximum complexity of Minkowski sums
of k polytopes in R3 in terms of the number of facets of the polytope summands. It is based
on collaborative work with C. Weibel. The results of this work were introduced in the pro-
ceedings of the 23rd annual Symposium on Computational Geometry (SoCG) [FHW07], and
were accepted for publication in the journal Discrete and Computational Geometry [FHW].

1.4. Thesis Outline and Related Publications 15

We use this opportunity to thank Shakhar Smorodinsky for fruitful discussions conducted
while we were investigating the bound above. The chapter provides a proof of the upper
bound, and establishes the lower bound through a construction procedure.

Chapter 5 introduces an exact implementation of an efficient algorithm to obtain a parti-
tioning motion given an assembly of polyhedra in R3 — a solution to a problem in the domain
of assembly planning. This application uses several types of operations on arrangements of
geodesic arcs embedded on the sphere as basic blocks. In this context the chapter introduces
exact implementations of additional applications that exploit geodesic arcs embedded on the
sphere, such as polyhedra central-projection and Boolean set-operations applied to point sets
embedded on the sphere bounded by geodesic arcs. Great parts of this chapter are extracts
from a paper recently published in the 8th International Workshop on Algorithmic Founda-
tions of Robotics (WAFR) [FH08]. Specific background of assembly planning is provided at
the beginning of the chapter.

We refer the reader to some ongoing research and future prospects and conclude in
Chapter 6.

The software access-information along with some further design details are provided in
the Appendix.

16 Chapter 1. Introduction

A common mistake that peo-

ple make when trying to

design something completely

foolproof is to underestimate

the ingenuity of complete

fools.

Douglas Adams

2
Arrangements on Surfaces

Given a finite collection C of geometric objects (such as lines, planes, or spheres) the arrange-
ment A(C) is the subdivision of the space where these objects reside into cells as induced
by the objects in C. In this thesis we deal only with arrangements embedded on certain
two-dimensional orientable parametric surfaces in R3, i.e., planes, cylinders, spheres, tori,
and surfaces homeomorphic to them. In this case the objects in C embedded on the surface
S are curves that divide S into a finite number of cells of dimension 0 (vertices), 1 (edges)
and 2 (faces). Figure 2.1 shows various types of arrangements embedded on two-dimensional
parametric surfaces.

The Arrangement on surface 21 package of Cgal [WFZH07a] is a generic implemen-

1As a convention, Cgal prescribes the suffix 2 for all data structures of planar objects and the suffix 3

for all data structures of 3D objects. In the case of arrangements on surfaces the suffix 2 indicates the
dimension of the parameter space of the embedding surface.

(a) (b) (c)

Figure 2.1: (a) An arrangement of circles in the plane, (b) an arrangement of lines in the plane, and

(c) an arrangement of geodesic arcs on the sphere.

17

18 Chapter 2. Arrangements on Surfaces

tation of a complete software package that constructs and maintains arrangements em-
bedded on two-dimensional parametric surfaces [FHK+07, FWH04, WFZH07b, BFH+07,
BFH+09b] (see Section 1.3.3 for the history of the package). As arrangements are ubiq-
uitous in computational geometry and have many theoretical and practical applications(
see, e.g., [dBvKOS00, AS00, Hal04]), many potential users in academia and in industry can
benefit from the Arrangement on surface 2 package.

As mentioned in Section 1.3.2 Cgal in general and the Arrangement on surface 2 pack-
age of Cgal in particular follow the Exact Geometric Computation paradigm. The devel-
oped code covers all cases to successfully handle degenerate input, while ideal computer
arithmetic is emulated. While the Cgal package supports arrangements induced by general
algebraic curves of arbitrary degree, the constructions and uses of arrangements described
in this thesis require only rational arithmetic. This is a key property that enables efficient
implementations of all the algorithms presented in the thesis.

Cgal arrangements and their related components are the results of ongoing collaborative
research we were, and still are, deeply involved with; see Section 1.3.3 for the evolution of
the arrangement package. We, in particular, had a significant impact on specific topics
within this research area as follows: We came up with great parts of the geometry-traits
concept hierarchy, and the corresponding sets of minimal requirements (see Section 2.5); we
contributed the geometry-traits module for polylines (see Section 2.5.4) and the geometry
and topology traits modules for geodesic arcs embedded on the sphere (see Section 2.6); we
led the design of the Boolean set-operation architecture (See Section 2.7.1), and we provided
solutions to numerous issues encountered during the development of all these components.
This chapter provides a comprehensive overview of these components, with a slight emphasis
on asspects related to our work. It explains how arrangements induced by any type of curves
can be constructed, maintained, and used by other applications.

2.1 Related Work

Both closely related Mapc [KCMK00] [19] and Esolid [CKF+04] [8] libraries consist of
an arrangement-construction module for algebraic curves. However, these implementations
make some general-position assumptions on the input curves. The Leda library [MN00]
includes geometric facilities that allow the robust construction and maintenance of planar
maps of line segments that may contain degeneracies. However, the resulting planar maps
are represented as simple graphs that cannot fully describe the topological structure of the
arrangement. For example, it is impossible to encode the containment relation between
disconnected components of the graph (i.e., to keep track of the holes contained in a face;
see Section 2.3.2). Leda-based implementation of arrangements of conic curves and of cubic
curves were developed under the Exacus project [BEH+05] [9].

Cgal’s arrangement package was the first complete software implementation, designed
for constructing arrangements of arbitrary planar curves and supporting operations and
queries on such arrangements. The package was employed by many users to develop a
variety of applications in various domains. For example, it was used to solve geometric op-
timization problems [Rog03, COLYKT03], to construct Minkowski sums efficiently [AFH02,

2.2. Parametric Surfaces 19

FH07, FSH08b], to design snap-sounding algorithms [HP02], to construct envelopes of sur-
faces [Mey06]. It was used in motion planning [HH03, WvH07], assembly partitioning [FH08],
cartography [DHH01], and several other applications [1, 16]. The package was also used to
compute arrangements of quadrics [BHK+05] by considering the planar arrangements of their
projected intersection curves. A better approach to compute such arrangements [BFH+07,
BFH+09a] was introduced once the package started to support arrangement on paramet-
ric surfaces, which also enables the computation of arrangements embedded on Dupin cy-
clides [BK08]. The torus, for example, is a Dupin cyclide.

Sweeping the plane with a line is one of the most fundamental algorithmic mechanisms
in computational geometry. The Arrangement on surface 2 package includes a generic
implementation of an elaborate version of this mechanism exploited by several higher-level
operations supported by the package.

The famous sweep-line algorithm of Bentley and Ottmann [BO79] was originally formu-
lated for sets of non-vertical line segments, with the “general position” assumption that no
three segments intersect at a common point and no two segments overlap. Many generaliza-
tions have been introduced ever since, such as the ability to handle more general curves [SH89]
and to deal with degeneracies(see [dBvKOS00, Section 2.1] and [MN00, Section 10.7] for a
discussion about degeneracies induced by line segments).

Effective algorithms for manipulating arrangements of curves have been a topic of con-
siderable interest in recent years with an emphasis on exactness and efficiency of implemen-
tation [FHK+07]. Mehlhorn and Seel [MS03] propose a general framework for extending the
sweep-line algorithm to handle unbounded curves; however, their implementation can only
handle lines in the plane. Arrangements on spheres are covered by Andrade and Stolfi [AS01],
Halperin and Shelton [HS98], and recently Cazals and Loriot [CL06]. Cazals and Loriot have
developed a software package that can sweep over a sphere and compute exact arrangements
of circles on it.

The Leda external package (LEP) SphereGeometry [18] handles geodesic arcs on the
sphere using an implicit representation, which enables the use of exact rational arithmetic
to handle objects of this type. The package contains implementations of basic algorithms
related to geodesic arcs on a sphere, such as computing the spherical convex hull, the union
of two spherical polygons, and the width of a three-dimensional set of points. It does not,
however, support arrangements.

2.2 Parametric Surfaces

A parametric surface S is defined by a continuous function fS : P → R3, where the domain
P = U×V is a rectangular two-dimensional parameter space with bottom, top, left, and right
boundaries, and the range S = fS(P). U and V are open, half-open, or closed intervals with
endpoints in R∪{−∞, +∞}.We use umin, umax, vmin, and vmax to denote the endpoints of U
and V , respectively. For example, the standard parameterization of the plane is fS(u, v) =
(u, v, 0), where U = V = (−∞, +∞), and the unit sphere is commonly parameterized as
fS(u, v) = (cos u cos v, sin u cos v, sin v), where P = [−π, π] × [−π

2
, π

2
].

A contraction point p ∈ S is a singular point, which is the mapping of a whole boundary of

20 Chapter 2. Arrangements on Surfaces

the domain P. For example, if the top boundary is contracted, we have ∀u ∈ U, fS(u, vmax) =
p′ for some fixed point p′ ∈ R3. An identification curve C ⊂ S is a continuous curve,
which is the mapping of opposite closed boundaries of the domain P. If the left and right
boundaries are identified, we have ∀v ∈ V, fS(umin, v) = fS(umax, v), (and similarly for the
bottom and top boundaries). For example, consider the sphere as parameterized above. Its
contraction points are (0, 0,±1), as fS(u,−π

2
) = (0, 0,−1) and fS(u, π

2
) = (0, 0, 1) for all u.

Its identification curve is {fS(π, v) | − π
2
≤ v ≤ π

2
}, as fS(−π, v) = fS(+π, v) for all v.

A parameterizable curve γ is a continuous function γ : I → P where I is an open, half-
open, or closed interval with endpoints 0 and 1, and γ is injective, except for at a finite
number of points. If 0 6∈ I, limt→0+ γ(t) exists (in the closure of P) and lies in an open
side of the boundary. Similarly, if 1 6∈ I, limt→1− γ(t) exists and lies in an open side of the
boundary. A curve C in S is the image of a curve γ in the domain.

A curve is closed in the domain if γ(0) = γ(1); in particular, 0 ∈ I and 1 ∈ I. A curve
is closed in the surface S (or simply closed) if fS(γ(0)) = fS(γ(1)). A curve γ has two ends,
the 0-end 〈γ, 0〉 and the 1-end 〈γ, 1〉. If d ∈ I, the d-end has a geometric interpretation. It
is a point in P. If d 6∈ I, the d-end has no geometric interpretation. You may think of it as a
point on an open side of the domain or an initial or terminal segment of γ. If d 6∈ I, we say
that the d-end of the curve is open. Consider for example the equator curve on the sphere
as parameterized above. This curve is given by γ(t) = (π(2t−1), 0), for t ∈ [0, 1]. The 0-end
of γ is the point (−π, 0) in P and a point on the equator of the sphere. It is closed on the
sphere, but non-closed in P.

A u-monotone curve is the image of a curve γ, such that if t1 < t2, then u(γ(t1)) <
u(γ(t2)) for t1 < t2. A vertical curve is the image of a curve γ, such that u(γ(t)) = c for all
t ∈ I and some c ∈ U and v(γ(t1)) < v(γ(t2)) for t1 < t2. For instance, every Meridian curve
of a sphere parameterized as above is vertical. A weakly u-monotone curve is either vertical
or u-monotone.2

The Arrangement on surface 2 package handles inducing curves that are decompos-
able into parameterizable weakly u-monotone curves as defined above. Any two weakly
u-monotone curves must intersect only a finite number of times or overlap only in a finite
number of sections, if at all. The curves must be embedded on parameterizable surfaces
as defined above. A curve can be unbounded or reach the boundaries of the embedding
surface. A boundary may define a contraction point or an identification curve.3 We allow
non-injectivity on the boundary, denoted ∂P, and require bijectivity only in P \ ∂P (the
interior of P). More precisely, we require that fS(u1, v1) = fS(u2, v2) and (u1, v1) 6= (u2, v2)
imply (u1, v1) ∈ ∂P and (u2, v2) ∈ ∂P. Informally, we require that all geometric operations
defined in Section 2.5 be applicable on our curves.

Code reuse is maximized by generalizing the prevalent algorithms and their implementa-
tions originally designed to operate on arrangements embedded in the plane. The generalized
code handles features embedded in the modified surface S̃ : feS = fS(u, v) | (u, v) ∈ P \ ∂P

defined over the interior of the parameter space, where identification curves, contraction
points, and points at infinity are removed. Specific code that handles unbounded features

2u-monotone curves refer to weakly u-monotone curves hereafter.
3We do not support surfaces that contain a contracted identification curve.

2.3. The Arrangement Package Architecture 21

or features that reach the boundaries is added to yield a complete implementation.

2.3 The Arrangement Package Architecture

The main class of the package, namely Arrangement on surface 2, constructs and maintains
the embedding of a set of continuous weakly u-monotone curves that are pairwise disjoint
in their interiors on a two-dimensional parametric surface in R3. It provides the necessary
capabilities for maintaining the embedded graph, while associating geometric data with the
vertices, edges, and faces of the graph. The embedded graph is represented using a doubly-
connected edge list (Dcel) [dBvKOS00, Section 2.2], which maintains the incidence relations
on its features [WFZH07b]. Each edge of the subdivision is represented by two halfedges
with opposite orientation, and each halfedge is associated with the face to its left. It is
based on an implementation of a halfedge data-structure (Hds) [Ket07b] also used by the
polyhedral-surfaces package [Ket99, Ket07a].

An important guideline in the design is to decouple the arrangement representation from
the various algorithms that operate on it. Thus, the Arrangement on surface 2 class pro-
vides only a restricted set of methods for locally modifying the arrangement; see Section 2.3.2.
Non-trivial algorithms that involve geometric operations are implemented as free (global)
functions that use the interface of the arrangement class; see Section 2.4. For example, the
package offers free functions for incremental or aggregated insertion of curves that may not
necessarily be u-monotone, and the insertion location of which are unknown a priori. Each
input curve is subdivides into several u-monotone subcurves before inserted using one of the
member methods listed in Section 2.3.2.

2.3.1 The Data Structure

The Arrangement on surface 2<GeometryTraits,TopologyTraits> class-template must
be instantiated with two types as follows:

• A geometry-traits class, which defines the abstract interface between the arrangement
data-structure and the geometric primitives it uses. It is tailored to handle a specific
family of curves, and it encapsulates implementation details, such as the number type
used, the coordinate representation (i.e., Cartesian or homogeneous), the algebraic
computation methods, and auxiliary data stored with the geometric objects, if present;
see Section 2.5 for more details.

• A topology-traits class, which adapts the underlying Dcel to the embedding modi-
fied surface S̃. It determines whether the embedded surface is bounded, or otherwise
whether a boundary defines a contraction point or an identification curve. If the induc-
ing curves are confined to the modified parameter space, the tasks of the topology-traits
class are minimal. However, in other cases it maintains the features that escape the
modified parameter space P̃.

The underlying Dcel in turn associates a point with each vertex and a u-monotone curve
with each halfedge pair, where the geometric types of the point and the u-monotone curve

22 Chapter 2. Arrangements on Surfaces

are defined by the geometry-traits class. Users may extend the default Dcel data-structure,
in order to attach additional data to the Dcel records, as explained in Section 2.3.3.

The Arrangement on surface with history 2 class-template represents an arrangement
of general curves embedded on a two-dimensional parametric surface, and maintains the con-
struction history of the arrangement. Input curves that induce the arrangement are split into
u-monotone subcurves that are pairwise disjoint in their interior, and these subcurves are
the embeddings of the arrangement halfedges. While using the Arrangement on surface 2

class we lose track of the connection between input curves and their final embeddings, in
the Arrangement on surface with history 2 data-structure each embedded u-monotone
curve is extended to store a pointer to the input curve associated with it, or a container of
curve pointers in case the embedded u-monotone curve is an overlapping section of several
input curves.

The Arrangement on surface with history 2 class is a simple decorator4 for
Arrangement on surface 2. It inherits from an Arrangement on surface 2 class-template
instantiated with a geometry-traits class that extends the u-monotone curve type. It also
stores the set of input curves, and maintains a data structure that enables efficient traversal
of all halfedges induced by given input curves. The cross-pointers between input curves
and arrangement halfedges are maintained using an observer (see Section 2.4.4) that keeps
track of each change that involves an arrangement halfedge and updates its underlying curve
accordingly.

Users can traverse the original curves of each arrangement halfedge, or iterate over all
halfedges induced by a given input curve. Tracing back the curve (or curves) that induced
an arrangement edge is essential in a variety of applications that use arrangements, such as
robot motion planning; see, e.g., [HH03]. It is possible, for example, to efficiently remove a
curve from the arrangement by deleting all edges it induces.

Arrangements embedded in the plane are very common and, at least as far as the ar-
rangement package of Cgal is concerned, have a longer history than their generalization
for two-dimensional surfaces in R3. The Arrangement 2 class-template represents a planar
subdivision. It maintains the embedding of continuous weakly u-monotone curves in the
xy plane, parameterized the natural way. That is, the two parameters u and v are directly
mapped to x and y, respectively. Thus, u-monotonicity implies x-monotonicity and vice
versa. The Arrangement 2 class-template is parameterized with a geometry-traits class and
with a Dcel data-structure. It inherits from an Arrangement on surface 2 class-template
instantiated with the geometry traits template parameter and with a specific topology-traits
class suitable for the plane. The dedicated topology traits is instantiated with the Dcel

template parameter. Similarly the Arrangement with history 2 class-template represents
a planar subdivision, and maintains the construction history of the arrangement.

The package offers various operations on arrangements stored in these representations,
such as point location, insertion of curves, removal of curves, and overlay computation.

4A decorator attaches additional responsibilities to an object dynamically [GHJV95].

2.3. The Arrangement Package Architecture 23

2.3.2 Member Operations

The interface of Arrangement on surface 2 consists of various methods that enable the
traversal of arrangement features. The class supplies iterators over its vertices, halfedges, or
faces. The classes Vertex, Halfedge, and Face, nested in the Arrangement on surface 2

class, supply in turn methods for local traversals. For example, it is possible to visit all
halfedges incident to a specific vertex. Halfedges stored in doubly-connected lists form
chains. The chains define the inner and outer connected components of the boundary (CCB)
of each face. A bounded face in the Arrangement 2 data structure has a single outer CCB
representing the outer boundary of the face, and may have several inner CCBs representing
its holes. However, a face in the general Arrangement on surface 2 data structure may
have several inner and outer CCBs; see Section 2.6. Naturally, it is possible to traverse all
the halfedges along the inner and outer boundaries of a given face.

(a) (b)

(c) (d)

Figure 2.2: The arrangement

immediate insertion methods.

The newly inserted curve is

drawn in bright blue. Vertices

created as a result of the inser-

tion are drawn in bright red.

Alongside with the traversal methods, the arrangement
class also supports several methods that modify the ar-
rangement. The functions insert in face interior(C,f)

(Figure 2.2 (a)), insert from left vertex(C,v) (Figure 2.2
(b)), insert from right vertex(C,v)) (Figure 2.2 (c)), and
insert at vertices(C,v1,v2) (Figure 2.2 (d)) create an edge
that corresponds to a u-monotone curve C, whose interior is
disjoint from existing edges and vertices. The choice of which
one to use depends on whether the curve endpoints are asso-
ciated with existing non-isolated arrangement vertices: (i) If
both curve endpoints do not correspond to any existing ver-
tex, insert in face interior() is used to generate a new
hole inside an existing face. (ii) If exactly one endpoint cor-
responds to an existing Dcel vertex, one of the functions
insert from left vertex() or insert from right vertex()

is called, depending on which endpoint is associated with an
existing vertex. It forms an “antenna” emanating from an ex-
isting connected component. (iii) Otherwise, both endpoints
correspond to existing vertices, and insert at vertices() is
called to connect these vertices using a pair of twin halfedges. These functions hardly involve
any geometric operations, if at all.5 They accept topologically related parameters, and use
them to operate directly on the Dcel records, thus saving algebraic operations, which are
especially expensive when high-degree curves are involved.

Other modification methods included in the arrangement class enable users to split an
edge into two, to merge two edges incident to a common vertex, and to remove an edge from
the arrangement. It is also possible to insert a point in the interior of a given face, creating
an isolated vertex that corresponds to this point, or to remove an isolated vertex from the
arrangement.

5Unless we force checking preconditions. In this case the precondition evaluation involves geometric
computation.

24 Chapter 2. Arrangements on Surfaces

2.3.3 Cell Extension

As mentioned above the Arrangement on surface 2 is parameterized by a topological traits,
which in turn is parameterized by a Dcel class. Users may extend the default Dcel data-
structure, in order to attach additional data to the Dcel records. The default Dcel model
simply associates a point with each Dcel vertex and a u-monotone curve with each halfedge
pair. Although it is possible to store auxiliary data with the curves or points by extending
their respective types (see Section 2.5.3), it is sometimes necessary to extend the vertex,
halfedge, or face topological features of the Dcel. Many times it is desired to associate
extra data with the arrangement faces only. For example, when an arrangement represents
the subdivision of a country into regions associated with their population density. In this
case there is no alternative other than to extend the Dcel face, as there is no geometry-traits
class entity that corresponds to an arrangement face. A similar mechanism for extending
topological features with auxiliary attributes can be found in other components of Cgal,
such as the triangulation packages [PY07] and the polyhedral-surfaces package [Ket07a].

2.4 The Arrangement Facilities

2.4.1 Sweep Line

The Arrangement on surface 2 package offers a generic implementation of the sweep-line
algorithm [dBvKOS00, Section 2.1] in form of a class template called Sweep line 2. It
handles any set of arbitrary u-monotone curves, and serves as the foundation of a family of
concrete operations, such as computing all intersection points induced by a set of curves,
constructing an arrangement of curves, aggregately inserting a set of curves into an existing
arrangement, and computing the overlay of two arrangements. A concrete algorithm is
realized through a sweep-line visitor, a template parameter of Sweep line 2, which follows
the visitor design-pattern [GHJV95], and models the concept SweepLineVisitor 2. In this
case, a visitor defines an operation based on the sweep-line algorithm to be performed on an
arrangement without the need to change the arrangement structure. Users may introduce
their own sweep based algorithms by implementing an appropriate visitor class.6

Another parameter of the Sweep line 2 class-template is the geometry-traits class, which
must be instantiated with a model of the ArrangementXMonotoneTraits 2 concept; see Sec-
tion 2.5 for the precise definition of this concept. It defines the minimal set of geometric
primitives, among the other, required to perform the sweep-line algorithm briefly described
next.

An imaginary vertical curve is swept over the surface from left to right, transforming the
static two-dimensional problem into a dynamic one-dimensional one. At each time during
the sweep a subset of the input u-monotone curves intersect this vertical line in a certain
order. The subset of curves and their order along the sweep line may change as the line
moves along the u-axis, implying a change in the topology of the arrangement, only at a

6The Boost Graph Library, for example, uses visitors [SLL02, Section 12.3] to support user-defined
extensions to its fundamental graph algorithms.

2.4. The Arrangement Facilities 25

finite number of event points, namely intersection points of two curves and left endpoints or
right endpoints of arcs of curves. The event points, namely endpoints and all the intersec-
tion points that have already been discovered, are stored in a uv-lexicographic order in a
dynamic event queue, named the U-structure. The ordered sequence of segments intersect-
ing the imaginary vertical line is stored in a dynamic structure called the V -structure. Both
structures are maintained as balanced binary trees that enable their efficient maintenance
using an advanced implementation of red-black trees [Wei05].

During the sweep-line process the event objects in the U -structure are sorted lexico-
graphically, and the subcurve objects are stored in the V -structure in the same order as the
lexicographic order of their intersection with the imaginary sweep-line. The Sweep line 2

class performs only the operations required to maintain the U -structure and the V -structure,
while the visitor class is responsible for producing the actual output of the algorithm. When-
ever the sweep-line class handles an event point p, it sends a notification to its visitor. Using
this information, the visitor can access the subcurves incident to p and the neighboring
subcurves from above and below.

2.4.2 Map Overlay

The map overlay of two planar subdivisions S1 and S2 is a planar subdivision S, such that
there is a face f in S if and only if there are faces f1 and f2 in S1 and S2 respectively, such
that f is a maximal connected subset of f1 ∩ f2 [dBvKOS00, Section 2.3]. The overlay of
two two-dimensional subdivisions embedded on a surface is defined similarly.

The overlay of two given arrangements, conveniently referred to as the “blue” and the
“red” arrangements, is straightforwardly implemented using a sweep-line visitor. A consol-
idated set of the “blue” and “red” curves is processed, while the imaginary vertical line is
swept over the surface. The u-monotone curve type is extended with a color attribute (whose
value is either BLUE or RED); see Section 2.5.3. Using the extended type we filter out un-
necessary computations. For example, we ignore monochromatic intersections, and compute
only red–blue intersection points (or overlaps). This way the arrangement of a consolidated
set of “blue” and “red” curves is computed efficiently.

The overlay visitor needs to construct a Dcel that properly represents the overlay of
two input arrangements, the Dcel’s of which are potentially independently extended (see
Section 2.3.3). A face in the overlay arrangement corresponds to overlapping regions of the
blue and red faces. An edge in the overlay arrangement is due to a blue edge, a red edge,
or an overlap of two differently colored edges. An overlay vertex is due to a blue vertex,
a red vertex, a coincidence of two differently colored vertices, or an intersection of a blue
and a red curve. In each case, the data associated with the overlay Dcel feature should
be computed from the red and blue Dcel features that induce it. To this end, the overlay
visitor is parameterized by an overlay-traits module, which defines the merging operations
between various Dcel features, achieving maximum genericity and flexibility for the users.
The instantiated overlay traits models the OverlayTraits concept. The concept requires the
provision of ten functions that handle all possible cases as follows:

1. A new vertex v is induced by coinciding vertices vr and vb.

26 Chapter 2. Arrangements on Surfaces

2. A new vertex v is induced by a vertex vr that lies on an edge eb.
3. An analogous case of a vertex vb that lies on an edge er.
4. A new vertex v is induced by a vertex vr that is contained in a face fb.
5. An analogous case of a vertex vb contained in a face fr.
6. A new vertex v is induced by the intersection of two edges er and eb.
7. A new edge e is induced by the overlap of two edges er and eb.
8. A new edge e is induced by the an edge er that is contained in a face fb.
9. An analogous case of an edge eb contained in a face fr.

10. A new face f is induced by the overlap of two faces fr and fb.

We apply the overlay operations in four different ways in this thesis; see Sections 3.2.2, 3.3.2,
5.3.6, and 5.3.7 for the different applications. Each application requires the provision of a
different set of the ten functions above.

2.4.3 Zone Construction

The zone [Hal04] of a u-monotone curve C in an arrangement A is the set of cells of A(C)
intersected by the curve C.

The Arrangement on surface 2 package includes the Arrangement zone 2 class-template,
which computes the zone of an arrangement. Similar to the Sweep line 2 template, the
Arrangement zone 2 template is parameterized with a zone visitor, a model of the concept
ZoneVisitor 2, and it serves as the foundation of a family of concrete operations, such as in-
serting a single curve into an arrangement and determining whether a query curve intersects
with the curves of an arrangement.

The zone of a curve C is computed by locating the left endpoint of C in the arrangement,
and then “walking” along the curve towards the right endpoint, keeping track of the vertices,
edges, and faces crossed on the way (see, for example, [dBvKOS00, Section 8.3] for the
computation of the zone of a line in an arrangement of lines).

It is sometimes necessary to compute the zone of a curve in an arrangement without
actually inserting the curve. In other situations, the entire zone is not required, as in the case
of a process that only checks whether a query curve passes through an existing arrangement
vertex; if the answer is positive, the process can terminate as soon as the vertex is located.
While the sweep-line algorithm operates on a set of input u-monotone curves and its visitors
can just use the notifications they receive to construct their output structures, the zone-
computation algorithm operates on an arrangement object and its visitors may modify the
same arrangement object as the computation progresses. This makes the interaction of the
main class with its visitors slightly more intricate.

2.4.4 Observers

Some arrangement-based algorithms and applications should be bound to a specific arrange-
ment instance and receive notifications on various topological changes this arrangement
undergoes. This is not just a convenience, but crucial to the usability of the package, as it
might be the only way for providing an algorithm with a certain input, such as data that

2.4. The Arrangement Facilities 27

should be bound to the topological features of the arrangement, and is available only during
construction; see Section 2.3.3 for an example.

The Arrangement on surface 2 package supports a notification mechanism, which fol-
lows the observer design-pattern [GHJV95]. In this case of one-to-many dependency a set of
observes depend on a single arrangement, so that when the arrangement changes state, all
its dependents are notified and updated automatically. Using this mechanism it is possible
to attach any number of observer instances to a specific arrangement, such that all attached
observers get notified on local and global changes the arrangement undergoes.

The Arr observer<Arrangement> class-template, parameterized by an arrangement type,
stores a pointer to an arrangement object, and is capable of receiving notifications just be-
fore a structural change occurs in the arrangement and immediately after such a change
takes place. Hence, each notification comprises of a pair of “before” and “after” functions
(e.g., before split face() and after split face()). The Arr observer class-template
serves as a base class for other observer classes and defines a set of virtual notification func-
tions, giving them all a default empty implementation. The interface of the base class is
designed to capture all possible changes that arrangements can undergo, with a minimal set
of topological events.

The set of functions can be subdivided into three categories as follows:

1. Notifiers of changes that affect the entire topological structure. Such changes occur
when the arrangement is cleared or when it is assigned with the contents of another
arrangement.

2. Notifiers of a local change to the topological structure, such as the creation of a new
vertex or an edge, the splitting of an edge or a face, the formation of a new hole inside
a face, the removal of an edge, etc.

3. Notifiers of a global change initiated by a free (global) function, and called by the
free function (e.g., incremental or aggregate insert; see Section 2.3). This category
consists of a single pair of notifiers, neither of them is called by methods of the
Arrangement on surface 2 class-template itself. Issuing point-location queries (or
any other queries for that matter) between the calls to the “before” and “after” func-
tions of this pair is forbidden.7

See [WF05] for a detailed specification of the arrangement observer class sketched above.

Each arrangement object stores a list of pointers to Arr observer objects, and whenever
one of the structural changes listed in the first two categories above is about to take place,
the arrangement object invokes the appropriate function of each of its observers. It also does
so immediately after the change has taken place. In addition, a free function may choose to
trigger a similar notification, which falls under the third category above.

7This constraint improves the efficiency of the maintenance of auxiliary data structures for the relevant
point-location strategies, which have to update their data structures according to the changes the arrange-
ment undergoes (see Section 2.4.5 for more details). Since no point-location queries are issued between
the invocation of before global change() and after global change(), it is not necessary to perform an
update each time a local topological change occurs, and it is possible to postpone the updates until after the
global operation is completed.

28 Chapter 2. Arrangements on Surfaces

In case the new observer is attached to a non-empty arrangement, its constructor may
extract the relevant data from the non-empty arrangement using various traversal methods
offered by the public interface of the Arrangement on surface 2 class, and update any
internal data stored in the observer. This is necessary, for example, in case of the non-
stateless point-location strategies, as shown in the next section.

2.4.5 Point Location

Point location is defined as follows: Given a point, find the arrangement cell that contains it.
The Arrangement on surface 2 package provides the means to answer this query. Typically,
the result of the point-location query is one of the arrangement faces, but in degenerate
situations the query point can lie on an edge, or it may coincide with a vertex. Since
the arrangement representation is decoupled from the algorithms that operate on it, the
Arrangement on surface 2 class does not support point-location queries directly. Instead,
the package provides a set of classes that are capable of answering such queries, all are models
of the concept ArrangementPointLocation 2. Each model employs a different algorithm or
strategy for answering queries. A model of this concept must define the locate() function,
which accepts an input query point and returns an object representing the arrangement
cell that contains this point (a polymorphic CGAL::Object instance that can either be a
Face handle, a Halfedge handle, or a Vertex handle).

The following models of the concept ArrangementPointLocation 2 are included in the
Arrangement on surface 2 package.

• Arr naive point location locates the query point naively, by exhaustively scanning
all arrangement cells. It is the only strategy with unlimited support; see Section 2.6.

• Arr walk along a line point location simulates a reverse traversal along an imag-
inary vertical ray emanating from the query point toward infinity. It starts from the
unbounded face of the arrangement and moves downward toward the query point until
it locates the arrangement cell containing it.

• Arr landmarks point location<Generator> uses an auxiliary generator class to cre-
ate a set of “landmark” points, whose location in the arrangement is known. Given a
query point, it uses a nearest-neighbor search structure (e.g., Kd-tree) to find the near-
est landmark, and then traverses the straight-line segment connecting this landmark
to the query point.8 See [HH08] for more details.

• Arr trapezoidal ric point location implements Mulmuley’s point-location algo-
rithm [Mul90], which is based on the vertical decomposition of the arrangement into

8The “landmarks” strategy, requires that the arrangement is instantiated with a geometry-traits class
that models the ArrangementLandmarksTraits 2 concept, which adds two requirements to the basic Arrange-

mentBasicTraits 2 concept: (i) Approximating the coordinates of a given point p using the double-precision
arithmetic, and (ii) constructing a u-monotone curve that connects two given points p and q, where p rep-
resents a landmark point and q is the query point. Most traits classes included in the arrangement package
are models of this refined concept.

2.5. Geometry-Traits Concepts 29

pseudo-trapezoids, and maintains a history directed acyclic graph (DAG) on top of the
decomposition.

The last two strategies have query times that are shorter than the query times of the first two.
However, they require preprocessing and consume more space, as they maintain auxiliary
data structures. The first two strategies do not require any extra data and operate directly
on the Dcel that represents the arrangement. For a complete survey see [HH08].

Each of the “landmarks” point-location class and the trapezoidal point-location class uses
an observer to receive notifications whenever the arrangement is modified. For example, the
default generator employed by the “landmarks” strategy uses the arrangement vertices as
landmarks, so whenever a new vertex is created (by the insertion of a new edge, by the
splitting of an existing edge, or by the insertion of an isolated point), it should be inserted
into the nearest-neighbor search structure maintained by the respective landmark class. The
usage of the notification mechanism makes it possible to associate several point-location
objects with the same arrangement simultaneously.

The “landmarks” and the trapezoidal point-location strategies are both characterized by
very efficient query time at the cost of time-consuming preprocessing. Naturally, these strate-
gies exhibit better overall performance when the number of arrangement updates is relatively
small compared to the number of issued queries. For a report on extensive experiments with
the various point-location strategies see [HH08].

2.5 Geometry-Traits Concepts

ArrangementBasicTraits 2

ArrangementXMonotoneTraits 2

ArrangementLandmarksBasicTraits 2

ArrangementTraits 2

ArrangementLandmarksXMonotoneTraits 2

ArrangementLandmarksTraits 2

Figure 2.3: Refinement hierarchy of geometry-traits concepts.

The implementations of the
various algorithms that con-
struct and manipulate ar-
rangements are generic, as
they are independent of the
type of curves they handle.
All steps of the algorithms
are enabled by the minimal
set of geometric primitives
gathered in the geometry-
traits class, a model of a
geometry-traits concept. The
geometry-traits concept is
factored into a hierarchy of
refined concepts. The refine-
ment hierarchy is defined according to the identified minimal requirements imposed by dif-
ferent algorithms that operate on arrangements, thus alleviating the production of traits
classes that handle complicated curves, and increasing the usability of the algorithms. The
requirements listed by the geometry-traits concepts include only the utterly essential types
and operations, and fully specify all the preconditions that the input must satisfy, as these
may simplify the implementation of models of this concept even further.

30 Chapter 2. Arrangements on Surfaces

The following sections are dedicated to a detailed description of the hierarchy. We list
the minimal requirements of each layer in the hierarchy, and provide formal definitions for
the required operations. The letters x and y are used in the code to refer to the two surface
parameters, as arrangements embedded in the xy-plane are more common and familiar.
The names of required nested types (e.g., X monotone curve 2) and valid expressions (e.g.,
compare x) are faithful to the original source code. However, we use the letters u and v
in the formal definitions below to refer to the two surface parameters, as these definitions
apply to the general case of arrangements embedded on surfaces. Let cmpu() and cmpv()
denote two predicates that accept two points and compare them by their u-coordinates and
by their v-coordinates respectively. We use the following notation. For a point p, (up, vp),
denotes a pre-image, and for a curve C, γ denotes a pre-image, that is, p = fS(up, vp) and
C(t) = fS(γ(t)) for all t ∈ I.

The basic concept ArrangementBasicTraits 2 requires the definition of the types Point 2

and X monotone curve 2. The latter represents a u-monotone curve, and the former is the
type of the endpoints of the curves, representing a point on the surface. This concept
lists the minimal set of predicates on objects of these two types sufficient to enable the
operations provided by the Arrangement on surface 2 class-template itself, namely the
insertion of bounded u-monotone curves that are interior disjoint from any vertex and edge
in the arrangement. All points and curves in the set below are required to have an inverse
pre-image in P \ ∂P. In particular all curves are u-monotone.

Compare x 2: Compare two points by their u-coordinates.
Compare xy 2: Compare two points lexicographically by their u and then by their v-coordi-

nates.
Construct min 2: Return the lexicographically smaller (left) endpoint of a given curve.
Construct max 2: Return the lexicographically larger (right) endpoint of a given curve.
Is vertical 2: Determine whether a weakly u-monotone curve is vertical.
Compare y at x: Given a point p and a curve C, such that the up lies in the u-range of C,

determine whether p is above, below, or lies on C. More precisely, if C is vertical,
determine whether p lies on C, or above or below C. Otherwise, since u(γ(0)) ≤ up ≤
u(γ(1)) must hold and C is u-monotone, there must be a unique 0 ≤ t′ ≤ 1, that
satisfies u(γ(t′)) = up. Return cmpv(p, γ(t′)).

Compare y at x right: Given two curves C1 and C2 that share a common left endpoint p,
determine the relative position of the two curves immediately to the right of p. More
precisely, return cmpv(γ1(ǫ1), γ2(ǫ2)), where ǫ1, ǫ2 > 0 are infinitesimally small.

Compare y at x left: Given two curves C1 and C2 that share a common right endpoint p,
determine the relative position of the two curves immediately to the left of p. More
precisely, return cmpv(γ1(1− ǫ1), γ2(1− ǫ2)), where ǫ1, ǫ2 > 0 are infinitesimally small.
This is an optional requirement with ramifications in case it is not fulfilled; see Sec-
tion 2.5.1.

The set of predicates listed above is also sufficient for answering point-location queries by the
various point-location strategies, with a small exception of the “landmarks” strategy, which
requires a traits class that models the refined concept ArrangementLandmarksTraits 2. This

2.5. Geometry-Traits Concepts 31

is described in Section 2.4.5.

Constructing arrangements induced by u-monotone curves that may intersect in their
interior, requires an arrangement instantiated with a traits class that models the concept
ArrangementXMonotoneTraits 2 . This concept refines the basic arrangement-traits concept
described above, as it requires an additional method for computing intersections between
u-monotone curves, among the other. An intersection point between two curves is also rep-
resented by the Point 2 type. The refined traits concept also requires methods for splitting
curves at these intersection points to obtain pairs of interior disjoint subcurves and merging
pairs of subcurves. In summary, a model of the refined concept must provide the additional
operations bellow. All points and curves in the set below are required to have an inverse
pre-image in P \ ∂P. In particular all curves are u-monotone.

Intersection 2: Compute the intersections between two given curves C1 and C2.
Split 2: Split a given curve C at a given point p, which lies in the interior of C, into two

interior disjoint subcurves.
Merge 2: Merge two mergeable curves C1 and C2 into a single curve C.
Is mergeable 2: Determine whether two curves C1 and C2 that share a common endpoint

can be merged into a single continuous curve representable by the traits class.

The further refined concept ArrangementTraits 2 enables the construction of arrange-
ments induced by general curves. A model of the refined concept must define a third type
that represents a general (not necessarily u-monotone) curve, named Curve 2. It also has
to supply a method that subdivides a given curve into simple u-monotone subcurves, and
possibly isolated points.9 We refer to the entire hierarchy of refinements defined above as
a single “abstract” concept called NoBoundaryTraits, as it represents concepts the models
of which handle curves that must have inverse pre-images in P \ ∂P. We use this abstract
concept to simplify the description of the hierarchy defined below.

NoBoundaryTraits

HasBoundaryTraits

BoundedBoundaryTraitsUnboundedBoundaryTraits

AllBoundaryTraits

Figure 2.4: Abstract refinement hierarchy of geometry-

traits concepts for arrangement on surfaces.

The package introduces addi-
tional concepts, models of which are
able to handle unbounded curves or
curves that reach the boundaries, the
endpoints of which coincide with con-
traction points or lie on identifica-
tion curves; see Figure 2.4. The
“abstract” HasBoundaryTraits sub-
hierarchy lists additional predicates
required to handle both curves that
reach or approach the boundaries of
the parameter space. It has no mod-
els. The refined BoundedBoundaryTraits and UnboundedBoundaryTraits sub-hierarchies list
additional predicates required to handle bounded and unbounded curves, respectively. The

9For example, the curve (x2 + y2)(x2 + y2 − 1) = 0 is comprised of two u-monotone circular arcs, which
together form the unit circle, and a singular isolated point at the origin.

32 Chapter 2. Arrangements on Surfaces

geometry-traits class that handles arcs of great circles models the BoundedBoundaryTraits
concept, as the parameter space is bounded in all four directions. Finally, the AllBoundary-
Traits sub-hierarchy refines all the above. A model of this concept can handle unbounded
curves in some directions and bounded curves in others.

In the rest of this section all curves are required to be u-monotone. The HasBoundary-
Traits concept requires the following additional operations:

Parameter space in x 2: Given a curve C and an index d ∈ {0, 1} that identifies one of its
ends, determine the location of its pre-image in the domain P along the u dimension.
More precisely, determine whether u(γ(d)) is equal to umin, umax, or falls in between.
In case of an unbounded curve, determine whether limt→d u(γ(t)) is equal to −∞ or
+∞.

Parameter space in y 2: Given a curve C and an index d ∈ {0, 1} that identifies one of its
ends, determine the location of its pre-image in the domain P along the v dimension.
More precisely, determine whether v(γ(d)) is equal to vmin, vmax, or falls in between.
In case of an unbounded curve, determine whether limt→d v(γ(t)) is equal to −∞ or
+∞.

Compare x near boundary 2: There are two predicates:
1. Given a point p, the inverse of which is in P \ ∂P, a curve C, and an index

d ∈ {0, 1} that identifies an end of C, compare the u coordinates of p and a point
along C near its given end. More precisely, return cmpu(p, γ(|d−ǫ|)), where ǫ > 0
is infinitesimally small.

2. Given two curves C1 and C2 and two corresponding indices d1, d2 ∈ {0, 1} that
identify two ends of C1 and C2 respectively, compare the u coordinates of two
points along C1 and C2 respectively near their given ends. More precisely, return
cmpu(γ1(|d1 − ǫ1|), γ2(|d2 − ǫ2|)), where ǫ1, ǫ2 > 0 are infinitesimally small.

See Section 2.6.1 for an example.
Compare y near boundary 2: Given two curves C1 and C2, and a single index d ∈ {0, 1} that

identifies two ends of C1 and C2, compare the v coordinates of two points along C1 and
C2 respectively near the given ends. More precisely, return cmpv(γ1(|d − ǫ1|), γ2(|d −
ǫ2|)), where ǫ1, ǫ2 > 0 are infinitesimally small. See Section 2.6.1 for an example.

The UnboundedBoundaryTraits concept requires the following additional operations:

Is bounded 2: Given a curve C and an index d ∈ {0, 1} that identifies an end of C, determine
whether the curve end is bounded.

The BoundedBoundaryTraits concept requires the following additional operations:

Is on x identification 2: This predicate applies only to a parameterization that has a
vertical identification curve. Given a point p (respectively a curve C), determine
whether p (respectively C) lies on the vertical and identified sides of the boundary.
More precisely, determine whether up ∈ {umin, umax}. (Respectively, determine whether

2.5. Geometry-Traits Concepts 33

u(γ(t)) ∈ {umin, umax}, ∀t ∈ [0, 1].
Is on y identification 2: This predicate applies only to a parameterization that has a

horizontal identification curve. Given a point p (respectively a curve C), determine
whether p (respectively C) lies on the horizontal and identified sides of the boundary.
More precisely, determine whether vp ∈ {vmin, vmax} for all pre-images of p. (Respec-
tively, determine whether v(γ(t)) ∈ {vmin, vmax}, ∀t ∈ [0, 1].)

Is on x contraction 2: This predicate applies only to a parameterization that has a con-
tracted vertical boundary. determine whether p coincides with a contraction point.
More precisely, determine whether up is equal to umin or umax.

Is on y contraction 2: This predicate applies only to a parameterization that has a con-
tracted horizontal boundary. determine whether p coincides with a contraction point.
More precisely, determine whether vp is equal to vmin or vmax.

Compare x on identification 2: This predicate applies only to a parameterization that
has a horizontal identified sides of the boundary. Given two points p1 and p2 that lie
on the horizontal identification arc, compare their u-coordinates.

Compare y on identification 2: This predicate applies only to a parameterization that
has a vertical identified sides of the boundary.. Given two points p1 and p2 that lie on
the vertical identification arc, compare their v-coordinates.

All traits-class operations are implemented as function objects (functors) according to
Cgal’s guidelines. This allows extending the geometric types above, without the need to
redefine the methods that operate on them; see [HHK+07] for details on the extensible kernel.
For a detailed specification of the various concept requirements see [WF05].

2.5.1 The Geometry-Traits Adaptor

The geometry-traits adaptor class-template implements geometric operations that are not
provided by a model of the geometry-traits concept itself, using the operations supplied by
a model of the geometry-traits concept as basic blocks. It decreases the effort required to
develop geometry-traits models, and at the same time increases the usability of the geometry-
traits models, adapting them for extended uses. A geometry-traits type is injected as a
template parameter into the adaptor class, which inherits from it, centralizing all geometric
operations. In cases where the efficiency of methods is crucial, a developer has a way to
override these methods with optimized ones.

For example, in order to determine whether a point p is in the u-range of a u-monotone
curve C, the adaptor simply compares p to the endpoints of C. It checks whether p lies to
the right of the left endpoint and to the left of the right endpoint.

In some cases, the geometry-traits adaptor class uses a tag-dispatching mechanism to
select the appropriate implementation of a geometry-traits class operation. Tag dispatching
is a technique that uses function overloading to dispatch a function at compile time, based
on properties of the types of the arguments the function accepts [4]. This mechanism enables
users to implement their traits class with a reduced or alternative set of operations. The
adaptor respects the tags listed below every geometry-traits class must define.

34 Chapter 2. Arrangements on Surfaces

Has left category: A Boolean tag that indicates whether the traits class provides the
predicate compare y at x left, which compares two u-monotone curves to the left
of a common right endpoint. This predicate is required only by some point-location
strategies and by the zone-computation algorithm. While in some cases it is fairly easy
for the traits-class implementer to provide it, in other cases it can be rather difficult,
or even quite impossible. When this tag is false, the traits-class adaptor resorts to a
somewhat less efficient algorithm that uses (other) existing traits-class predicates.

Has merge category A Boolean tag that indicates whether a model of the ArrangementX-
MonotoneTraits 2 supports the merge of u-monotone curves. If the tag is true, the
traits class must provide the two operations merge 2 and is mergeable 2. The merger
operation is used to eliminate redundant features in the arrangement. For example,
if we have a T-shaped structure formed by two line segments, and the vertical seg-
ment forming the “leg” is removed, then it is possible to merge the two horizontal
sub-segments. When the has-merge tag is false, the adaptor simply declares any pair
of curves as non-mergeable. The only effect on the arrangement is that we cannot
remove redundant vertices (of degree two) following the deletion of edges.

Boundary category: A quadruple tag that categorizes the traits class according to the hi-
erarchy described in Figure 2.4. The adaptor provides empty implementations of the
operations that are never invoked, yet required for smooth compilation.

2.5.2 Geometry-Traits Models

Table 2.1: Geometry-traits models
Curve Family Degree Surface Boundness Arithmetic

linear segment 1 plane bounded rational
linear segments, rays, lines 1 plane unbounded rational
piecewise linear curves ∞ plane bounded rational
circular arcs, linear segments ≤ 2 plane bounded rational
algebraic curves ≤ 2 plane unbounded algebraic
quadric projections ≤ 4 plane unbounded algebraic
algebraic curves ≤ 3 plane unbounded algebraic
algebraic curves ≤ n plane unbounded algebraic
planar Bézier curves ≤ n plane unbounded algebraic
univariate polynomials ≤ n plane unbounded algebraic
geodesic arcs on sphere ≤ 2 sphere bounded rational
quadric intersection arcs ≤ 4 quadric unbounded algebraic
Dupin cyclide intersection arcs ≤ n Dupin cyclides bounded algebraic

The large number of geometry-traits models already implemented enables the construc-
tion and maintenance of arrangements induced by many different types of curves. The
package itself contains several models of the geometry-traits concept. A few other models
have been developed by other groups of researchers. Models are distinguished not only by
the different families of curve they handle, but also by their suitability for constructing and

2.5. Geometry-Traits Concepts 35

maintaining arrangements with different characteristics. For example, there are two distinct
models that handle line segments [WFZH07b]. One caches information in the curve records,
while the other retains the minimal amount of data. While operations on arrangements
instantiated with the former model consume more space, they are more efficient for dense
arrangements (namely, arrangements induced by curves with a large number of intersections).
Another model handles not only (bounded) line-segments, but also rays and lines [BFH+07,
BFH+09b]. There are traits models for non-linear curves, such as circular arcs [dCPT07],
conic curves [Wei02, BEH+02, EKP+04], cubic curves [EKSW04], and quartic curves that
are the projection of the intersection of two quadric surfaces [BHK+05], and there are traits
classes for arcs of graphs of rational univariate polynomial functions [LPT08, WFZH07b].
There is even a traits class that handles algebraic curves of arbitrary degrees [EK08]. There
is also a traits class that handles Bézier curves [HW07]. There is a traits class for geodesic
arcs embedded on the sphere [FSH08b, BFH+09a], (see Section 2.6), another one for in-
tersections of quadrics embedded on a quadric [BFH+07, BFH+09a], and another one for
intersections of arbitrary algebraic surfaces with a Dupin cyclide embedded on the Dupin
cyclide [BK08, BFH+09a]. Finally, there is a model that handles continuous piecewise linear
curves, referred to as polylines, (see Section 2.5.4).

2.5.3 Geometry-Traits Extension

Traits-class decorators are used to extend the geometric entities defined by the traits class
with additional, possibly non-geometric, data. An alternative way to achieve this is to extend
the geometric types of the kernel, as the kernel is fully adaptable and extensible [HHK+07].
However, this indiscriminating extension may lead to an undue space-consumption, as every
geometric object is extended, regardless of its use. It also requires nontrivial knowledge
about the kernel structure and the techniques to extend it.

There is a decorator that enables the extension of the (general) curve and the u-monotone
curve types with distinct types of data, and there is a convenient one, where the data attached
to the u-monotone curve type is a set of objects, the type of which is attached to the (general)
curve type. This set usually contains a single data object, unless the u-monotone curve
corresponds to an overlapping section of two curves or more. When a curve with a data field
d is split into u-monotone subcurves, each subcurve is associated with a singleton set {d}.
When two u-monotone curves overlap, the decorator takes the union of their data sets, and
associates it with the resulting overlapping subcurve.

2.5.4 A Geometry-Traits Model that Handles Polylines

Polylines are of particular interest, as they can be used to approximate more complex curves.
At the same time handling them is easier than handling higher-degree algebraic curves, as
rational arithmetic is sufficient to carry out exact computations on polylines.

The geometry-traits model that handles polylines is a class-template called
Arr polyline traits 2. It must be instantiated with a geometry-traits class that models
the concept ArrangementLinearTraits. This concept refines the ArrangementTraits concept,
as it adds a variant — it must handle line segments. This variant cannot be enforced by the

36 Chapter 2. Arrangements on Surfaces

compiler, but rather be verified at run time. A polyline curve is represented as a vector of
SegmentTraits::X monotone curve 2 objects (namely segments). The polyline-traits class
does not perform any geometric operations directly. Instead, it solely relies on the function-
ality of the instantiated segment-traits class. For example, when we need to determine the
position of a point with respect to a u-monotone polyline, we use binary search to locate
the relevant segment that contains the point in its u-range, then we compute the position of
the point with respect to this segment. Thus, operations on u-monotone polylines of size m
typically take O(logm) time.

Users are free to choose the underlying segment-traits class based on the number of
expected intersection points (see discussion above in Section 2.5.2). Moreover, it is possible
to instantiate the polyline-traits class-template with a traits class that handles segments
with some additional data attached to them (see Section 2.5.3). This makes it possible to
associate different data objects with the different segments that compose a polyline.

2.6 Arrangements of Geodesic Arcs on the Sphere

In this section we concentrate on the particular category of arrangements embedded on
surfaces, where the embedding space is the sphere, and the inducing objects are geodesic arcs.
There is an analogy between this class of arrangements and the class of planar arrangements
induced by linear curves (i.e., segments, rays, and lines), as properties of linear curves in the
plane can be often, but not always, adapted to geodesic arcs on the sphere.

An arrangement of geodesic arcs embedded on the sphere is defined as an instance of
the Arrangement on surface 2 class-template instantiated with appropriate geometry- and
topology-traits classes, namely Arr geodesic arc on sphere traits 2 and
Arr spherical topology traits 2, respectively. The geometry-traits class is tailored to
handle geodesic arcs as efficiently as possible, and defines the parameterization used: P =
[−π + α, π + α] × [−π

2
, π

2
], fS(u, v) = (cos u cos v, sin u cos v, sin v), where α is a variable

that must be set at compile time, and is by default 0. This parameterization induces two
contraction points ps = (0, 0,−1) and pn = (0, 0, 1), referred to as the south and north
pole respectively, and an identification curve that coincides with the opposite Prime (Green-
wich) Meridian. We developed the topology-traits class to support not only arrangements
of geodesic arcs, but any type of curves embedded on the sphere parameterized as above,
without compromising the performance of the operations gathered in the traits class. We
hope that this topology-traits class will come in handy in the future for constructing and
maintaining arrangements induced by types other than geodesic arcs, such as general cir-
cular arcs, which appear in arrangements induced by intersections of spheres embedded on
the sphere [CL06]. The topology-traits class initializes the Dcel to have a single face, the
embedding of which, is the entire sphere. It is designed to retain the variant that this face
always contains the north pole during modifications the arrangement may undergo. The
topology-traits class is required, for example, to inform its users that the top and bottom
boundaries of the parameter space are contracted and the left and right boundaries are iden-
tified. It maintains a search structure of vertices that coincide with the contraction points
or lie on the identification arc.

2.6. Arrangements of Geodesic Arcs on the Sphere 37

The figure to the right is a snapshot of a movie [FSH08b] that
demonstrates, among the other, the sweep-line procedure carried out
on the sphere. The red vertical arc that connects the poles is the
imaginary sweep-line. The yellow vertex have been processed already.
The dark blue arcs are curves that have been processed already and
inserted into the arrangement. The light blue arcs are curves that are
to be processed as the sweep line advances.

2.6.1 The Geometry-Traits Model

The geometry-traits class for geodesic arcs on the sphere is parameterized with a geometric
kernel [HHK+07] that encapsulates the number type used to represent coordinates of geo-
metric objects and to carry out algebraic operations on those objects. The implementation
handles all degeneracies, and is exact, as long as the underlying number type is rational,
even though the embedding surface is a sphere. We are able to use high-performance ker-
nel models instantiated with exact rational number-types for the implementation of this
geometry-traits class, as exact rational arithmetic suffices to carry out all necessary alge-
braic operations. The ability to robustly construct arrangements of geodesic arcs on the
sphere, and robustly apply operations on them using only (exact) rational arithmetic is a
key property that enables an efficient implementation.

A point in our arrangement is defined to be an unnormalized vector in R3, representing
the place where the ray emanating from the origin in the relevant direction pierces the sphere.
An arc of a great circle is represented by its two endpoints, and by the plane that contains
the endpoint vectord and goes through the origin. The orientation of the plane and the
source and target points determine which one of the two great arcs is considered.

The point type is extended with an enumeration that indicates whether the vector (i)
pierces the south pole, (ii) pierces the north pole, (iii) intersects the identification arc, or (iv)
is in any other direction. An arc of a great circle is extended with three Boolean flags that
indicate whether any one of the x, y, z coordinates of the normal of the plane that defines the
arc vanishes. These flags are used to minimize the number of invocations of the geometry-
traits operations, which has a drastic effect on the performance of arrangement operations
at the account of a slight increase in space consumption. This representation enables an
exact yet efficient implementation of all geometric operations required by the geometry-traits
concept using exact rational arithmetic, as normalizing vectors (that represent directions and
plane normals) is completely avoided.

We describe in details four predicates, namely Compare x 2, Compare xy 2,
Compare x near boundary 2, and Compare y near boundary 2; see Section 2.5 for the com-
plete set of the concept requirements. The former compares two points p1 and p2 by their
u-coordinates. The concept admits the assumption that the input points do not coincide
with the contraction points and do not lie on the identification arc. Recall that points are
in fact unnormalized vectors that represent directions in R3. We project p1 and p2 onto
the xy-plane to obtain two-dimensional unnormalized vectors p̂1 and p̂2, respectively. We
compute the intersection between the identification arc and the xy-plane to obtain a third
two-dimensional unnormalized vector d̂. Finally, we test whether d̂ is reached strictly before

38 Chapter 2. Arrangements on Surfaces

x

y

d̂

p̂1p̂2

p̂2 is reached, while rotating counterclockwise starting at p̂1. This
geometric operation is supported by every geometric kernel of Cgal.
In the figure on the right d̂ is reached strictly before p̂2 is reached.
Therefore, the u-coordinate of p1 is larger than the u-coordinate of
p2.

The predicate Compare xy 2 compares two points p1 and p2 lexico-
graphically. It first applies Compare x 2 to compare the u-coordinates
of the two points. If the u-coordinates are equal, it applies a pred-
icate that compares the v-coordinates of two points with identical
u-coordinates, referred to as Compare y 2. This predicate first com-
pares the signs of the z-coordinates of the two unnormalized input
vectors. If they differ, it concludes that the point with the positive
z-coordinate has a v-coordinate that is larger than the v-coordinate
of the point with the negative z-coordinate. If the signs are identical,
it compares the squares of their normalized z-coordinates, essentially
avoiding the square-root operation. If the sign of the (unnormalized) z-coordinates of both
points is positive (resp. negative), the point with the larger (resp. smaller) square of nor-
malized z-coordinate has a larger v-coordinate.

The predicates above accept points, the pre-images of which, lie
in the interior of the parameter space. However, there is also a
need to lexicographically compare the ends of arcs, the pre-images
of which reach the boundary of the parameter space. The predicate
Compare x near boundary 2 accepts either (i) a point, the pre-image
of which lies in the interior of the parameter space, and an arc end,
or (ii) two arc ends. Such an arc end is provided by a vertical arc
and an index that identifies one of the two ends of the arc, and must
coincide with one of the contraction points. The first variant compares the u-coordinates
of the input point and a point along the input arc near its given end, whereas the second
variant compares the u-coordinates of two points along the input arcs near their respective
given ends. Recall, that the u-coordinates of all points along a vertical arc are the same (C4

and C5 in the figure above). Thus, we can compare the u-coordinate of an arbitrary point
on a vertical arc that lie inside the parameter space. For example, for the second case, we
compare the two vectors perpendicular to the normals to the planes that define the vertical
arcs, respectively, e.g., the u-coordinate of a point on the arc C4 near its top end is smaller
than the u-coordinate of a point on the arc C5 near its top end, and in particular it is smaller
than the u-coordinate of the bottom end of C5. The Compare y near boundary 2 predicate
compares the v-coordinate of two arcs ends, the pre-images of which lie on the same (left or
right) identified side of the boundary of the parameter space. We use the aforementioned
Compare y 2 predicate to compare the end points. If the points are equal, we compare the
normals to the plane that define the arcs. In our example, the left end of C1 is smaller than
the left end of C2, which is smaller than the left end of C3.

All the required geometric types listed in the traits concept are maintained using only
rational numbers. All required geometric operations are implemented using only rational

2.7. Applications 39

arithmetic.10 Degeneracies, such as overlapping arcs that occur during intersection compu-
tation, are properly handled. The end result is a robust yet efficient implementation.

2.7 Applications

Arrangement on surfaces have many applications this thesis falls short to list. However,
we do list a few samples we were involved (or remotely involved) with the implementation
of which, i.e., Regularized Boolean Set-Operations, Envelopes of Surfaces, and Voronoi di-
agrams. Minkowski sum construction is covered in details in the following chapter. The
Boolean set-operation results, minimization diagrams, maximization diagrams and Voronoi
diagrams, (see Section 2.7.2 for definitions), and Minkowski-sums are all represented as ar-
rangements, and as such can be passed as input to consecutive operations on arrangements
supported by the Arrangement on surface 2 package and its derivatives.

2.7.1 Regularized Boolean Set-Operations

Together with R. Wein and B. Zuckerman we have developed a package that supports Boolean
set-operations on point sets bounded by u-monotone curves embedded on two-dimensional
parametric surfaces in R3 [FWZH07]. In particular, it contains the implementation of reg-
ularized Boolean set-operations, intersection predicates, and point containment predicates.
A regularized Boolean set-operation op∗ can be obtained by first taking the interior of the
resulting point-set of an ordinary Boolean set-operation (P op Q) and then by taking the
closure [Hof04]. That is, P op∗ Q = closure(interior(P op Q)). Regularized Boolean set-
operations appear in constructive solid geometry (CSG), because regular sets are closed under
regularized Boolean set-operations, and because regularization eliminates lower dimensional
features, namely isolated vertices and “antennas” (namely, dangling edges), thus simplifying
and restricting the representation to physically meaningful solids. Ordinary Boolean set-
operations, which distinguish between the interior and the boundary of a polygon, are not
implemented within this package. However, we implemented a specialized ordinary union
operation as part of an assembly partitioning application; see Chapter 5.

ArrangementBasicTraits 2

ArrangementDirectionalXMonotoneTraits 2

GeneralPolygonSetTraits 2

Figure 2.5: Refinement hierarchy of geometry

traits concepts for Boolean set-operations.

The operands and results of the regularized
operations are general polygons that may have
holes. The boundaries of a general polygon
and of holes, if present, are general u-monotone
curves. The Arrangement on surface 2 class is
employed to represent a point set embedded on
a two-dimensional parametric surface as an ar-
rangement. A point set is typically constructed
from a single general polygon or a collection of
interior disjoint general polygons. The underly-
ing arrangement must be instantiated with a geometry traits that models the concept Gener-

10Points are represented as unnormalized vectors; The coordinates of such points are converted into ma-
chine floating-point only for rendering purposes.

40 Chapter 2. Arrangements on Surfaces

alPolygonSetTraits 2. This concept refines the concept ArrangementDirectionalXMonotone-
Traits 2, which in turns refines the concept ArrangementBasicTraits 2 (see Section 2.5).

The ArrangementDirectionalXMonotoneTraits 2 concept treats its u-monotone curves
as objects directed from one endpoint appointed to be the source to the other endpoint
appointed to be the target. Thus, it requires few additional operations on u-monotone
curves:

Compare endpoints xy 2: Given a u-monotone curve C, compare the source and target
points of C lexicographically.

Construct opposite 2: Given a u-monotone curve C, construct the opposite curve of C
(namely, swap the source and target endpoints of C).

Intersection 2: Compute the intersections between two given curves C1 and C2.
Merge 2: Merge two mergeable curves C1 and C2 into a single curve C.
Is mergeable 2: Determine whether two curves C1 and C2 that share a common endpoint

can be merged into a single continuous curve representable by the traits class.

Most traits classes bundled in the Arrangement on surface 2 package and distributed with
Cgal, are models of the concept ArrangementDirectionalXMonotoneTraits 2.11

The GeneralPolygonSetTraits 2 concept requires its models to define a type that rep-
resents a general polygon and another one that represents general polygon with holes in
addition to the Point 2 and X monotone curve 2 types that must be defined by all models
of the generalized concept. It also requires the provision of several operations that operate
on these two types listed below.

Construct polygon 2: Given a sequence C of u-monotone curves, construct a general poly-
gon that has C as its outer boundary.

Construct curves 2: Given a general polygon P , obtain the sequence of u-monotone curves
that comprise the boundary of P .

Construct general polygon with holes 2: Given a general polygon P and a (possibly
empty) set of holes H, construct a general polygon with holes that has P as its outer
boundary and H as its holes.

Construct outer boundary: Given a general polygon-with-holes P , obtain the general poly-
gon that is its outer boundary.

Construct holes: Given a general polygon-with-holes P , obtain the holes of P if any.
Is unbounded: Given a general polygon-with-holes P , determine whether it has an outer

boundary.

11The Arr polyline traits 2 traits class is not a model of the ArrangementDirectionalXMonotone-

Traits 2 concept, as the u-monotone curve it defines is always directed from left to right. Thus, an opposite
curve cannot be constructed.

2.7. Applications 41

2.7.2 Envelopes

Lower envelopes of functions on parametric surfaces are defined in a way similar to the
standard definition of lower envelopes of bivariate functions in space [Hal04]. Let S be a
two-dimensional parametric surface is R3. Given a set of bivariate functions F = {f1, . . . , fn},
where fi : S → R, their lower envelope Ψ(u, v) is defined to be their point-wise minimum
Ψ(u, v) = min1≤i≤n fi(u, v). The minimization diagram M(F) of the set F is the two-
dimensional map obtained by the projection of the lower envelope onto S. Upper envelopes
and maximization diagrams are defined analogously for the point-wise maximum of the
functions.

(a) (b) (c)

Figure 2.6: Lower envelopes of various types of surfaces (a) The lower envelope of triangles. (b) The

lower envelope of spheres. (c) The lower envelope of planes. (The minimization diagrams is drawn

above the planes for clarity.)

The Envelope 3 package of Cgal [Mey06, MWZ07] computes the lower (or the upper)
envelope of a set of surfaces in R3. It is based on the Arrangement on surface 2 package,
and like the base package, it handles degenerate input, and produces exact results. An ar-
rangement data-structure is used to represent the resulting minimization diagram [Hal04].
The envelope computation is enabled by a traits class — a model of the concept Envelope-
Traits 3, which refines the ArrangementTraits 2 concept. The Envelope 3 package currently
contains three models of the EnvelopeTraits 3 concept that can be used to compute the en-
velope of triangles, spheres, and planes, respectively; see Figure 2.6 for an illustration. Other
models of the EnvelopeTraits 3 concept have been developed, for example, a traits class that
enables the computation of the envelope of a set of quadric surfaces [BM07].

2.7.3 Voronoi Diagrams

Voronoi diagrams were thoroughly investigated, and were used to solve many geometric
problems, since introduced by Shamos and Hoey to the field of computer science [SH75]
(although their origin dates back centuries ago; see [OBSC00]). The concept of computing
cells of points that are closer to a certain object than to any other object, among a finite
number of objects, was extended to various kinds of geometric sites, ambient spaces, and
distance functions, e.g., power diagrams of circles in the plane, multiplicatively weighted

42 Chapter 2. Arrangements on Surfaces

Voronoi diagrams, additively weighted Voronoi diagrams [AK00]. This space decomposition
is strongly connected to arrangements [ES86], a property that yields a very general approach
for computing Voronoi diagrams.

Given a set of n points P = {p1, . . . , pn}, pi ∈ S, we define R(P, pi) = {x ∈ S | ρ(x, pi) <
ρ(x, pj), j 6= i}, where ρ(pi, pj) is some given distance function.12 R(P, pi) is the region
of all points that are closer to pi then to any other point in P . The Voronoi diagram of
P over S is defined to be the regions R(P, p1), R(P, p2), . . . , R(P, pn) and their boundaries.
Edelsbrunner and Seidel [ES86] observed the connection between Voronoi diagrams in Rd

and lower envelopes in Rd+1 of the corresponding distance functions to the sites. From the
above definitions it is clear that if fi : S → R is set to be fi(x) = ρ(x, pi), for i = 1, . . . , n,
then the minimization diagram of {f1, . . . , fn} over S is exactly the Voronoi diagram of P
over S.

(a) (b)

Figure 2.7: Voronoi diagrams on the sphere.

(a) The Voronoi diagram of 14 random points.

(b) The power diagram of 10 random circles.

K. E. Hoff et al. developed a technique for
computing generalized 2D and 3D Voronoi dia-
grams using interpolation-based polygon raster-
ization hardware [HKL+99]. The hardware is
used to draw the discrete and approximate lower
envelope of the site-distance functions. Follow-
ing similar principles, O. Setter et al. developed
a new framework to compute different types of
Voronoi diagrams embedded on certain paramet-
ric surfaces in an exact manner [SSH08]. The
framework is based on the exact computation of
the lower envelope of the site-distance functions
over the surface [Mey06]. It provides a reduced
and convenient interface between the construction of the diagrams and the construction of
envelopes, which in turn are computed using the Envelope 3 package [MWZ07]. Obtaining
a new type of Voronoi diagrams only amounts to the provision of a geometry-traits class
that handles the type of bisector curves of the new diagram type. Essentially, every type of
Voronoi diagram, the bisectors of which can be handled by a geometry traits class, can be
implemented using this framework. In particular the geometry-traits class for geodesic arcs
embedded on the sphere enables Voronoi diagrams of points on the sphere and their gener-
alization, power diagrams, also known as Laguerre Voronoi diagrams, on the sphere, as the
bisector curves between point sites on the sphere are great circles [NLC02, OBSC00], and so
are the bisectors between circle sites on the sphere under the Laguerre distance [Sug02]; see
Figure 2.7. Power diagrams on the sphere have several applications similar to the applica-
tions of power diagrams in the plane. For example, determining whether a point is included
in the union of circles on the sphere, and finding the boundary of the union of circles on the
sphere [IIM85, Sug02].

12In certain cases, the distance to a site may depend on various parameters associated with the site, e.g.,
in the cases of Möbius diagrams or anisotropic diagrams.

2.7. Applications 43

v
0

pi/2

−pi

u

0

pi

We implicitly construct envelopes of distance functions defined
over the sphere to compute Voronoi diagrams. The image to the
right illustrates the distance function from (0, 0) ∈ [−π, π]×[−π

2
, π

2
]

on the sphere in the parameter space. The great circle bisector of
two point sites on the sphere is the intersection of the sphere and
the bisector plane of the points in R3 (imposed by the Euclidean
metric).

If a point on the sphere is given as a general vector in R3, it must be normalized. If
the normalization results with a point with irrational coordinates, then it must be approx-
imated to a point that lies exactly on the sphere [CDR92]. Once approximated, all further
computations are carried out using exact rational arithmetic.

(a) (b)

Figure 2.8: Arrangements on the sphere.

Figure 2.8 (a) on the left shows an arrange-
ment on the sphere induced by (i) the conti-
nents and some of the islands on earth, and (ii)
the institutions that hosted SoCG during this
millennium, which appear as isolated vertices.
The sphere is oriented such that College Park,
MD, USA is at the center. The arrangement
consists of 1054 vertices, 1081 edges, and 117
faces. The data was taken from gnuplot [13] and
google maps [14]. Figure 2.8 (b) shows an ar-
rangement that represents the Voronoi diagram
of the nine cities, the institutions above are lo-

cated at, namely College Park, Gyeongju, Sedona, Pisa, New York, San Diego, Barcelona,
Medford, and Hong Kong.

As mention above Voronoi diagrams, among the other, are repre-
sented as arrangements and can be passed as input to consecutive oper-
ations on arrangements supported by the Arrangement on surface 2

package and its derivatives. The figure on the right shows the overlay
of the two arrangements shown in Figure 2.8.

44 Chapter 2. Arrangements on Surfaces

Efficiency is just intelligent

laziness.

Anonymous

3
Minkowski Sum Construction

We present two exact and robust implementations of efficient output-sensitive algorithms to
compute the Minkowski sum of two polytopes in R3. We demonstrate the effectiveness of our
Minkowski-sum computations through simple applications that exploit these operations to
detect collision, and compute the Euclidean separation distance between, and the directional
penetration depth of, two polytopes in R3. In Chapter 5 we show a more involved application
of these operations.

Each method we have developed uses a different variant of Gaussian maps to main-
tain dual representations of polytopes. Each method employs a different variant of two-
dimensional arrangements to maintain the dual representations, and it makes use of many
operations applied to arrangements in the corresponding representations. The first method
uses the traditional (spherical) Gaussian map. The map is represented as an arrangement
of geodesic arcs embedded on the unit sphere. The second method uses a data structure
called Cubical Gaussian Map . It consists of six arrangements induced by linear segments
embedded in the plane. The six arrangements correspond to the six faces of the unit cube
— the parallel-axis cube circumscribing the unit sphere.

A simple method to compute the Minkowski sum of two polytopes is to compute the con-
vex hull of the pairwise sum of the vertices of the two polytopes. Although there are many
implementations of various algorithms to compute Minkowski sums and answer proximity
queries, we are unaware of the existence of complete implementations of methods to compute
exact Minkowski sums other than (i) the naive method above, (ii) a method based on Nef
polyhedra embedded on the sphere [HKM07], and (iii) an implementation by Weibel [28] of
Fukuda’s algorithm [Fuk04]. Both our methods exhibit much better performance than the
other methods in all cases, as demonstrated by the experiments reported in Table 3.5. Our
methods well handle degenerate cases that require special treatment when alternative rep-
resentations are used. For example, the case of two parallel facets facing the same direction,
one from each polytope, does not bear any burden on our methods, and neither does the

45

46 Chapter 3. Minkowski Sum Construction

extreme case of two polytopes with identical sets of facet normals.

The results of experimentation with a broad family of convex polyhedra are reported.
The relevant programs, source code, data sets, and documentation are available at http://
www.cs.tau.ac.il/~efif/CD. A short movie [FH05] that describes some of the concepts
of the cubical Gaussian-map method can be downloaded from http://acg.cs.tau.ac.il/

projects/internal-projects/gaussian-map-cubical/Mink3d.avi. Another short
movie [FSH08b] that describes some of the concepts of the (spherical) Gaussian map method
among the other can be downloaded from http://acg.cs.tau.ac.il/projects/internal-

projects/arr-geodesic-sphere/movie/aos-xvid.avi.

Both methods are implemented on top of Cgal, and are mainly based on the arrangement
package of the library (see Chapter 2 and [FWH04, WFZH07b]), although other parts, such
as the polyhedral-surface package developed by L. Kettner [Ket99], are used as well. In
some cases it is sufficient to build only portions of the boundary of the Minkowski sum
of two given polytopes to answer collision and proximity queries efficiently. This requires
locating the corresponding features that contribute to the sought portion of the boundary.
As both methods we have developed employ two-dimensional arrangements implemented
on top of the Cgal arrangement package, we harness the ability to answer point-location
queries efficiently that comes along, to locate corresponding features of two given polytopes.

The rest of this chapter is organized as follows. The Gaussian maps dual representations
of polytopes in R3 are described in Section 3.1 along with some of their properties. In
Sections 3.2 and 3.3 we show how 3D Minkowski sums can be computed efficiently, after
the summands are converted to (spherical) Gaussian maps and cubical Gaussian maps,
respectively. Section 3.4 presents an exact implementation of an efficient collision-detection
algorithm under translation based on either of the dual representations. In the last section,

(a) (b)

(c) (d)

Figure 3.1: (a) A tetrahedron, (b) the Gaus-

sian map of the tetrahedron, (c) a cube, and (d)

the Gaussian map of the cube.

dedicated to experimental results, we highlight
the performance of our methods on various
benchmarks. Suggestions for future directions
are provided in the conclusion chapter in Sec-
tion 6.4. The software access-information along
with some further design details are provided in
the Appendix.

3.1 Gaussian Maps

The Gaussian map G = G(P) of a com-
pact convex polyhedron P in Euclidean three-
dimensional space R3 is a set-valued function
from P to the unit sphere S2, which assigns to
each point p on the boundary of P the set of out-
ward unit normals to support planes to P at p.
Thus, the whole of a facet f of P is mapped un-
der G to a single point, representing the outward
unit normal to f . An edge e of P is mapped to

http://www.cs.tau.ac.il/~efif/CD
http://www.cs.tau.ac.il/~efif/CD
http://acg.cs.tau.ac.il/projects/internal-projects/gaussian-map-cubical/Mink3d.avi
http://acg.cs.tau.ac.il/projects/internal-projects/gaussian-map-cubical/Mink3d.avi
http://acg.cs.tau.ac.il/projects/internal-
projects/arr-geodesic-sphere/movie/aos-xvid.avi

3.2. The (Spherical) Gaussian-Map Method 47

a (geodesic) segment G(e) on S2, whose length is easily seen to be the exterior dihedral angle
at e. A vertex v of P is mapped by G to a spherical polygon G(v), whose sides are the image
under G of edges incident to v, and whose angles are the angles supplementary to the planar
angles of the facets incident to v; that is, G(e1) and G(e2) meet at angle π − α whenever e1

and e2 meet at angle α. In other words, G(v) is exactly the “spherical polar” of the link of
v in P . (The link of a vertex is the intersection of an infinitesimal sphere centered at v with
P , rescaled, so that the radius is 1.) The above implies that G(P) is combinatorially dual
to P and an arrangement embedded on the unit sphere [HRS92]. Extending the mapping
above, by marking each face f = G(v) of the arrangement with its dual vertex v, enables a
unique inverse Gaussian mapping, denoted by G−1, which maps an extended arrangement
embedded on the unit sphere back to a polytope boundary.

xd = 1

u

ûd

o

An alternative and practical definition follows. A direction in
R3 can be represented by a point u ∈ S2. Let P be a polytope
in R3, and let V denote the set of its boundary vertices. For
a direction u, we define the extremal point in direction u to be
λV (u) = arg maxp∈V 〈u, p〉, where 〈·, ·〉 denotes the inner product.
The decomposition of S2 into maximal connected regions, so that
the extremal point is the same for all directions within any region forms the Gaussian map
of P . For some u ∈ S2 the intersection point of the ray ~ou emanating from the origin with
one of the planes listed below is a central projection of u denoted as ûd, and illustrated on
the right. The relevant planes are xd = 1, d = 1, 2, 3, if u lies in the positive respective
hemisphere, and xd = −1, d = 1, 2, 3 otherwise.

Similar to the Gaussian map, the Cubical Gaussian Map (Cgm) C = C(P) of a polytope
P in R3 is a set-valued function from P to the six faces of the unit cube whose edges are
parallel to the major axes and are of length two. A facet f of P is mapped under C to a
central projection of the outward unit normal to f onto one of the cube faces. Observe that,
a single edge e of P is mapped to a chain of at most four connected segments that lie in
four adjacent cube-faces respectively, and a vertex v of P is mapped to at most five abutting
convex dual faces that lie in five adjacent cube-faces, respectively. The decomposition of the
unit-cube faces into maximal connected regions, so that the extremal point is the same for
all directions within any region forms the Cgm of P . Likewise, the inverse Cgm, denoted
by C−1, maps the six extended arrangement embedded on the six faces of the unit cube to
the polytope boundary. Figure 3.2 shows the Cgm of a tetrahedron.

3.2 The (Spherical) Gaussian-Map Method

Armed with the geometry-traits class for geodesic arcs on the sphere (see Section 2.6), we
compute Minkowski sums of convex polyhedra, by overlaying their respective Gaussian maps
represented as arrangements of geodesics on the sphere. Each face f of the Gaussian map
is extended with the coordinates of its dual vertex v = G−1(f), resulting with a unique
representation.

48 Chapter 3. Minkowski Sum Construction

(a) (b) (c)

Figure 3.2: (a) A tetrahedron, (b) the Cgm of the tetrahedron, and (c) the Cgm unfolded. Thick

lines indicate real edges.

3.2.1 The Representation

An input model of a polytope is provided as a polyhedral mesh in R3. A polyhedral mesh
representation consists of an array of boundary vertices and the set of boundary facets,
where each facet is described by an array of indices into the vertex array. Constructing the
Gaussian map of a model given in this representation is done indirectly. First, the Cgal

Polyhedron 3 [Ket99] data-structure that represents the model is constructed. This data
structure provides quick access to the incidence relations on the polytope features. Then,
the Gaussian map is constructed from the accessible information stored in the Polyhedron 3

data-structure. Once the construction of the Gaussian map is complete, the Polyhedron 3

intermediate representation is discarded.

Tetrahedron Octahedron Icosahedron Dioctagonal Pyramid

Pentagonal Truncated Geodesic Ellipsoid
Hexecontahedron Icosidodecahedron Sphere level 4 like polyhedron

Figure 3.3: Gaussian maps of various polytopes.

The Polyhedron 3 data-structure, like the arrangement Dcel, is based on the imple-
mentation of an Hds; see Section 2.3. It consists of extendible vertices, halfedges, and facets

3.2. The (Spherical) Gaussian-Map Method 49

and incidence relations on them. It provides methods to traverse all vertices, halfedges, and
facets, and for local traversals, such as traversing all halfedges incident to a specific vertex.
It also provides quick access from one halfedge to its twin, and to the incident facet to its left.
Each vertex and halfedge of the Polyhedron 3 data-structure is extended with a Boolean flag
that indicates whether the vertex or the halfedge respectively have already been processed
during the construction of the arrangement that represents the Gaussian map. Each facet
is extended with the handle of an arrangement vertex. The handle extension of a facet f
that has already been processed points to the dual vertex v = G(f). The procedure that
converts an (extended) Polyhedron 3 data-structure P representing a polytope to an (ex-
tended) Arrangement on surface 2 data-structure G(P) consists of two steps. First all field
extensions of all vertices, halfedges, and facets of P are cleared. Then, a recursive function
provided with an arbitrary vertex v of P as a single parameter is invoked. This function tra-
verses the halfedges incident to v. When it encounters an unprocessed halfedge e, it obtains
the normal n1 and the vertex-handle extension h(v1) of the facet f1 adjacent to the left of e
and the normal n2 and the vertex-handle extension h(v2) of the facet f2 adjacent to the left
of the next halfedge in the cyclic chain of halfedges incident to v. Finally, the geodesic short
arc between n1 and n2 is constructed and inserted into the arrangement G(P), as explained
below, using one of the efficient insertion member-functions of Arrangement on surface 2;
see Section 2.3.2. Once the insertion is complete, the halfedge e is marked as processed. v is
marked as processed once all its incident halfedges are processed. The function recursively
invokes itself providing an unprocessed vertex adjacent to v, and terminates when no such
vertex is found.

Let C indicate the new geodesic arc to be inserted into the arrangement representing the
Gaussian map. Assume that C is u-monotone with respect to the parameterization defined
by the geometry-traits class; see Section 2.6. That is, it does not intersect the identification
arc. Let v1, v2, f1, and f2 be the two vertices and two facets as described above. There are
four cases to handle as follows.

1. If v1 and v2 are both null, it implies that this is the first attempt to insert a geodesic
arc into the arrangement. In this case we call insert in face interior(C,f), where
f is the single face the Dcel was initialized with; see Section 2.6. The handle of the
two new vertices associated with the endpoints of the newly created geodesic arc C are
stored in the records of the corresponding facets f1 and f2 of P respectively for later
use.

2. If v1 is null but v2 is not, we call either insert from left vertex(C,v2) or
insert from right vertex(C,v2) depending on whether the existing vertex v2 is to
the right or to the left of C, and update the vertex-handle field of the corresponding
facet f1 with the new vertex v1.

3. We handle the analogous case where v2 is null but v1 is not similarly.
4. If both v1 and v2 are not null, we call insert at vertices(C,v1,v2). In this case no

vertex-handle field needs to be updated.

If C intersects the identification arc, it is first split at the intersection point into two u-
monotone arcs C1 and C2. Then, C1 and C2 are inserted according to four cases similar to
the above. The handling is a bit more intricate. For example, consider the case where v1

is null but v2 already exists. Assume that C1 reaches the right boundary of the parameter

50 Chapter 3. Minkowski Sum Construction

space and C2 reaches the left boundary (they both meet at an identified point). If v2 is
associated with the left endpoint of C1, we first call insert from left vertex(C1,v2), and
then insert from left vertex(C2,v

′), where v′ is the new vertex associated with the right
endpoint of C1 introduced while C1 is inserted. Otherwise, v2 must be associated with the
right endpoint of C2. In this case we first call insert from right vertex(C2,v2), and then
insert from right vertex(C1,v

′), where v′ is the new vertex associated with the right
endpoint of C2 introduced while C2 is inserted. The other three cases are handled similarly.

We have created a large database of models of polytopes. Table 3.3 lists, for a small
subset of our polytope collection, the number of features in the arrangement of geodesic arcs
embedded on the sphere that represents the Gaussian map of each polytope. Recall that the
number of faces (F) of the Gaussian map is always equal to the number of vertices of the
polytope. However, the number of vertices (V) of the Gaussian map is either equall to, or
greater than, the number of facets of the primal representation due to intersections between
Gaussian-map edges and the identification arc. A similar argument holds for the edges.
That is, the number of halfedges (HE) of the Gaussian map is either equall to, or greater
than, twice the number of edges of the primal representation. An edge of the Gaussian
map that intersects the identification arc must be split at the intersection point into two
u-monotone geodesic arcs. The table also lists the time in seconds (t) it takes to construct
the arrangement once the intermediate polyhedron is in place, on a Pentium PC clocked at
1.7 GHz.

3.2.2 Exact Minkowski Sums

(a) (b)

Figure 3.4: (a) The Minkowski sum of a tetra-

hedron and a cube and (b) the Gaussian map of

the Minkowski sum.

The overlay (see Section 2.4.2 for the exact def-
inition) of the Gaussian maps of two polytopes
P and Q respectively identifies all pairs of fea-
tures of P and Q that have parallel support-
ing planes, as they occupy the same space on
the unit sphere, thus, identifying all the pair-
wise features that contribute to the boundary
of the Minkowski sum of P and Q. A facet of
the Minkowski sum is either a facet f of Q trans-
lated by a vertex of P supported by a plane par-
allel to f , or vice versa, or it is a facet parallel
to two parallel planes supporting an edge of P
and an edge of Q, respectively. A vertex of the Minkowski sum is the sum of two vertices of
P and Q respectively supported by parallel planes.

When the overlay operation progresses, new vertices, edges, and faces of the resulting
arrangement are created based on features of the two operands. When a new feature is
created its attributes are updated. There are ten cases that arise and must be handled; see
Section 2.4.2 for the precise enumeration of the various cases. For example, a new face f is
induced by the overlap of two faces f1 and f2 of the two summands, respectively. The primal
vertex associated with f is set to be the sum of the primal vertices associated with f1 and
f2, respectively.

3.3. The Cubical Gaussian-Map Method 51

Tetra. ⊕ Cube DP ⊕ ODP PH ⊕ TI El16 ⊕ OEl16

Figure 3.5: Gaussian maps of Minkowski sums. DP — Dioctagonal Pyramid, PH — Pentagonal Hexe-

contahedron, TI — Truncated Icosidodecahedron, GS4 — Geodesic Sphere level 4, El16 — Ellipsoid-like

polyhedron made of 16 latitudes and 32 longitudes.

Table 3.4 lists the number of features (V, HE, F) in the arrangement that represents the
Gaussian map of the respective Minkowski sums. Table 3.5 shows the time in seconds (t) it
takes to construct the arrangement once the Gaussian maps of the summands are in place.

3.3 The Cubical Gaussian-Map Method

While using the Cgm increases the overhead of some operations sixfold, and introduces
degeneracies that are not present in the case of alternative representations, it simplifies the
construction and manipulation of the representation, as the partition of each cube face is a
planar map of segments, a well known concept that has been intensively experimented with
during recent years. Indeed, all the basic software components that the Cgm layer depends
on are available in Cgal version 3.3 and higher, while many of the software components
required by the (spherical) Gaussian map method are expected to appear only in a future
release of Cgal. The Cgm method, being more mature, exhibits better performance than
the (spherical) Gaussian map method. One of the reasons for the performance gap is the lack
of optimized primitives that operate on unnormalized vectors in R3 in case of the (spherical)
Gaussian map method. Evidently, most of the methods of the geometry-traits class that
handle geodesic arcs embedded on the sphere project their input u-monotone curves and
points onto one of the axis-aligned planes every time they are invoked, while all geometric
objects in case of the Cgm method are projected onto the plane a priori. This creates an
opportunity for optimization; see Section 6.1.4. In addition, the Cgm data structure, being
based on components confined to the plane, has a broader recognition, as it can be used in
restricted environments, e.g., 3D hardware accelerators; see Section 6.5.

3.3.1 The Representation

We use the Cgal Arrangement 2 data-structure to maintain the planar maps. The construc-
tion of the six planar maps from the polytope features and their incident relations is similar
to the construction of the arrangement of geodesic arcs that represents the Gaussian map;
see Section 3.2.1. As in the case of the (spherical) Gaussian map, the Polyhedron 3 inter-
mediate representation is discarded once the construction of the Cgm is complete. However,

52 Chapter 3. Minkowski Sum Construction

while a single edge of P is mapped to at most two u-monotone geodesic arcs in case of the
(spherical) Gaussian map, it can be mapped to a chain of at most four connected segments
that lie in four adjacent cube-faces, respectively. In any case the constructions of the Gaus-
sian maps of both methods respectively amount to the insertion of curves that are pairwise
disjoint in their interior into the arrangement, an operation that is carried out efficiently,
especially when one or both endpoints are known. The construction of the Minkowski sum,
described in Section 3.3.2, amounts to the computation of the six overlays of six pairs of
planar maps, respectively, an operation well supported by the data structure as well.

A related dual representation had been considered and discarded before the Cgm rep-
resentation was chosen. It uses only two planar maps that partition two parallel planes
respectively instead of six, but each planar map partitions the entire plane.1 In this 2-map
representation facets that are near orthogonal to the parallel planes are mapped to points
that are far away from the origin. The exact representation of such points requires coordi-
nates with large bit-lengths, which increases significantly the time it takes to perform exact
arithmetic operations on them. Moreover, facets exactly orthogonal to the parallel planes
are mapped to points at infinity, and require special handling all together.

Features that are not in general position, such as two parallel facets facing the same
direction, one from each polytope, or worse yet, two identical polytopes, typically require
special treatment. Still, the handling of many of these problematic cases falls under the “gen-
eral” case, and becomes transparent to the Gaussian-map layer (either cubical or spherical).
Consider for example the case of two neighboring facets in one polytope that have parallel
neighboring facets in the other. This translates to overlapping segments in case of the Cgm

method and overlapping geodesic arcs in case of the (spherical) Gaussian-map method, one
from each Gaussian map of the two polytopes,2 that appear during the Minkowski sum com-
putation. The algorithm that computes it is oblivious to this condition, as the underlying
arrangement data structure, either embedded in the plane or on the sphere, is perfectly ca-
pable of handling overlapping curves. However, as mentioned above, other degeneracies do
emerge, and are handled successfully. One example, in case of the Cgm, is a facet f mapped
to a point that lies on an edge of the unit cube, or even worse, coincides with one of the eight
corners of the cube. Figure 3.7(a,b,c) depicts an extreme degenerate case of an octahedron
oriented in such a way that its eight facets are mapped to the eight vertices of the unit cube,
respectively. The (spherical) Gaussian map method is not free of degenerate conditions. For
example, a facet mapped to a point that lies on the identification arc, or worse yet, coincides
with one of the two poles.

The dual representation is extended further, in order to handle all these degeneracies and
perform all the necessary operations as efficiently as possible. Each planar map is initialized
with four edges and four vertices that define the unit square — the parallel-axis square
circumscribing the unit circle. During construction, some of these edges or portions of them
along with some of these vertices may turn into real elements of the Cgm. The introduction

1Each planar map that corresponds to one of the six unit-cube faces in the Cgm representation also
partitions the entire plane, but only the [−1,−1] × [1, 1] square is relevant. The unbounded face, which
comprises all the rest, is irrelevant.

2Other conditions translate to overlapping segments in case of the Cgm or geodesic arcs in case of the
(spherical) Gaussian map method as well.

3.3. The Cubical Gaussian-Map Method 53

of these artificial elements not only expedites the traversals below, but is also necessary for
handling degenerate cases, such as an empty cube face that appears in the representation
of the tetrahedron and depicted in Figure 3.2(c). The global data consists of the six planar
maps and 24 references to the planar vertices that coincide with the unit-cube corners.

X

Y

Y

X

X

Y

X

Y

Z
5

3

2

1

0

3

4
32

10

0

1 3

2

Y

X

Y

X

Y

X

X

Y

Z

2
0

0

2

1

34

1

3 2

0

Y

X

X

Y
X

Y

X

Y

Z
5

0

1

0

1 3

2

X

Y

X

Y

Y

X

X

Y

Z

2
3

1

1

3 2

0

Figure 3.6: The data structure. Large-font numbers

indicate plane ids. Small-font numbers indicate corner

ids. X and Y axes in different 2D coordinate systems

are rendered in different colors.

The exact mapping from a facet nor-
mal in the 3D coordinate-system to a pair
that consists of a planar map and a planar
point in the 2D coordinate-system is de-
fined precisely through the indexing and
ordering system, illustrated in Figure 3.6.
Now before your eyes cross permanently,
we advise you to keep reading the next
few lines, as they reveal the meaning of
some of the enigmatic numbers that ap-
pear in the figure. The six planar maps
are given unique ids from 0 through 5. Ids
0, 1, and 2 are associated with the planes
x = −1, y = −1, and z = −1, respectively,
and ids 3, 4, and 5 are associated with the
planes x = 1, y = 1, and z = 1, respec-
tively. The major axes in the 2D Cartesian
coordinate-system of each planar map are
determined by the 3D coordinate-system.
The four corner vertices of each planar

map are also given unique ids from 0 through 3 in lexicographic order in their respective 2D
coordinate-system, see Table 3.1 columns titled Underlying Plane and 2D Axes.

Table 3.1: The coordinate systems and the cyclic chains of corner vertices. PM stands for Planar

Map, and Cr stands for Corner.

Underlying
2D Axes

Corner
Plane 0 (0,0) 1 (0,1) 2 (1,0) 3 (1,1)

Id Eq X Y PM Cr PM Cr PM Cr PM Cr

0 x = −1 Z Y 1 0 2 2 5 0 4 2
1 y = −1 X Z 2 0 0 2 3 0 5 2
2 z = −1 Y X 0 0 1 2 4 0 3 2
3 x = 1 Y Z 2 1 1 3 4 1 5 3
4 y = 1 Z X 0 1 2 3 5 1 3 3
5 z = 1 X Y 1 1 0 3 3 1 4 3

Each feature type of the Dcel used to maintain the incidence relations of the vertices,
halfedges, and faces of the Arrangement 2 data structure (see Section 2.3) is extended to
hold additional attributes. Some of the attributes are introduced only in order to expedite
the computation of certain operations, but most of them are necessary to handle degenerate
cases such as a planar vertex lying on the unit-square boundary. Each planar-map vertex

54 Chapter 3. Minkowski Sum Construction

v is extended with (i) the coefficients of the plane containing the polygonal facet C−1(v)
(see Section 3.1 for the definition of C and C−1), (ii) the location of the vertex — an
enumeration indicating whether the vertex coincides with a cube corner, or lies on a cube
edge, or contained in a cube face, (iii) a Boolean flag indicating whether it is non-artificial
(there exists a facet that maps to it), and (iv) a pointer to a vertex of a planar map associated
with an adjacent cube-face that represents the same central projection for vertices that
coincide with a cube corner or lie on a cube edge. Each planar-map halfedge e is extended
with a Boolean flag indicating whether it is non-artificial (there exists a polytope edge that
maps to it). Each planar-map face f is extended with the polytope vertex that maps to it
v = C−1(f).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: (a) An octahedron, (d) a dioctagonal pyramid, (g) an ellipsoid-like polyhedron level 16,

(b,e,h) the Cgm of the respective polytope, and (c,f,i) the Cgm unfolded.

Each vertex that coincides with a unit-cube corner or lies on a unit-cube edge contains
a pointer to a vertex of a planar map associated with an adjacent cube face that represents
the same central projection. Vertices that lie on a unit-cube edge (but do not coincide with

3.3. The Cubical Gaussian-Map Method 55

0,01,0

2,0

unit-cube corners) come in pairs. Two vertices that form such a pair lie on
the unit-square boundary of planar maps associated with adjacent cube
faces, and they point to each other. Vertices that coincide with unit-
cube corners come in triplets and form cyclic chains ordered clockwise
around the respective vertices. The diagram on the right specifies one of
the eight cyclic chains. The left and right indices of each pair specify a planar-map id and
a corner id, respectively. All specific connections are listed in Table 3.1. Recall that all
maps are facing outwards. As a convention, edges incident to a vertex are ordered clockwise
around the vertex, and edges that form the boundary of a face are ordered counterclockwise.
The Polyhedron 3 and Arrangement 2 data structures for example both use a Dcel data
structure that follows the convention above.

We provide a fast clockwise traversal of the faces incident to any given
vertex v. Clockwise traversals around internal vertices are immediately
available by the Dcel. Clockwise traversals around boundary vertices
are enabled by the cyclic chains above. This traversal is used to calculate
the normal to the (primary) polytope-facet f = C−1(v) and to render
the facet. Fortunately, rendering systems are capable of handling a
sequence of vertices that define a polygon in clockwise order as well, an

order opposite to the conventional ordering above.

The data structure also supports a fast traversal over the planar-map
halfedges that form each one of the four unit-square edges. This traversal
is used during construction to quickly locate a vertex that coincides with a
cube corner or lies on a cube edge. It is also used to update the cyclic chains
of pointers mentioned above; see Section 3.3.2.

We maintain a flag that indicates whether a planar vertex coincides with a cube corner,
a cube edge, or a cube face. At first glance this looks redundant. After all, this information
could be derived by comparing the x and y coordinates to −1 and +1. However, it has
a good reason as explained next. Using exact number-types often leads to representations
of the geometric objects with large bit-lengths. Even though we use various techniques to
prevent the length from growing exponentially [FWH04], we cannot prevent the length from
growing at all. Even the computation of a single intersection requires a few multiplications
and additions. Cached information computed once and stored at the features of the planar
map avoids unnecessary processing of potentially long representations.

Table 3.2: The number of features of

the six planar maps of the Cgm of the

dioctagonal pyramid.
Planar map V HE F
0, (x = −1) 12 32 6
1, (y = −1) 28 80 14
2, (z = −1) 12 32 6
3, (x = 1) 12 32 6
4, (y = 1) 21 72 17
5, (z = 1) 12 32 6
Total 97 280 55

The table to the right shows the number of ver-
tices (V), halfedges (HE), and faces (F) of the six
planar maps that comprise the Cgm of the dioctago-
nal pyramid shown in Figure 3.7 (d,e,f). The number
of faces of each planar map include the unbounded
face. Table 3.3 shows the number of features in the
primal and dual representations of a small subset of
our polytopes collection, on which we report the re-
sults of experiments below. The number of planar
features is the total number of features of the six pla-
nar maps.

56 Chapter 3. Minkowski Sum Construction

3.3.2 Exact Minkowski Sums

A similar argument regarding the representation of Minkowski sums using Gaussian maps
mentioned in Section 3.2 holds for the cubical Gaussian maps with the unit cube replacing
the unit sphere. More precisely, a single map that subdivides the unit sphere is replaced
by six planar maps, and the computation of a single overlay is replaced by the computation
of six overlays of corresponding pairs of planar maps. Recall that each (primal) vertex is
associated with a planar-map face, and is the sum of two vertices associated with the two
overlapping faces of the two Cgm’s of the two input polytopes, respectively.

Each planar map in a Cgm is a convex subdivision. Finke and Hinrichs [FH95] describe
how to compute the overlay of such special subdivisions optimally in linear time. However,
a preliminary investigation shows that a large constant governs the linear complexity, which
renders this choice less attractive. Instead, we resort to a sweep-line based algorithm that
exhibits good practical performance, and incurs a mere logarithmic factor over the optimal
computing time. In particular we use the overlay operation supported by the Arrangement
package. It requires the provision of a complementary component that is responsible for up-
dating the attributes of the Dcel features of the resulting six planar maps; see Section 2.4.2.

The overlay operates on two instances of Arrangement 2. In the description below v1,
e1, and f1 denote a vertex, a halfedge, and a face of the first operand respectively, and v2,
e2, and f2 denote the same feature types of the second operand, respectively. When the
overlay operation progresses, new vertices, halfedges, and faces of the resulting planar map
are created based on features of the two operands. Exactly ten cases described below arise
and must be handled. When a new feature is created its attributes are updated. The updates
performed in all cases except for case (1) are simple and require constant time.

1. A new vertex v is induced by coinciding vertices v1 and v2.
The location of the vertex v is set to be the same as the location of the vertex v1

(the locations of v2 and v1 must be identical). The induced vertex is not artificial if
and only if (i) at least one of the vertices v1 or v2 is not artificial, or (ii) the vertex
lies on a cube edge or coincides with a cube corner, and both vertices v1 and v2 have

Table 3.3: Complexities of the primal and dual representations. DP — Dioctagonal Pyramid, PH —

Pentagonal Hexecontahedron, TI — Truncated Icosidodecahedron, GS4 — Geodesic Sphere level 4, El16

— Ellipsoid-like polyhedron made of 16 latitudes and 32 longitudes, t - time consumption in seconds.

Object Type
Primal SGM CGM

V E F V HE F t V HE F t
Tetrahedron 4 6 4 4 12 4 0.01 42 102 21 0.01
Octahedron 6 12 8 10 28 6 0.01 24 48 12 0.01
Icosahedron 12 30 20 21 62 12 0.01 72 192 36 0.01
DP 17 32 17 25 80 17 0.01 97 280 55 0.01
PH 60 150 92 101 318 60 0.03 200 600 112 0.02
TI 120 180 62 77 390 120 0.05 230 840 202 0.03
GS4 252 750 500 506 1512 252 0.08 708 2124 366 0.07
El16 482 992 512 528 2016 482 0.11 776 2752 612 0.06

3.4. Exact Collision Detection 57

non-artificial incident halfedges that do not overlap.
2. A new vertex v is induced by a vertex v1 that lies on an edge e2.

The location of the vertex v is set to be the same as the location of the vertex v1. v is
not artificial if and only if v1 is not artificial or e2 is not artificial.

3. An analogous case of a vertex v2 that lies on an edge e1.
4. A new vertex v is induced by a vertex v1 that is contained in a face f2.

The attributes of the vertex v are set to be the same as the attributes of the vertex v1.
5. An analogous case of a vertex v2 contained in a face f1.
6. A new vertex v is induced by the intersection of two edges e1 and e2.

The vertex v cannot lie on a cube edge and cannot coincide with a cube corner. Thus,
it is necessarily not artificial.

7. A new edge e is induced by the overlap of two edges e1 and e2.
The edge e is not artificial if at least one of e1 or e2 is not artificial.

8. A new edge e is induced by an edge e1 that is contained in a face f2.
The edge e is not artificial if e1 is not artificial.

9. An analogous case of an edge e2 contained in a face f1.
10. A new face f is induced by the overlap of two faces f1 and f2.

The primal vertex associated with f is set to be the sum of the primal vertices associ-
ated with f1 and f2, respectively.

After the six map overlays are computed, some maintenance operations must be per-
formed to obtain a valid Cgm representation. As mentioned above, the global data consists
of the six planar maps and 24 references to vertices that coincide with the unit-cube cor-
ners. For each planar map we traverse its vertices, obtain the four vertices that coincide
with the unit-cube corners, and initialize the global data. We also update the cyclic chains
of pointers to vertices that represent identical central projections. To this end, we exploit
the fast traversal over the halfedges that coincide with the unit-cube edges mentioned in
Section 3.3.1.

The complexity of a single overlay operation is O(k log n), where n is the total number
of vertices in the input planar maps, and k is the number of vertices in the resulting planar
map. The total number of vertices in all the six planar maps in a Cgm that represents a
polytope P is of the same order as the number of facets in the primary polytope P . Thus,
the complexity of the entire overlay operation is O(F log(F1 +F2)), where F1 and F2 are the
number of facets in the input polytopes respectively, and F is the number of facets in the
Minkowski sum.

3.4 Exact Collision Detection

Computing the separation distance between two polytopes with m and n features respec-
tively can be done in O(log m log n) time, after an investment of at most linear time in
preprocessing [DK90]. Many practical algorithms that exploit spatial and temporal coher-
ence between successive queries have been developed, some of which became classic, such as
the GJK algorithm [GJK88] and its improvement [Cam97], and the LC algorithm [LC91] and
its optimized variations [EL00, GHZ99, Mir98]. Several general-purpose software libraries

58 Chapter 3. Minkowski Sum Construction

that offer practical solutions are available today, such as the SOLID library [24] based on
the improved GJK algorithm, the SWIFT library [26] based on an advanced version of the
LC algorithm, the QuickCD library [21], and more. For an extensive review of methods and
libraries see the survey [LM04].

Given two polytopes P and Q, detecting collision between them and computing their rel-
ative placement can be conveniently done in the configuration space, where their Minkowski
sum M = P ⊕(−Q) resides. These problems can be solved in many ways, and not all require
the explicit representation of the Minkowski sum M . However, having it available is attrac-
tive, especially when the polytopes are restricted to translations only, as the combinatorial
structure of the Minkowski sum M is invariant to translations of P or Q. The algorithms
described below are based on the following well known observations (see Chapter 1 for defi-
nitions):

P u ∩ Qw 6= ∅ ⇔ w − u ∈ M = P ⊕ (−Q) ,

π(P u, Qw) = min{‖t‖ | (w − u + t) ∈ M, t ∈ R
3} ,

δr(P
u, Qw) = inf{α | (w − u + α~r) /∈ M, α ∈ R} .

Given two polytopes P and Q in either (spherical) Gaussian map or Cgm representation
respectively, we reflect Q through the origin to obtain −Q, compute the Minkowski sum
M = P ⊕ (−Q), and retain it in the respective Gaussian-map representation G(M). Then,
each time P or Q or both translate by two vectors u and w in R3 respectively, we apply a
procedure that determines whether the query point s = w−u is inside, on the boundary of, or
outside M . In addition to an enumeration of one of the three conditions above, the procedure
returns a witness of the respective relative placement. Let r be a ray emanating from an
internal point c ∈ M and going through s. If the (spherical) Gaussian map representation
is used, the witness data is the vertex v = G(f) — a mapping of a facet f of M embedded
on the sphere and stabbed by the ray r. If the Cgm representation is used, the witness
data is a pair that consists of a vertex v = G(f) — a mapping of a facet f of M embedded
in a unit cube face, and the planar map P containing v. This information is used as a
hint in consecutive invocations. The internal point c could be the average of all vertices
of M computed once and retained along M , or just the midpoint of two vertices that have
supporting planes with opposite normals easily extracted from either map representation.
Once f is obtained, determining whether P u and Qw collide is trivial, according to the first
formula (of the three) above. The query point s is contained in the open half-space defined
by the supporting plane to f if and only if s is outside of M , this occurs if and only if P u

does not collide with Qw.

Figure 3.8: Simulation of motion.

The collision-detection procedure applies a local walk
on the respective Gaussian map faces. It starts with some
vertex v0, and then performs a loop moving from the cur-
rent vertex to a neighboring vertex, until it reaches the
final vertex. If the Cgm representation is used, the pro-
cedure may jump from a planar map associated with one
cube-face to a different one associated with an adjacent
cube-face. The first time the procedure is invoked, v0 is
chosen to be a vertex that lies on the central projection of

3.5. Minkowski Sum Complexity 59

the normal directed in the same direction as the ray r. In consecutive calls, v0 is chosen
to be the final vertex of the previous call exploiting spatial and temporal coherence. The
figure above is a snapshot of a simulation program that detects collision between a static
obstacle and a moving robot, and draws the obstacle and the trail of the robot; instructions
to obtain, install, and execute the program appear in the Appendix. The Minkowski sum is
recomputed only when the robot is rotated, which occurs every other frame. The program
has the distinctive feature of being able to identify the case where the robot grazes the ob-
stacle, but does not penetrate it, since it produces exact results. The computation takes
just a fraction of a second on a Pentium PC clocked at 1.7 GHz using either representation.
Similar procedures that compute the directional penetration-depth and minimum distance
are available as well.

3.5 Minkowski Sum Complexity

(a) (b) (c)

Figure 3.9: (a) The Minkowski sum (of two polytopes) the complexity of which is maximal, (b) the

Cgm of the Minkowski sum, and (c) the Cgm unfolded. Red lines are graphs of edges that originate

from one polytope and blue lines are graphs of edges that originate from the other.

In Chapter 4 we show that the exact maximum number of facets of Minkowski sums of
two polytopes is 4mn − 9m − 9n + 26, where m and n are the number of facets of the two
summands, respectively. This bound is tight [FHW07]. The example depicted in Figure 3.9
shows a Minkowski sum that reaches this maximum complexity. It is the sum of two identical
polytopes, each containing n faces (n = 11 in Figure 3.9), but one is rotated about the
vertical axis approximately3 90◦ relative to the other. The polytopes are specifically shaped
to ensure that the number of intersections between dual edges, which are the mappings of
the polytope edges, is maximal. A careful counting reveals that the number of vertices in the
dual representation excluding the artificial vertices reaches 4 ·11 ·11−9 ·11−9 ·11+26 = 312,
which is the number of facets of the Minkowski sum.

Not every pair of polytopes yields a Minkowski sum proportional to mn. As a matter
of fact, it can be as low as n in the extremely-degenerate case of two identical polytopes
variant under scaling. Even if no degeneracies exist, the complexity can be proportional to

3The results of all rotations are approximate, as we have not yet dealt with exact rotation. One of our
future goals is the handling of exact rotations.

60 Chapter 3. Minkowski Sum Construction

only m + n, as in the case of two geodesic spheres4 level l = 2 slightly rotated with respect
to each other, depicted in Figure 3.10. Naturally, an algorithm that accounts for all pairs
of vertices, one from each polytope, is rendered inferior compared to an output-sensitive
algorithm like ours in such cases, as we demonstrate in the next section.

(a) (b) (c)

Figure 3.10: (a) The Minkowski sum of two geodesic spheres level 2 slightly rotated with respect to

each other, (b) the Cgm of the Minkowski sum, and (c) the Cgm unfolded.

3.6 Experimental Results

(a) (b) (c)

Figure 3.11: (a) The Minkowski sum of two approximately orthogonal squashed dioctagonal pyramids,

(b) the Cgm, and (c) the Cgm unfolded.

As mentioned above, the Minkowski sum of two polytopes is the convex hull of the pair-
wise sum of the vertices of the two polytopes. We have implemented this straightforward
method using the Cgal convex hull 3 function, which uses the Polyhedron 3 data struc-
ture to represent the resulting polytope, and used it to verify the correctness of our two
methods. We compared the time it took to compute exact Minkowski sums using our two
methods, a third method implemented by Hachenberger based on Nef polyhedra embed-
ded on the sphere [HKM07], a fourth method implemented by Weibel [28], based on an
output-sensitive algorithm designed by Fukuda [Fuk04], and the naive convex-hull method.

4An icosahedron, every triangle of which is divided into 4l triangles using class I aperture 4 partition
method, whose vertices are elevated to the circumscribing sphere [SWK03].

3.6. Experimental Results 61

The Nef-based method is not specialized for Minkowski sums. It can compute the overlay
of two arbitrary Nef polyhedra embedded on the sphere, which can have open and closed
boundaries, facets with holes, and lower dimensional features. The overlay is computed by
two separate hemisphere-sweeps.

Fukuda’s algorithm relies on linear programming. Its complexity is O(δLP (3, δ)V), where
δ = δ1+δ2 is the sum of the maximal degrees of vertices, δ1 and δ2, in the two input polytopes
respectively, V is the number of vertices of the resulting Minkowski sum, and LP (d, m) is
the time required to solve a linear programming in d variables and m inequalities. Note
that Fukuda’s algorithm is more general, as it can be used to compute the Minkowski sum
of polytopes in an arbitrary dimension d, and as far as we know, it has not been optimized
specifically for d = 3.

Table 3.4: Complexities of primal and dual Minkowski-sum representations. DP — Dioctagonal Pyra-

mid, ODP — Dioctagonal Pyramid orthogonal to DP, PH — Pentagonal Hexecontahedron, TI —

Truncated Icosidodecahedron, GS4 — Geodesic Sphere level 4, RGS4 — Rotated Geodesic Sphere

level 4, El16 — Ellipsoid-like polyhedron made of 16 latitudes and 32 longitudes, OEl16 — Ellipsoid-like

polyhedron made of 16 latitudes and 32 longitudes orthogonal to El16.

Summand 1 Summand 2
Minkowski Sum

Primal SGM CGM
V E F V HE F V HE F

Icosahedron Icosahedron 12 30 20 21 62 12 72 192 36
DP ODP 131 261 132 141 540 131 242 832 186
PH TI 248 586 340 429 1712 429 514 1670 333
GS4 RGS4 1048 2582 1536 1564 5220 1048 1906 6288 1250
El16 OEl16 2260 4580 2322 2354 9224 2260 2826 10648 2510

Table 3.5: Time consumption (in seconds) of the Minkowski-sum computation. CH — the Convex

Hull method, SGM— the (spherical) Gaussian map based method, CGM— the cubical Gaussian-map

based method, NGM— the Nef based method, Fuk— Fukuda’s Linear-Programming based algorithm,
F1F2

F
— the ratio between the product of the number of input facets and the number of output facets.

Summand 1 Summand 2 SGM CGM NGM Fuk CH F1F2

F

Icosahedron Icosahedron 0.01 0.01 0.12 0.01 0.01 20.0
DP ODP 0.04 0.02 0.33 0.35 0.05 2.2
PH TI 0.13 0.03 0.84 1.55 0.20 10.9
GS4 RGS4 0.71 0.12 6.81 5.80 1.89 163.3
El16 OEl16 1.01 0.14 7.06 13.04 6.91 161.3

The results listed in Table 3.5, produced by experiments conducted on a Pentium PC
clocked at 1.7 GHz, show that our methods are much more efficient in all cases, and the
Cgm method in particular is more than fifty times faster than the convex-hull method in
one case. The number of models used as summands in the listed experiments is just a small
fraction of the total number of models in our collection, which contains hundreds of models
of polytopes; see Section A.2 for instructions how to download the corresponding files. The

62 Chapter 3. Minkowski Sum Construction

listed experiments are just a small sample of all the experiments we have conducted. The
last column of the table indicates the ratio F1F2

F
, where F1 and F2 are the number of facets

of the input polytopes respectively, and F is the number of facets of the Minkowski sum. As
this ratio increases, the relative performance of the output-sensitive algorithms compared to
the convex-hull method improves as expected. Figure 3.12 illustrates some of the resulting
Minkowski sums listed in Table 3.5.

The SGM, CGM, NGM, and CH methods are all based on Cgal. As the implementa-
tion of these methods and of Cgal is generic, it is possible to instantiate specific components,
such as the number type, the geometric kernel, and the segment-handling traits class with
the model of the respective concept that achieves the best result. The code of the programs
used to obtain the results listed in Table 3.5 are instantiated with the CGAL::Gmpq exact
rational number-type, the Simple cartesian geometric kernel, and the Lazy kernel kernel
adaptor, which performs lazy exact computations [PF06]. The computation is delayed until
a point where the approximation with interval arithmetic is not precise enough to perform
safe comparisons. In other words, these programs need only to compute to sufficient preci-
sion to evaluate predicates correctly, exploiting a significant relaxation of the naive concept
of numerical exactness.

We experimented with two different exact number types: One provided by Leda 4.4.1,
namely leda::rational, and another based on GMP 4.1.2, namely CGAL::Gmpq. The
former does not normalize the rational numbers automatically. Therefore, we had to initiate
normalization operations to contain their bit-length growth. In case of the Cgm method,
for example, we chose to do it right after the central projections of the facet-normals are
calculated, and before the chains of segments, which are the mapping of facet-edges, are
inserted into the planar maps. Our experience shows that indiscriminate normalization
considerably slows down the planar-map construction, and the choice of number type may
have a drastic impact on the performance of the code overall.

3.6. Experimental Results 63

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: (a) The Minkowski sum of two approximately orthogonal dioctagonal pyramids, (d)

the Minkowski sum of a Pentagonal Hexecontahedron and a Truncated Icosidodecahedron, (g) the

Minkowski sum of two approximately orthogonal ellipsoid-like polyhedra, (b,e,h) the Cgm of the re-

spective polytope, and (c,f,i) the Cgm unfolded.

64 Chapter 3. Minkowski Sum Construction

I was working on the proof

of one of my poems all the

morning, and took out a

comma. In the afternoon I

put it back again.

Oscar Wilde

4
Exact Complexity of Minkowski Sums

We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes
in R3. In particular, we prove that the maximum number of facets of the Minkowski sum of k
polytopes with m1, m2, . . . , mk facets respectively is bounded from above by

∑
1≤i<j≤k(2mi−

5)(2mj −5)+
∑

1≤i≤k mi +
(

k

2

)
. Given k positive integers m1, m2, . . . , mk, we describe how to

construct two polytopes with corresponding number of facets, such that the number of facets
of their Minkowski sum is exactly

∑
1≤i<j≤k(2mi − 5)(2mj − 5) +

∑
1≤i≤k mi +

(
k

2

)
. When

k = 2, for example, the expression above reduces to 4m1m2 − 9m1 − 9m2 + 26. Figure 4.1
illustrates some polytopes that when rotated properly and used as summand, the number of
facets of the resulting Minkowski sums is maximal.

Various methods to compute the Minkowski sum of two polyhedra in R3 have been
proposed; see Section 1.2 for details about these methods and about the combinatorial
complexity of the sum. Recall, that (i) a common approach for computing Minkowski sums

(a) (b) (c) (d)

Figure 4.1: Gaussian maps of summands of Minkowski sums with maximal number of facets. The

polytopes represented by the Gaussian maps (a), (b), (c), and (d) consist of 4, 5, 11, and 101 facets,

respectively.

65

66 Chapter 4. Exact Complexity of Minkowski Sums

of non-convex polyhedra decomposes each polyhedron into convex pieces, and computes
pairwise Minkowski sums of the convex pieces, and (ii) all the efficient methods are output
sensitive. Thus, the exact maximum complexity of the Minkowski sum structure has practical
implications.

One method to compute the Minkowski sum of two polytopes is to compute the convex
hull of the pairwise sum of the vertices of the two polytopes. While being simple and easy
to implement, the time complexity of this method is Ω(mn) regardless of the size of the
resulting sum, which can be as low as (m + n) (counting facets) for degenerate cases.1 In
Chapter 3 we describe several complete implementations of output-sensitive methods for
computing exact Minkowski sums (beyond the naive method mentioned above), including
two methods that we introduce. These methods exploit efficient innovative techniques in
the area of exact geometric computing to minimize the time it takes to ensure exact results.
However, even with the use of these techniques, the amortized time of a single arithmetic
operation is larger than the time it takes to carry out a single arithmetic operation on
native number types, such as floating point. Thus, the constant that scales the dominant
element in the expression of the time complexity of these algorithms increases, which makes
the question this chapter attempts to answer, “What is the exact maximum complexity of
Minkowski sums of polytopes in R3?”, even more relevant.

Gritzmann and Sturmfels [GS93] formulated an upper bound on the number of features
fd

i of any given dimension i of the Minkowski sum of many polytopes in d dimensions:

fd
i (P1 ⊕P2 ⊕ . . .⊕Pk) ≤ 2

(
j

i

) d−i−1∑
h=0

(
j−i−1

h

)
for i = 0, 1, . . . d− 1, where j denotes the number

of non-parallel edges of P1, P2, . . . , Pk. According to this expression, the number of facets f 3
2

of the Minkowski sum of two polytopes in R3 is bounded from above by j(j−1). Fukuda and
Weibel [FW07] obtained upper bounds on the number of edges and facets of the Minkowski
sum of two polytopes in R3 in terms of the number of vertices of the summands: f 3

2 (P1⊕P2) ≤
f 3

0 (P1)f
3
0 (P2) + f 3

0 (P1) + f 3
0 (P2)− 6. They also studied the properties of Minkowski sums of

perfectly centered polytopes and their polars, and provided a tight bound on the number of
vertices of the sum of polytopes in any given dimension.

The main result presented in this chapter concerning two polytopes follows.

Theorem 4.1. Let P1, P2, . . . , Pk be a set of k polytopes in R3, such that the number of facets
of Pi is mi for i = 1, 2, . . . , k. The number of facets of the Minkowski sum P1 ⊕P2 ⊕ . . .⊕Pk

cannot exceed
∑

1≤i<j≤k(2mi−5)(2mj−5)+
∑k

i=1
mi+

(
k

2

)
. This bound is tight. Namely, given

k integers m1, m2, . . . , mk, such that mi ≥ 4 for i = 1, 2, . . . , k, it is possible to construct k
polytopes in R3 with corresponding number of facets, such that the number of facets of their
Minkowski sum is exactly the expression above.

The rest of this chapter is organized as follows. The upper bound on the number of facets
of Minkowski sums for the special case of two polytopes in R3 is derived in Section 4.1. In
Section 4.2 we describe how to construct two polytopes, the number of facets of which
is given, such that the number of facets of their Minkowski sum is identical to the bound
derived in Section 4.1. The bounds for the general case of k polytopes is proved in Section 4.3.

1It can be as low as m(= n) in the extremely-degenerate case of two similar polytopes with parallel facets.

4.1. The Upper Bound for k = 2 67

Information about the polyhedra models and the interactive program that computes their
Minkowski sums and visualizes them, used to verify the results and generate the figures in
this chapter are provided in the Appendix.

4.1 The Upper Bound for k = 2

The overlay (see Section 2.4.2 for the exact definition) of the Gaussian maps (see Section 3.1
for the exact definition) of two polytopes P and Q respectively is the Gaussian map of the
Minkowski sum of P and Q; see Section 3.2.2 for a detailed explanation.

The number of facets of the Minkowski sum M of two polytopes P and Q with m and n
facets respectively is equal to the number of vertices of the Gaussian map G(M) of M . A
vertex in G(M) is either due to a vertex in the Gaussian map of P , or due to a vertex in
the Gaussian map of Q, or due to an intersection of exactly two edges, one of the Gaussian
map of P and the other of the Gaussian map of Q. Thus, the number of facets of M cannot
exceed m+n+g(M), where g(M) is the number of intersections of edges of G(P) with edges
of G(Q) in G(M).2

Observation 4.2. The maximum exact number of edges in a Gaussian map G(P) of a
polytope P with m facets is 3m − 6. The maximum exact number of faces is 2m − 4. Both
maxima occur at the same Gaussian maps.

The above can be obtained by a simple application of Euler’s formula for planar graphs
to the Gaussian map G(P). It can be used to trivially bound the exact maximum number of
facets of the Minkowski sum of two polytopes defined as f(m, n) = max{f(P ⊕Q) | f(P) =
m, f(Q) = n}, where f(P) is the number of facets of a polytope P . First, we can use
the bound on the number of edges to obtain: f(m, n) ≤ m + n + (3m − 6) · (3n − 6) =
9mn − 17m − 17n + 36. Better yet, we can plug the bound on the number of dual faces,
which is the number of primal vertices, in the expression introduced by Fukuda and Weibel,
see above, to obtain: f(m, n) ≤ (2m−4)·(2n−4)+(2m−4)+(2n−4)−6 = 4mn−6m−6n+2.
Still, we can improve the bound even further, but first we need to bound the number of faces
in G(M).

Lemma 4.3. Let G1 and G2 be two Gaussian maps of convex polytopes, and let G be their
overlay. Let f1, f2, and f denote the number of faces of G1, G2, and G, respectively. Then,
f ≤ f1 · f2.

Each face in the overlay is an intersection of a face of each map. Since these faces are
spherically convex (and smaller than hemispheres), the intersection is also spherically convex
(and thus connected). This lemma is similar to the one where convex planar maps replace
the Gaussian maps. Nevertheless, we provide a formal proof directly applied to the spherical
case.

Proof. We label each face in G by a pair of indices of the originating overlaid faces in G1

and G2 respectively, and argue that no two faces in G can have the same label. Assume to

2The number of facets is strictly equal to the given expression, only when no degeneracies occur.

68 Chapter 4. Exact Complexity of Minkowski Sums

the contrary that there exist two faces ha and hb in G that have the same label, say 〈i, j〉.
That is, the faces hi

1 in G1 and hj
2 in G2 induce the two distinct faces ha and hb. Pick two

points a ∈ ha and b ∈ hb. There must be a geodesic segment between a and b that is entirely
contained in hi

1 and also in hj
2, as both maps are spherically convex. This implies that none

of the edges in G1 and G2 split this geodesic segment, contradicting the fact that they reside
in two different faces of G.

We are ready to tackle the upper bound of Theorem 4.1 for the special case k = 2, that
is, prove that the number of facets of the Minkowski sum P ⊕ Q of two polytopes P and Q
with m and n facets respectively cannot exceed 4mn − 9m − 9n + 26; see Page 66.

Proof. Let v1, e1, f1 and v2, e2, f2 denote the number of vertices, edges, and faces of G(P) and
G(Q), respectively. The number of vertices, edges, and faces of G(M) is denoted as v, e, and
f , respectively. Assume that P and Q are two polytopes, such that the number of facets of
their Minkowski sum is maximal. Recall that the number of facets of a polytope is equal to
the number of vertices of its Gaussian map. Thus, we have v1 = m, v2 = n, and v = f(m, n).
First, we need to show that vertices of G(P), vertices of G(Q), and intersections between
edges of G(P) and edges of G(Q) do not coincide. Assume to the contrary that some do.
Then, one of the polytopes P or Q or both can be slightly rotated to escape this degeneracy,
but this would increase the number of vertices v = f(m, n), contradicting the fact that
f(m, n) is maximal. Therefore, the number of vertices v is exactly equal to v1 + v2 + vx,
where vx denotes the number of intersections of edges of G(P) and edges of G(Q) in G(M).
Counting the degrees of all vertices in G(M) implies that 2e1 +2e2 +4vx = 2e. Using Euler’s
formula, we get e1 + e2 + 2vx = f + v1 + v2 + vx − 2. Applying Lemma 4.3, we can bound
vx from above vx ≤ f1f2 + v1 + v2 − 2 − e1 − e2.

Observation 4.2 sets an upper bound on the number of edges e1. Thus, e1 can be expressed
in terms of ℓ1, a non-negative integer, as follows: e1 = 3v1−6−ℓ1. Applying Euler’s formula,
the number of facets can be expressed in terms of ℓ1 as well: f1 = e1 + 2− v1 = 2v1 − 4− ℓ1.
Similarly, we have e2 = 3v2 − 6 − ℓ2 and f2 = 2v2 − 4 − ℓ2 for some non-negative integer ℓ2.

vx ≤ (2v1 − 4 − ℓ1)(2v2 − 4 − ℓ2) + v1 + v2 − 2 − (3v1 − 6 − ℓ1) − (3v2 − 6 − ℓ2)

≤ 4v1v2 − 10v1 − 10v2 + 26 + h(ℓ1, ℓ2) , (4.1)

where h(ℓ1, ℓ2) = ℓ1ℓ2 + 5ℓ1 + 5ℓ2 − 2v1ℓ2 − 2v2ℓ1.

G(P) consists of a single connected component. Therefore, the number of edges e1 must
be at least v1 − 1. This is used to obtain an upper bound on ℓ1 as follows: v1 − 1 ≤ e1 =
3v1 − 6 − ℓ1, which implies ℓ1 ≤ 2v1 − 5, and similarly ℓ2 ≤ 2v2 − 5. Thus, we have:

h(ℓ1, ℓ2) = ℓ1ℓ2 + 5ℓ1 + 5ℓ2 − 2v1ℓ2 − 2v2ℓ1

= ℓ1(
ℓ2

2
− (2v2 − 5)) + ℓ2(

ℓ1

2
− (2v1 − 5)) ≤ 0 .

From Equation (4.1) we get that vx ≤ 4v1v2 − 10v1 − 10v2 + 26, and since f(m, n) =
v1 + v2 + vx, we conclude that f(m, n) ≤ 4v1v2 − 9v1 − 9v2 + 26. The maximum number of
facets can be reached when h(ℓ1, ℓ2) vanishes. This occurs when ℓ1 = ℓ2 = 0. That is, when

4.2. The Lower Bound for k = 2 69

the number of edges of G(P) and G(Q) is maximal. This concludes the proof of the upper
bound of Theorem 4.1 for the special case k = 2.

Corollary 4.4. The maximum number of facets can be attained only when the number of
edges of each of P and Q is maximal for the given number of facets.

4.2 The Lower Bound for k = 2

Given two integers m ≥ 4 and n ≥ 4, we describe how to construct two polytopes in R3

with m and n facets respectively, such that the number of facets of their Minkowski sum is
exactly 4mn − 9m − 9n + 26, establishing the lower bound of Theorem 4.1 for the special
case k = 2. More precisely, given i, we describe how to construct a skeleton of a polytope
Pi with i facets, 3i− 6 edges, and 2i− 4 vertices, and prove that the number of facets of the
Minkowski sum of Pm and Pn, properly adjusted and oriented, is exactly 4mn−9m−9n+26.
As in the previous sections we mainly operate in the dual space of Gaussian maps. However,
the construction of the desired Gaussian maps described below is an involved task, since not
every arrangement of arcs of great circles embedded on the unit sphere, the faces of which
are convex and the edges of which are strictly less than π long constitutes a valid Gaussian
map.

uv

w

Y

We defer the treatment of the special case i = 4 to the sequel, and
start with the general case i ≥ 5. The figure to the right depicts the
Gaussian map of P5. We use the subscript letter i in all notations
Xi to identify some object X with the polytope Pi. For example,
we give the Gaussian map G(Pi) of Pi a shorter notation Gi, but in
this paragraph we omit the subscript letter in all notations for clarity.
First, we examine the structure of the Gaussian map G of P to better
understand the structure of P . Let V and E denote the set of vertices
and edges of G, respectively. Recall that the number of vertices, edges, and faces of G is i,
3i − 6, and 2i − 4, respectively. The unit sphere, where G is embedded on, is divided by
the plane y = 0 into two hemispheres H− ⊂ {(x, y, z) | y ≤ 0} and H+ ⊂ {(x, y, z) | y > 0}.
Three vertices, namely u, v, and w, lie in the plane x = 0. u is located very close to the
pole (0, 0,−1). It is the only vertex (out of the i vertices) that lies in H+. v is located
exactly at the opposite pole (0, 0, 1), and w lies in H− very close to v. None of the remaining
i − 3 vertices in V \ {u, v, w} lie in the plane x = 0; they are all concentrated near the pole
(0, 0,−1) and lie in H−. The edge uv, which is contained in the plane x = 0, is the only
edge whose interior is entirely contained in H+. Every vertex in V \ {u, v, w} is connected
by two edges to v and w, respectively. These edges together with the edge uw, contained in
the plane x = 0, form a set of 2i− 5 edges, denoted as E ′ = E \ {uv}. The length of each of
the edges in E ′ is almost π, due to the near proximity of u, v, and w to the respective poles.

It is easy to verify that if the polytope P is not degenerate, namely, its affine hull is
3-space, then any edge of G(P) is strictly less than π long. Bearing this in mind, the main
difficulty in arriving at a tight-bound construction is forcing sufficient edges of the set E ′ of
the Gaussian map of one polytope to intersect sufficient edges of the set E ′ of the Gaussian
map of the other polytope. The remaining pair of edges, one from each Gaussian map,

70 Chapter 4. Exact Complexity of Minkowski Sums

contributes a single intersection to the total count. As shown below, this is the best one can
do in terms of intersections.

Figure 4.2: The over-

lay of G5 and G′
5,

where G′
5 is G5 rotated

90◦ about the Y axis.

The number of facets of the Minkowski sum of Pm and Pn is max-
imal, when the number of vertices in the overlay of Gm and Gn is
maximal. This occurs, for example, when one of them is rotated 90◦

about the Y axis, as depicted on the left for the case of m = n = 5.
In this configuration, all the 2m − 5 edges in E ′

m intersect all the
2n − 5 edges in E ′

n. All intersections occur in H−. In addition, the
edge uvm intersects the edge uvn. The intersection point lies in H+

exactly at the pole (0, 1, 0). Counting all these intersections results
with (2m − 5)(2n − 5) + 1 = 4mn − 10m − 10n + 26. Adding the
original vertices of G(Pm) and G(Pn), yields the desired result.

Next, we explain how Pi, i ≥ 5 is constructed to match the de-
scription of Gi above. The construction of Pi is guided by a cylinder.
All the vertices of Pi lie on the boundary of a cylinder the axis of

which coincides with the Z axis. We start with the case i = 5, and show how to generalize
the construction for i > 5. The special case i = 4 is explained last.

4.2.1 Constructing P5

Figure 4.3 shows various views of P5. Recall that P5 has 6 vertices, denoted as v0, v1, . . . , v5,
and 9 edges. We omit the subscript digit 5 in all the notations through the rest of this
subsection for clarity. Let v1v2 . . . vn denote the face defined by the sequence of vertices
v1, v2, . . . , vn on the face boundary. The projection of all vertices onto the plane z = 0 lie
on the unit circle. As a matter of fact, the entire face f v = v0v1v2v3 lies in the plane z = 0.
It is mapped under G to the vertex v = G(f v). Similarly, the faces fu = v5v4v2v1 and
fw = v3v4v5v0 are mapped under G to the vertices u = G(fu) and w = G(fw), respectively.
Consider the projection of the vertices onto the plane z = 0 best seen in Figure 4.3(b).
Once the projection v′

5 of v5 is determined as explained below, v0 is placed exactly on the
bisector of ∠v′

5ov1. The vertices v4, v3, and v2 are the reflection of the vertices v5, v0, and
v1 respectively through the plane x = 0.

Two parameters govern the exact placement of v5 (and v4). One is the size of the exterior-
dihedral angle at the edge v0v3, denoted as α, that is, the length of the geodesic-segment
that is the mapping of the edge vw of G. This angle is best seen in Figure 4.3(c). Notice,
that the Z axis is scaled up for clarity, and the angle in practice is much smaller. The other
parameter is the size of the angle β = ∠v′

4ov
′
5, where v′

4 and v′
5 are the projections of v4 and

v5 respectively onto the plane z = 0. This is best seen in Figures 4.3(b) and (e). Given m
and n, these angles for each of Pm and Pn depend on both m and n. For large values of m
and n the values of α and β should be small. For example, setting α = β = 10◦ is sufficient
for the case m = n = 5 depicted in Figure 4.2. The actual setting is discussed below after
the description of the general case i > 5.

4.2. The Lower Bound for k = 2 71

v0

v1v2

v3

v4 v5

X

Y

Z

o o

α

X

Y

Z

(a) (b) (c)

o v0
v1v2

v3

v4 v5

X
Y

Z

v3

v2v1

v0

v5 v4

oX

Y
Z

(d) (e) (f)

Figure 4.3: Different views of P5. (a) and (d) are perspective views, while (b), (c), (e), and (f) are

orthogonal views. Notice that the Z axis is scaled up for clarity.

4.2.2 Constructing Pi, i ≥ 5

o

vj0

vj1−1

vj1vj2

vj3

vj4 vj5

X

Y

Z

We construct a polytope, such that two facets are visible
when looked at from z = ∞, and i−2 facets are visible when
looked at from z = −∞. First, we place the projection of
all vertices onto the plane z = 0 along the unit circle, and
denote the projection of a vertex v as v′. The projection of
the vertices vj0 , vj1, vj2, vj3 , vj4 , and vj5, where j0 = 0, j1 =
⌊(i−2)/2⌋, j2 = ⌊(i−2)/2⌋+1, j3 = i−2, j4 = ⌊(3i−7)/2⌋,
and j5 = ⌊(3i − 7)/2⌋ + 1, are placed at the same locations
as those of the corresponding vertices of P5, as depicted on

the right. The projection of the remaining vertices are placed on the arcs v̂′
j5

, vj0 , v̂j0 , vj1,

v̂j2, vj3 , and v̂j3, v
′
j4

in cyclic order.

The angle γ = ∠vj0ovj1−1 is another parameter that governs the final configuration of
Pi. Once the placement of the projection of vj1−1 is determined, the projections of the
vertices vj0+1, vj0+2, . . . , vj1−2 are arbitrarily spread along the open arc ̂vj0, vj1−1. The vertex

placement along the arc v̂′
j5

, vj0 must be a symmetric reflection of the vertex placement along

the arc v̂j0, vj1. This guarantees that all the quadrilateral facets are planar. Similarly, the

72 Chapter 4. Exact Complexity of Minkowski Sums

o

v0

v1

v2

v3

v4v5

v6

v7

v8

v9

v10 v11 v12
v13

v14

v15

X

Y

Z

o

v0

v1

v2

v3

v4v5

v6

v7

v8

v9

v10

v11 v12 v13 v14
v15

v16

v17

X

Y

Z

(a) (b)

Figure 4.4: (a) An orthogonal view of P10. (b) An orthogonal view of P11.

vertex placement along the arc v̂j2, vj3 is a symmetric reflection of the vertex placement along

the arc v̂j3, v
′
j4

. For large values of m and n the angle γ should be small as explained below,
implying that the projection of the vertices are concentrated near vj0 and vj3, (which lie on
the bisectors of ∠vj1ov

′
j5

and ∠vj2ov
′
j4

, respectively). Figure 4.4 depicts the cases i = 10, and
i = 11. In these examples we force a regular placement, which is sufficient in many cases.
As in the case of i = 5, the face f v

i = v0, v1, . . . , vi−2, represented by the vertex vi of Gi,
lies in the plane z = 0. The exterior-dihedral angle α at the edge vj0vj3 is made small, so
that the vertex wi of Gi representing the adjacent face fw

i = vj3 , vj3+1, . . . , v2i−5, v0, is kept
in close proximity to vi.

Given m and n, three parameters per polytope listed below govern the final configurations
of Pm and Pn.

1. the exterior-dihedral angle α at the edge vj0vj3 ,
2. the angle β = ∠v′

j4
ov′

j5
, and

3. the angle γ = ∠vj0ovj1−1.

The settings of these angles must satisfy certain conditions, which in turn enable all the
necessary intersections of edges in the Gaussian map of the Minkowski sum. We denote the
face vj5+1vj5vj1vj1−1 adjacent to fu by fx. The vertex x = G(fx) is the nearest vertex to u.
The y-coordinate of the vertex wn must be greater than the y-coordinate of the edge xvm

at z = 0 in Pm’s coordinate system. Similarly, the y-coordinate of the vertex wm must be
greater than the y-coordinate of the edge xvn at z = 0 in Pn’s coordinate system.3 This is
best seen in Figure 4.5(c). The values of the y-coordinates of wn and wm are simply sin(αn)
and sin(αm), respectively. The value of the y-coordinate of the edge xvm at z = 0 however
depends on all the three parameters αm, βm, and γm. Similarly, the y-coordinate of the edge
xvn at z = 0 in the respective coordinate system depends on αn, βn, and γn. Instead of
deriving an expression that directly evaluates these y-coordinates, we suggest an iterative
procedure that decreases the angles at every iteration until the conditions above are met,
and argue that this procedure eventually terminates, because at the limit, we are back at
the case where m = n = 5, for which valid settings exist.

3The rotation of, say Pn, is performed about the Y axis. Thus, it has no bearing on y-coordinates.

4.2. The Lower Bound for k = 2 73

(a) (b) (c) (d)

Figure 4.5: (a) The Minkowski sum M11,11 = P11 ⊕ P ′
11, where P ′

11 is P11 rotated 90◦ about the Y

axis. (b) The Gaussian map of M11,11 looked at from z = ∞. (c) A scaled up view of the Gaussian

map of M11,11 looked at from z = ∞. (d) The Gaussian map of M11,11 looked at from y = −∞.

4.2.3 Constructing P4

Recall that P4 has 4 facets, 6 edges, and 4 vertices. Therefore, it cannot
be constructed according to the prescription provided in the previous
section. Applying the same principles though, we place two vertices
of G4 near the pole (0, 0,−1), and two vertices near the opposite pole
(0, 0, 1). One edge, which connects a vertex near one pole to a ver-
tex near the other, lightly shaded in the figure on the left, is entirely
contained in H+. The other three edges that connect vertices near

opposite poles mostly lie in H−. They form a set of 2i − 5 = 3 edges, denoted as E ′
4. The

length of every edge in E ′
4 is almost π. In contrast to the case i ≥ 5, two out of the three

edges in E ′
4 cross the plane y = 0. Namely, small sections of them lie in H+. As in the case

i > 4, one edge, the lightly shaded one, is entirely contained in H+.

o v0v1

v2 v3

X

Y

Z

We construct P4, such that the two facets f 1 = v0v1v2 and
f 2 = v0v2v3 are visible when looked at from z = ∞, and when
looked at from z = −∞, the remaining two facets f 3 = v3v1v0

and f 4 = v3v2v1 are visible. As depicted on the right, the
projection of all four vertices onto the plane z = 0 lie on the
unit circle. The vertices v0 and v2 lie on the plane z = 0, and
the vertices v1 and v3 lie in a parallel plane. The distance
between the planes is small to form small exterior-dihedral
angles at the edges v0v2 and v1v3.

As in the general case, two parameters govern the exact placement of v1, v2, and v3. One
is the size of the exterior-dihedral angle at the edge v0v2. The other parameter is the size of
the angle ∠v2ov

′
3, where v′

3 is the projection of v3 onto the plane z = 0. The sizes of these
angles are determined by the same rationale as in the general case.

This concludes the proof of the lower bound of Theorem 4.1 for the special case k = 2.

74 Chapter 4. Exact Complexity of Minkowski Sums

4.3 Maximum Complexity of Minkowski Sums of Many

Polytopes

Let P1, P2, . . . , Pk be a set of k polytopes in R3, such that the number of facets of Pi is mi

for i = 1, 2, . . . , k. In this section we present a tight bound on the number of facets of the
Minkowski sum M = P1 ⊕ P2 ⊕ . . . ⊕ Pk generalizing the arguments presented above for
k = 2.

4.3.1 The Lower Bound

Figure 4.6: The

overlay of the Gaus-

sian maps of three

tetrahedra rotated

about the Y axis

0◦, 60◦, and 120◦,

respectively.

Given k positive integers m1, m2, . . . , mk, such that mi ≥ 4, we de-
scribe how to construct k polytopes in R3 with corresponding number
of facets, such that the number of facets of their Minkowski sum is
exactly

∑
1≤i<j≤k(2mi − 5)(2mj − 5) +

(
k

2

)
+

∑k

i=1
mi. More precisely,

given i, we describe how to construct a skeleton of a polytope Pi with
i facets, 3i−6 edges, and 2i−4 vertices, and prove that the number of
facets of the Minkowski sum M = P1⊕P2⊕ . . .⊕Pk of the k polytopes
properly adjusted and oriented is exactly the expression above. We use
the same construction described in Section 4.2.

The number of facets in the Minkowski sum of Pi, i = 1, 2, . . . , k
is maximal, when the number of vertices in the overlay of Gi, i =
1, 2, . . . , k is maximal. This occurs, for example, when Gi is rotated
180◦(i − 1)/k about the Y axis for i = 1, 2, . . . , k, as depicted on the
left for the case of m1 = m2 = m3 = 4. (Recall, that E ′

i refers to
the set of edges that span the lowest hemispheres, and its cardinality
is smaller than cardinality of E by one.) In this configuration, all the

2mi −5 edges in E ′
i intersect all the 2mj −5 edges in E ′

j , for 1 ≤ i < j ≤ k. All intersections
occur in H−. In addition, the edge uvmi

intersects the edge uvmj
for 1 ≤ i < j ≤ k. These

intersection points lie in H+ near the pole (0, 1, 0). Counting all these intersections results
with

∑
1≤i<j≤k(2mi−5)(2mj −5)+

(
k

2

)
. Adding the original vertices of G(Pi), i = 1, 2, . . . , k,

yields the bound asserted in Theorem 4.1.

4.3.2 The Upper Bound

We can apply the special case k = 2 of Theorem 4.1 to obtain

f(m1, m2, . . . , mk) ≤ f(m1, f(m2, m3, . . . , mk))

≤ 4m1f(m2, m3, . . . , mk) − 9m1 − 9f(m2, m3, . . . , mk) + 26

≤ 4k

k∏

i=1

mi + . . .

However, we can apply a technique similar to the one used in Section 4.1 and improve this
upper bound, but first we must extend Lemma 4.3.

4.3. Maximum Complexity of Minkowski Sums of Many Polytopes 75

Lemma 4.5. Let G1, G2, . . . , Gk be a set of k Gaussian maps of convex polytopes, and let
G be their overlay. Let fi denote the number of faces of Gi, and let f denote the number of
faces of G. Then, f ≤

∑
1≤i<j≤k fifj − (k − 2)

∑
1≤i≤k fi + (k − 1)(k − 2).

Proof. Let us choose two antipodal points on the sphere S2, such that no arc of the overlay
is aligned with them. In particular, the points are in the interior of two distinct faces. We
consider these two points to be the north pole and south pole of the sphere, and define the
direction west to be the clockwise direction when looking from the north pole toward the
south pole. We define a western-most corner to be a pair of a face and one of its vertices,
which is to the west of all of its other vertices. Apart from the two faces, which contain the
poles, any face has a unique western-most corner, since no edge is aligned with the poles,
and all faces of any Gaussian map are spherically convex. So for any overlay with f faces,
there are f − 2 such western-most corners.

The maximal number of faces is attained when the overlay G is non-degenerate. Thus, a
vertex of G is either the intersection of two edges of some distinct Gi and Gj, or a vertex of
some Gi. Therefore, a western-most corner for a face of G is either a western-most corner for
the overlay of some Gi and Gj , or a western-most corner for some Gi, in which case it also
is a western-most corner for any overlay involving Gi. The number of western-most corners
in the Gaussian map Gi is fi − 2, and the maximal number of western-most corners in the
overlay of some Gi and Gj is fifj − 2.

We can therefore write:

f ≤
∑

1≤i<j≤k

(fifj − 2) − (k − 2)
k∑

i=1

(fi − 2) + 2.

This corresponds to summing the western-most corners appearing in the overlay of all pairs
of Gaussian maps, and subtracting (k − 2) times the western-most corners appearing in all
original Gaussian maps, since each of them appeared (k − 1) times in the first sum. Finally,
we have:

∑

1≤i<j≤k

(fifj − 2) − (k − 2)

k∑

i=1

(fi − 2) + 2 =
∑

1≤i<j≤k

fifj − (k − 2)

k∑

i=1

fi + (k − 1)(k − 2) .

Let P1, P2, . . . , Pk be k polytopes in R3 with m1, m2, . . . , mk facets, respectively. Let
G(Pi) denote the Gaussian map of Pi, and let vi, ei, and fi denote the number of vertices,
edges, and faces of G(Pi), respectively. Let vx denote the number of intersections of edges
of G(Pi) and edges of G(Pj), i 6= j in G(M). Applying the same technique as in Section 4.1,

that is, counting the total degrees of vertices in G(M) implies that
∑k

i=1
ei +2vx = e. Using

Euler’s formula, we get
∑k

i=1
ei + 2vx = f + v − 2. Applying Lemma 4.5 and respecting

v =
∑

1≤i≤k vi + vx, we can bound vx from above:

vx ≤
∑

1≤i<j≤k

fifj − (k − 2)
k∑

i=1

fi + (k − 1)(k − 2) +
k∑

i=1

(vi − ei) − 2 . (4.2)

76 Chapter 4. Exact Complexity of Minkowski Sums

According to Corollary 4.4 the maximum number of facets of the Minkowski sum of two
polytopes is attained when the number of edges of each summand is maximal. We need to
establish a similar property for the general case. Generalizing the derivation procedure in
Section 4.1, we introduce k non-negative integers ℓi, i = 1, 2, . . . , k, such that ei = 3vi−6−ℓi

and fi = 2vi − 4 − ℓi. Substituting ei in (4.2) we get:

vx ≤
∑

1≤i<j≤k

fifj − (k − 2)
k∑

i=1

fi + (k − 1)(k − 2) +
k∑

i=1

(vi − 3vi + 6 + ℓi) − 2

≤
∑

1≤i<j≤k

fifj − (k − 2)
k∑

i=1

fi −
k∑

i=1

(2vi − 5) +
k∑

i=1

ℓi + k2 − 2k . (4.3)

Substituting fi in (4.3) we get:

vx ≤
∑

1≤i<j≤k

(2vi − 4 − ℓi)(2vj − 4 − ℓj) − (k − 2)

k∑

i=1

(2vi − 4 − ℓi) −
k∑

i=1

(2vi − 5 − ℓi) + k2 − 2k

=
∑

1≤i<j≤k

(2vi − 5)(2vj − 5) +

(
k

2

)
+ h(ℓ1, ℓ2, . . . , ℓk) ,

where

h(ℓ1, ℓ2, . . . , ℓk) =
∑

1≤i<j≤k

(ℓiℓj − ℓj(2vi − 5) − ℓi(2vj − 5))

=

k∑

i=1

ℓi(
∑

j 6=i

(ℓj/2 − (2vj − 5))) .

Connectivity of G(Pi) implies that ℓi ≤ 2vi−5, which in turn implies that h(ℓ1, ℓ2, . . . , ℓk) ≤
0. Thus, we have:

vx ≤
∑

1≤i<j≤k

(2vi − 5)(2vj − 5) +

(
k

2

)
. (4.4)

We conclude that the exact maximum number of facets of the Minkowski sum of k
polytopes cannot exceed

∑
1≤i<j≤k(2mi−5)(2mj−5)+

∑
1≤i≤k mi+

(
k

2

)
, which completes the

proof of Theorem 4.1. For example, the exact maximum number of facets of the Minkowski
sum of k tetrahedra is 5k2 − k. For k = 2 the expression evaluates to 18.

Divide each difficulty into

as many parts as is feasible

and necessary to resolve it.

Rene Descartes

5
Assembly Planning

Assembly partitioning with an infinite translation is the application of an infinite translation
to partition an assembled product into two complementing subsets of parts, referred to as
subassemblies, each treated as a rigid body. We present an exact implementation of an
efficient algorithm based on the general framework described in [HLW00, WL94] to obtain
such a motion and subassemblies given an assembly of polyhedra in R3. As usual, we do not
assume general position. Namely, we handle degenerate input, and produce exact results. As
often occurs, motions that partition a given assembly or subassembly might be isolated in the
infinite space of motions. Any perturbation of the input or of intermediate results, caused
by, for example, imprecision, might result with dismissal of valid partitioning-motions. In
the extreme case, there is only a finite number of valid partitioning motions, as occurs in the
assembly shown in Figure 5.1, no motion may be found, even though such exists. Proper
handling requires significant enhancements applied to the original algorithmic framework.
The implementation is based on software components introduced in Chapters 2 and 3. They

(a) (b) (c) (d)

Figure 5.1: (a) The Split Star assembly, and (b),(c), and (d) the Split Star six parts divided into three

pairs of symmetric parts. The six parts are named according to their color R(ed), G(reen), B(lue),

P (urple), Y (ellow), and T (urquoise).

77

78 Chapter 5. Assembly Planning

paved the way to a complete, efficient, and concise implementation.

5.1 Introduction

Assembly planning is the problem of finding a sequence of motions that transform the ini-
tially separated parts of an assembly to form the assembled product. The reverse order of
sequenced motions separates an assembled product to its parts. Thus, for rigid parts, assem-
bly planning and disassembly planning refer to the same problem, and used interchangeably.
In this chapter we concentrate on the case where the assembly consists of polyhedra in R3

and the motions are infinite translations.

The motion space is the space of possible motions that assembly parts may undergo. For
each motion in a motion space, a subset of parts of a given assembly may collide with a
different subassembly, when transformed as a rigid body according to the motion. Pairs of
subassemblies that collide constitute constraints. The motion space approach dictates the
precomputation of a decomposition of a motion space into regions, such that the constraints
among the parts in the assembly are the same for all the motions in the same region. All
constraints over a region are represented by a graph, called the directional blocking graph
(DBG) [WL94]. The collection of all regions in a motion space together with their associated
DBGs, collectively referred to as the nondirectional blocking graph (NDBG), can be used to
obtain assembly (or disassembly) sequences.

The general framework and some of the techniques presented here have already been
described in a series of papers and reports published in the past mainly during the late 90’s.
Halperin, Latombe, and Wilson made the connection between previously presented tech-
niques that had used the motion space approach, and introduced a unified general frame-
work [HLW00] at the end of the previous millennium. Only few publications related to this
topic appeared ever since, to the best of our knowledge, which creates a long gap in the time
line of the respective research. We certainly hope that the tools exposed in this chapter will
help revive the research on algorithmic assembly planing, a research subject of considerable
importance. Moreover, we believe that the machinery presented here, together with other
recent advances in the practice of computational-geometry algorithms, can more generally
support the development of new and improved techniques in algorithmic automation [2].

Solution to the assembly planning problem enables better feedback to designers. It pro-
vides a design team with additional tools to asses a design, prior to the construction of
physical mock-ups, and helps creating products that are more cost-effective to manufacture
and maintain. This is emphasized in light of the strategy to “plan anywhere, build any-
where” many Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)
companies are trying to adopt. Assembly sequences are also useful for selecting assembly
tools and equipment, and for laying out manufacturing facilities.

We restrict ourselves to two-handed partitioning steps, meaning that we partition the
given assembly into two complementing subsets each treated as a rigid body. Even for two-
handed partitioning, if we allow arbitrary translational motions (and not restrict ourselves
to infinite translations) the problem is NP-hard [KK95]. The more general problem of
assembly sequencing, namely planning a total ordering of assembly operations that merge

5.1. Introduction 79

the individual parts into the assembled product, is PSPACE-hard, even when each part is a
polygon with a constant number of vertices [Nat88].

Notice that the problem that we address in this chapter, namely partitioning with infinite
translations, is technically considerably more complex than partitioning with infinitesimal
motions. Although the latter may sound more general, as it handles infinitesimal transla-
tions and rotations, it is far simpler to implement, since it deals only with constraints that
can be described linearly. Thus, the problem can be reduced to solving linear programs.
Indeed, there are several implementations for partitioning with infinitesimal motions (see,
e.g., [GHH+98, SS94]), but none that we are aware of dealing robustly with infinite trans-
lations. The shortcoming of using infinitesimal motions only is that suggested disassembly
moves may not be extendible to practical finite-length separation motions.

Infinite-translation partitioning was not fully robustly implemented until recently, in spite
of being more useful than infinitesimal partitioning, most probably due to the hardship of
accurately constructing the underlying geometric primitives. What enables the solution that
we present here, is the significant headway in the development of computational-geometry
software over the past decade, the availability of stable code in the form of the Computa-
tional Geometry Algorithms Library (Cgal) in general and code for Minkowski sums and
arrangements in particular [WFZH07b].

The implementation presented in this chapter is based on the Arrangement on surface 2

package of Cgal; see Chapter 2 for more details. The implementation uses in particular
arrangements of geodesic arcs embedded on the sphere; see Section 2.6. The ability to ro-
bustly construct such arrangements, and carry out exact operations on them using only
(exact) rational arithmetic is a key property that enables an efficient implementation. The
implementation exploits supported operations, and requires additional operations, e.g., cen-
tral projection of polyhedra, which we implemented. We plan to make these new components
available as part of a future public release of Cgal as well.

5.1.1 Split Star Puzzle

We use the assembly depicted in Figure 5.1 as a running example throughout the chapter.
The name “Split Star” was given to this shape by Stewart Coffin in one of his Puzzle Craft
booklet editions back in 1985. He uses the term puzzle to refer to any sort of geometric
recreation having pieces that come apart and fit back together. We use it as an assembly.
He describes how to produce the actual pieces out of wood [Cof06], and suggests that they are
made very accurately. He observes that finding the solution requires dexterity and patience,
when the pieces are accurately made with a tight fit. Even though the assembly seems
relatively simple, this should come as little surprise, since the first partitioning motion is
one out of only eight possible translations of four symmetric pairs of motions in opposite
directions associated with two complementing subassemblies of three parts each. Evidently,
any automatic process that introduces even the slightest error along the way, will most likely
fail to compute the correct first motion in the sequence, and falsely claim that the assembly
is interlocked.

80 Chapter 5. Assembly Planning

The Split Star assembly has the assembled shape of the
first stellation of the rhombic dodecahedron [Luk57], illus-
trated atop the right pedestal in M. C. Escher’s Waterfall
woodcut [Boo82]. Its orthogonal projection along one of
its fourfold axes of symmetry is a square, while the Star
of David is obtained when it is projected along one of its
threefold axes of symmetry, as seen on the left; for more de-
tails see [Cof06]. The assembly is a space-filling solid when
assembled. It consists of six identical concave parts. Each

part can be decomposed into eight identical tetrahedra yielding 48 tetrahedra in total. As
manufacturing the pieces requires extreme precision, it is suggested to produce the 48 iden-
tical pieces and glue them as necessary. Each part can also be decomposed into three convex
polytopes — two square pyramids and one octahedron, yielding 18 polytopes in total. The
partitioning described in this chapter requires the decomposition of the parts into convex
pieces. The choice of decomposition may have a drastic impact on the time consumption of
the entire process, as observed in a different study in R2 [AFH02], and shown by experiments
in Section 5.5.

5.1.2 Chapter Outline

The rest of this chapter is organized as follows. The partitioning algorithm is described
in Section 5.2 along with the necessary terms and definitions. In Section 5.3 we provide
implementation details. Section 5.4 presents optimizations that are not discussed in the
preceding sections, some of which we have already implemented and proved to be useful. We
report on experimental results in Section 5.5.

5.2 The Partitioning Algorithm

The main problem we address in this chapter, namely, polyhedral assembly partitioning with
infinite translations, is formally defined as follows: Let A = {P1, P2, . . . , Pn} be a set of n
pairwise interior disjoint polyhedra in R3. A denotes the assembly that we aim to partition.
We look for a proper subset S ⊂ A and a direction ~d in R3, such that S can be moved as
a rigid body to infinity along ~d without colliding with the rest of the parts of the assembly
A \ S. (We allow sliding motion of one part over the other. We disallow the intersection of
the interior of two polyhedra.)

We follow the NDBG approach [WL94], and describe it here using the general formulation
and notation of [HLW00]. The motion space in our case, namely the space of all possible
partitioning directions, is represented by the unit sphere S2. Every point p on S2 defines the
direction from the center of S2 towards p. Every direction ~d is associated with the directed
graph DBG(~d) = (V, E) that encodes the blocking relations between the parts in A when

moved along ~d as follows: The nodes in V correspond to polyhedra in A; we denote a node
corresponding to the polyhedron Pi by v(Pi) ∈ V . There is an edge directed from v(Pi)
to v(Pj), denoted e(Pi, Pj) ∈ E, if and only if the interior of the polyhedron Pi intersects

5.2. The Partitioning Algorithm 81

the interior of the polyhedron Pj when Pi is moved to infinity along the direction ~d, and Pj

remains stationary.

The key idea behind the NDBG approach is that in problems such as ours, where the
number of parts is finite, and any allowable partitioning motion can be described by a small
number of parameters, there is only a relatively small (polynomial) number of distinct DBGs
that need to be constructed in order to detect a possible partitioning direction. Stated
differently, the motion space can be represented by an arrangement comprising a finite
number of cells each assigned with a fixed DBG. Once this arrangement is constructed, we
construct the DBG over each cell of the arrangement, and check it for strong connectivity.
A DBG that is not strongly connected is associated with a direction, or a set of directions in
case the cell is not a singular point, that partition the given assembly. The desired movable
subset S ⊂ A is a byproduct of the algorithm that checks for strong connectivity. If all the
DBGs over all the cells of the arrangement are strongly connected, we conclude that the
assembly is interlocked, as a subset of the parts in A that can be separated from the rest of
the assembly by an infinite translation does not exist.

Next we show how to construct the motion-space arrangement and compute the DBG
over each one of the arrangement cells. Each ordered pair of distinct polyhedra < Pi, Pj >

defines a region Qij on S2, which is the union of all the directions ~d, such that when Pi is

moved along ~d its interior will intersect the interior of Pj . How can we effectively compute
this region? Let Mij denote the Minkowski sum Pj ⊕ (−Pi) = {b − a | a ∈ Pi, b ∈ Pj}. We
claim that the central projection of Mij onto S2 is exactly Qij .

Lemma 5.1. A direction ~d is in the interior of the central projection of Mij onto S2 if and

only if when Pi is moved along ~d its interior will intersect the interior of Pj.

Proof. Let ~d be some direction in the central projection of Mij onto S2. In other words, there

exists a point m ∈ Mij , such that m = s · ~d, for some positive scalar s. As m is in Mij , there

exist two points pi ∈ Pi and pj ∈ Pj , such that m = pj − pi. Thus, pj = pi + s · ~d, meaning

that the point pi intersects pj when moved along ~d. A similar argument can be used to show
the converse.

Next, we describe how, given two polyhedra Pi and Pj , we compute the region Qij, using
robust and efficient hierarchy of building blocks, which we have developed in recent years.
The existing tools that we use are (i) computing the arrangement of spherical polygons
[BFH+07, FSH08b, FSH08a, WFZH07b], and (ii) construction of Minkowski sums of convex
polytopes [BFH+07, FH07, FSH08b, FSH08a]. We also need some extra machinery, as
explained below.

Assume Pi is given as the union of a collection of (not necessarily disjoint) convex
polytopes P i

1, P
i
2, . . . , P

i
mi

, and similarly Pj is given as the collection of convex polytopes

P j
1 , P j

2 , . . . , P j
mj

. It is easily verified that Mij =
⋃

k=1,...,mi,ℓ=1,...,mj
P j

ℓ ⊕ (−P i
k). So we com-

pute the Minkowski sum of each pair P j
ℓ ⊕ (−P i

k), and centrally project it onto S2. Finally,
we take the union of all these projections to yield Qij .

There are several ways to effectively compute the central projection of a convex polyhe-
dron C (one of the polytopes M ij

kℓ = P j
ℓ ⊕ (−P i

k)) from the origin onto S2. We opted for the

82 Chapter 5. Assembly Planning

following. An edge e of C is called a silhouette edge, if the plane π through the origin and e
is tangent to C at e; namely, π intersects C in e only. We assume for now that no tangent
plane contains a facet of C; we relax this assumption in Section 5.3.5, where we provide a
detailed description of the procedure. We traverse the edges of C till we find a silhouette
edge e1. One can verify that the silhouette edges form a cycle on C. We start with e1, and
search for a silhouette edge adjacent to e1. We proceed in the same manner, till we end up
discovering e1 again. Projecting this cycle of edges onto S2 is straightforward.

All the boundaries of the regions Qij form an arrangement of geodesic arcs on the sphere.
We traverse the motion-space arrangement in say a breadth-first fashion. For the first face
we check which ones of the regions Qij contain it. We construct the corresponding DBG
and check it for strong connectivity. If it is not strongly connected, we stop and announce
a solution as described above. Otherwise we move to an adjacent feature of the current
face. During this move we may have stepped out from a set of regions Qij , and may have
stepped into a new set of regions Qij . We update the current DBG according to the regions
we left or entered, test the new DBG for strong connectivity, and so on till the traversal of
all the arrangement cells is completed. Notice that it is important to visit also vertices and
edges of the arrangement, since the solution may not lie in the interior of a face. Indeed, in
our Split Star example, solutions are on vertices of the arrangement. Without careful exact
constructions, such solutions could easily be missed.

5.3 Implementation Details

The implementation of the assembly-partitioning operation consists of eight phases listed
below. They all exploit arrangements of geodesic arcs embedded on the sphere [BFH+07,
FSH08a] in various ways. The Arrangement on surface 2 package of Cgal already sup-
ports the construction and maintenance of such arrangements, the computation of union of
faces of such arrangements, the construction of Gaussian maps of polyhedra represented by
such arrangements, and the computation of their Minkowski sums. It provides the ground
for efficient and generic implementation of the remaining required operations, such as central
projection.

1. Convex Decomposition

2. Sub-part Gaussian map construction

3. Sub-part Gaussian map reflection

4. Pairwise sub-part Minkowski sum construction

5. Pairwise sub-part Minkowski sum projection

6. Pairwise Minkowski sum projection

7. Motion-space construction

8. Motion-space processing

5.3. Implementation Details 83

Figure 5.2: The Split Star six parts decomposed into three convex sub-parts each.

The partitioning process is implemented as a free function that accepts as input an
ordered list of polyhedra in R3, which are the parts of the assembly. Each part is represented
as a polyhedral mesh in R3; see Section 3.2.1 for a definition. We proceed with a detailed
discussion of the implementation of each phase.

We deal below with various details that are typically ignored in reports on geometric
algorithms (for example, under the general position assumption). However, in assembly
planning, or more generally in movable-separability problems [Tou85] in tight scenarios,
much of the difficulty shifts exactly to these technical details and in particular to handling
degeneracies. This is especially emphasized in Phases 5 and 6 (Subsections 5.3.5 and 5.3.6
respectively), but prevails throughout the entire section.

5.3.1 Convex Decomposition

We decompose each concave part into convex polyhedra referred to as sub-parts. The output
of this phase is an ordered list of parts, where each part is an ordered list of convex sub-
parts represented as polyhedral surfaces. Each polyhedral surface is maintained as a Cgal

Polyhedron 3 [Ket07a] data structure, which consists of vertices, edges, and facets and
incidence relations on them [Ket99]. A part that is convex to start with is simply converted
into an object of type Polyhedron 3.

A new package of Cgal that supports convex decomposition of polyhedra has been
recently introduced [Hac07], but has not become publicly available yet. As we aim for a
fully automatic process, we intend to exploit such components, once they become available,
and study their impact. For the time being we resorted to a manual procedure. A simple
decomposition of the Split Star parts used in the running example is illustrated in Figure 5.2.

5.3.2 Sub-part Gaussian Map Construction

We convert each sub-part represented as a polyhedral surface into a Gaussian map repre-
sented as an arrangement of geodesic arcs embedded on the sphere, where each face f of the
arrangement is extended with the coordinates of its associated primal vertex v = G−1(f),
resulting with a unique representation; see Section 3.1 for the exact definition of Gaussian

84 Chapter 5. Assembly Planning

R1 R2 R3 B1 B2 B3

−R1 −R2 −R3 −B1 −B2 −B3

Figure 5.3: Samples of the Gaussian maps of sub-parts of the Split Star assembly. The bottom row

contains the reflections of the Gaussian maps at the top row.

maps and see Section 3.2 the exact procedure to construct one from a polytope.

The output of this phase is an ordered list of parts, where each part is an ordered list of
the Gaussian maps of the convex sub-parts. Figure 5.3 depicts the Gaussian maps of six of
the 18 polytopes that comprise the set of sub-parts of our Split Star assembly.

5.3.3 Sub-part Gaussian Map Reflection

We reflect each sub-part P i
k through the origin to obtain −P i

k. This operation can be per-
formed directly on the output of the previous phase, reflecting the underlying arrangements
of geodesic arcs embedded on the sphere, which represent the Gaussian maps, while handling
the additional data attached to the arrangement faces. As a matter of fact, this phase can
be reduced as part of an optimization discussed in Section 5.4.

The output of this phase is an ordered list of parts, where each part is an ordered list of
Gaussian maps of the reflected convex sub-parts. Figure 5.3 depicts the Gaussian maps of
six of the 18 polytopes that comprise the set of reflected sub-parts of the Split Star example.

5.3.4 Pairwise Sub-part Minkowski Sum Construction

Construct Pairwise Sub-part
Minkowski Sums

for i in {1, 2, . . . , n}
for j in {1, 2, . . . , n}

if i == j continue
for k in {1, 2, . . . , mi}

for ℓ in {1, 2, . . . , mj}
M ij

kℓ = P j
ℓ ⊕ (−P i

k)

We compute the Minkowski sums of the pairwise
sub-parts and reflected sub-parts. Aiming for an ef-
ficient output sensitive algorithm, the construction
of an individual Minkowski sum from two Gaussian
maps represented as two arrangements respectively
is performed by overlaying the two arrangements.
When the overlay operation progresses, new vertices,
edges, and faces of the resulting arrangement are cre-
ated based on features of the two operands. When a

new feature is created its attributes are updated. There are ten cases that must be handled;
see Sections 3.2.2 for details. The Arrangement on surface 2 package conveniently supports
the overlay operation allowing users to provide their own version of these ten operations. The
overlay operation is exploited below in several different variants of arrangements of geodesic

5.3. Implementation Details 85

R1 ⊕ (−G1) R1 ⊕ (−B1) G1 ⊕ (−R1) G1 ⊕ (−B1) B1 ⊕ (−R1) B1 ⊕ (−G1)

Figure 5.4: Samples of the pairwise Minkowski sums of sub-parts of the Split Star assembly. The

middle row contains six Minkowski sums. The top row contains the corresponding Gaussian maps. The

bottom row contains the corresponding central projection of the Minkowski sums on S2.

arcs embedded on the sphere. Each application requires the provision of a different set of
those ten operations.

The output of this phase is a map from ordered pairs of distinct indices into lists of
Minkowski sums represented as Gaussian maps. Each ordered pair <i, j >, i 6= j is associated
with the list of Minkowski sums {M ij

kℓ | k = 1, 2, . . . , mi, ℓ = 1, 2, . . . , mj}. In case of our Split
Star the map consists of 30 entries that correspond to all configurations of ordered distinct
pairs of parts. Each entry consists of a list of nine Minkowski sums, that is, 270 Minkowski
sums in total.

5.3.5 Pairwise Sub-part Minkowski Sum Projection

Project Pairwise Sub-part
Minkowski sums

for i in {1, 2, . . . , n}
for j in {1, 2, . . . , n}

if i == j continue
for k in {1, 2, . . . , mi}

for ℓ in {1, 2, . . . , mj}
Qij

kℓ = project(M ij
kℓ)

We centrally project all pairwise sub-part Minkowski
sums computed in the previous phase onto the
sphere. Each projection is represented as an arrange-
ment of geodesic arcs on the sphere, where each cell
c of the arrangement is extended with a Boolean flag
that indicates whether all infinite rays emanating
from the origin in all directions ~d ∈ c pierce the cor-
responding Minkowski sum. As the Minkowski sums
are convex, their spherical projections are spherically

convex.

Given a convex Minkowski sum C, we distinguish between four different cases as follows:

1. The origin is contained in the interior of a facet of C.

2. The origin lies in the interior of an edge of C.

3. The origin coincides with a vertex of C.

86 Chapter 5. Assembly Planning

4. The origin is separated from C.

Computing the projection of a convex polytope C can be done efficiently using dedicated
procedures that handle the four cases, respectively. Recall that C is represented as a Gaussian
map, which is internally represented as an arrangement of geodesic arcs embedded on the
sphere. We traverse the vertices of the arrangement. For each vertex v we extract its
associated primal facet f = G−1(v). We dispatch the appropriate computation based on the
relative position of the origin with respect to the supporting plane to f , and the supporting
plane to adjacent facets of f .

If the origin is contained in the interior of a facet f of C, the projection of
the silhouette of C is a great (full) circle that divides the sphere into two hemispheres. The
normal to the plane that contains the great circle is identical to the normal to the supporting
plane to f , easily extracted from the arrangement representing the Gaussian map of C. The
Arrangement on surface 2 package conveniently supports the insertion of a great circle,
provided by the normal to the plane that contains it, into an arrangement of geodesic arcs
embedded on the sphere.

We omit the implementation details of the following two cases, and proceed to the general
case. If the origin is separated from C, we traverse all edges of C until we find a silhouette
edge characterized as follows: Let vs and vt be the source and target vertices of some edge e in
the arrangement representing the Gaussian map of C, and let fs = G−1(vs) and ft = G−1(vt)
be their associated primal facets, respectively. e is a silhouette edge, if and only if, the origin
is not in the negative side of the supporting plane to fs and not in the positive side of the
supporting plane to ft. We start with the first silhouette edge we find, and search for an

adjacent silhouette edge in a loop, until we rediscover the first one. We
project only the target vertices of significant silhouette edges, and con-
nect consecutive projections using arcs of great circle. Let e and e′ be
adjacent silhouette edges. We skip e, if the projections of e and e′ lie on
the same great circle. For example, all but the last adjacent silhouette
edges incident to a facet supported by a plane that contains the origin are
redundant, as illustrated in the figure above. Here we skip e0, e1, and e2,
and project the target vertex of e3.

The output of this phase is a map from ordered pairs of distinct indices into lists of
arrangements as described above. Each ordered pair <i, j >, i 6= j is associated with the list
of central projections of the pairwise Minkowski sums of Pj’s sub-parts and the reflection
through the origin of Pi’s sub-parts.

5.3.6 Pairwise Minkowski Sum Projection

For each pair of distinct parts Pi and Pj we compute the union of projections of the pairwise
Minkowski sums of all sub-parts of part Pj and reflections of all sub-parts of part Pi.

The output of this phase is a map from ordered pairs of distinct indices into arrangements.
Each ordered pair <i, j >, i 6= j is associated with a single arrangement extended as described
above, that represents the central projection Qij of Mij = Pj ⊕ (−Pi).

5.3. Implementation Details 87

Unite Pairwise Sub-part
Minkowski sums Projections

for i in {1, 2, . . . , n}
for j in {1, 2, . . . , n}

if i == j continue
Qij = ∅
for k in {1, 2, . . . , mi}

for ℓ in {1, 2, . . . , mj}
Qij = Qij ∪ Qij

kℓ

We exploit the overlay operation in this phase the
second time throughout this process, this time in a
loop. Given two distinct parts Pi and Pj we traverse
all projections in the set {Qij

kℓ | k = 1, 2, . . . , mi, ℓ =
1, 2, . . . , mj}, and accumulate the result in the ar-
rangement Qij. As mentioned in Section 5.3.4, when
the overlay operation progresses, new vertices, edges,
and faces of the resulting arrangement are created.
When a new face f is created as a result of the over-

lay of a face g in some projection Qij
kℓ, and a face in the accumulating arrangement, the

Boolean flag associated with f , which indicates whether all directions ~d ∈ f pierce Mij , is

turned on, if ~d pierces M ij
kℓ, that is, if the flag associated with the face of g is on.

The intermediate result of this step are arrangements with potentially redundant edges
and vertices. It is desired (but not necessary) to remove these cells, as it reduces the time
consumption of the succeeding operations, which is directly related to the complexity of the
arrangements. It has even a larger impact when the optimization described in Section 5.4 is
applied, as the optimization decreases the number of preceding operation at the account of
slightly increasing the number of succeeding operations. We remove all edges and vertices
that are in the interior of the projection, that is all marked edges and vertices. We also
remove spherically collinear vertices on the boundary of the projection, the degree of which
decreased below three, as a result of the redundant-edge removal.

(a) (b) (c) (d) (e) (f)

Figure 5.5: Peg-in-the-hole Minkowski sum projections. (a), (b), (c), (d), and (e) are the sub-part

projection. (f) is the union of the former.

Cgal also supports Boolean operations applied to general polygons1 and in particular
the union operation. However, it consumes and produces regularized general polygons; see
Section 2.7.1. This regularization operation is harmful in the realm of assembly planning.
Therefore, we work directly on the cells of the arrangements Qij .
Quite often the projection contains isolated vertices and edges,
as occurs in the example depicted on the right, referred to as
“peg-in-the-hole”. Here the assembled product is translucently
viewed from two opposite directions. The blue part is stationary
and is decomposed into five sub-parts. Figure 5.5 illustrates the corresponding five pairwise
Minkowski sum projections, and their union. The complement of the union consists of a
single isolated vertex.

1The generic code supports point sets bounded by algebraic curves embedded on parametric surfaces
referred to as general polygons.

88 Chapter 5. Assembly Planning

B ⊕ (−R) R ⊕ (−B)

Recalling our Split Star assembly, the projection of the Minkowski
sum of the red part and the reflection of the blue part, and its
reflection, that is, the projection of the Minkowski sum of the blue
part and the reflection of the red part are depicted on the left.

5.3.7 Motion-Space Construction

We compute a single arrangement that represents the motion space,
where each cell c of the arrangement is extended with a DBG. We
use the adjacency-matrix storage format provided by Boost [3] to
represent each DBG. Recall that for a graph with n vertices such

as ours, an n × n matrix is used, where each element ac
ij of a DBG associated with cell c is

a Boolean flag that indicates whether part Pi collides with part Pj when moved along any

direction ~d ∈ c. In particular we use the adjacency matrix class. It implements the Boost
Graph Library (BGL) [SLL02] interface, which supports, among the other, easy insertions
of new edges into existing graphs. Handling large assemblies with sparse blocking relations
may require different representations of DBGs to reduce memory consumption.

We exploit the overlay operation in this phase the third time similar to its application
in Section 5.3.6. We traverse all central projections in the set {Qij | 1 ≤ i < j ≤ n},
and accumulate the result in the final motion-space arrangement. As mentioned above in
Section 5.3.4, when the overlay operation progresses, new vertices, edges, and faces of the
resulting arrangement are created. When a new cell c is created as a
result of the overlay of a face g in some projection Qij , and a cell in
the accumulating arrangement, the DBG associated with c is updated.
That is, if the flag associated with g is turned on, we insert an edge
between vertex i and vertex j into the DBG associated with c.

Depicted on the left is the motion-space arrangement computed by
our program for the Split Star assembly.

5.3.8 Motion-Space Processing

Table 5.1: The Split Star valid

partitioning directions and cor-

responding subassemblies.
Direction Subset

1. −1,−1, −1 GBT
2. −1,−1, 1 RBT
3. −1, 1, −1 GPT
4. −1, 1, 1 RPT
5. 1,−1, −1 GBY
6. 1,−1, 1 RBY
7. 1, 1, −1 GPY
8. 1, 1, 1 RPY

We traverse all vertices, edges, and faces of the motion-
space arrangement in this order, and test the DBG associated
with each cell for strong connectivity using the Boost global
function strong components(). This function computes the
strongly connected components of a directed graph using Tar-
jan’s algorithm based on depth-first search (DFS) [Tar72]. The
set of constraints associated with a vertex v is a proper sub-
set of the constraints associated with the edges incident to v.
Similarly, the set of constraints associated with an edge e is a
proper subset of the constraints associated with the two faces
incident to e. Therefore, if the DBGs of all vertices are strongly
connected, we terminate with the conclusion that the

5.4. Additional Optimization 89

assembly is interlocked. Similarly, if we are interested in finding all
solutions, and the DBGs of all edges are strongly connected, we termi-
nate, as no further solutions on faces exist.

For the Split Star assembly, our program successfully identifies all
the eight partitioning directions depicted on the right along with the
corresponding subset of parts listed in Table 5.1.

5.4 Additional Optimization

The reflection of the sub-parts through the origin as described in Section 5.3.3 has been
naively implemented. The computation is applied to the polyhedral-mesh representation of
each sub-part. An immediate optimization calls for an application of the reflection operation
directly on the arrangements that represent the Gaussian map. We are planning to intro-
duce a generic implementation of the reflection operation that operates on any applicable
arrangement. This operation alters the incidence relations between the arrangement features
and their geometric embeddings. For each vertex, it negates its associated point, and inverts
the order of the halfedges incident to it. For each edge, it negates the associated curve.
For each face, it inverts the order of the halfedges along its outer boundary. Similar to the
overlay operation (see Section 2.4.2), where the user can provide a set of ten functions, which
are invoked when new vertices, edges, and faces of the resulting arrangement are created,
while the overlay operation progresses, the user can provide a set of three functions that are
invoked when a new vertex, halfedge, and face are created, while the reflection operation
progresses. Extended data associated with these types, such as a primal vertex associated
with an arrangement face as in the case of an arrangement representing a Gaussian map,
can easily be updated with the provision of an appropriate function.

The trivial observation that P ⊕ (−Q) = −((−P) ⊕ Q) leads to another optimization.
Instead of reflecting all sub-parts in the set {P i

k | i = 1, 2, . . . , n, k = 1, 2, . . . , mi}, we reflect
only the sub-parts in the set {P i

k | i = 2, . . . , n, k = 1, 2, . . . , mi}, and compute only the
pairwise sub-parts Minkowski sums in the set {M ij

kℓ | 1 ≤ i < j ≤ n, k = 1, 2, . . . , mj , ℓ =
1, 2, . . . , mj}, their central projection, and the union of the appropriate projections to yield
the set {Qij | 1 ≤ i < j ≤ n}. Then, we apply the reflection operation described above
on each member of this set, and obtain the full set of projections {Qij | i = 1, 2, . . . , n, j =
1, 2, . . . , n}. The Boolean flag associated with a face of an arrangement that represents a
central projection is equal to the flag associated with its reflection. In other words, a face
of Qij consists of directions that pierce Mij , if and only if, its reflection in Qji consists of
directions that pierce Mji.

Phase 8 is purely topological. Thus, we do not expect the time consumption of this phase
to dominate the time consumption of the entire process for any input. Nevertheless, it might
be possible to reduce its contribution to the total time consumption through efficient testing
for strong connectivity applied to all the DBGs [KMW98], exploiting the similarity between
DBGs associated with incident cells. Recall, that the set of arcs in a DBG associated with
a vertex v is a subset of the set of arcs associated with an edge incident to v. Similarly, the
set of arcs in a DBG associated with an edge e is a subset of the set of arcs associated with

90 Chapter 5. Assembly Planning

Table 5.2: Time consumption (in seconds) of the execution of the eight phases applied to the Split Star

assembly as input. Each one of the three rows refers to a different decomposition of the assembly. A

— number of convex sub-parts per part. B — number of sub-part vertices per part. C — total number

of convex sub-parts. D — total number of Minkowski sums. E — total number of arrangements of

geodesic arcs embedded on the sphere constructed throughout the process.
A B C D E 1 2 3 4 5 6 7 8

3 16 18 270 607 NA 0.01 0.04 2.38 0.41 2.05
0.36 0.015 22 30 750 1591 NA 0.01 0.05 5.03 1.09 7.07

8 32 48 1920 3967 NA 0.01 0.06 11.12 2.41 27.99

a face incident to e. The proposed technique reduces the cost from O(n2) per DBG to an
amortized cost of O(n1.376), where n is the maximum number of arcs in any blocking graph.

5.5 Experimental Results

Our program can handle all inputs. However, we limit ourselves to a representative set of
test cases, where we compare the impact of different decompositions on the process time
consumption. The results listed in Table 5.2 were produced by experiments conducted on
a Pentium PC clocked at 1.7 GHz. In all three test cases we use the Split Star assembly
as input. Naturally, in all three cases identical projections are obtained as the intermediate
results of Phase 6, hence the identical time consumption of the succeeding last two phases.
Evidently, it is desired to decompose each part into as few as possible sub-parts with as small
as possible number of features. However, an automatic decomposition operation may require
large amount of resources to arrive at optimal or near optimal decompositions. Notice that
Phases 4 and 6 dominate the time complexity. This is due to the large number of geometric
predicates that must be evaluated during the execution of the overlay operation.

Seriousness is the only

refuge of the shallow.

Oscar Wilde

6
Conclusion and Future Work

In this thesis we show how a complete implementation of extendible arrangements with a rich
set of operations enables a broad spectrum of robust applications that solve problems arising
in domains such as motion planning, assembly planning, and solid modeling. For example,
we describe how arrangements embedded on two-dimensional surfaces can be efficiently used
to compute Minkowski sums of two polytopes in R3, which in turn, and in conjunction with
several other operations based on such arrangements, can be used to partition an assembly
with an infinite translation motion. The rest of this chapter is devoted to future prospects
related to our research topics.

6.1 Arrangements on Two-Dimensional Surfaces

Constructing Minkowski Sums of polytopes in R3 has been successfully attempted in the past.
We introduce a robust, yet efficient method. Table 3.5 shows that both our exact methods
outperform the other exact methods. However, we believe that both of our methods, and in
fact all Cgal based methods have great potential for further improvements through future
optimizations applied to the infrastructure of Cgal, as Cgal is an evolving project. While
the space consumption of the Cgm method is greater than the space consumption of the
spherical Gaussian-map method, the table also reveals that the Cgm method is currently
more efficient than its rival. We estimate that the gap will decrease, if not vanish, once all
optimizations for the Arrangement on surface 2 data-structure that are still pending are
implemented and enabled.

We are constantly striving to improve the quality of our infrastructure, that is the
Arrangement on surface 2 package. We have already identified few weak spots. Elimi-
nating them will increase the genericity, extendibility, efficiency, and functionality of the
package. We provide one example in each category.

91

92 Chapter 6. Conclusion and Future Work

6.1.1 Generic Observers

There is a certain similarity between observers (see Section 2.4.4) and visitors (see Sec-
tion 2.4.1), as typically each of their methods is triggered as a response to a certain event
— a member of a pre-determined list of events. Technically, the main difference between
them is that observers define a one-to-many mapping between objects, while visitors define
a one-to-one mapping.1 Recall, for example, that a single arrangement may register many
observers, but it is only natural to relate a single visitor to a specific algorithmic framework
in order to realize a certain concrete algorithm. Consequently, arrangement observers are
derived from a common base class, and their methods must be virtual. This is how mod-
ules, which are closed for modification, are extended using object-oriented programming.
However, composability of such modules is limited, since independently produced modules
generally do not agree on common abstract interfaces from which supplied types must in-
herit. In addition, when techniques from the object-oriented programming and the generic
programming paradigms are mixed, they often clash. There are known methods to replace
lists of objects, derived from a common base class, and linked during run time, with a list
of syntactically unrelated objects concatenated during compile time (coded using a generic
programming technique) [Ale01, Chapter 3]. Nevertheless, we would like to simultaneously
enjoy the benefits of both the object-oriented and the generic programming paradigms, that
is, to enable the immediate production of composable modules that support dynamic poly-
morphism. A very important research direction in our context is to explore these possibilities,
perhaps pushing the limits of the C++ programming language along the way.

6.1.2 Property Maps

In many cases we need to associate values (called “properties”) with the vertices, the
halfedges, and the faces of the arrangement. In addition, it is often necessary to associate
multiple properties with each vertex, edge, or face; this is what Boost literature refers to
as multi-parameterization. BGL [SLL02] graph classes have template parameters for vertex
and edge “properties”. A property specifies the parameterized type of the property and also
assigns an identifying tag to the property.

There are various ways to associate properties with arrangement cells. One option is
to extend the geometric types of the kernel, as the kernel is fully adaptable and exten-
sible [HHK+07]. However, this indiscriminating extension may lead to an undue space-
consumption, as every geometric object is extended, regardless of its use.2 Another option,
is to extend the vertex, halfedge, or face records of the Dcel; see Section 2.3.3. This may also
lead to excessive space-consumption, for example, when the data associated with a halfedge
is in fact tied to the embedded geometric curve. In this case the data, or at least a handle
to the data, must be stored twice in both twin halfedges. A third option is to extend the
curve (or point) types defined by the geometry-traits class; see Section 2.3.1. But even this
option leads to unjustified space-consumption, when only a limited number of arrangement

1They also differ in essence. While an observer typically implements a notifier, a visitor is usually a
coherent part of an algorithm based on a fundamental and flexible framework. [GHJV95]

2It also requires nontrivial knowledge about the kernel structure and the techniques to extend it.

6.1. Arrangements on Two-Dimensional Surfaces 93

features are associated with real data. In such cases it is advantageous to use external search
structures that map individual arrangement features with their data.

Designing a useful and convenient interface, while taking all considerations above into
account, is a research topic on its own, which may further push the limits of good usage of
the C++ programming language.

6.1.3 Point Location for Surfaces

Point location is one of the most fundamental operations applied to arrangements; see Sec-
tion 2.4.5. The contest between the different point-location strategies for arrangement em-
bedded in the plane was settled in favor of the “landmark” variants for many types of
arrangements [HH08]. Unfortunately, at this point, these strategies cannot be applied on ar-
rangements embedded on surfaces other than the plane. This is due to limitations that arise
from the specific implementations of geometry traits that support these types of embedded
surfaces, e.g., the geometry traits that handles geodesic arcs embedded on the sphere; see
Section 2.6. The problem should be attacked from both its ends. That is, we can try to
enhance the geometry traits implementations, and add all ingredients required by the con-
cept ArrangementLandmarksTraits 2 as defined today, and at the same time, try to come
up with alternative, perhaps similar, strategies that induce different requirements that are
easier to satisfy by the geometry-traits classes.

6.1.4 Geometry-Traits Models

Continuous and steady effort is made to further extend the arsenal of geometry-traits models,
or simply to improve the existing ones; see Section 2.5.2. Supporting arrangements induced
by rich families of curves opens the door for numerous applications.

The dominant bottleneck of all applications mentioned in this thesis is the application
of the geometry operations implemented in the geometry-traits classes. Expediting their
performance, while containing the growth of their memory footprint is always desired. For
example, the arrangement package provides two traits classes that handle line segments.
Both are parameterized by a geometric kernel; see Section 1.3.3. Segments defined by most
Cgal kernels are represented only by their two endpoints. When a segment is split several
times, the bit-length needed to represent the coordinates of its endpoints may grow exponen-
tially (see [FWH04] for a discussion), which may significantly slow down the computation.
Therefore, one of the two traits classes represents a segment by its supporting line in addi-
tion to its two endpoints. When the traits class computes an intersection point of two line
segments, it uses the coefficients of their supporting lines. When a segment is split at an
intersection point, the underlying line of the two resulting sub-segments remains the same,
and only its endpoints are updated. This traits class thus overcomes the undesired effect of
cascading intersection-point representation, as described above, at the account of a larger
memory footprint. A similar idea can be applied to the traits class that handles geodesic arcs
embedded on the sphere. An implementation of a geometry-traits that handles such arcs
that stores the projections of all the arrangement geometric features once calculated, and

94 Chapter 6. Conclusion and Future Work

retrieves them when subsequently needed, has great potential to reduce time consumption
at the price of growth in space consumption.

Another direction is to expand existing implementations to meet the requirements of
the various concepts in the hierarchy described in Chapter 2. Consider, for example, the
geometry traits class that handles geodesic arcs embedded on the sphere. Currently, it
supports the basic operations required to construct and maintain arrangements induced by
such arcs. As mentioned in the previous section, it might be possible to enhance it to enable
the use of one or more of the variants of the “landmark” point-location strategies. Similarly,
enabling Boolean set operations of spherical patches bounded by geodesic arcs embedded on
the sphere requires the provision of few additional operations by the traits class.

6.2 Three-Dimensional Arrangements

Consider the following task: Given a set S = {S1, S2, . . . , Sn} of two-dimensional surfaces
in R3, construct the three-dimensional arrangement A(S) induced by S. Fulfilling this task
in an efficient, complete, and robust manner has not been attempted yet, and is considered
challenging. Implementing various strategies of point-location that operate on arrangements
in R3 and a plane-sweep and zone-construction frameworks for such a data structure is
greatly desired, but extremely ambitious. In analogy to two-dimensional arrangements, a
generic implementation of a plane-sweep framework can enable various operations, such as
the overlay of spatial subdivisions and ordinary and regularized Boolean set operations of
point sets bounded by general algebraic surfaces. These operations, in turn, can enable the
implementation of a multitude of applications.

Arrangements embedded on two-dimensional surfaces can be used as building blocks
in the implementation of a data structure that represents a three-dimensional arrange-
ment [Wei07]. We can consider each surface Sk separately, and construct the arrangement
Ak = Ak(S) induced by intersection curves between Sk and S \ Sk embedded on S. The
arrangements A1,A2,. . . ,An can subsequently be connected together to properly represent
the spatial subdivision A(S).

6.3 Boolean Set-Operations

In some sense and to some extent this thesis attempts to close gaps between theoretical
results and practical needs. It is not accidental that great parts of the thesis are closely
related to Cgal, as one of the goals of Cgal stated in the Introduction chapter of the thesis
is to translate (theoretical) results into useful, reliable, and efficient programs for industrial
and academic applications. Evidently, the Boolean set operations package of Cgal, which
is based on the Arrangement on surface 2 package (see Section 2.7.1) is one of the most
popular packages among Cgal packages in the commercial market. Naturally, we would like
to continue improving this package. The problems addressed in the next two subsections
were raised during the 3rd Cgal User Workshop [dW08] [1].

6.3. Boolean Set-Operations 95

6.3.1 Fixing the Data

Input data of Boolean set operations, namely, a set of one or more polygons, used in real-
world applications is occasionally corrupted, as it originates from measuring devices that
are susceptive to noise and physical disturbances. In some other cases, it contains many
degeneracies, which either disable computations based on fixed-precision arithmetic, or slow
down further computation using exact geometric computation.

Invalid Data

a b c

de

Figure 6.1: A relatively

simple polygon that is

not simple, given by its

boundary {a, b, c, d, b, e}.

A polygon P is said to be simple (or Jordan), if the only points of
the plane belonging to two edges of P are vertices of consecutive
edges P [23]. Namely, no two edges intersect, except for every two
consecutive edges, which share one endpoint. A simple polygon is
topologically equivalent to a disk. A polygon P is said to be weakly
simple, if the chain of the edges of P does not cross itself. A polygon
P is said to be relatively simple, if it is weakly simple and the edges
of P do not intersect in their relative interior. Observe, that a
relatively simple polygon, the vertices of which appear only once in
the boundary (the degree of each vertex is two), is simple.

a b c

d

efg

h

Figure 6.2: A poly-

gon with a hole given

by its outer boundary

{a, b, c, d, e, f, g, h} and

its hole {h, f, d, b}.

Input data for any Boolean set operation represents points set
that may be bounded or unbounded, and may have holes. Items of
such input take the form of general polygons or general polygons
with holes with well-defined interiors and exteriors. A valid polygon
must be weakly simple (but not necessarily simple) and its vertices
must be ordered in counterclockwise direction around its interior. A
valid polygon with holes that represents a bounded point set, has an
outer boundary represented as a weakly simple (but not necessarily
simple) polygon, the vertices of which are oriented in counterclock-
wise order around its interior. In addition, the set may contain
holes, where each hole is represented as a simple polygon, the ver-
tices of which are oriented in clockwise order around the interior
of the hole. Note that an unbounded polygon without holes spans
the entire plane. Vertices of holes may coincide with vertices of the
boundary.

As mentioned above, real-world data is often corrupted. Naturally, passing invalid poly-
gons (polygons with holes, respectively) as input to a Boolean set operation must be avoided.
Apparently, automatically “fixing” corrupted data, that is, converting invalid input polygons
or polygons with holes to valid ones, is not a simple task. Consider, for example, the self
intersecting star depicted in Figure 6.3(a). A point is considered inside the point set, if and
only if the number of counterclockwise turns the oriented boundary makes around the point,
also called the winding number, is greater than zero. It can be efficiently calculated using
an Arrangement 2 data structure as follows. We extend each halfedge h with a Boolean flag
that indicates whether the winding number increases or decreases when we cross h, that is,

96 Chapter 6. Conclusion and Future Work

a

d

b

e c

a

c

e

g i

bd

f

h

j

a

c

e

g i

bd

f

h

j
2

1

1

1

1 1
0

a

c

e

g i

bd

f

h

j

(a) (b) (c) (d)

Figure 6.3: (a) A self crossing polygon given by {a, b, c, d, e}. (b) The Arrangement 2 data structure

constructed from the polygon edges. (c) The Arrangement 2 data structure with updated face winding-

numbers. (d) The Arrangement 2 data structure with internal edges removed.

when we move from the face incident to h to the face incident to the twin of h. Observe
that twin halfedges always have opposite flag values. We extend each face with an integer
that counts the winding number of every point in the face. Finally, we apply a Breath-First
Search (BFS) on all the arrangement faces starting from the unbounded face and updating
the face counters as we cross halfedges. The BGL, for example, can be employed for this
task. Figure 6.3 illustrates the process. Once the winding number of every face is updated,
we remove internal edges, as they are redundant, and convert the arrangement back into a
valid polygon or polygon with holes.

The problem becomes more complicated when the input polygons or polygons with holes
violate several validity properties at the same time. Naturally, converting corrupted data
into valid data consumes time. The challenge is to perform this task flawlessly and efficiently,
while presenting a convenient interface to the user.

Degenerate Data

In computational geometry there are two main techniques to eliminate degeneracies and near-
degeneracies. One is snap rounding [GM95, GGHT97, Hob99] and the other is controlled
perturbation [HL04, MO06]. Both techniques aim at processing geometric data, e.g., curves
of the boundaries of general polygons, to yield new data that can be further robustly and
more efficiently processed, perhaps using only limited precision. Traditionally, snap rounding
has been applied to linear objects embedded in the plane [HP01, HP02], where it replaces
sets of linear segments with sets of polylines. It can be extended though to other types of
curves in the plane, such as Bézier curves [EKW07], or even other curve types embedded
on other surfaces that have a well defined grid (and perhaps other properties), such as
geodesic arcs embedded on the sphere. Controlled perturbation has even a larger spectrum
of applicable platforms. With respect to our polygons, applying any one of the two techniques
above may result with (partially) overlapping curves, which belong to two different polygons,
respectively. In this case, we need to merge the incremental winding contributions of the
original curves mentioned above.

6.3. Boolean Set-Operations 97

6.3.2 Improving the Efficiency

The Boolean set operations 2 package provides efficient operations that compute the reg-
ularized union or the regularized intersection of a set of input polygons. There is no restric-
tion on the polygons in the set; naturally, they may intersect each other. The package also
provides an efficient predicate that determines whether all polygons in a given set intersect.

Figure 6.4: The union

of eight discs.

There are at least three different methods to compute the union
of a set of polygons P1, . . . Pm. We can do it incrementally as fol-
lows. At each step we compute the union of Sk−1 =

⋃k−1

i=1
Pi with Pk

and obtain Sk. A second option is to use a divide-and-conquer ap-
proach. First, we divide the set of polygons into two subsets. Then,
we compute the union of each subset recursively, and obtain the
partial results in S1 and S2, respectively. Finally, we compute the
union S1 ∪S2. A third option aggregately computes the union of all
polygons. We construct an arrangement inserting the polygon edges
at once, utilizing the sweep-line framework, (see Section 2.4.1) and
extract the result from the arrangement. Similarly, it is also possi-
ble to aggregately compute the intersection

⋂m

i=1
Pi of a set of input

polygons.

The incremental method is more efficient for a small (constant) size of input polygons,
and the aggregate method is more efficient for sparse polygons with a relatively small number
of intersections. It is also possible to mix between the three methods, reaping the benefits
of them all. We would like to figure out what are the exact conditions that should be used
to determine when to use each method, or when to switch from one to another.

6.3.3 Non Regularized Operations

The Cgal package Nef 2 supports ordinary set-operations on point sets in R2 [See07]. The
point-set operands and results are rectilinear polygonal model. Such a point set can be
defined by a finite set of open halfspaces, or obtained by set complement and set intersection
operations. The package supports operations that consume and produce linear polygons
defined by linear edges. The Boolean set operations package, on the other hand, supports
only regularized set-operations, but the operations consume and produce general polygons.
Recall, that a general polygon is a point set in R2 that has a topology of a polygon, but
its boundary edges map to arcs of curves, which are not necessarily linear. Extending the
package to support not only regularized operations, but also ordinary ones, will make it
useful for more applications; see, for example, Section 5.3.6.

6.3.4 Operating in 3-Space

Boolean set operations are intuitive and therefore popular in many fields. For example, CSG
is a representation model for solids based on Boolean set operations. Solids represented using
CSG result from Boolean set operations applied to elementary solids called primitives, e.g.,
cubes, spheres, cones, and cylinders. A CSG solid is represented in a tree structure, where

98 Chapter 6. Conclusion and Future Work

the leaves represent primitives, and internal nodes represent Boolean operations.

The Cgal package Nef 3 supports ordinary set-operations on point sets in R3 [HK07].
Similar to the planar case, the package supports operations that consume and produce (lin-
ear) polyhedra defined by (linear) halfspaces. Having the ability to construct and maintain
arrangements in R3, will enable the development of a new package, that will support either
regularized, or even non-regularized, robust Boolean set-operations that consume and pro-
duce general (curved) polyhedra in R3, the boundaries of which are general surfaces. Many
fundamental problems in solid modeling, motion planning, and other domains, can benefit
from such a package.

6.4 Collision Detection

One possible progression of the collision detection algorithm and its implementation de-
scribed in Section 3.4 is a complete integrated framework that answers proximity queries
about the relative placement of polytopes that undergo rigid motions including rotation.
The framework may use either the spherical or the cubical Gaussian-map to represent poly-
topes. The interface of these two data structures should be consolidated to allow rapid
interchanging.

Some of the methods we foresee compute only those portions of the Minkowski sum that
are absolutely necessary, making our approach even more competitive. Briefly, instead of
computing the Minkowski sum of P and −Q, we walk simultaneously on the two respective
Cgm’s, producing one feature of the Minkowski sum at each step of the walk. Such a strategy
could be adapted to the case of rotation by rotating the trajectory of the walk, keeping the
Cgm of −Q intact, instead of rotating the Cgm itself.

6.5 Reflection Mapping and GIS

Figure 6.5: Environment

of the St. Peters Cathedral

mapped on a teapot with a sil-

ver material applied. Taken in

RTHDRIBLE [22].

We have developed a new data structure that can be used
to construct and maintain cubical Gaussian-maps and com-
pute Minkowski sums of pairs of polytopes represented by the
new data structure; see Chapter 3. The name of the data
structure is Cubical gaussian map 3, and we are considering
introducing a package by the same name to a prospective re-
lease of Cgal. The implementation is generic and can be
used for other purposes, where six planar subdivisions embed-
ded on a unit cube and stitched properly at the edges of the
cube is useful, for example Cubical Environment Mapping; see,
e.g., [FvDFH95, Section 16.6].

In computer graphics, reflection mapping is an efficient
method of simulating a complex mirroring surface by means
of a precomputed texture image. The texture is used to store
the image of the environment surrounding the rendered ob-

6.6. Exact Complexity of Minkowski Sums 99

ject. The surrounding environment can be represented, constructed, maintained, and stored
in several ways; the most common ones are the Spherical Environment Mapping in which
a single texture contains the image of the surrounding as reflected on a mirror ball, or the
Cubical Environment Mapping in which the environment is unfolded onto the six faces of a
cube and stored therefore as six square textures.

Reflection Mapping can be categorized as some sort of a geographic information system
(GIS). There are two broad methods used to store data in a GIS: Raster and Vector. In a GIS
data is often related from different sources possibly of different storing types. Regardless of
whether a single arrangement embedded on a sphere, or six arrangements embedded on the
cube, are concerned, the connection to GIS is clear — both data-structures can accommodate
geographic vector data in a natural way.

6.6 Exact Complexity of Minkowski Sums

Dimension Exact Maximum Complexity
d = 2 m1 + m2 + . . . + mk

d = 3
∑

1≤i<j≤k(2mi − 5)(2mj − 5) +
∑

1≤i≤k mi +
(

k

2

)

The table to the right
summarizes the known
exact bounds on the
maximum complexity of
Minkowski sums of polytopes in terms of number of facets ((d−1)-faces) derived in Chapter 4.
The exact bounds are unknown for higher Dimensions as far as we know.

It is known that the exact complexity (counting faces) of the Minkowski sum of two
polytopes with m and n facets can be as low as m, when the two polytopes have the same
number of facets m and parallel features, but it is unknown what is the minimum exact
complexity of Minkowski sums of polytopes that have only a limited number of parallel
features, or none at all.

100 Chapter 6. Conclusion and Future Work

A
Software Components, Libraries, and Packages

A.1 Visual Simulation

We have developed a toolkit, called Sgal (Scene Graph Algorithm Library),1 that supports
the construction and maintenance of directed acyclic graphs that represent scenes and models
in R3. The toolkit includes, among the other, two interactive 3D applications. The first
detects collisions and answers proximity queries for polytopes that undergo translation and
rotation. The second enables users to visualize a scene in an interactive manner. It parses
input files that describe the scene in a degenerate yet extended VRML format [27]. The
format is degenerate, as not all VRML features are supported (yet). However, it has been
significantly extended as described below.

Both applications are linked with (i) Cgal, (ii) a library that provides the exact rational
number-type, (iii) several Boost libraries, (iv) imagemagick [15] — a library that creates,
edits, and composes bitmap images, and (v) internal libraries that construct and maintain
3D scene-graphs, written in C++, and built on top of OpenGL. The internal code is divided
into two libraries; SGAL — The main 3D scene-graph library and SCGAL — Extensions that
depend on Cgal.

We added several geometry nodes that represent polytopes using various sub-representations,
such as Gaussian maps, a few other related nodes that handle coordinates, and many other
miscellaneous nodes that provide services, such as antialiasing and snapshoting. The de-
scriptions of some of the geometry nodes follows.

ArrangementOnSphere This node represents models as arrangements of geodesic arcs em-
bedded on the sphere.

ExactPolyhedron This node represents polyhedra as meshes using the Cgal Polyhedron 3

1We plan to offer Sgal with an open-source license in the future, making it available to the public.

101

102 Appendix A. Software Components, Libraries, and Packages

data structure.
SphericalGaussianMap This node represents polytopes as spherical Gaussian maps using

the Arrangement on surface 2 data structure instantiated as an arrangement embed-
ded on the sphere.

CubicalGaussianMap This node represents polytopes as cubical Gaussian maps using the
Cubical gaussian map 3 data structure.

The implementation relies on inputing exact coordinates. To this end, the format was
further extended with a node called ExactCoordinate that represents exact coordinates,
and enables the provision of exact rational coordinates as input.

The entire partitioning process described in Chapter 5 is realized within Sgal. The
library contains all the necessary ingredients required to represent and visualize the input
and the output, and to simulate the process. In particular, it has been extended with two
geometry node types: the Assembly node type represents assemblies or subassemblies, and
the AssemblyPart node type represents parts of assemblies. Notice, that each node ob-
ject of the three types AssemblyPart, SphericalGaussianMap, and ArrangementOnSphere

internally maintains the Cgal data structure that represents an arrangement of geodesic
arcs embedded on the sphere [BFH+07], an instance of the Arrangement on surface 2 class
template.

A.2 Software Availability

Compiling and executing the programs require the latest internal release of Cgal (post
version 3.31) and the components listed above including an internal package of Cgal that
supports the Cubical gaussian map 3 data structure. The source code is available upon
request.2 Precompiled executables compiled either with g++ 4.2.3 on Linux or with VC 8 on
Windows, data sets, and documentation can be downloaded from http://www.cs.tau.ac.

il/~efif/CD/3d.

2Send email to efifogel@gmail.com.

http://www.cs.tau.ac.il/~efif/CD/3d
http://www.cs.tau.ac.il/~efif/CD/3d
efifogel@gmail.com

Bibliography

[AFH02] Pankaj Kumar Agarwal, Eyal Flato, and Dan Halperin. Polygon decomposi-
tion for efficient construction of Minkowski sums. Computational Geometry:
Theory and Applications, 21:39–61, 2002.

[AK00] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jörg-Rüdiger Sack
and Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 5,
pages 201–290. Elsevier Science Publishers, B.V. North-Holland, Amsterdam,
North-Holland, 2000.

[Ale01] Andrei Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.

[AS97] Boris Aronov and Micha Sharir. On translational motion planning of a convex
polyhedron in 3-space. SIAM Journal on Computing, 26(6):1785–1803, 1997.

[AS00] Pankaj Kumar Agarwal and Micha Sharir. Arrangements and their applica-
tions. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Compu-
tational Geometry, chapter 2, pages 49–119. Elsevier Science Publishers, B.V.
North-Holland, Amsterdam, North-Holland, 2000.

[AS01] Marcus Vińıcius Alvim Andrade and Jorge Stolfi. Exact algorithms for cir-
cles on the sphere. International Journal of Computational Geometry and
Applications, 11(3):267–290, jun 2001.

[Aus99] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley,
1999.

[BdLT97] Jean-Daniel Boissonnat, Eduard E. de Lange, and Monique Teillaud. Min-
kowski operations for satellite antenna layout. In Proceedings of 13th Annual
ACM Symposium on Computational Geometry (SoCG), pages 67–76. Associ-
ation for Computing Machinery (ACM) Press, 1997.

[BDTY00] Jean-Daniel Boissonnat, Olivier Devillers, Monique Teillaud, and Mariette
Yvinec. Triangulations in Cgal. In Proceedings of 16th Annual ACM Sym-
posium on Computational Geometry (SoCG), pages 11–18. Association for
Computing Machinery (ACM) Press, 2000.

[BEH+02] Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt
Mehlhorn, and Elmar Schömer. A computational basis for conic arcs and

103

104 BIBLIOGRAPHY

Boolean operations on conic polygons. In Proceedings of 10th Annual Euro-
pean Symposium on Algorithms (ESA), volume 2461 of LNCS, pages 174–186.
Springer-Verlag, 2002.

[BEH+05] Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Lutz Ket-
tner, Kurt Mehlhorn, Joachim Reichel, Susanne Schmitt, Elmar Schömer,
and Nicola Wolpert. Exacus: Efficient and exact algorithms for curves and
surfaces. In Proceedings of 13th Annual European Symposium on Algorithms
(ESA), volume 3669 of LNCS, pages 155–166. Springer-Verlag, 2005.

[BFH+07] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Melhorn, and Ron Wein. Sweep-
ing and maintaining two-dimensional arrangements on surfaces: A first step.
In Proceedings of 15th Annual European Symposium on Algorithms (ESA),
volume 4698 of LNCS, pages 645–656. Springer-Verlag, 2007.

[BFH+09a] Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter.
Arrangements on parametric surfaces ii: Concretizations and applications,
2009. Manuscript.

[BFH+09b] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Melhorn, and Ron Wein. Ar-
rangements on parametric surfaces i: General framework and infrastructure,
2009. Manuscript.

[BFHW07] Eric Berberich, Efi Fogel, Dan Halperin, and Ron Wein. Sweeping over curves
and maintaining two-dimensional arrangements on surfaces. In Abstracts of
23rd European Workshop on Computational Geometry, pages 223–226, 2007.

[BGRR96] Julien Basch, Leonidas J. Guibas, G. D. Ramkumar, and L. Ramshaw. Poly-
hedral tracings and their convolution. In Proceedings of 2nd Workshop on
Algorithmic Foundations of Robotics, 1996.

[BHK+05] Eric Berberich, Michael Hemmer, Lutz Kettner, Elmar Schömer, and Nicola
Wolpert. An exact, complete and efficient implementation for computing pla-
nar maps of quadric intersection curves. In Proceedings of 21st Annual ACM
Symposium on Computational Geometry (SoCG), pages 99–106. Association
for Computing Machinery (ACM) Press, 2005.

[BK08] Eric Berberich and Michael Kerber. Exact arrangements on tori and Dupin
cyclides. In Proceedings of ACM Symposium on Solid and Physical Modeling
(SPM), pages 59–66. Association for Computing Machinery (ACM) Press,
2008.

[BM07] Eric Berberich and Michal Meyerovitch. Computing envelopes of quadrics.
In Abstracts of 23rd European Workshop on Computational Geometry, pages
235–238, 2007.

[BO79] Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and count-
ing geometric intersections. IEEE Transactions on Computers, 28(9):643–647,
1979.

BIBLIOGRAPHY 105

[Boo82] F. H. Bool et al. M. C. Escher: His Life and Complete Graphic Work. Harry
N. Abrams, Inc., 1982.

[BR01] Henk Bekker and Jos B. T. M. Roerdink. An efficient algorithm to calculate
the Minkowski sum of convex 3D polyhedra. In Proceedings of International
Conference on Computational Science Part I, volume 2073 of LNCS, pages
619–628. Springer-Verlag, 2001.

[Cam97] Stephen A. Cameron. Enhancing GJK: Computing minimum and penetration
distances between convex polyhedra. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 3112–3117, 1997.

[CC86] Stephen A. Cameron and R. K. Culley. Determining the minimum transla-
tional distance between two convex polyhedra. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, pages 591–596, 1986.

[CDR92] John Canny, Bruce Donald, and Eugene K. Ressler. A rational rotation
method for robust geometric algorithms. In Proceedings of 8th Annual ACM
Symposium on Computational Geometry (SoCG), pages 251–260. Association
for Computing Machinery (ACM) Press, 1992.

[cga07] Cgal User and Reference Manual, 3.3 edition, 2007. http://www.cgal.org/
Manual/3.3/doc_html/cgal_manual/index.html.

[CKF+04] Tim Culver, John Keyser, Mark Foskey, Shankar Krishnan, and Dinesh
Manocha. Esolid — a system for exact boundary evaluation. Computer-
Aided Design, 36(2):175–193, 2004.

[CL06] Frederic Cazals and Sebastien Loriot. Computing the exact arrangement of
circles on a sphere, with applications in structural biology. Technical Report
6049, Inria Sophia-Antipolis, 2006.

[Cof06] Stewart T. Coffin. Geometric Puzzle Design. A.K. Peters, Ltd., 2nd edition,
2006.

[COLYKT03] Daniel Cohen-Or, Shuly Lev-Yehudi, Adi Karol, and Ayellet Tal. Inner-cover
of non-convex shapes. International Journal on Shape Modeling, 9(2):223–238,
Dec 2003.

[dBvKOS00] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, Germany, 2nd edition, 2000.

[dCPT07] Pedro M. M. de Castro, Sylvain Pion, and Monique Teillaud. Exact and
efficient computations on circles in Cgal. In Abstracts of 23rd European
Workshop on Computational Geometry, pages 219–222, 2007.

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/index.html
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/index.html

106 BIBLIOGRAPHY

[DHH01] Duong Anh Duc, Nguyen Dong Ha, and Lethi Thuy Hang. Proposing a
model to store and a method to edit spatial data in topological maps. Tech-
nical report, Ho Chi Minh University of Natural Sciences, Ho Chi Minh City,
Vietnam, 2001.

[DK90] David P. Dobkin and David G. Kirkpatrick. Determining the separation of
preprocessed polyhedra — a unified approach. In Proceedings of 17th Inter-
national Colloquium on Automata, Languages and Programming, volume 443
of LNCS, pages 400–413. Springer-Verlag, 1990.

[dW08] Michiel de Wilde. Using Cgal for robust planar geometry processing in
agilent ADS. 3rd Cgal User Workshop, 2008. http://www.cgal.org/

UserWorkshop/index.html.

[EK08] Arno Eigenwillig and Michael Kerber. Exact and efficient 2D-arrangements of
arbitrary algebraic curves. In Proceedings of 19th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 122–131, Philadelphia, PA, USA,
2008. Society for Industrial and Applied Mathematics (SIAM).

[EKP+04] Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, and
Elias P. Tsigaridas. Towards and open curved kernel. In Proceedings of 20th
Annual ACM Symposium on Computational Geometry (SoCG), pages 438–
446. Association for Computing Machinery (ACM) Press, 2004.

[EKSW04] Arno Eigenwillig, Lutz Kettner, Elmar Schömer, and Nicola Wolpert. Com-
plete, exact and efficient computations with cubic curves. In Proceedings of
20th Annual ACM Symposium on Computational Geometry (SoCG), pages
409–418. Association for Computing Machinery (ACM) Press, 2004.

[EKW07] Arno Eigenwillig, Lutz Kettner, and Nicola Wolpert. Snap rounding of Bézier
curves. In Proceedings of 23rd Annual ACM Symposium on Computational Ge-
ometry (SoCG), pages 158–167. Association for Computing Machinery (ACM)
Press, 2007.

[EL00] Stephen A. Ehmann and Ming C. Lin. Accelerated proximity queries between
convex polyhedra by multi-level Voronoi marching. In Proceedings of IEEE
Conference on Intelligent Robots and Systems, pages 2101–2106, 2000.

[EOR92] Roger C. Evans, Michael A. O’Connor, and Jarek R. Rossignac. Construction
of Minkowski sums and derivatives morphological combinations of arbitrary
polyhedra in CAD/CAM systems, 1992. US Patent 5159512.

[ES86] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrange-
ments. Discrete & Computational Geometry, 1:25–44, 1986.

[FFHL02] Eyal Flato, Efi Fogel, Dan Halperin, and Eyal Leiserowitz. Movie: Exact
Minkowski sums and applications. In Proceedings of 18th Annual ACM Sym-
posium on Computational Geometry (SoCG), pages 273–274. Association for
Computing Machinery (ACM) Press, 2002.

http://www.cgal.org/UserWorkshop/index.html
http://www.cgal.org/UserWorkshop/index.html

BIBLIOGRAPHY 107

[FGK+00] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schönherr. On the design of Cgal a computational geometry algorithms
library. Software — Practice and Experience, 30(11):1167–1202, 2000.

[FH95] Ulrich Finke and Klaus H. Hinrichs. Overlaying simply connected planar
subdivisions in linear time. In Proceedings of 11th Annual ACM Symposium on
Computational Geometry (SoCG), pages 119–126. Association for Computing
Machinery (ACM) Press, 1995.

[FH05] Efi Fogel and Dan Halperin. Movie: Exact Minkowski sums of convex polyhe-
dra. In Proceedings of 21st Annual ACM Symposium on Computational Ge-
ometry (SoCG), pages 382–383. Association for Computing Machinery (ACM)
Press, 2005.

[FH06] Efi Fogel and Dan Halperin. Exact and efficient construction of Minkowski
sums of convex polyhedra with applications. In Proceedings of 8th Workshop
on Algorithm Engineering and Experiments, 2006.

[FH07] Efi Fogel and Dan Halperin. Exact and efficient construction of Min-
kowski sums of convex polyhedra with applications. Computer-Aided Design,
39(11):929–940, 2007.

[FH08] Efi Fogel and Dan Halperin. Polyhedral assembly partitioning with infinite
translations or the importance of being exact. 2008. Proceedings of 8th
Workshop on Algorithmic Foundations of Robotics.

[FHH+00] Eyal Flato, Dan Halperin, Iddo Hanniel, Oren Nechushtan, and Ester Ezra.
The design and implementation of planar maps in Cgal. The ACM Journal
of Experimental Algorithmics, 5:1–23, 2000.

[FHK+07] Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, and
Nicola Wolpert. Arrangements. In J.-D. Boissonnat and M. Teillaud, editors,
Effective Computational Geometry for Curves and Surfaces, chapter 1, pages
1–66. Springer-Verlag, 2007.

[FHW] Efi Fogel, Dan Halperin, and Christophe Weibel. On the exact maximum
complexity of Minkowski sums of convex polyhedra. Discrete & Computational
Geometry. Accepted for publication.

[FHW+04] Efi Fogel, Dan Halperin, Ron Wein, Sylvain Pion, Monique Teillaud, Ioannis
Emiris, Athanasios Kakargias, Elias Tsigaridas, Eric Berberich, Arno Eigen-
willig, Michael Hemmer, Lutz Kettner, Kurt Mehlhorn, Elmar Schomer, and
Nicola Wolpert. An empirical comparison of software for constructing ar-
rangements of curved arcs (preliminary version). Technical Report ECG-TR-
361200-01, Tel-Aviv University, INRIA Sophia-Antipolis, MPI Saarbrücken,
2004.

108 BIBLIOGRAPHY

[FHW07] Efi Fogel, Dan Halperin, and Christophe Weibel. On the exact maximum
complexity of Minkowski sums of convex polyhedra. In Proceedings of 23rd
Annual ACM Symposium on Computational Geometry (SoCG), pages 319–
326. Association for Computing Machinery (ACM) Press, 2007.

[FSH08a] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrange-
ments of geodesic arcs on the sphere with applications. In Abstracts of 24th
European Workshop on Computational Geometry, pages 83–86, 2008.

[FSH08b] Efi Fogel, Ophir Setter, and Dan Halperin. Movie: Arrangements of geodesic
arcs on the sphere. In Proceedings of 24th Annual ACM Symposium on Com-
putational Geometry (SoCG), pages 218–219. Association for Computing Ma-
chinery (ACM) Press, 2008.

[FT07] Efi Fogel and Monique Teillaud. Generic programming and the Cgal library.
In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational Ge-
ometry for Curves and Surfaces, chapter 8, pages 313–320. Springer-Verlag,
2007.

[Fuk04] Komei Fukuda. From the zonotope construction to the Minkowski addition of
convex polytopes. Journal of Symbolic Computation, 38(4):1261–1272, 2004.

[FvDFH95] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice in C. Addison-Wesley, 2nd edi-
tion, 1995.

[FW07] Komei Fukuda and Christophe Weibel. f-vectors of Minkowski additions of
convex polytopes. Discrete & Computational Geometry, 37:503–516, 2007.

[FWH04] Efi Fogel, Ron Wein, and Dan Halperin. Code flexibility and program effi-
ciency by genericity: Improving Cgal’s arrangements. In Proceedings of 12th
Annual European Symposium on Algorithms (ESA), volume 3221 of LNCS,
pages 664–676. Springer-Verlag, 2004.

[FWZH07] Efi Fogel, Ron Wein, Baruch Zukerman, and Dan Halperin. 2d regularized
boolean set-operations. In Cgal Editorial Board, editor, Cgal User and
Reference Manual. 3.3 edition, 2007.

[GGHT97] Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J.
Tanenbaum. Snap rounding line segments efficiently in two and three dimen-
sions. In Proceedings of 13th Annual ACM Symposium on Computational Ge-
ometry (SoCG), pages 284–293. Association for Computing Machinery (ACM)
Press, 1997.

[GHH+98] Leonidas J. Guibas, Dan Halperin, Hirohisa Hirukawa, Jean-Claude Latombe,
and Randall H. Wilson. Polyhedral assembly partitioning using maximally
covered cells in arrangements of convex polytopes. International Journal of
Computational Geometry and Applications, 8(2):179–200, 1998.

BIBLIOGRAPHY 109

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[Gho93] Pijush K. Ghosh. A unified computational framework for Minkowski opera-
tions. Computers & Graphics, 17(4):357–378, 1993.

[GHZ99] Leonidas J. Guibas, David Hsu, and Li Zhang. H-walk: Hierarchical distance
computation for moving convex bodies. In Proceedings of 15th Annual ACM
Symposium on Computational Geometry (SoCG), pages 265–273. Association
for Computing Machinery (ACM) Press, 1999.

[GJK88] Elmer G. Gilbert, Daniel W. Johnson, and Sathiya S. Keerthi. A fast pro-
cedure for computing the distance between complex objects. 4(2):193–203,
1988.

[GM95] Leonidas J. Guibas and David H. Marimont. Rounding arrangements dynam-
ically. In Proceedings of 11th Annual ACM Symposium on Computational Ge-
ometry (SoCG), pages 190–199. Association for Computing Machinery (ACM)
Press, 1995.

[GRS83] Leonidas J. Guibas, Leo Ramshaw, and Jorge Stolfi. A kinetic framework for
computational geometry. In Proceedings of 24th Annual IEEE Symposium on
the Foundations of Computer Science, pages 100–111, 1983.

[GS87] Leonidas J. Guibas and Raimund Seidel. Computing convolutions by recipro-
cal search. Discrete & Computational Geometry, 2:175–193, 1987.

[GS93] Peter Gritzmann and Bernd Sturmfels. Minkowski addition of polytopes:
Computational complexity and applications to Gröbner bases. SIAM Journal
on Discrete Math, 6(2):246–269, 1993.

[Hac07] Peter Hachenberger. Exact Minkowski sums of polyhedra and exact and ef-
ficient decomposition of polyhedra into convex pieces. In Proceedings of 15th
Annual European Symposium on Algorithms (ESA), volume 4698 of LNCS,
pages 669–680. Springer-Verlag, 2007.

[Hal04] Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 24, pages
529–562. Chapman & Hall/CRC, 2nd edition, 2004.

[Han00] Iddo Hanniel. The design and implementation of planar arrangements of
curves in Cgal. M.Sc. thesis, School of Computer Science, Tel Aviv Univer-
sity, 2000.

[HH00] Iddo Hanniel and Dan Halperin. Two-dimensional arrangements in Cgal and
adaptive point location for parametric curves. In Proceedings of International
Workshop on Algorithm Engineering (WAE), volume 1982 of LNCS, pages
171–182. Springer-Verlag, 2000.

110 BIBLIOGRAPHY

[HH03] Shai Hirsch and Dan Halperin. Hybrid motion planning: Coordinating two
discs moving among polygonal obstacles in the plane. In Jean-Daniel Boisson-
nat, Joel Burdick, Ken Goldberg, and Seth Hutchinson, editors, Algorithmic
Foundations of Robotics V, pages 239–255. Springer-Verlag, 2003.

[HH08] Idit Haran and Dan Halperin. An experimental study of point location in pla-
nar arrangements in Cgal. The ACM Journal of Experimental Algorithmics,
13, 2008.

[HHK+07] Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.
An adaptable and extensible geometry kernel. Computational Geometry: The-
ory and Applications, 38(1-2):16–36, 2007.

[HK07] Peter Hachenberger and Lutz Kettner. 3D Boolean operations on nef polyhe-
dra. In Cgal Editorial Board, editor, Cgal User and Reference Manual. 3.3
edition, 2007.

[HKL+99] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Cul-
ver. Fast computation of generalized voronoi diagrams using graphics hard-
ware. In Proceedings of 26th Annual International Conference on Computer
Graphics and Interactive Techniques, pages 277–286. Association for Comput-
ing Machinery (ACM) Press, 1999.

[HKL04] Dan Halperin, Lydia E. Kavraki, and Jean-Claude Latombe. Robotics. In
Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 48, pages 1065–1093. Chapman &
Hall/CRC, 2nd edition, 2004.

[HKM07] Peter Hachenberger, Lutz Kettner, and Kurt Mehlhorn. Boolean operations on
3D selective Nef complexes: Data structure, algorithms, optimized implemen-
tation and experiments. Computational Geometry: Theory and Applications,
38(1-2):64–99, 2007. Special issue on Cgal.

[HL04] Dan Halperin and Eran Leiserowitz. Controlled perturbation for arrangements
of circles. volume 14, pages 277–310, 2004.

[HLW00] Dan Halperin, Jean-Claude Latombe, and Randall H. Wilson. A general
framework for assembly planning: The motion space approach. Algorithmica,
26:577–601, 2000.

[Hob99] John D. Hobby. Practical segment intersection with finite precision output.
Computational Geometry: Theory and Applications, 13(4):199–214, 1999.

[Hof04] Christoph M. Hoffmann. Solid modeling. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 56, pages 1257–1278. Chapman & Hall/CRC, 2nd edition, 2004.

BIBLIOGRAPHY 111

[HP01] Dan Halperin and Eli Packer. Snap rounding revisited. In Abstracts of 17th
European Workshop on Computational Geometry, pages 82–85. Freie Univer-
sität Berlin, 2001.

[HP02] Dan Halperin and Eli Packer. Iterated snap rounding. Computational Geom-
etry: Theory and Applications, 23:209–225, 2002.

[HRS92] Craig D. Hodgson, Igor Rivin, and Warren D. Smith. A characterization of
convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere.
Bull. (New Series) of the AMS, 27:246–251, 1992.

[HS98] Dan Halperin and Christian R. Shelton. A perturbation scheme for spherical
arrangements with application to molecular modeling. Computational Geom-
etry: Theory and Applications, 10:273–287, 1998.

[HW07] Iddo Hanniel and Ron Wein. An exact, complete and efficient computation of
arrangements of Bézier curves. In Proceedings of ACM Symposium on Solid
and Physical Modeling (SPM), pages 253–263. Association for Computing Ma-
chinery (ACM) Press, 2007.

[IIM85] Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre
geometry and its applications. SIAM Journal on Computing, 14(1):93–105,
1985.

[KCMK00] John Keyser, Tim Culver, Dinesh Manocha, and Shankar Krishnan. Effi-
cient and exact manipulation of algebraic points and curves. Computer-Aided
Design, 32(11):649–662, 2000.

[Ket99] Lutz Kettner. Using generic programming for designing a data structure
for polyhedral surfaces. Computational Geometry: Theory and Applications,
13(1):65–90, 1999.

[Ket07a] Lutz Kettner. 3D polyhedral surfaces. In Cgal Editorial Board, editor, Cgal

User and Reference Manual. 3.3 edition, 2007.

[Ket07b] Lutz Kettner. Halfedge data structures. In Cgal Editorial Board, editor,
Cgal User and Reference Manual. 3.3 edition, 2007.

[KK95] Lydia E. Kavraki and Mihail N. Kolountzakis. Partitioning a planar assembly
into two connected parts is NP-complete. Information Processing Letters,
55:159–165, 1995.

[KLPY99] Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee K. Yap. A core
library for robust numeric and geometric computation. In Proceedings of 15th
Annual ACM Symposium on Computational Geometry (SoCG), pages 351–
359. Association for Computing Machinery (ACM) Press, 1999.

112 BIBLIOGRAPHY

[kLsKE98] In kwon Lee, Myung soo Kim, and Gershon Elber. Polynomial/rational ap-
proximation of Minkowski sum boundary curves. Graphical Models and Image
Processing, 60(2):136–165, 1998.

[KMP+08] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap.
Classroom examples of robustness problems in geometric computations. Com-
putational Geometry: Theory and Applications, 40(1):61–78, 2008.

[KMW98] Sanjeev Khanna, Rajeev Motwani, and Randall H. Wilson. On certificates and
lookahead in dynamic graph problems. Algorithmica, 21(4):377–394, 1998.

[KN04] Lutz Kettner and Stefan Näher. Two computational geometry libraries: Leda

and Cgal. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 65, pages 1435–1463. Chap-
man & Hall/CRC, Boca Raton, FL, 2nd edition, 2004.

[KR91] Anil Kaul and Jarek R. Rossignac. Solid-interpolating deformations: Con-
struction and animation of PIPs. In Proceedings of European Computer Graph-
ics Conference (Eurographics), pages 493–505, 1991.

[Lat91] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

[LC91] Ming C. Lin and John F. Canny. A fast algorithm for incremental distance
calculation. In Proceedings of IEEE International Conference on Robotics and
Automation, pages 1008–1014, 1991.

[LM04] Ming C. Lin and Dinesh Manocha. Collision and proximity queries. In Ja-
cob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 35, pages 787–807. Chapman & Hall/CRC,
2nd edition, 2004.

[LPT08] Sylvain Lazard, Luis Peñaranda, and Elias Tsigaridas. A Cgal based alge-
braic kernel based on RS and application to arrangements. In Abstracts of
24th European Workshop on Computational Geometry, pages 91–94, 2008.

[Luk57] Dorman Luke. Stellations of the rhombic dodecahedron. The Mathematical
Gazette, 41(337):189–194, 1957.

[Mey06] Michal Meyerovitch. Robust, generic and efficient construction of envelopes
of surfaces in three-dimensional space. In Proceedings of 14th Annual Euro-
pean Symposium on Algorithms (ESA), volume 4168 of LNCS, pages 792–803.
Springer-Verlag, 2006.

[Mir98] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM
Transactions on Graphics, 17(3):177–208, 1998.

[MN00] Kurt Mehlhorn and Stefan Näher. Leda: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK, 2000.

BIBLIOGRAPHY 113

[MO06] Kurt Mehlhorn and Ralf Osbild. Reliable and efficient computational geom-
etry via controlled perturbation. In Automata, Languages and Programming,
volume 4051 of LNCS, pages 299–310. Springer-Verlag, 2006.

[MS88] David A. Musser and Alexander A. Stepanov. Generic programming. In Pro-
ceedings of International Conference on Symbolic and Algebraic Computation,
volume 358 of LNCS, pages 13–25. Springer-Verlag, 1988.

[MS03] Kurt Mehlhorn and Michael Seel. Infimaximal frames: A technique for making
lines look like segments. International Journal of Computational Geometry
and Applications, 13(3):241–255, 2003.

[Mul90] Ketan Mulmuley. A fast planar partition algorithm, I. Journal of Symbolic
Computation, 10(3-4):253–280, 1990.

[MWZ07] Michal Meyerovitch, Ron Wein, and Baruch Zukerman. 3D envelopes. In
Cgal Editorial Board, editor, Cgal User and Reference Manual. 3.3 edition,
2007.

[Mye98] Nathan Myers. A new and useful template technique: “Traits”. In Stanly B.
Lippman, editor, C++ Gems, volume 5 of SIGS Reference Library, pages 451–
458. Cambridge University Press, Cambridge, UK, 1998.

[Nat88] B. K. Natarajan. On planning assemblies. In Proceedings of 4th Annual ACM
Symposium on Computational Geometry (SoCG), pages 299–308. Association
for Computing Machinery (ACM) Press, 1988.

[NLC02] Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong. Voronoi diagrams on the
sphere. Computational Geometry: Theory and Applications, 23(2):183–194,
2002.

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley
& Sons, NYC, 2nd edition, 2000.

[Ove96] Mark H. Overmars. Designing the computational geometry algorithms library
Cgal. In Proceedings of ACM Workshop on Applied Computational Geome-
try, Towards Geometric Engineering, volume 1148, pages 53–58, London, UK,
1996. Springer-Verlag.

[PF06] Sylvain Pion and Andreas Fabri. A generic lazy evaluation scheme for exact
geometric computations. In 2nd Library-Centric Software Design Workshop,
2006.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, NY, 1985.

[PY07] Sylvain Pion and Mariette Yvinec. 2D triangulation data structure. In Cgal

Editorial Board, editor, Cgal User and Reference Manual. 3.3 edition, 2007.

114 BIBLIOGRAPHY

[Rog03] Vadim Rogol. Maximizing the area of an axially-symmetric polygon inscribed
by a simple polygon. Master’s thesis, Technion, Haifa, Israel, 2003.

[Sch00] Stefan Schirra. Robustness and precision issues in geometric computation.
In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational
Geometry, chapter 14, pages 597–632. Elsevier Science Publishers, B.V. North-
Holland, Amsterdam, North-Holland, 2000.

[See07] Michael Seel. 2D Boolean operations on nef polygons. In Cgal Edito-
rial Board, editor, Cgal User and Reference Manual. 2007.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings
of 16th IEEE Symposium on the Foundations of Computer Science, pages
151–162, 1975.

[SH89] Jack Snoeyink and John Hershberger. Sweeping arrangements of curves.
In Proceedings of 5th Annual ACM Symposium on Computational Geometry
(SoCG), pages 354–363. Association for Computing Machinery (ACM) Press,
1989.

[Sha04] Micha Sharir. Algorithmic motion planning. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 47, pages 1037–1064. Chapman & Hall/CRC, 2nd edition, 2004.

[SKS02] Joon-Kyung Seong, Myung-Soo Kim, and Kokichi Sugihara. The Minkowski
sum of two simple surfaces generated by slope-monotone closed curves. In
Geometric Modeling and Processing — Theory and Applications, pages 33–
42, 2002.

[SLL02] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library. Addison-Wesley, 2002.

[SS94] Jack Snoeyink and Jorge Stolfi. Objects that cannot be taken apart with two
hands. Discrete & Computational Geometry, 12:367–384, 1994.

[SSH08] Ophir Setter, Micha Sharir, and Dan Halperin. Construction two-dimensional
Voronoi diagrams via divide and conquer of envelopes in space, 2008.
Manuscript.

[Sug02] Kokichi Sugihara. Laguerre Voronoi diagram on the sphere. Journal for
Geometry and Graphics, 6(1):69–81, 2002.

[SWK03] Kevin Sahr, Denis White, and A. Jon Kimerling. Geodesic discrete global
grid systems. Cartography and Geographic Information Science, 30(2):121–
134, 2003.

[Tar72] Robert E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

BIBLIOGRAPHY 115

[Tou85] Godfried Toussaint. Movable separability of sets. North-Holland, 1985.

[VKSM05] Gokul Varadhan, Shankar Krishnan, T. V. N. Sriram, and Dinesh Manocha.
A simple algorithm for complete motion planning of translating polyhedral
robots. International Journal of Robotics Research, 24(11):983–995, 2005.

[VM06] Gokul Varadhan and Dinesh Manocha. Accurate Minkowski sum approxima-
tion of polyhedral models. Graphical Models and Image Processing, 68(4):343–
355, 2006.

[Wei02] Ron Wein. High-level filtering for arrangements of conic arcs. In Proceedings
of 10th Annual European Symposium on Algorithms (ESA), volume 2461 of
LNCS, pages 884–895. Springer-Verlag, 2002.

[Wei05] Ron Wein. Efficient implementation of red-black trees with split and catenate
operations. Technical report, Tel-Aviv University, 2005. http://www.cs.

tau.ac.il/~wein/publications/pdfs/rb_tree.pdf.

[Wei07] Ron Wein. The Integration of Exact Arrangements with Effective Motion
Planning. Ph.D. thesis, The Blavatnik School of Computer Science, Tel Aviv
University, 2007.

[WF05] Ron Wein and Efi Fogel. The new design of Cgal’s arrangement package.
Technical report, Tel-Aviv University, 2005. http://www.cs.tau.ac.il/

~wein/publications/pdfs/Arr_new_design.pdf.

[WFZH05] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced pro-
gramming techniques applied to Cgal’s arrangement package. In 1st Library-
Centric Software Design Workshop, 2005.

[WFZH07a] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements.
In Cgal Editorial Board, editor, Cgal User and Reference Manual. 3.3 edi-
tion, 2007.

[WFZH07b] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced pro-
gramming techniques applied to Cgal’s arrangement package. Computational
Geometry: Theory and Applications, 38(1–2):37–63, 2007. Special issue on
Cgal.

[WL94] Randall H. Wilson and Jean-Claude Latombe. Geometric reasoning about
mechanical assembly. Artificial Intelligence, 71(2):371–396, 1994.

[WSD03] Yanyan Wu, Jami J. Shah, and Joseph K. Davidson. Improvements to al-
gorithms for computing the Minkowski sum of 3-polytopes. Computer-Aided
Design, 35(13):1181–1192, 2003.

[WvH07] Ron Wein, Jur P. van den Berg, and Dan Halperin. The visibility-Voronoi
complex and its applications. Computational Geometry: Theory and Applica-
tions, 36(1):66–87, 2007.

http://www.cs.tau.ac.il/~wein/publications/pdfs/rb_tree.pdf
http://www.cs.tau.ac.il/~wein/publications/pdfs/rb_tree.pdf
http://www.cs.tau.ac.il/~wein/publications/pdfs/Arr_new_design.pdf
http://www.cs.tau.ac.il/~wein/publications/pdfs/Arr_new_design.pdf

116 BIBLIOGRAPHY

[Yap04] Chee K. Yap. Robust geomtric computation. In Jacob E. Goodman and
Joseph O’Rourke, editors, Handbook of Discrete and Computational Geome-
try, chapter 41, pages 927–952. Chapman & Hall/CRC, 2nd edition, 2004.

Links

[1] Using Cgal for robust planar geometry processing in Agilent ADS.
http://acg.cs.tau.ac.il/projects/external-projects/agilent-ads/

project-page.

[2] Algorithmic automation.
http://goldberg.berkeley.edu/algorithmic-automation.

[3] Boost — portable C++ libraries.
http://www.boost.org.

[4] Boost, Generic Programming Techniques.
http://www.boost.org/community/generic_programming.html.

[5] Cgal — computational geometry algorithms library.
http://www.cgal.org.

[6] The Core number library homepage.
http://cs.nyu.edu/exact/core_pages.

[7] Ecg — effective computational geometry for curves and surfaces.
http://www-sop.inria.fr/prisma/ECG.

[8] Esolid — exact boundary evaluation of low-degree curved solids.
http://www.cs.unc.edu/~geom/ESOLID.

[9] Exacus — efficient and exact algorithms for curves and surfaces.
http://www.mpi-inf.mpg.de/projects/EXACUS.

[10] Function object.
http://en.wikipedia.org/wiki/Function_object.

[11] GeometryFactory.
http://www.geometryfactory.com.

[12] Gmp — GNU multiple precision arithmetic library.
http://gmplib.org.

[13] Gnuplot homepage.
http://www.gnuplot.info.

117

http://acg.cs.tau.ac.il/projects/external-projects/agilent-ads/project-page
http://acg.cs.tau.ac.il/projects/external-projects/agilent-ads/project-page
http://goldberg.berkeley.edu/algorithmic-automation
http://www.boost.org
http://www.boost.org/community/generic_programming.html
http://www.cgal.org
http://cs.nyu.edu/exact/core_pages
http://www-sop.inria.fr/prisma/ECG
http://www.cs.unc.edu/~geom/ESOLID
http://www.mpi-inf.mpg.de/projects/EXACUS
http://en.wikipedia.org/wiki/Function_object
http://www.geometryfactory.com
http://gmplib.org
http://www.gnuplot.info

118 LINKS

[14] Google maps.
http://maps.google.com.

[15] Imagemagick homepage.
http://www.imagemagick.org/script/index.php.

[16] Cgal arrangement of Irit free-form curves.
http://www.cs.technion.ac.il/~cs234326/projects/IRIT_CGAL/index.htm.

[17] Leda — library for efficient data types and algorithms.
http://www.algorithmic-solutions.com/enleda.htm.

[18] Leda external package: Sphere geometry.
http://www.mpi-inf.mpg.de/LEDA/friends/SphereGeometry.html.

[19] Mapc — efficient and exact manipulation of algebraic points and curves.
http://www.cs.unc.edu/~geom/MAPC.

[20] Minkowski sum related movies.
http://acg.cs.tau.ac.il/movies.

[21] The QuickCD library homepage.
http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html.

[22] Real-time high dynamic range image-based lighting.
http://www.daionet.gr.jp/~masa/rthdribl.

[23] Wolfram Mathworld simple polygon. Simple polygon.
http://mathworld.wolfram.com/SimplePolygon.html.

[24] The Solid library homepage.
http://www.win.tue.nl/cs/tt/gino/solid/.

[25] Stl — C++ standard template library.
http://www.sgi.com/tech/stl.

[26] Swift++ library homepage.
http://gamma.cs.unc.edu/SWIFT++/.

[27] The web3D homepage.
http://www.web3d.org.

[28] Christophe Weibel. Minkowski sums.
http://roso.epfl.ch/cw/poly/public.php.

http://maps.google.com
http://www.imagemagick.org/script/index.php
http://www.cs.technion.ac.il/~cs234326/projects/IRIT_CGAL/index.htm
http://www.algorithmic-solutions.com/enleda.htm
http://www.mpi-inf.mpg.de/LEDA/friends/SphereGeometry.html
http://www.cs.unc.edu/~geom/MAPC
http://acg.cs.tau.ac.il/movies
http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html
http://www.daionet.gr.jp/~masa/rthdribl
http://mathworld.wolfram.com/SimplePolygon.html
http://www.win.tue.nl/cs/tt/gino/solid/
http://www.sgi.com/tech/stl
http://gamma.cs.unc.edu/SWIFT++/
http://www.web3d.org
http://roso.epfl.ch/cw/poly/public.php

Index

affine hull, 69
algorithm

output sensitive, 1, 4, 14, 45, 60
algorithmic automation, 78
application programming-interface, 12
arrangement, 2, 17, 45, 69, 79, 91
assembly partitioning, 19, 77
Assignable, 6

BFS, 96
Boolean set-operations, 39, 94

regularized, 39
breath-first search, see BFS

cartography, 19
CCB, 23
central projection, 79, 81
collision detection, 46, 57
components of the boundary, see CCB
concept, 5, 6
constructive solid geometry, see CSG
contraction point, 19
controlled perturbation, 96
convex hull, 2, 45, 60, 61, 66
CSG, 39, 97

DBG, see directional blocking graph
Dcel, 12, 21, 22, 48, 53, 92
decorator, 22, 35
depth-first search, see DFS
DFS, 88
diagram

minimization, 13
normal, 2
slope, 2, 4
Voronoi, 42

dioctagonal pyramid, 55
directional blocking graph, 78
distance function, 42

dodecahedron
rhombic, 80

Dupin cyclide, 13, 19, 35

envelope
lower, 41

function object, 8

Gaussian map, 2, 46, 67
cubical, 45
spherical, 45

generic programming, 3, 5, 6, 8, 9, 11, 92
geodesic, 2
geographic information system, 99
graph

directed acyclic, 29

halfedge data-structure, see HDS
Hds, 21, 48

identification curve, 20

kinetic framework, 4

Leda, 8
Lisp, 5

map overlay, see overlay
minimization diagram, 41
Minkowski sum, 1, 18, 39, 45, 65, 79, 91
model, 5, 6
motion planning, 19
motion space, 78, 80

NDBG, see nondirectional blocking graph
nondirectional blocking graph, 78
number type, 3

field, 3

object

119

120 INDEX

function, 33
object-oriented programming, 5, 92
observer, 22, 27, 92
overlay, 25, 43, 67, 84, 87–89

penetration depth, 45
planning

assembly, 78
point location, 28
polygon

Jordan, 95
relatively simple, 95
simple, 95
weakly simple, 95

polyline, 3, 35
polytope, 1
puzzle, 79

refinement, 6
reflection mapping, 98
regularization, 87

separation distance, 45
snap rounding, 96
Split Star, 80
surface

parametric, 19
sweep line, 19, 24, 97

tag dispatching, 33
traits, 5

geometry, 3, 21
topology, 21

unit cube, 45
unit sphere, 45

visitor, 24, 92

zone, 26

	Introduction
	Main Contribution
	Background: Minkowski Sums
	Background: Programming
	Generic Programming
	Geometric Programming
	Computational Geometry Algorithms Library

	Thesis Outline and Related Publications

	Arrangements on Surfaces
	Related Work
	Parametric Surfaces
	The Arrangement Package Architecture
	The Data Structure
	Member Operations
	Cell Extension

	The Arrangement Facilities
	Sweep Line
	Map Overlay
	Zone Construction
	Observers
	Point Location

	Geometry-Traits Concepts
	The Geometry-Traits Adaptor
	Geometry-Traits Models
	Geometry-Traits Extension
	A Geometry-Traits Model that Handles Polylines

	Arrangements of Geodesic Arcs on the Sphere
	The Geometry-Traits Model

	Applications
	Regularized Boolean Set-Operations
	Envelopes
	Voronoi Diagrams

	Minkowski Sum Construction
	Gaussian Maps
	The (Spherical) Gaussian-Map Method
	The Representation
	Exact Minkowski Sums

	The Cubical Gaussian-Map Method
	The Representation
	Exact Minkowski Sums

	Exact Collision Detection
	Minkowski Sum Complexity
	Experimental Results

	Exact Complexity of Minkowski Sums
	The Upper Bound for k=2
	The Lower Bound for k=2
	Constructing P5
	Constructing Pi, i 5
	Constructing P4

	Maximum Complexity of Minkowski Sums of Many Polytopes
	The Lower Bound
	The Upper Bound

	Assembly Planning
	Introduction
	Split Star Puzzle
	Chapter Outline

	The Partitioning Algorithm
	Implementation Details
	Convex Decomposition
	Sub-part Gaussian Map Construction
	Sub-part Gaussian Map Reflection
	Pairwise Sub-part Minkowski Sum Construction
	Pairwise Sub-part Minkowski Sum Projection
	Pairwise Minkowski Sum Projection
	Motion-Space Construction
	Motion-Space Processing

	Additional Optimization
	Experimental Results

	Conclusion and Future Work
	Arrangements on Two-Dimensional Surfaces
	Generic Observers
	Property Maps
	Point Location for Surfaces
	Geometry-Traits Models

	Three-Dimensional Arrangements
	Boolean Set-Operations
	Fixing the Data
	Improving the Efficiency
	Non Regularized Operations
	Operating in 3-Space

	Collision Detection
	Reflection Mapping and GIS
	Exact Complexity of Minkowski Sums

	Software Components, Libraries, and Packages
	Visual Simulation
	Software Availability

