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Abstract

Given a collection of balls in three-dimensional space we wish to efficiently identify
pathways in the complement of their union. The desired pathways should balance between
length and clearance. Namely, we prefer short and wide pathways between a given start
point and goal point positioned in the complement. In this thesis we provide an algo-
rithm for identifying good pathways of this type and an efficient implementation of the
algorithm. A major contribution of the thesis is the notion of the pathway diagram which
contains an approximation of an idealistic construct related to the medial axis, and which
unlike the medial axis is easy to compute in the case of the complement of the union of
balls. We provide theoretical analysis of the approximation qualities of the pathway dia-
gram. On top of the algorithm we have developed a software package, MolAxis, to assist
the biologist/biochemist to automatically identify good pathways in the complement of
molecules. We present experimental results that demonstrate the efficiency of our software
in finding pathways in the complement of molecules and attest to the effectiveness of our
approximation scheme.
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Chapter 1

Introduction

Let B be a finite collection of three-dimensional balls and let ∪B denote their union, namely
⋃

B∈B
B. We assume, without loss of generality, that every ball in B is not smaller than

a unit ball. We wish to identify pathways in the complement of ∪B that balance between
length and clearance1. The medial axis of the complement of ∪B is the set of points in this
complement that have more than one closest points in ∪B. A recent result by Lieutier [20]
states that under certain conditions the medial axis of an object and the object itself have
the same ‘shape’ (the technical term is homotopy equivalent), making it suitable for finding
the desired pathways.

We follow a standard practice in biology of modeling a molecule by a collection of
three-dimensional balls, one ball per atom. The term channel is often used in molecular
biology to refer to a probable route taken by a small molecule passing through a hole in
the molecule. A pathway is a curve in the space that lies outside the molecule. If B is
the set of atom balls of a molecule then the boundary surface of ∪B is called the van
der Waals surface of the molecule. The clearance of a point outside the molecule is the
distance between the point and the van der Waals surface of the molecule. Pathways are
not unique and more than one pathway may exist between two points. There are several
ways to define an optimal pathway between two points. The shortest pathway between
two given points typically has the undesirable property that it touches the boundary of
the molecule and hence has zero clearance. High clearance pathways, on the other hand,
can be extremely long. We are interested in finding pathways that balance between length
and clearance. We call such pathways corridors [25] and use them to represent channels;
a formal definition is given in part III. We construct corridors to represent channels since
they are well defined geometric entities that can be approximated in an efficient manner.

The exact medial axis of the complement of the union of balls is a subset of the Voronoi
diagram [6, 8] of the balls and can be computed in an exact manner as shown by Boissonnat
and Delage [7]. We opt for an approximation approach for two main reasons: simplicity
of implementation and speed of computation. There are algorithms that approximate
the medial axis of an object from a set of unorganized points sampled on the surface

1The clearance of a point p on the pathway is distance of p from ∪B.
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CHAPTER 1. INTRODUCTION 7

of the object [2, 14]. Oudot and Boissonnat [22] introduce an algorithm for computing
the medial axis that has certified results for smooth shapes. In a recent paper Giesen et
al. [19] approximate a useful subset of the medial axis of a shape with smooth boundary that
captures the topology of the shape. However, the complement of the union of a collection of
balls is not bounded by a smooth surface, making it difficult to directly apply the techniques
(and hence have the topological guarantees) obtained in these papers. In contrast to the
aforementioned approaches we sample a volume with balls instead of sampling a surface
with points.

The λ-medial axis [9], introduced by Chazal and Lieutier, is a subset of the medial axis,
that for some “regular” values of λ remains stable under Hausdorff distance perturbation.
This leads to an algorithm [9] that constructs an approximation of the λ-medial axis of an
object from a set of noisy unorganized points sampled on or close to the (not necessarily
smooth) boundary surface of the object. We apply theoretical ideas introduced there to
prove geometric convergence of our approximation.

Edelsbrunner et al. [16] define pockets as regions in the complement of a molecule
with limited accessibility from the outside. They also describe an efficient algorithm that
constructs pockets using the celebrated weighted alpha shapes [18]. Pockets are defined
using a continuous growth process of the molecule — a pocket is a region in the complement
that becomes a void before it completely disappears. In their growth process large atoms
grow more slowly, which makes this approach less adequate for locating channels and
determining their dimensions. Since in our approach we replace a set of balls of different
radii with a set of balls of fixed (unit) radius the growth of the approximating balls is
homogeneous, which gives a more intuitive geometric meaning to growth. This property
could be useful beyond the usage described in the thesis, in conjunction with any algorithm
that makes use of weighted alpha shapes.

In another work, Edelsbrunner et al. [17] introduce the notion of topological persistence
during a growth process of the union of balls. In that work an efficient algorithm is de-
scribed that classifies topological changes during the growth process as topological features
or topological noise depending on their lifetime during the process. The theoretical notion
of persistence was extended independently by Chazal et al. [10] and by Cohen-Steiner et
al. [11]. Cohen-Steiner et al. [11] deal with real-valued functions on a topological space.
The persistence diagram of the distance function from ∪B encodes topological character-
istics of the function, giving a measure on the importance of topological features. To the
best of our knowledge our approximation scheme is the first to yield a good approximation
of this persistence diagram, which leads us to believe here as well that our approach is
applicable more widely.

In this thesis we describe an approximation scheme that approximates B by a collection
of unit balls Kε such that the Hausdorff distance between ∪B and ∪Kε is not larger than
a prescribed ε. We focus on a subset of the Voronoi diagram of the centers of Kε which we
call the pathway diagram and show how to compute it. The pathway axis of B (defined in
Chapter 2) is a core subset of the medial axis of the complement of ∪B, which is composed
of all points for which the set of closest balls in B do not have a common intersection.
Informally, it can be seen as a subset of the medial axis that does not include ‘dead ends’,
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(a) Pathway Axis (b) Pathway Diagram

Figure 1.1: An example of a two-dimensional pathway axis and pathway diagram. (a) The input

circles are colored light blue, and their pathway axis is colored red. The discarded parts of the medial

axis are colored gray. (b) An example of a collection of same-size circles Kε (light blue) and the

pathway diagram of their centers (red). The discarded portions of the Voronoi diagram of their

centers is depicted using dotted lines.

which makes it sufficient for identifying pathways. We prove that the pathway diagram
contains an approximation of the pathway axis. See Figure 1.1 for a two-dimensional
illustration of the pathway axis of a collection of circles and a pathway diagram of these
circles. We provide a bound on the number of balls in Kε as a function of ε and the ratio
between the largest and the smallest ball in B. We prove that the pathway diagram is
either close to the medial axis of the complement of ∪B or to the boundary surface of ∪B.

We present MolAxis, a new tool designed for the efficient identification of molecular
channels. MolAxis makes use of the pathway diagram in order to construct corridors. To
the best of our knowledge it is the first attempt to approximate and analyze a subset of
the medial axis of the complement of a molecule in order to construct channels. A major
advantage of our approach is that since the medial axis is composed of two-dimensional sur-
face patches it reduces the dimension of the problem, i.e., it transforms a three-dimensional
problem to a two-dimensional problem. In order to extract the desired corridors we further
reduce the dimension of the problem, transforming it to a problem on graphs, as we will
see in Part III. This dimension reduction, combined with a novel sampling technique, leads
to a highly efficient algorithm.

We implemented MolAxis using the CGAL library. The CGAL [1] open source project
is aimed at making the large body of theoretical algorithms and data structures in com-
putational geometry applicable in practice, while focusing on reliability and performance.
This allowed us to focus on the application oriented aspects of the tool. We show together
with biologists how MolAxis is applied to identify and characterize channels in two differ-
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ent biological settings. In the first setting, which deals with chamber proteins, MolAxis
finds corridors leading from a source point in an inner chamber (or cavity) of a protein to
its surface. MolAxis can automatically compute a source point in the center of the main
chamber using topological persistence. We found that the biologically significant chambers
were automatically identified with a high success rate in this manner on the datasets that
we have examined. We also allow a user-specified source point. In the second setting,
which deals with transmembrane proteins, MolAxis constructs a single channel crossing a
transmembrane protein, using user-defined parameters such as the channel direction vector
and a ball fully contained in the channel. MolAxis is highly efficient and therefore can be
applied to huge datasets such as multiple snapshots generated in a Molecular Dynamics
(MD) simulation of the motion of a protein.

One of the most commonly used tools to compute channel location and dimension is
the program HOLE, developed by Smart et al. [24]. The HOLE method uses a Monte
Carlo simulated-annealing procedure to find the best route for a ball squeezing through
the channel, changing its radius as it passes. A recent tool for computing channels in the
complement of a molecule is the program CAVER by Petřek et al. [23]. It is based on
a three-dimensional grid search in the complement space of the molecule. We compare
our approach with HOLE and CAVER in terms of accuracy, performance and underlying
theoretical guarantees of finding the desired pathways.

MolAxis is available on the web at http://www.cs.tau.ac.il/~eitanyaf/MOLAXIS.

Thesis Outline

The rest of the thesis is organized as follows. In Part I we give the needed background
and explain in detail our algorithm for the construction of the pathway diagram. Part II
is dedicated to the theoretical analysis of our method. We prove properties of our approx-
imation scheme and of the pathway diagram. In Part III we give implementation details
and describe how the pathway diagram is used to construct corridors in the complement
of molecules, which represent molecular channels.



Chapter 2

Preliminaries

Our work builds on a large body of earlier results concerning Voronoi diagrams and the
medial axis. We assume some familiarity with alpha complexes [18] and the λ-medial
axis [9]; however, we define them formally below. We borrow notation mainly from the
work of Attali et al. [4] and the work of Chazal and Lieutier [9]. For any set X we denote
by X̄, Xo, ∂X, Xc and |X| the closure, the interior, the boundary, the complement and the
cardinality of X respectively. B(x, r), Bo(x, r) and S(x, r) denote the closed ball, open ball
and sphere of center x and radius r in R

d respectively. We denote the Euclidean distance
between two points x, y ∈ R

d by d(x, y). The distance between two subsets A,B of R
d is

defined to be d(A,B) = infa∈A,b∈B d(a, b).

2.1 Hausdorff Distance

The one-sided Hausdorff distance between two compact subsets A and B of R
d is:

dH(A|B) = sup
x∈A

d(x,B) .

The (symmetric) Hausdorff distance between two compact subsets A and B of R
d is

the maximum of the two one-sided distances, namely dH(A,B) = max(dH(A|B), dH(B|A)).
We say that A is a Hausdorff approximation of B with an approximation resolution of ε if
the Hausdorff distance between A and B is not larger than ε. In such a case, we will say
for short that A is an ε-approximation of B.

2.2 Medial Axis

Let O be a bounded open subset of R
d. For any point x ∈ O, we denote by ΓO(x) the set of

closest points to x in the complement Oc, namely ΓO(x) = {y ∈ Oc : d(x, y) = d(x,Oc)}.
The Medial Axis M [O] of the open set O is the set of points x ∈ O that have at least two
closest boundary points:

10



CHAPTER 2. PRELIMINARIES 11

M [O] = {x ∈ O : |ΓO(x)| ≥ 2} .

We say that a ball B is empty in O if its interior Bo is contained in O. B is maximal
(or medial) in O if it is empty and not contained in any other empty ball. An alternative
definition of the medial axis of O is the union of the centers of all maximal balls in O.

2.3 Voronoi Diagram and Delaunay Complex

From this point on we restrict ourselves in the thesis to R
3. Let E be a finite point set in

R
3. We define the Voronoi cell of e ∈ E to be Ve = {x ∈ R3 : ∀e′ ∈ E, d(e, x) ≤ d(e′, x)}.

In words, Ve is the set of points in R
3 that are at least as close to e as they are to any

other point of E. For a subset T ⊆ E we define the Voronoi face of T to be VT =
⋂

e∈T Ve.
The Voronoi diagram of E [6] is the collection of Voronoi cells:

V [E] = {VT : ∅ 6= T ⊆ E} .

For 0 ≤ k + 1 ≤ 3, a k-simplex σ in R
3 is the convex hull of k + 1 affinely independent

points. The convex hull of any 0 ≤ l + 1 ≤ k + 1 of these points is an l-simplex and a face
of σ. Note that ∅ is the only (-1)-simplex and it is contained in any simplex. A simplicial
complex is a collection C of simplices that satisfy the following two conditions.

(1) If σ ∈ C and σ′ is a face of σ then σ′ ∈ C.

(2) If σ1, σ2 are in C then σ1 ∩ σ2 is a face of both.

A subset C ′ ⊂ C is a sub-complex of C if it is a simplicial complex itself, that is, it satisfies
the first condition (since the second condition is trivially satisfied). For each Voronoi cell
VT 6= ∅ we define the dual Delaunay simplex σT to be the convex hull of the points of T .
The Delaunay complex is the collection of the Delaunay simplices:

D[E] = {σT : ∅ 6= VT ⊆ V [E]} .

Voronoi diagrams and Delaunay complexes are among the most extensively studied tools
in computational geometry, used to solve numerous, and surprisingly different, problems;
see, e.g. the survey by Aurenhammer and Klein [6].



Chapter 3

Constructing the Pathway Diagram

In this chapter we define and explain what is the pathway diagram of a collection of points
in R

3 and give a formal description of our algorithm. The algorithm is fairly simple and it
proceeds in two steps. First, we construct a collection Kε of unit balls that constitute an ε-
approximation of B under the Hausdorff metric. In a second step we construct the pathway
diagram of the centers of Kε, which we denote by Pε. We defer technical implementation
details to Chapter 7 in Part III. The properties that make Kε and the pathway diagram
useful for our purposes are presented and proved in Part II.

3.1 Pathway Diagram

Let E be a finite point set in R
3 and let σT be a Delaunay simplex of D[E]. Let RT denote

the radius of the smallest ball that contains all points of T on its boundary surface. We
say that the simplex σT is α-exposed if α > RT [18]. The collection of α-exposed simplices
is a simplicial complex, which is called the α-complex of E. We call the collection of the
dual Voronoi faces of simplices that are not in the α-complex the α-Voronoi graph of E
(see Figure 3.1 for a two-dimensional illustration). Note that a simplex σT is α-exposed if
and only if its dual Voronoi face VT and the set of balls centered at the points of T with
radius α, all have a non-empty intersection.

The (α = 1)-Voronoi graph of E will play an important role in the thesis, and we
shall refer to it as the pathway diagram of E. Denoting by K(E) the collection of unit
balls centered at points of E, we can define the pathway diagram of E in a more intuitive
manner. It is the set of Voronoi faces in V [E] that do not intersect ∪K(E). It is a subset of
the medial axis of the complement of ∪K(E) and it contains only flat facets, i.e., patches
of planes bounded by simple polygons. Actually, the only difference between the pathway
diagram of E and the whole medial axis of the complement of ∪K(E) is that the medial
axis also contains parts of planes bounded by arcs whenever the medial axis reaches the
boundary surface of ∪K(E). The pathway diagram is thus defined such that it is completely
piecewise linear and easy to compute, avoiding the need to construct complicated facets
that are bounded by arcs.

12



CHAPTER 3. CONSTRUCTING THE PATHWAY DIAGRAM 13

Figure 3.1: The α-complex of a collection E of five points is colored blue. The α-Voronoi graph

of E is colored red. For clarity we draw in light blue circles with radius α centered at E. Note that

a simplex is part of the α-complex if and only if its dual Voronoi face and the set of circles that are

centered on its vertices have a non-empty intersection.

Definition 3.1 (ε-pathway diagram) Let X be a closed bounded subset of R
3 and let E

be a finite point set. If ∪K(E) is an ε-approximation of X we call the pathway diagram of
E an ε-pathway diagram of X.

3.2 Ball ε-Sample and the ε-Flower

Let X be as above, a closed bounded subset of R
3. We call a point on ∂X a sample point.

We say that a finite point set E is a point sample of an object X ⊆ R
3 if E is contained in

∂X. The set E is a point ε-sample of X if it is a point sample of X and dH(∂X|E) ≤ ε.
We extend the ε-sample concept from points to balls. We call a ball B(x, r) a sample ball
of X if it is contained in X and the distance of its center to the boundary of X is equal
to its radius, namely d(x, ∂X) = r. A set K of balls is a ball sample of X if all balls in K
are sample balls.

Definition 3.2 (ball ε-sample) Given a set K of closed balls, a body X ⊂ R
3 and a

real parameter ε > 0 we say that K is a ball ε-sample of X if K is a ball sample and
dH(∂X|

⋃

K) ≤ ε.

Note that if the balls in K have radius 0, then the definition of the ball sample coincides
with the definition of the point set sample. For the next definition, recall that a spherical
shell is the set difference between two concentric balls of different radii.
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(a) (b)

Figure 3.2: (a) An ε-flower (in the plane) without a void inside. (b) An ε-flower with a void inside.

In both cases, the dashed line bounds the circle that is being approximated.

Definition 3.3 (ε-flower) Let B = B(x, r) be a ball and ε ≥ 0 be real a parameter. A
set K of closed unit balls are called an ε-flower of B if they constitute a ball ε-sample of
B and ∪K is either homeomorphic to a ball or homeomorphic to a spherical shell.

3.3 The Algorithm

The purpose of the algorithm is to construct an ε-pathway diagram of B, and an ε-
approximation of ∪B (note that we approximate all of ∪B and not only its boundary
surface). The input is a collection B of three-dimensional balls such that every ball in B
is not smaller than a unit ball, and a real parameter ε < 1/2. The Algorithm constructs
a collection Eε of points such that the collection Kε of unit balls centered at the points of
Eε constitute an ε-approximation of ∪B. The output of the algorithm is both Kε and the
pathway diagram Pε of Eε.

In the pseudocode below (Algorithm 1) the procedure DUAL(s) returns the dual
Voronoi face of a simplex s, and FLOWER(B, ε) is a procedure that returns the centers
of an ε-flower of a ball B. In Chapter 7 we describe our implementation of the procedure
FLOWER(B, ε), and explain how we construct, with little effort, the pathway diagram of
a point set using the CGAL library.

Remark. Note that for every ball B ∈ B the algorithm adds to Kε a set of unit balls that
are not necessarily all sample balls of B — some of them are completely inside B. These
surplus balls are added to ensure that Kε is a Hausdorff approximation of B and exist only
if the radius of B is larger than two. The number of surplus balls in our applications is
small as we shall see in Part III.
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Algorithm 1 Pathway diagram construction

Input: A collection B of balls each not smaller than a unit ball.
Output: (1) A collection Kε of unit balls such that ∪K is an ε-approximation of ∪B.

(2) An ε-pathway diagram of B.

E ⇐ ∅, Pε ⇐ ∅
for all B = B(x, r) ∈ B do

r′ ⇐ r
while r′ > 0 do

E ⇐ E ∪ FLOWER(B(x, r′), ε)
r′ ⇐ r′ − 1

end while
end for
Kε ⇐ K(E)
D[E] ⇐ Delaunay triangulation of E
for all s ∈ D[E] do

if s is not 1-exposed then
Pε ⇐ Pε ∪ DUAL(s)

end if
end for
return Kε, Pε



Part II

Properties of the Approximation
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Chapter 4

Geometric Properties of the Pathway
Diagram

The algorithm described in Part I for constructing the pathway diagram is fairly simple.
As we will see in Part III, the pathway diagram serves our practical goal of identifying
channels in molecules very well. But can we provide any theoretical guarantees on how
well does the pathway diagram approximate the pathway axis? This turns out to be a
non-trivial question, which we address in this chapter.

In Section 4.2 we formally define the pathway axis as a subset of the medial axis of the
complement of ∪B, and prove that the pathway diagram contains an approximation of the
pathway axis. In order to prove this property we use the λ-medial axis (defined in Sec-
tion 4.1) as a mediator, i.e., we show that the pathway diagram contains an approximation
of the λ-medial axis, and that the λ-medial axis contains the pathway axis.

The clearance of a point p in the pathway diagram Pε is the minimal distance between p
and ∪Kε. The exact clearance of a point p in (∪B)c is the minimal distance between p and
∪B. In Section 4.3 we prove that the clearance function can serve as a good approximation
of the exact clearance function. We rely on this property in Part III, where we are interested
in approximating three-dimensional curves in (∪B)c that balance between exact clearance
and length.

4.1 Preliminaries

λ-Medial Axis

Let O be a bounded open subset of R
d. The strictly positive, real valued function RO

defined on O is the distance to the boundary:

RO(x) = d(x,Oc) .

Recall that ΓO(x) is the set of closest points to x in the complement Oc. There always
exists a unique closed ball with minimal radius enclosing ΓO(x) [9]. The real valued,

17
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positive function F is defined as the radius of this smallest closed ball enclosing ΓO(x), or
formally:

F(x) = inf{r : ∃y ∈ R
d, B(y, r) ⊃ ΓO(x)} .

We denote by Θ(x) the center of this smallest enclosing ball. Of course, when x 6∈ M [O],
we have ΓO(x) = {Θ(x)} and F(x) = 0. Given a real λ ≥ 0 the λ-Medial Axis is defined
to be:

Mλ[O] = {x ∈ O : F(x) ≥ λ} .

We say that λ is a regular value of O if the function that maps ν ∈ R to Mν [O] in R
d

is continuous under the Hausdorff metric at ν = λ. Formally, λ is a regular value of O if
for every δ > 0 there exists a ψ > 0 such that for any ν > 0 that satisfies |λ − ν| < ψ it
holds that dH(Mλ[O],Mν [O]) < δ. It is shown in [9] that if λ is a regular value of a shape
O, then the λ-medial axis transform is continuous at O for the Hausdorff distance:

Theorem 4.1 (Chazal and Lieutier [9]) Let O be a bounded open subset of Rd and λ
be a regular value of O. For every δ > 0, there exists µ > 0 such that for every open subset
Õ of R

d,
dH(Oc, Õc) ≤ µ =⇒ dH(Mλ[O],Mλ[Õ]) ≤ δ .

In other words, if λ is a regular value of O then the λ-medial axis of O is stable under
the Hausdorff metric. Next we examine the λ-medial axis of the complement of a finite
point set.

The λ-medial axis is formally defined on bounded open subsets of R
3, yet the complement

of a closed bounded set like ∪B or a finite point set is not bounded. To resolve this
technicality we limit ourselves from now on to a large open ball Q = B(cq, rq) that contains
∪B. For example, when we refer to the complement of a closed set C ⊂ Q we mean the
intersection of Cc and Q, i.e., Q \ C.

λ-Voronoi Graph

Let E be a finite point set and let σT be a Delaunay simplex of the Delaunay complex
D[E]. We say that σT is λ-enclosed if the points of T can be enclosed in a sphere of
radius not greater than λ. The collection of λ-enclosed simplices is a simplicial complex,
which is named the λ-complex. Note that a simplex σT is λ-enclosed if and only if the
set of balls centered at T with radius λ have a non-empty intersection. We call the dual
of its complement, namely the collection of the dual Voronoi faces of simplices not in the
λ-complex, the λ-Voronoi graph (see Figure 4.1 for a two-dimensional illustration).

By definition, the λ-Voronoi graph of E and the λ-medial axis of Ec are the same.
Therefore, we regard the λ-medial axis as an extension of the λ-Voronoi graph from the
complement of finite point sets to general open bounded subsets. When dealing with a
finite point set we will interchange between both terms.
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Figure 4.1: The λ-complex of a collection E of five points is colored blue and green. The λ-Voronoi

graph of E is colored red. For clarity we draw circles with radius λ centered at E in light blue. Note

that a simplex is part of the λ-complex if and only if the circles that are centered at its vertices

have a non-empty intersection. Note that the green triangle is λ-enclosed but not α-exposed, for

α = λ, (compare with Figure 3.1) because even though the circles centered at its three vertices share

a common intersection, the intersection is disjoint from the dual Voronoi face of the triangle (which

is required for a simplex to be α-exposed).

Approximating the λ-Medial Axis

Let O be a bounded open subset of R
d. We denote the boundary of O by S = ∂O = Ō∩Oc.

The λ-medial axis of Sc is divided into an inner and outer λ-medial axis. The inner (resp.
outer) λ-medial axis is contained in O (resp. Oc). A finite point set E is called a µ-noisy
sample1 of S if the Hausdorff distance between S and E is less than µ. Chazal and Lieutier
provide [9] an algorithm for approximating the λ-medial axis of Sc from the λ-Voronoi
Graph of a µ-noisy point sample of S, which is based on Theorem 4.1.

λ-Voronoi graph and α-Voronoi graph

Recall that the pathway diagram of E is the (α = 1)-Voronoi graph of E. In contrast to
the λ-Voronoi graph, the α-Voronoi graph is defined only for finite point sets and cannot
be extended to general open subsets of R

3, such as the complement of ∪B. Therefore, to
state properties of the pathway diagram we make use of a relation between the λ-Voronoi
graph and the α-Voronoi graph for α = λ, which we discuss next.

For α = λ, if a simplex σT ∈ D[E] is α-exposed (see definition in Section 3.1) it is

1We use ‘µ’ instead of the natural choice ‘ε’ since in this thesis ‘ε’ denotes the Hausdorff approximation
quality of Kε.
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necessarily λ-enclosed but not vice versa. This is because σT is λ-enclosed if the set of balls
centered at T with radius λ have a non-empty intersection XT , which is a weaker predicate
than the α-exposed predicate which requires that the dual Voronoi face VT intersects XT

as well ((XT ∩ VT ) 6= ∅). Thus the α-Voronoi graph of E contains the λ-Voronoi graph of
E for α = λ. The lemma below states this and more; denoting by LVGλ[E] the λ-Voronoi
graph of E we restate a lemma given in [4], using our terminology and notation:

Lemma 4.2 [4] For any finite point set E, the pathway diagram of E contains LVG1[E]
and the two are homotopy equivalent.

4.2 Pathway Axis

We define a function O(X) that maps a closed bounded subset X ⊆ Q to Q \X, which is
an open subset of Q. For each point x ∈ M [O(∪B)] we define IB(x) to be the set of balls
in B closest to x:

IB(x) = {B ∈ B : ΓO(∪B)(x) ∩ B 6= ∅} .

We define the pathway axis of B, denoted by PA[B], to be the subset of M [O(∪B)] for
which the balls of IB(x) do not share a common point:

PA[B] = {x ∈ M [O(∪B)] :
⋂

B∈IB(x)

B = ∅} .

We consider the pathway axis sufficient for finding pathways since it is a subset of the
medial axis of O(∪B) without ‘dead ends’. The following theorem states that the pathway
diagram that our algorithm constructs contains an approximation of the pathway axis
of B. A collection of balls is said to be in general position if no degeneracies occur, namely
the common intersection of the boundary spheres of any two, three or four balls in the
collection is not a single point.

Theorem 4.3 Let B be a finite collection of balls in general position that are each not
smaller than a unit ball. For any δ > 0 there exists an ε > 0 such that the pathway
diagram Pε, which Algorithm 1 constructs satisfies dH(PA[B] | Pε) < δ.

In order to prove this theorem we first prove several auxiliary claims. Let Bu be the
canonical unit ball, i.e., a ball with radius 1 that is centered at the origin. For each ball
B = B(c, r) ∈ B we define a concentric ball BH = B(c, r− 1). Let H denote the collection
of balls {BH}B∈B, which we call the offset balls of B. Recall that the Minkowski sum of
two sets X,Y is X ⊕Y = {x + y : x ∈ X, y ∈ Y }. From the definition of H and Q we note
the following:

Observation 4.4 O(∪H) = O(∪B) ⊕ Bu and ∪B = ∪H ⊕ Bu.
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The first Lemma will allow us to shift our focus from the pathway axis to the λ-medial
axis, enabling us to make use of the stability property of the λ-medial axis, as expressed
in Theorem 4.1.

Lemma 4.5 The pathway axis of B, PA[B], is contained in the (λ = 1)-medial axis of
O(∪H), M1[O(∪H)].

Proof: Let x be a point in PA[B]. It follows that x ∈ M [O(∪B)]. The ball B(x,RO(∪B))
is a medial ball in O(∪B) and thus the ball B(x,RO(∪B) + 1) is a medial ball in O(∪H)
by Observation 4.4, or in other words x ∈ M [O(∪H)]. Let us consider the point set
Γ = ΓO(∪H)(x) of closest points to x in ∪H. Assume that x 6∈ M1[O(∪H)] and therefore
there exists a ball C = B(c, r) with radius not larger than 1 such that Γ ⊆ C. For each
y ∈ Γ it holds that d(c, y) ≤ 1, and therefore for each B ∈ IB(x) it holds that c ∈ B.
We get that c ∈

⋂

B∈IB(x) B which means that x 6∈ PA[B] in contradiction. It follows that

x ∈ M1[O(∪H)]. 2

Recall that Eε is the finite point set constructed by Algorithm 1. By examining the
algorithm we conclude that the point set Eε satisfies:

(1) Each point p in Eε lies either on the boundary surface of ∪H or inside ∪H.

(2) For each point p on the boundary surface of ∪B, it holds that d(p,∪Kε) < ε.

(3) For each point p in ∪H, it holds that d(p, Eε) < 1.

We wish to approximate the (λ = 1)-medial axis of O(∪H) using the (λ = 1)-medial axis
of the complement of Eε. Yet the complement of O(∪H) and Eε are not as close as the
conditions of Theorem 4.1 require. We use an intermediate set Õ that on the one hand is
close to O(∪H) and on the other hand has the same λ-medial axis as the complement of
Eε. The lemma below defines Õ and proves the latter condition. It is a variant of Lemma
5.2 of Chazal and Lieutier [9]. Given an open subset O ⊂ R

d such that Oc is bounded,
the lemma defines Õ and shows that under certain conditions Õ and the complement of a
finite point set E have the same λ-medial axis. For any bounded open subset X of R

3 we
let X+µ denote the set {p ∈ R

3 : d(p,X) < µ}. See Figure 4.2 for an illustration.

Lemma 4.6 Let λ and µ be two real positive numbers such that λ > 2µ, and let O be an
open subset of R

d such that the closed set C = Oc is bounded. Assume that the finite point
set E satisfies:

(1) E ⊂ C,

(2) dH(∂C | E) < µ and

(3) dH(C | E) < λ.

The λ-medial axis of Õ = O+µ \ E is equal to the λ-Voronoi graph of E.
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(a) (b)

Figure 4.2: Illustration for Lemma 4.6. (a) The closed set C is colored light blue. A finite point

set E is depicted using small blue dots (discs). (b) The complement of O. It is composed of a subset

of E depicted with dots, and the complement of (Cc)+µ in light blue. If the conditions of the lemma

are satisfied then the λ-medial axis of O is equal to the λ-Voronoi graph of E.

Proof:
Let x be a point of Mλ[Õ]. Suppose there exists a z ∈ (O+µ)c such that d(x, z) =

R
Õ
(x) > µ. Therefore the ball B(x,R

Õ
(x)) is contained in (O+µ)c and does not contain

any point of E. Since x belongs to O and z belongs to (O+µ)c, there exists a point y on
the segment [x, z] such that y ∈ ∂O. The ball B(z, µ) does not intersect O, so d(z, y) ≥ µ
and hence B(y, µ) ⊂ B(x,R

Õ
(x)). But B(x,R

Õ
(x)) ∩ E = ∅ and d(y, E) < µ because

dH(∂O, E) < µ, which is a contradiction. Thus we get that Γ
Õ
(x) ⊂ E, which means that

x belongs to the λ-Voronoi graph of E. This proves one direction.
Let x be a point of the λ-Voronoi graph of E. We know that x ∈ O+µ since dH(C | E) <

λ. If x is in O+µ \ O there exists a point p ∈ ∂C such that d(x, p) < µ and a point e ∈ E
such that d(p, e) < µ. Therefore d(x, e) < 2µ < λ, in contradiction to the fact that x is
a point of the λ-Voronoi graph of E. This means that x is in O. Suppose there exists a
point z ∈ (O+µ)c such that d(x, z) = R

Õ
(x). In a manner similar to the proof of the first

direction we reach a contradiction and conclude that Γ
Õ
(x) ⊂ E. Therefore x ∈ Mλ[Õ],

which completes the proof of the lemma.
2

The last thing we need before proving Theorem 4.3 is to make sure λ = 1 is a regular
value of O(∪H). We state the following observation, regarding the regular values of O(∪H),
without proof.

Observation 4.7 If the balls of B are in general position then λ = 1 is a regular value of
O(∪H).

Proof (Theorem 4.3):
Let δ > 0 be a real number. Since the balls in B are in general position we can apply

Theorem 4.1 to O(∪H), thus there exists a 1/2 > µ > 0 such that for every open set
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O, if dH(O(∪H)c,Oc) < µ then dH(M1[O(∪H)],M1[O]) < δ. We choose ε = 2
5
µ2, and

according to Lemma 5.5 of Chapter 5, Eε contains a µ-noisy sample of the boundary
surface of ∪H. Since dH(∪Kε,∪B) < ε < 1 we also know that dH(∪H | Eε) < 1. We define
the open subset Õ = ((∪H)c)+µ \Eε as in Lemma 4.6. We can apply Lemma 4.6, thus the
(λ = 1)-medial axis of Õ (denoted by M1[Õ]) is equal to the (λ = 1)-Voronoi graph of Eε

(denoted by LVG1[Eε]). From the definition of Õ we know that dH(O(∪H)c, Õc) < µ, thus
dH(M1[O(∪H)] | M1[Õ]) < δ. To complete the proof of the theorem we need to note two
things:

(1) M1[Õ] = LVG1[Eε] ⊆ Pε according to Lemma 4.2

(2) PA[B] ⊆ M1[O(∪H)] according to Lemma 4.5.

2

Remark. The algorithm in [9] does not distinguish between the inner or outer part of the
λ-medial axis. To distinguish the desired portion (inner or outer) an extra postprocessing
stage us required. In our scenario the open set O is the complement of ∪H. The point
sample Eε that our algorithm constructs contains a µ-sample of the boundary surface of ∪H
for some µ. Yet in addition to these points Eε contains surplus points that lie completely
inside ∪H that ‘cover’ ∪H, i.e., the Hausdorff distance between ∪H and Eε is bounded by
λ = 1. This ensures us that the outer λ-medial of O (which is the part that lies within
∪H) is empty, thus we do not need any postprocessing. We proved this property of our
algorithm in Lemma 4.6 above. This required a slight modification of Lemma 5.2 in [9].

4.3 Geometric Convergence

The clearance c(p) of a point p in the pathway diagram Pε is the minimal distance between
p and ∪Kε. The exact clearance c̄(p) of a point p in O(∪B) is the minimal distance between
p and ∪B. The lemma below guarantees that the clearance function can serve as a good
approximation of the exact clearance function.

Lemma 4.8 For any point p ∈ Pε such that c(p) > ε it holds that |c(p) − c̄(p)| ≤ ε.

Proof:
Let p be a point in Pε. The ball B0 = B(p, c(p)) is a medial ball of O(Kε) by definition.

The smaller concentric ball B1 = B(p, c(p) − ε) is empty in O(∪B), since the Hausdorff
distance dH(∪B,∪Kε) ≤ ε. We define the ball B′ to be the maximal empty ball in O(∪B)
that is centered at p, such that B1 ⊆ B′ ⊆ B0. The ball B′ exists and its radius c̄(p)
satisfies the assertions of the lemma. 2



Chapter 5

Complexity of the Approximation

In this chapter we address the complexity of our approximation scheme, focusing on the
number of unit balls in Kε. In Section 5.1 we prove an upper bound on the ratio |Kε|/|B|.
In Section 5.2 we show what is gained from using ball samples over using point samples,
the latter being the standard practice (see, e.g., [19, 22]). Finally, in Section 5.3, we prove
a lemma which we have already used in Section 4.2.

5.1 Upper Bound on |Kε|/|B|

Based on the definitions of a ball sample and a point sample, presented in Section 3.2, we
define the approximation quality of a sample. Let X be a closed bounded subset of R

3, let
E be a finite point sample of X, and let K be ball sample of X. We call the one-sided
Hausdorff distance dH(∂X|E) the approximation quality of E. In a similar fashion, we
call the one-sided Hausdorff distance dH(∂X| ∪K) the approximation quality of K. Given
an integer κ > 0, and denoting by µ the approximation quality of E, we say that E is
κ-light if the number of sample points in any ball of radius µ is not greater than κ, namely
∀x′ ∈ R

3, |B(x′, µ) ∩ E| ≤ κ.
The following theorem gives an upper bound on the number of unit balls needed to

construct an ε-flower of a single ball B ∈ B. In this section we prove the following theorem.

Theorem 5.1 Let B(x, r) be a ball with r ≥ 1, let E be a finite point sample of B(x, r−1).
Let K = K(E) be the collection of unit balls centered at E, which are a ball sample of
B(x, r). Denoting by ε the approximation quality of K, if ε < 1/2 and E is κ-light then:

|E| ≤ κ
16r2

3ε
4

3

.

The following is a corollary of the theorem which gives a bound on the ratio |Kε|/|B|,
assuming the procedure FLOWER(B, ε) produces a κ-light sampling.

24
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Corollary 5.2 If for every ball B(x, r) ∈ B it holds that r ≤ ρ, and the sampling procedure
FLOWER(B, ε) produces a κ-light sampling for an integer κ then:

|Kε|/|B| ≤ κ
16⌈ρ⌉3

3ε
4

3

.

Proof:
Following Algorithm 1, for every ball B(x, r) ∈ B the procedure FLOWER(B, ε) is

called at most ⌈r⌉ ≤ ⌈ρ⌉ times. Summing over all balls in B gives the desired result.
2

In order to prove Theorem 5.1 we first prove several auxiliary claims. The following
lemma gives an upper and lower bound on the number of points in a µ-sample which is
κ-light.

Lemma 5.3 Let E be a µ-sample of a ball B = B(x, r). If E is κ-light and µ <
min(r, 1/2), then 16r2/3µ2 ≤ |E| ≤ κ(16r2/3µ2).

Proof:
Let S = S(x, r) be the boundary sphere of B. We denote by A(X) the surface area of

a bounded surface X. Since E is κ-light it holds that:

A(S) ≤
∑

p∈E

A(S ∩ B(p, µ)) ≤ κA(S) .

It is not difficult to see that for any p ∈ E it holds that 3
4
πµ2 ≤ A(S ∩B(p, µ)) ≤ πµ2.

Therefore we get:
3

4
πµ2|E| ≤ κA(S) .

Since A(S) = 4πr2 we get:
16r2

3µ2
≤ |E| ≤ κ

16r2

3µ2
.

2

In the next lemma we establish a relation between the approximation quality of a point
sample E of B(x, r−1) and the approximation quality of the ball sample K(E) of B(x, r):

Lemma 5.4 Let B = B(x, r) be a ball such that r ≥ 1, and let E be a point sample of
B(x, r − 1). Let ε denote dH(∂B(x, r)| ∪ K(E)), and µ denote dH(∂B(x, r − 1)|E). If
ε < min(r − 1, 1/2) then:

µ2 ≥ 2ε
r − 1

r
.
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p

g

x

d
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∂B(x, r)

∂B(x, r − 1)

Figure 5.1: Geometric relation between µ and ε. The length of dp is ε and the length of cf bounds

µ.

Proof:
Let p ∈ ∂B be a point at distance ε = dH(∂B,∪K) from ∪K. We know p exists since

B and ∪K are compact and ε is the approximation quality. Let k = B(c, 1) be a ball in K
that is ε distant from p. We denote by f the radial projection of p onto the ball B(x, r−1);
see Figure 5.1 for an illustration. We note that c ∈ E is the closest point of E to f , since
k is the closest ball to p. Therefore µ ≥ d(f, c) giving an implicit bound on µ which we
will work out below.

We use the following notation. The intersection of the segment pc with the boundary
of k is marked with d, the closest point to c on the segment px is marked with g, and the
midpoint of cf is marked with m. We denote the length of cf by µ̄. Since µ ≥ d(f, c) = µ̄
it suffice to prove the bound for µ̄. First we note that |cx| = r − 1, |px| = r, |pd| = ε,
|xf | = r − 1, all from the definition. From triangle similarity we know that |fg|/|cf | =

|mf |/|xf | or in other words |fg| = (µ̄)2

2(r−1)
. Considering the triangle △cgp and the equality

|pg| = |fg| + 1 we can express ε as a function of µ̄:

ε = (|pg|2 + |cg|2)1/2 − 1

= ((|fg| + 1)2 + |cg|2)1/2 − 1

= (|cf |2 + 2|fg| + 1)1/2 − 1

= (µ̄2 + 1 +
(µ̄)2

r − 1
)1/2 − 1 .

We can now work towards expressing µ̄ as a function of ε:

(ε + 1)2 = µ̄2 + 1 +
(µ̄)2

r − 1

ε2 + 2ε = (µ̄)2 r

r − 1
.
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Reorganizing the terms we obtain

µ̄2 = (ε2 + 2ε)
r − 1

r
≥ 2ε

r − 1

r
.

Recall that µ ≥ d(f, c) or in other words µ ≥ µ̄. The bound asserted in the lemma
follows.

2

We can finally prove Theorem 5.1, harnessing the lemmas above.
Proof (Theorem 5.1):

Let E be a sample as defined in the theorem and let µ be its approximation quality.
We handle three cases, according to the approximation quality ε of K(E). First, the trivial
case of a small ball. If (r − 1) ≤ ε then E obviously contains a constant number of points.
In the two other cases we can use Lemma 5.4, which states that µ2 ≥ 2ε r−1

r
. We also use

Lemma 5.3 which states that |E| ≤ κ16(r−1)2

3µ2 . In case ε < (r − 1) ≤ ε
1

3 we get:

µ2 ≥ 2ε
r − 1

r
≥ 2ε −

2ε

ε + 1
=

2ε2

ε + 1
≥ ε2 .

We use this bound in conjunction with Lemma 5.3 and get a bound on |E|:

|E| ≤ κ
16(r − 1)2

3µ2
≤ κ

16ε
2

3

3ε2
≤ κ

16

3ε
4

3

≤ κ
16r2

3ε
4

3

.

In the remaining case, where ε
1

3 < (r − 1) we get:

µ2 ≥ 2ε r−1
r

≥ 2ε − 2ε
r
≥ 2ε − 2ε

ε
1
3 +1

= ε(2 − 2

ε
1
3 +1

)

µ2 ≥ 2 ε
4
3

ε
1
3 +1

≥ ε
4

3 .

By using the above inequality together with the bound of Lemma 5.3 we get:

|E| ≤ κ
16(r − 1)2

3µ2
≤ κ

16r2

3ε
4

3

.

2
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(a) (b)

Figure 5.2: Two-dimensional illustration of a ball sample and point sample approach for approxi-

mating a subset of the medial axis of the complement of ∪B. (a) The collection of unit balls Kε are

colored light blue, and the pathway diagram of their centers is colored red. (b) A point sample Sε of

the boundary surface of the balls in B is depicted using small crosses, and balls with radius ε that are

centered at Sε are colored light blue. The λ-Voronoi graph of Sε with λ = ε is colored in red, with

the portion that is contained inside ∪B discarded.

5.2 Comparison with Point Sampling Techniques

We compare here our ball approximation with a standard approach of sampling using
points. In this technique we sample the boundary surface of the balls in B with a collection
of points Sε, such that Sε contains an ε-sample of the surface of ∪B. We construct an
approximation of the λ-medial axis of the complement of ∪B from the λ-Voronoi graph of
Sε with λ = ε, as described in [4] (see Figure 5.2). The λ-Voronoi graph of Sε contains an
irrelevant outer portion which must be discarded, as discussed in the remark at the end of
Section 4.2.

Let us focus on a single ball B ∈ B. The main advantage of our approach is the
relatively small number of unit balls needed to construct an ε-flower of B, compared to the
number of points needed to construct a point ε-sample of B. From Theorem 5.1, we know
that the number Nball of unit balls needed by our algorithm to constitute an ε-flower B
is not more than κ(16r2/3ε

4

3 ). On the other hand, the number Npoint of points needed to
constitute a point ε-sample of B is at least (16r2/3ε2), according to Lemma 5.3. Therefore,
by regarding κ as a constant, we get that the ratio Nball/Npoint is Ω(ε2/3).
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5.3 Upper Bound on Point Approximation Quality

Let B be a ball in B, let E be a point sample of B(x, r − 1), and let K = K(E) be the
collection of unit balls centered at E, which are a ball sample of B(x, r). We Denote by
ε the approximation quality of K, and by µ the approximation quality of E. To conclude
this section we state a lemma that gives an upper bound on µ as a function of ε, which we
have already used in Section 4.2.

Lemma 5.5 Let B = B(x, r) be a ball such that r ≥ 1, and let E be a point sample of
B(x, r − 1). Let ε denote dH(∂B(x, r)| ∪ K(E)), and µ denote dH(∂B(x, r − 1)|E). If
ε < 1/2 then:

µ2 ≤
5

2
ε .

Proof:
Let E be a point sample as above and let µ be its approximation quality. Let f be a

point on B(x, r−1) where the distance from the nearest sample point is µ (see Figure 5.1).
Let c ∈ E be the closest point to f and p be the point on ∂B closest to f . Let k = B(c, 1)
denote a ball in K(E). The distance of p to ∪K is achieved on k and is equal to ε̄ for a
real ε̄ ≤ ε. Applying the same analysis as in Lemma 5.4, we get:

µ2 = (ε̄2 + 2ε̄)
r − 1

r
≤ (ε2 + 2ε)

r − 1

r
≤

5

2
ε .

2



Chapter 6

Topological Persistence

Our main goal in this thesis is to find pathways in the complement of a molecule. Yet
Algorithm 1 has an added value: the collection Kε of unit balls can be used to construct a
good approximation of the persistence diagram of the Euclidean distance function from a
union of balls. In Part III we make use of the constructed persistence diagram to compute
the center of the largest chamber in a molecule, which we use as a root starting point
when constructing the desired pathways. In Section 6.1 we repeat verbatim the definitions
introduced by Cohen-Steiner et al. [11], which we need in order to state our results in
Section 6.2. The reader is referred to [21] for an introduction to Homology that is both
rigorous and accessible to non-specialists.

6.1 Background

Given a topological space X and an integer k, we denote the k-th singular homology group
of X by Hk(X), and the k-th Betti number of X by βk(X) = dim Hk(X). We work here
with modulo 2 coefficients, so that homology groups are vector spaces over Z2 = Z/2Z.

Definition 6.1 [11] Let X be a topological space and f a real function on X. A homological
critical value of f is a real number A for which there exists an integer k such that for all
sufficiently small ε > 0 the map Hk(f

−1(−∞, A − ε]) → Hk(f
−1(−∞, A + ε]) induced by

inclusion is not an isomorphism.

Definition 6.2 [11] A function f : X → R is tame if it has a finite number of homological
critical values and the homology groups Hk(f

−1(−∞, A]) are finite-dimensional for all k ∈
Z and A ∈ R.

In other words, the homological critical values are the levels where the homology of the
sub-level sets changes. Assuming a fixed integer k we write Fx = Hk(f

−1(−∞, x]), and
for x < y we define f y

x : Fx → Fy to be the map induced by inclusion of the sub-level set
of x in that of y. We write F y

x = im f y
x for the image of Fx in Fy. By convention we set
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F y
x = {0} whenever x or y is infinite. Let βy

x = dim F y
x denote the persistent Betti number

for all −∞ ≤ x ≤ y ≤ +∞.
Let f : X → R be a tame function, (ai)i=1...n its homological critical values, and

(bi)i=1...n an interleaved sequence, namely bi−1 < ai < bi for all i. We set b−1 = a0 = −∞
and bn+1 = an+1 = +∞. For two integers 0 ≤ i < j ≤ n + 1, we define the multiplicity of

the pair (ai, aj) by µj
i = β

bj

bi−1
−β

bj

bi
+β

bj−1

bi
−β

bj−1

bi−1
. Denoting by R̄ the union R∪{−∞, +∞}

we are ready to define the persistence diagram.

Definition 6.3 [11] The persistence diagram D(f) ⊂ R̄
2 of f is the set of points (ai, aj),

counted with multiplicity µj
i for 0 ≤ i < j ≤ n+1, union all points on the diagonal, counted

with infinite multiplicity.

For points p = (p1, p2) and q = (q1, q2) in R̄
2, let ‖p− q‖∞ be the maximum of |p1 − q1|

and |p2 − q2|. Similarly for functions f and g, let ‖f − g‖∞ = supx |f(x) − g(x)|. Let X
and Y be two multisets of points.

Definition 6.4 [11] The bottleneck distance between X and Y is

dB(X,Y ) = inf
γ

sup
x

‖x − γ(x)‖∞ ,

where x ∈ X and y ∈ Y range over all points and γ ranges over all bijections from X to
Y . Cohen-Steiner et al. prove [11] that small changes in f imply small changes under the
bottleneck metric in the persistence diagram. We use a weakened version of their main
theorem that is sufficient for our needs.

Theorem 6.5 [11] Let A,A′ be two subsets of R
3 such that dH(A,A′) ≤ ε. Let fA, fA′

denote the distance from A,A′ respectively. The persistence diagrams of fA, fA′ satisfy

dB(D(fA), D(fA′)) ≤ ε .

6.2 Our Contribution

The set of unit balls Kε, which our algorithm constructs for a given set B of balls, satisfies
dH(∪B,∪Kε) ≤ ε. Let fB, fKε

denote the distance functions from ∪B,∪Kε respectively.
Note that the homology groups of the two unions are not necessarily the same. But the
unions are similar in some sense: the bottleneck distance between the persistence diagrams
of the two functions is bounded by ε according to Theorem 6.5. This implies that ‘major’
topological features, i.e., large voids or tunnels are the same for both unions, or formally:

Lemma 6.6 Let B be a set of balls, each of radius at least 1, and let Kε be a set of unit
balls such that dH(∪B,∪Kε) ≤ ε. Let fB(x) (resp. fKε

(x)) be the distance function defined
on the complement of ∪B (resp. ∪Kε) of a point x in R

3 from ∪B (resp. ∪Kε). Then the
persistence diagrams of fB(x) and fKε

(x) satisfy

dB(D(fB), D(fKε
)) ≤ ε .



CHAPTER 6. TOPOLOGICAL PERSISTENCE 32

We believe that our approximation scheme can be used whenever the persistent topol-
ogy bears more meaning than the exact topology, trading topological precision with the
Euclidean metrics of the persistence diagram.



Part III

Implementation and Applications
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Chapter 7

Pathway Diagram: Implementation
Details

In Section 7.1 we describe how we implemented the procedure FLOWER(B, ε) which con-
structs an ε-flower for a single ball B ∈ B. In Section 7.2 we explain how we construct the
pathway diagram Pε using ready-made tools. (See Chapter 3 for the definitions of these
entities.)

7.1 ε-Flower Construction

For each ball B = B(c, r) ∈ B we construct a set of unit balls KB that are an ε-flower of B.
Constructing an ε-flower with a minimal number of unit balls is an optimization problem,
closely related to the following problem: “how can n points be distributed on a unit sphere
such that they maximize the minimum distance between any pair of points?”. Such a
configuration of points is called a spherical code and its construction has been intensively
studied [26]. We employ two heuristic sampling techniques for producing an ε-flower.

The first heuristic is Icosahedron refinement. An icosahedron is the Platonic solid
P3 having 12 vertices, 30 edges, and 20 congruent equilateral triangular faces. We denote
by I0(c, r) an icosahedron that has its vertices on the sphere S = S(c, r−1). I0(c, r) can be
refined by adding a vertex in the midpoint of each polyhedron edge and centrally projecting
it onto the sphere S. Three new polyhedron edges are added within each triangle, that
connect the three new vertices on its boundary edges. Each triangle of I0(c, r) is split into
four new smaller triangles. In this way we get a refined icosahedron of degree one, denoted
by I1(c, r), which compromises 42 vertices, 80 triangles and 120 edges. We continue the
refinement recursively and define a sequence of refined icosahedra: I0(c, r), I1(c, r), I2(c, r),
etcetera. For any natural number η we define εico(η) to be the one-sided Hausdorff distance
between the boundary surface of B and the union of the collection of unit balls centered
at the vertices of Iη(c, r). We compute εico(η) by scanning all triangles of Iη(c, r). Given
the user-specified parameter ε > 0 we find the smallest η such that εico(η) ≤ ε, and return
the vertices of Iη(c, r).
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The second heuristic that we employ is Random points. The icosahedron refinement
technique has a major drawback: The number of vertices in each icosahedron in the se-
quence jump in large steps, i.e., 12, 42, . . . Since the first icosahedron has 12 vertices, we
have a ‘gap’ between 2 and 11 that we wish to bridge. We use a naive random sampling
technique to generate preprocessed samples as described next.

We repeat the following procedure for each i = 2, . . . 11. Using a typically large integer
constant Nrnd, we generate j = 1, . . . , Nrnd random point sets Eij, each containing exactly
i points, such that the points of Eij are located on the sphere S(c, r − 1). Recall that for
any finite point collection E ⊂ R

3 we denote by K(E) the collection of unit balls centered
at E. We choose the set Eij̃, 1 < j̃ ≤ Nrnd, such that:

• The union of the unit balls in K(Eij̃) is homeomorphic to a ball or a spherical shell.

• For any 1 < j ≤ Nrnd it holds that dH(∂B| ∪ K(Eij̃)) ≤ dH(∂B| ∪ K(Eij̃)).

We denote Eij̃ by Ei and denote the one-sided Hausdorff distance dH(∂B|∪K(Eij̃)) by
εrnd(i). After completing the procedure for all 2 ≤ i ≤ 11 we have 10 computed point sets
{Ei}i=2,...11 with their respective one-sided Hausdorff distances {εrnd(i)}i=2,...11. Now, given
the user-specified parameter ε, we choose the minimal 2 ≤ i ≤ 11 such that εrnd(i) ≤ ε.
If i exists we use Ei as the centers of the ε-flower. If no i satisfies εrnd(i) ≤ ε we use
icosahedron refinement.

7.2 Computing the Pathway Diagram

We compute the (α = 1)-Voronoi graph of Eε using the 3D Alpha Shapes package [12] of
the CGAL library. We use exact arithmetic to ensure that the algorithm is robust. The
Alpha Shapes data structure allows to retrieve the α-complex for any α value. We set the
pathway diagram Pε to be the collection of dual Voronoi faces of the simplices that are not
in the (α = 1)-complex of Eε.



Chapter 8

MolAxis

We call a possible route in a protein where smaller molecules can pass a corridor (we
formally define corridors in Section 8.1). Based on the ideas presented so far in the thesis
we devised a program, MolAxis, to assist the biologist/biochemist in finding corridors in
molecules. Given a molecule represented as a union of balls, on top of the pathway diagram
of the molecule, we construct a tree which we call the corridor tree, which captures possible
relevant pathways in the pathway diagram. In this and the next chapter we assume some
familiarity with basic terminology in molecular biology.

First we wish to provide some intuition as to what is a corridor. Imagine a volcano
erupting at a given point which lies outside the molecule volume (for example, located
inside a molecular chamber). The lava is flowing out of the volcano mouth in a set of
streams that flow faster where the passage is wide and slower where the passage is narrow.
Whenever a stream reaches an obstacle (like the molecule or another stream) that cannot
be bypassed it stops flowing. Streams tend to balance between length and clearance and
they represent corridors in this analogy.

As already noted, we model a molecule using a collection of three-dimensional balls, one
ball per atom and assign each atom ball its corresponding van der Waals (VDW) radius.
For a given molecule, we set our input ball collection B to be the collection of atom balls.
We scale the atoms such that the smallest atom ball is a unit ball. Given a user-specified
parameter ε > 0 we employ Algorithm 1 of Part I, which constructs a set of sample points
Eε, the collection of unit balls Kε centered at Eε, and the pathway diagram Pε of Eε.
In this chapter we elaborate on how we define and extract corridors from the pathway
diagram, as implemented in the MolAxis program.

8.1 Definitions

During the execution of Algorithm 1 each atom ball B ∈ B is replaced by a collection
KB of unit balls. We call each ball K ∈ KB an approximate ball of B, and refer to the
collection Kε = ∪B∈BKB of unit balls as the approximate balls of the molecule. We keep a
two-directional mapping between each atom ball B ∈ B and the collection KB of unit balls
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in Kε, which approximate B. We call the union of the approximate balls the approximate
molecule. A pathway π is a curve in space that lies outside the approximate molecule and
is contained in the pathway diagram.

The approximate VDW surface is the boundary surface of the approximate molecule.
Let π be a pathway and p be a point on it. The clearance c(p) of p is the minimal distance
between p and the approximate VDW surface. The lining balls of p are the collection of
(one or more) approximate balls with a minimal distance to p. We call an atom B ∈ B a
lining atom of p if at least one of the lining ball(s) of p approximates B. A lining residue
of p is a residue that contain one or more lining atoms of p.

The profile of π is the clearance of the points on π as a function of the distance along
the pathway. The pathway ball of p ∈ π is the ball with radius c(p) that is centered at p.
The pathway surface of π is the boundary (envelope) surface of the union of all pathway
balls of π. The bottleneck radius1 of π is the minimal clearance along the pathway, and
the bottleneck point of π is the point in π where the bottleneck radius is achieved. The
bottleneck atoms (resp. bottleneck residues) are the lining atoms (resp. lining residues) of
the bottleneck point.

The exact clearance c̄(p) of a point p in the complement of ∪B is the distance between
p and the (exact) VDW surface. We restate the following observation which is proved in
Lemma 4.8 of Part II:

Observation 8.1 For any p ∈ Pε such that c(p) > ε it holds that |c(p) − c̄(p)| ≤ ε.

This observation justifies our use of the clearance function as an approximation of the
exact clearance function.

8.2 Pathway Graph Construction

The pathway diagram is composed of two-dimensional patches. In order to reduce the
problem to a one-dimensional problem we create a graph which contains only vertices and
edges. First, we discard all facets of the pathway diagram. Due to geometric properties
of the Voronoi diagram of points, the maximal clearance of a bounded facet is achieved
on one of its boundary vertices. Thus discarding facets favors pathway clearance (at the
possible expense of increasing the pathway length). A more robust approach could have
been to sample vertices within the facet, yet we did not find this improvement necessary.
Second, some edges of the pathway diagram are rays, going to infinity. We replace the
rays with segments by intersecting the pathway diagram with a bounding sphere, as we
describe next.

In Chapter 4 we used a large bounding sphere Q = B(cq, rq) that contains ∪B for the
sake of the analysis. Here we set Q to be user-specified sphere. Q represents the locus
of interest within R

3, i.e., all computation will be limited to the inside of Q. For each
Voronoi edge e = (vi, vo) that intersects Q, with vi inside Q and vo outside Q, we construct

1Do not confuse this term with the unrelated bottleneck distance which is defined and used in Chapter 6.
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a new vertex ve that is the intersection of e and Q. We call ve a boundary vertex. We
also construct a boundary edge e′ = (vi, ve), which is the part of e that lies within Q. We
define V to be the collection of Voronoi vertices of the pathway diagram that lie within Q
along with all the boundary vertices. In a similar fashion, we define E to be the collection
of Voronoi edges of the pathway diagram that lie completely within Q along with all the
boundary edges. We construct a graph G = G(V,E) which we call the pathway graph.
From this point on we restrict ourselves to pathways that are contained in the pathway
graph.

8.3 Corridor Tree Construction

Pathways are not unique and more than one pathway can exist between two points. There
are several ways to define an optimal pathway between two points. One way is the shortest
pathway between the two points. Another way is to focus only on the clearance of the
pathway. The shortest pathway between two given points typically has the undesirable
property that it can get arbitrarily close to the boundary of the molecule and hence has
close to zero bottleneck radius. High clearance pathways, on the other hand, can be
extremely long. We are therefore interested in finding pathways that balance between
length and clearance.

For any vertex v ∈ V located at p ∈ R
3 we define its clearance to be c(v) = c(p). For

each edge e = (v, v′) ∈ E, the edge clearance c(e) is defined as follows:

c(e) = min

(

Cmax,
c(v)

2
+

c(v′)

2

)

,

where Cmax is a user-defined constant, which serves as an upper bound on the clearance.
We define a weight function w(e) over the edges that accounts for the length of the edge
and the clearance of points along the edge as follows:

w(e) =
d(v, v′)

(c(e))2
.

We employ a minimum weight optimization algorithm on the graph G and compute
a tree. The weight function w(e) favors pathways that are both short and wide and can
be seen as a flux optimization. The weight function can be easily modified and adapted
to optimize other criteria. We select a root vertex s in a manner described below and
compute the tree rooted at s using Dijkstra’s algorithm [15] on G with the weights defined
by w(e). We call this tree the corridor tree of the molecule.

During the computation of the tree each vertex v is assigned a flux weight W (v), which
is the sum of the weights of the edges on the path between s and v. We say that u ∈ V is
an ancestor of v ∈ V if it is contained in the (single) path from the root vertex s to v in
the corridor tree. A vertex v ∈ V is called a leaf vertex if it is a leaf in the corridor tree,
i.e., v is not an ancestor of any vertex in V . A corridor π is a path in the corridor tree that
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reaches a leaf vertex vπ. We define the flux weight of a corridor π to be the flux weight
W (vπ) of its leaf vertex vπ.

8.4 Querying the Corridor Tree

The corridor tree construction is done as a preprocess, and it is saved to a file. We support
various queries to allow the user to identify, display and analyze a single corridor in the
corridor tree. The user can query the corridor tree in order to identify the corridor that
has the smallest flux weight and that passes through a user-specified sphere. MolAxis gives
as output the corridor profile, lining atoms, lining residues, bottleneck radius, bottleneck
atoms and bottleneck residues. For visualization purposes, MolAxis constructs the corridor
surface of channels either as a collection of balls (see Figure 9.4) or as a meshed surface
(see Figure 9.7).

MolAxis supports special queries designed for two scenarios, namely chamber channels
(see Figure 9.4) and cross channels (see Figure 9.2). Chamber channels are channels that
connect an inner chamber to the outside. MolAxis identifies chamber channels by reporting
on corridors that connect the root vertex to boundary vertices as described below. A cross
channel is a channel that crosses the protein from side to side, like a transmembrane
channel. In this case MolAxis gives as a result a concatenation of two corridors that
together represent the channel as described below.

8.5 Chamber Channels

In the first scenario, dealing with chamber channels, we select the root vertex s to be one
of the vertices within the chamber. This is done either by selecting a vertex closest to a
user-specified point or by automatically computing the center of the largest chamber in
the protein. The latter option is called auto mode. The largest chamber is deduced using
persistent topology techniques similar to the one used by Edelsbrunner et al. [17] (see also
Chapter 6). It is the vertex in the center of the last remaining void if the approximated
balls are inflated in a uniform manner. We distinguish between two types of chamber
corridors. Corridors that reach a boundary vertex are called exit corridors since they exit
the chamber, while all other corridors are called dead-end corridors. We use exit corridors
to represent the molecular channels.

We define the forking vertex2 v(π1, π2) of two corridors π1, π2 to be the last identical
vertex in the path from s to the leaf vertices of π1 and π2. The vertex v(π1, π2) might
be located far outside the chamber or even outside the convex hull of the molecule, which
means that the two corridors actually represent the same channel. In this case one of the
corridors should be discarded. We introduce a user-specified parameter Fmax called the
forking threshold to control when corridors are discarded as described below.

2The forking vertex is also known as the least common ancestor of the leaf vertices of π1 and π2.
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First we color all vertices in V blue. We traverse all exit corridors in a sequence π1, π2 . . .,
sorted in ascending order of their flux weight, i.e., starting from the exit corridor that has
the best (lowest) flux weight. Let πi be an exit corridor in the sequence. The forking weight
of πi for i > 1 is the maximal flux weight of all forking vertices with respect to all previous
corridors in the sequence:

f(πi) = max
0<j<i

(W (v(πi, πj))) .

We set f(πi) to be the flux weight of the path between the root vertex s and the last red
vertex in πi (in the first iteration no vertex is colored red, so we trivially set f(π1) = 0).
We report to the user the corridor πi only if its forking weight is smaller than the forking
threshold Fmax. If the forking weight of πi is not smaller than the forking threshold, we
regard πi as similar to a previously reported exit corridor and therefore discard it. We
then color the vertices of πi red, and continue to the next exit corridor in the sequence.

8.6 Cross Channels

In this scenario our primary purpose is to identify transmembrane (TM) channels. We add
an imaginary vertex v∞ at infinity, connect it with edges to all the boundary vertices and
set the weight of these new edges to zero. We set the root s to be v∞ and compute the
corridor tree. The user must specify a cross plane, which is a plane that splits the boundary
vertices into two groups: above vertices and below vertices. Given an edge e = e(v1, v2) ∈ E
that is not in the corridor tree, we call e a crossing edge if the ancestor boundary vertex
u1 of v1 is an above vertex and the ancestor boundary vertex u2 of v2 is a below vertex. In
this case, we define the crossing corridor πe to be the concatenation of the corridor leading
from u1 down to v1 in the corridor tree, the edge e, and the corridor leading from v2 up to
u2 in the corridor tree. There might be crossing corridors that bypass the transmembrane
channel. Therefore we discard crossing corridors that do not pass through a user-specified
sphere. If no crossing corridors are left we report that the channel is closed. If there is
more than one candidate for a crossing corridor we report the crossing corridor with the
smallest flux weight.



Chapter 9

Experimental Results and Discussion

All tests were carried out on a Pentium IV 3.0 GHz machine with 1GB of RAM running
a LINUX native operating system. Recall that the user-defined constant Cmax is an upper
bound on the clearance. In all runs Cmax was set to 1.4Å, and the forking threshold Fmax

was set to 6.

9.1 Experimental Results

First, we report on a set of basic tests that were performed on a collection of 3251 balls,
which model a P450 Enzyme isozyme (H atoms discarded). The ratio between the largest
and smallest input balls is ρ = 1.21. In Table 9.1 we report on a set of tests performed
on these input balls with varying resolution. In Figure 9.1 we provide (a) a graph of the
size of Kε as a function of ε, comparing the experimental results to the theoretical bound
proved in Theorem 5.1 and (b) a graph of the number of Voronoi vertices in the pathway
diagram as a function of the number of balls in Kε. Note that as ε becomes smaller and
the number of unit balls increases, the ratio between the number of Voronoi vertices and
number of unit balls tends to one. We believe that the explanation of this phenomenon
is that our sampled points behave like points sampled on a smooth surface [5] or points
sampled on a polyhedral surface [3]. In these two cases the number of faces in the Voronoi
diagrams is less than the worst case Θ(n2) faces, and is O(n log n). Table 9.2 we provide
the runtime breakdown of three runs (for ε = 0.4, ε = 0.1, ε = 0.01).

In the following sections we describe how MolAxis was employed in a biological context.
MolAxis was found to be a very efficient and sensitive tool in identifying transmembrane
(TM) channels within proteins and pathways leading from buried cavities within enzymes
to their surfaces. In two different TM channels, MolAxis detected the main TM channel
and its axis taking into account the global geometry of the protein rendering a fairly smooth
and representative route for a ligand passing through the channel. MolAxis also detected
in few seconds all previously characterized substrate and water channels connecting the
P450 enzymes main cavity, which is the active site, to the outside of the protein. MolAxis
identified channels even if they are nearly closed and pointed to new channels previously
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Resolution Max BPS Unit Balls Vertices Runtime File size

0.4 1 3251 33171 2.456 2.6
0.2 8 9585 59064 5.120 4.5
0.1 12 19996 83272 8.737 6.3
0.05 42 31287 106107 12.229 7.9
0.02 162 114222 223864 35.522 16.9
0.01 162 362262 499761 101.830 37.7
0.005 642 439182 589304 123.444 44.4

Table 9.1: Complexity analysis for a set of runs with different resolutions on a single instance of the

P450 enzyme. Resolution is the Hausdorff approximation quality ε. Max BPS is the maximal number

of unit balls used to approximate a single ball. Unit Balls is the total number of unit balls used in the

approximation (the number of balls in Kε). Vertices is the number of vertices in the pathway graph.

Runtime is the total runtime in seconds, including the construction of the pathway diagram, pathway

graph and corridor tree. File size is the size in MB of the file that contains the corridor tree (called

the .pma file).
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Figure 9.1: Graphs generated for the set of runs that are analyzed in Table 9.1. All scales are

logarithmic. (a) Experimental and theoretical values of the ratio |B|/|Kε|. Maximal is the maximal

BPS, i.e. the maximal number of unit balls used to approximate a single ball. Mean is the mean BPS

over all input balls. Bound is the theoretical upper bound as expressed in Theorem 5.1, with κ = 3.

Note that for ε > 0.2 we need exactly one unit ball to approximate each input ball. (b) The number

of Voronoi vertices in the pathway graph as a function of the number of unit balls in Kε. We draw as

a reference the function y = x using a dotted line. Note that as the number of unit balls increases

the ratio between the number of Voronoi vertices and the number of unit balls becomes closer to one.
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Phase ε = 0.4 ε = 0.1 ε = 0.01

Construct point sample 0.016 (0.6%) 0.088 (1%) 1.720 (1.7%)
Compute triangulation 0.088 (3.5%) 0.568 (6.5%) 10.645 (10.5%)
Compute alpha shape family 0.456 (18.5%) 2.848 (34%) 51.471 (51.5%)
Construct corridor tree 0.112 (4.5%) 0.328 (3.9%) 2.692 (2.7%)
Stream to file 1.000 (40%) 2.412 (28%) 14.25 (14.2%)

Table 9.2: Runtime breakdown of a MolAxis run on a single instance of the P450 enzyme (see the

relevant rows in Table 9.1 for more details about these runs). The time is in seconds, the percentage

of the total runtime is in parenthesis. We report major phases only (that is why the percentages do

not sum to 100%). Note that the most time-consuming phase is the Alpha shape computation, and

as ε decreases it becomes more dominant.

unidentified. As being accurate and highly efficient, MolAxis was used to analyze large
data driven from Molecular Dynamics (MD) simulation of the human CYP3A4 enzyme in
order to understand channels dynamics and gating mechanisms along time.

9.2 Large Pore Channels

Large pore channels (LPC) are membrane proteins located in the outer membrane of the
bacteria and allow the supply of macromolecules (usually sugars) to the cytoplasm. The
specific LPC structure that we experiment with, PDB code 1PRN, consists of a β-barrel
that forms a straight channel with a narrowing in its middle and a wide open conformation
at both its ends. As can be seen in Figure 9.2, the HOLE and MolAxis programs agree on
the results and almost identically find the same pathway and profile with a similar running
time of about 5 seconds. The bottleneck radius of the channel, as computed by MolAxis,
is 3.9Å.

9.3 ABC Transporter

Adenosine triphosphate (ATP) binding cassette (ABC) transporters catalyze the translo-
cation of substrate against a transmembrane concentration gradient by coupling this un-
favorable passage to hydrolysis of ATP. In general both HOLE and MolAxis have similar
outputs. Although HOLE and MolAxis calculate similar pore radius profiles, the axes of
the channel are quite different as seen in Figure 9.3. The path found by HOLE has a
‘zigzagging’ pattern while MolAxis detects a smoother path of the channel which better
represents the channel geometry. We further compare MolAxis and HOLE in Section 9.9.



CHAPTER 9. EXPERIMENTAL RESULTS AND DISCUSSION 44

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

Z axis

P
or

e 
ra

di
us

 (
an

gs
tr

om
s)

HOLE
MOLAXIS

(a) (b)

Figure 9.2: (a) LPC channel surface as calculated by MolAxis (blue) and HOLE (red). The LPC is

shown in cartoons. (b) LPC pore radius along the Z-axis (in Å) as calculated by MolAxis (blue) and

HOLE (red). The Z-axis vector is roughly aligned with the channel direction.

Figure 9.3: Pathway and pathway surface of the ABC transporter as computed by MolAxis (blue)

and HOLE (red). Note that the pathway found by HOLE has a ‘zigzagging’ pattern while the corridor

constructed by MolAxis is smoother.
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9.4 Static Analysis of P450

Cytochrome P450 proteins constitute a large family of mono-oxygenases heme containing
enzymes that oxidize a variety of chemical compounds in microorganisms. The oxidation
of a substrate occurs at the hydrophobic core of the protein. It is of great mechanistic and
biochemical interest to identify and characterize all channels that link the active site to
bulk solvent both statically and dynamically by means of MD simulations. We focus here
on the human CYP3A4, a P450 isozyme.

We match a corridor to a channel if it exits through the relevant secondary structure
elements of the channel. We found that the correspondence between corridors and channels
is high but it is not one-to-one. First, some channels had no corresponding corridors. This
can happen when a channel is closed or when it is nearly closed and its exit mouth is
close to a wider channel. We call the latter phenomenon overshadowing, since another
channel is hiding the relevant channel; see more details in Section 9.6 below. Second,
multiple corridors can match the same channel. We allow the user to address this problem
by adjusting the forking threshold (see Section 8.5). A third possibility is corridors with
no corresponding channels. This either signifies a possibly newly discovered channel or a
random exit route that opens for a short time during an MD simulation.

In Figure 9.4 we show the channels of the human CYP3A4 as computed using MolAxis.
In Table 9.3 we show the correspondence between the corridors found by MolAxis and the
channels of CYP3A4.

Figure 9.4: CYP3A4 channels as detected by MolAxis. CYP3A4 is represented by cartoons and the

heme prosthetic group is represented by its VDW surface and colored orange. Each channel surface

is colored in a different color for the sake of clarity.
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ε 2a 2b 2c 2d 2f 3 S W Other

0.2 3 2 5 1 6 7 4 8 9,10
0.3 3 2 4 1 7 6,9 5 - 8,10
0.4 4 2 3 1 7 5 6 9 8,10

Table 9.3: Ranking of the first 10 identified exit corridors according to the flux weight, in the human

CYP3A4. The biological channels are called ‘2a’, ‘2b’ etc. Exit corridors that do not correspond to

any known channel are placed in the ‘Other’ column.

9.5 MD Simulation Analysis of P450

Enzyme dynamics and motions which may control the opening and closing of channels
are not apparent in static crystal structures and may be missed in structural analysis.
In addition, changes in the dimensions of viewable channels may be overlooked. MD
simulation is a good tool for assessing channel movements along time and for comprehension
of the channel’s gating mechanism and the (cooperative) behavior of residues involved in
its opening and closing.

Like in the previous section we focused here on the human CYP3A4. When employing
MolAxis we used auto mode to find the largest cavity (which is the active site) and to
detect all channels emanating from it to the surface of the enzyme. In most MD snapshots
(roughly 95%) MolAxis detected the center of the active site of the human CYP3A4 as the
largest void. The rest of the snapshots were overlooked as their largest cavities found were
not placed in the middle of the active site and thus not biologically significant. As there are
many substrate channels we simplified this example by focusing on one substrate channel,
denoted ‘2e’. The major goal of this analysis is to obtain better insights of the gating
mechanism and residues of the ‘2e’ substrate access channel. We calculated the corridor
surface, bottleneck radius and lining residues of channel ‘2e’ along time. In Figure 9.5 we
show the frequent bottleneck residues and the bottleneck radius of the channel over time.
The analysis of a large number of snapshots was made possible by the high efficiency of
MolAxis.

9.6 Channel and Corridor Correspondence

Recall that a corridor can exist without a corresponding channel, i.e., with no known
biological related data, consequently pointing to a potential newly discovered channel.
Interestingly, the opposite is also possible. In cases where a channel is closed or almost
closed, the corridors that pass through it might actually be dead-end corridors. We call
this phenomenon overshadowing and it occurs when the mouth of a narrow channel is close
to the mouth of a wide channel. In this case we say that the wide channel overshadows
the narrow channel.

For example, let us consider a conformation in which there are two channels, one wide
and one narrow, which leave the chamber in about the same direction. Let us focus on
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Figure 9.5: Analysis of an MD simulation of channel 2e of the human CYP3A4 enzyme. (a) Portion

of time each residue is a bottleneck residue of the corridor. (b) Bottleneck radius of the corridor over

time. The x-axis units are picoseconds.

a vertex in the pathway graph that lies in the mouth of the narrow channel, such that
any pathway passing through the narrow channel must pass through it; see Figure 9.6 for
an illustration. Assume that there are two pathways reaching the vertex in the pathway
graph. The first pathway passes through the narrow channel and reaches the vertex. The
other pathway passes through the wide channel, then passes close to the outer surface of
the molecule and finally reaches the vertex. This detour can happen within the convex
hull of the molecule, i.e., along a groove. The narrow channel will be reported as open if
the optimal pathway (in flux weight terms) is the one going through the narrow channel,
otherwise it will be reported as closed. The user can control this phenomenon by lowering
the user-defined constant Cmax, giving the clearance a lesser weight.

9.7 Geometric Convergence

Corridors found by MolAxis lie close to the medial axis of the complement of the molecule.
We found that the computed corridors are not always identical at different resolutions. This
happens since the medial axis is composed of surface patches, which leaves some freedom
in choosing the one-dimensional pathways. Even if moving on the medial axis there might
be numerous pathways that cross a channel, with a similar flux weight. We observed
that at high resolution of less than 0.05Å, the corridor tree seems to converge (data not
shown). Even so, we note that the seemingly different corridors which are obtained at
low resolutions have similar features, e.g., they pass near the same amino acids and have
similar profiles. Therefore we conclude that MolAxis can be run at low resolutions (such
as 0.1-0.5Å).
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Figure 9.6: An overshadowed channel. The corridor tree is depicted using black lines, S is the root

vertex, A is a vertex close to the mouth of the narrow right channel and B is a boundary vertex.

Since the left channel is wide the shortest corridor reaching vertex A passes through the left wide

channel. Therefore the corridor that passes through the right channel is a dead-end corridor and thus

the channel is reported as closed.

9.8 Comparison with a Grid Based Approach

We compare our approach to a grid-based approach as implemented in the CAVER tool
[23]. CAVER defines a three-dimensional grid covering the convex hull of the given molecule
(represented by a union of balls). Each grid cell is then marked as inner or outer to the
molecule, according to the center of the grid cell. All inner grid cells are discarded. The
centers of the outer grid cells are set as vertices of a graph. CAVER connects neighboring
grid vertices with an edge, and gives weights to the vertices according to their distance
to the surface of the molecule. The corridors are computed using a version of Dijkstra’s
algorithm, similar to the one we use. The main difference from our approach is the number
of vertices needed for the approximation. While limiting ourselves to the medial axis which
is a two-dimensional entity, we construct much fewer vertices, which explains the extremely
large difference in the running time between the two programs (from a couple of seconds
of our program up to hours of CAVER, on the same input). This huge difference allows
application of MolAxis along molecular dynamic trajectories, enabling to follow the channel
dynamics (see Section 9.5). The pathways found by CAVER are close to the medial axis,
which means that the grid points sampled far from the medial axis were actually not needed
(see Figure 9.7a). Even so, note that this is not a property of all weight functions. For
example, if the goal is to minimize a user-specified energy function, the desired pathway
might not necessarily be close to the medial axis. A grid based approach can handle such
a case whereas our approach would probably miss the desired pathway.
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9.9 Comparison with a Monte Carlo Approach

The HOLE method [24] finds a possible route for a ball squeezing through the channel
(changing its radius as it passes). Given a starting point in the channel cavity and a
channel vector, which is a vector in the direction of the channel, HOLE moves a plane P (t)
that is orthogonal to the channel vector in steps along the vector using a parameter t (see
Figure 9.7b). We denote by Sopt(t) the largest sphere centered at the plane which can be
accommodated in the channel without overlap with the VDW surface of the molecule. For
each plane P (t) HOLE uses a Monte Carlo simulated-annealing procedure to construct a
sphere S(t) on the plane P (t) that is close to Sopt(t). This procedure is iterated in the
direction of the channel vector until a series of sphere positions is generated that represents
the channel.

Note that the center of Sopt(t) is actually the point of the medial axis centered at
the plane P (t) with the highest clearance. We compare with HOLE in two theoretical
aspects. First, due to the non deterministic nature of the Monte Carlo procedure, S(t)
might in fact be far away from Sopt(t). Second, since the optimization is done separately
for each plane the computed pathway can be erratic or ‘zigzagging’, as seen in Figure 9.3.
Furthermore, even if we assume HOLE managed to find Sopt(t) the result pathway might
exhibit an unwanted behavior. For the sake of the discussion let us extend the function
Sopt(t) from a discrete set of t values to all real values. Due to properties of the medial
axis the function Sopt(t) is not necessarily continuous in t, which results in ‘jumps’ in the
pathway. We conclude that the optimization done by HOLE can be seen as a clearance-only
optimization. In contrast, the pathways that MolAxis constructs are continuous, and due
to the global optimization approach the pathways balance between length and clearance.
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(a) (b)

Figure 9.7: Comparison of pathways found by MolAxis with pathways found by CAVER and HOLE.

(a) Pathways found by MolAxis (blue) and CAVER (red) of a P450 channel. Note the high correspon-

dence between MolAxis and CAVER, suggesting CAVER pathways are near the medial axis. (b) Zoom

in on pathways found by MolAxis (blue) and HOLE (yellow) of the ABC transporter. The channel

vector used (black arrow) was not exactly aligned with the channel, i.e., there was roughly an angle

of 45 degrees between the two. It is visible that MolAxis is not as sensitive to the channel vector as

the HOLE program.



Chapter 10

Conclusions and Future Work

In this thesis we have introduced the pathway diagram of a collection B of balls in R
3 each

not smaller than a unit ball. We have shown how we employ it to construct pathways in
the complement of their union. We proved several properties of the pathway diagram and
reported on experimental results where the pathway diagram was used to identify pathways
in the complement of molecules.

We have shown how our approximation scheme can be used to approximate the persis-
tence diagram J of the Euclidean distance function from ∪B. An alternative approach for
approximating J is to compute the persistence diagram of the power distance from ∪B, by
using the power diagram of B. The main drawback of the latter approach is that the qual-
ity of the approximation deteriorates as the radius of the largest ball in B increases. We
suggest combining both approaches into a new hybrid approach, in which balls larger than
a real parameter rc > 1 are replaced by balls with a radius of rc, producing a collection
Y of balls that have a radius between 1 and rc, such that the Hausdorff distance between
∪B and ∪Y is not greater than ε. The persistence diagram of the power distance function
from ∪Y can serve as an approximation of the desired persistence diagram J . The main
theoretical question here is what is the optimal value of rc as a function of B and ε, i.e.,
what value of rc minimizes the number of balls in Y . This analysis can produce a new
algorithm which can be useful for finding pathways in the complement of molecules in an
even more efficient manner.

The pathway diagram is a two-dimensional entity. Instead of the naive approach taken
in Part III for reducing the two-dimensional medial axis to a one-dimensional skeleton it
is possible to employ techniques like the one introduced by Dey et al. [13] to simplify the
pathway diagram. This will produce a skeleton of the complement of a molecule, which is
a collection of one-dimensional curves. Viewing the skeleton of the complement of complex
molecules with multiple channels might be insightful for the biologist/biochemist, and using
the skeleton for finding pathways might lead to an even more efficient algorithm.
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