Exact Construction of Minimum-Width Annulus of Disks in the Plane

Ophir Setter Dan Halperin

Tel-Aviv University

$25^{\text {th }}$ European Workshop on Computational Geometry Brussels, Belgium, March 2008

Minimum-Width Annulus

- An annulus is the bounded area between two concentric circles
- The width of an annulus is the difference between its radii R and r
- Goal: given a set of objects (points, segments, disks etc.) find an annulus of minimum width containing the objects (MWA)

Minimum-Width Annulus

- An annulus is the bounded area between two concentric circles
- The width of an annulus is the difference between its radii R and r
- Goal: given a set of objects (points, segments, disks etc.) find an annulus of minimum width containing the objects (MWA)

Applications

Tolerancing Metrology — MWA can be used to calculate the roundness of a manufactured object (how much the object is round)

cgm.cs.mcgill.ca/ªthens/cs507/Projects/ 2004/Emory-Merryman

Related Work

- Algorithms based on Voronoi Diagrams were introduced by Ebara et al. '89 and by Roy and Zhang '92

Related Work

- Algorithms based on Voronoi Diagrams were introduced by Ebara et al. '89 and by Roy and Zhang '92
- Constrained MWA by de Berg et al. '98 — enforcing various useful restrictions on MWA
- MWA bounding a polygon by Le and Lee '91

Related Work

- Algorithms based on Voronoi Diagrams were introduced by Ebara et al. '89 and by Roy and Zhang '92
- Constrained MWA by de Berg et al. '98 - enforcing various useful restrictions on MWA
- MWA bounding a polygon by Le and Lee '91
- Linear and $O(n \log n)$ algorithms for special cases with more information: Swanson et al. '93, Garcia-Lopez et al. '98, Devillers and Ramos '02
- Chan '06 presented a linear $(1+\varepsilon)$-factor approximation algorithm based on coresets

The Connection to Voronoi Diagrams

If MWA exists then:

The Connection to Voronoi Diagrams

If MWA exists then:

The center of the MWA is a vertex of the overlay of the nearest and furthest Voronoi diagrams

3 cases:

The Connection to Voronoi Diagrams

If MWA exists then:
The center of the MWA is a vertex of the overlay of the nearest and furthest Voronoi diagrams

3 cases:
Inner circle touches 3 points - center is a nearest Voronoi vertex

Q (1)

The Connection to Voronoi Diagrams

If MWA exists then:
The center of the MWA is a vertex of the overlay of the nearest and furthest Voronoi diagrams

3 cases:
Outer circle touches 3 points - center is a farthest Voronoi vertex

Q (T)

The Connection to Voronoi Diagrams

If MWA exists then:
The center of the MWA is a vertex of the overlay of the nearest and furthest Voronoi diagrams

3 cases:
Both inner and outer circles touches ≥ 2 points - center is an intersection point between the diagrams (on edges of both diagrams)

MWA of Disks in the Plane

Nearest Voronoi is replaced by the Apollonius diagram

$$
\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|-r_{i}
$$

MWA of Disks in the Plane

Nearest Voronoi Farthest Apollonius is replaced by the Apollonius diagram diagram is not good

$\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|-r_{i}$

MWA of Disks in the Plane

Nearest Voronoi Farthest Apollonius Farthest-Point Faris replaced by the diagram is not good Apollonius diagram
 thest-Site VD replaces the farthest VD

We need to consider
$\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|-r_{i}$ the farthest point of $\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|+r_{i}$ the disk from a point

MWA of Disks in the Plane

Nearest Voronoi Farthest Apollonius Farthest-Point Faris replaced by the diagram is not good Apollonius diagram
 thest-Site VD replaces the farthest VD

We need to consider
$\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|-r_{i}$ the farthest point of $\delta\left(x, d_{i}\right)=\left\|x-c_{i}\right\|+r_{i}$ the disk from a point

Both diagrams have hyperbolic bisectors

Exact Implementation using CGAL

- VD are computed using a randomized Voronoi framework based on CGAL Envelope_3 and Arrangement_2 packages
- Both diagrams implementations are based on the ability to compute arrangements of algebraic plane curves (Eigenwillig and Kerber '08)

Exact Implementation using CGAL

- VD are computed using a randomized Voronoi framework based on CGAL Envelope_3 and Arrangement_2 packages
- Both diagrams implementations are based on the ability to compute arrangements of algebraic plane curves (Eigenwillig and Kerber '08)

- The implementation is robust - all (degenerate) inputs are handled correctly with exact number types
- We use the overlay function of CGAL to overlay the two diagrams
- Total exp. time: $O\left(n \log ^{2} n+k \log n\right)$

Results

No. Disks	Time (secs)	V	E	F
50	10.741	126	213	88
100	26.994	238	395	158
200	62.968	416	659	244
500	185.244	775	1174	400
1000	405.405	1242	1894	653

Results

THE END

Further Reading I

Mark de Berg, Prosenjit Bose, David Bremner, Suneeta Ramaswami, and Gordon T. Wilfong.
Computing constrained minimum-width annuli of point sets.
Computer-Aided Design, 30(4):267-275, 1998.
© Theodore J. Rivlin.
Approximating by circles. Computing, 21:93-104, 1979.
© Michiel H. M. Smid and Ravi Janardan.
On the width and roundness of a set of points in the plane. International Journal of Computational Geometry and Applications, 9(1):97-108, 1999.

Further Reading II

© Hiroyuki Ebara, Noriyuki Fukuyama, Hideo Nakano, and Yoshiro Nakanishi.
Roundness algorithms using the Voronoi diagrams.
In Proceedings of 16th The Canadian Conference on Computational Geometry, volume 41, 1989.
© Utpal Roy and Xuzeng Zhang.
Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error.
Computer-Aided Design, 24(3):161-168, 1992.
Van-Ban Le and Der-Tsai Lee.
Out-of-roundness problem revisited.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):217-223, 1991.

Further Reading III

© Arno Eigenwillig and Michael Kerber.
Exact and efficient 2D-arrangements of arbitrary algebraic curves. In Proceedings of 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 122-131, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics (SIAM).

Timothy Moon-Yew Chan.
Faster core-set constructions and data-stream algorithms in fixed dimensions.
Computational Geometry: Theory and Applications, 35(1-2):20-35, 2006.

