Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space

Ophir Setter

Thesis Exam Tel Aviv University, June 2009

- General framework for computing two-dimensional Voronoi diagrams
 - First exact implementation of several types of diagrams:
 - Möbius diagrams
 - Anisotropic diagrams
 - Farthest-site Voronoi diagrams
 - * and more

- General framework for computing two-dimensional Voronoi diagrams
 - First exact implementation of several types of diagrams:
 - ★ Möbius diagrams
 - Anisotropic diagrams
 - Farthest-site Voronoi diagrams
 - and more
 - Handling diagrams on the sphere (with infrastructure for handling other surfaces)

- General framework for computing two-dimensional Voronoi diagrams
 - First exact implementation of several types of diagrams:
 - Möbius diagrams
 - Anisotropic diagrams
 - ★ Farthest-site Voronoi diagrams
 - * and more
 - Handling diagrams on the sphere (with infrastructure for handling other surfaces)
- Computing minimum-width annulus of a set of disks in the plane: Theory and practice

- General framework for computing two-dimensional Voronoi diagrams
 - First exact implementation of several types of diagrams:
 - * Möbius diagrams
 - Anisotropic diagrams
 - ★ Farthest-site Voronoi diagrams
 - * and more
 - Handling diagrams on the sphere (with infrastructure for handling other surfaces)
- Computing minimum-width annulus of a set of disks in the plane: Theory and practice
- Contributions to the Computational Geometry Algorithms Library

Nearest-Site Voronoi Diagrams

More Diagrams of Linear Objects

On the Sphere

Others

• Farthest-site Voronoi Diagrams:

• Two-site triangle-area distance function Voronoi diagram

Outline

- 3 The Algorithm
 - 4 Implementation Details
- 5 Application: Minimum-Width Annulus
 - 6 Future Work

- Given *n* objects (Voronoi sites) in some space (e.g., ℝ^d, S^d) and a distance function ρ
- The Voronoi Diagram subdivides the space into cells
- Each cell consists of points that are closer to one particular site than to any other site
- Variants include different:
 - Classes of sites
 - Embedding spaces
 - Distance functions (e.g., farthest-site Voronoi diagrams)

Fractals from Voronoi diagrams http://www.righto.com/fractals/vor.html

- Given *n* objects (Voronoi sites) in some space (e.g., ℝ^d, S^d) and a distance function ρ
- The Voronoi Diagram subdivides the space into cells
- Each cell consists of points that are closer to one particular site than to any other site
- Variants include different:
 - Classes of sites
 - Embedding spaces
 - Distance functions (e.g., farthest-site Voronoi diagrams)

- Given *n* objects (Voronoi sites) in some space (e.g., ℝ^d, S^d) and a distance function ρ
- The Voronoi Diagram subdivides the space into cells
- Each cell consists of points that are closer to one particular site than to any other site
- Variants include different:
 - Classes of sites
 - Embedding spaces
 - Distance functions (e.g., farthest-site Voronoi diagrams)

Voronoi diagram on the sphere

- Given *n* objects (Voronoi sites) in some space (e.g., R^d, S^d) and a distance function ρ
- The Voronoi Diagram subdivides the space into cells
- Each cell consists of points that are closer to one particular site than to any other site
- Variants include different:
 - Classes of sites
 - Embedding spaces
 - Distance functions (e.g., farthest-site Voronoi diagrams)

About 1 in 16 papers in computational geometry deals with Voronoi diagrams [Aurenhammer & Klein, 2000]

About 1 in 16 papers in computational geometry deals with Voronoi diagrams [Aurenhammer & Klein, 2000] Theoretical:

- Edelsbrunner and Seidel [1986] observed the connection between Voronoi diagrams and envelopes
- Randomized incremental construction [Guibas et al., 1992]
- Abstract Voronoi diagrams [Klein, 1989, Klein et al., 1993]

About 1 in 16 papers in computational geometry deals with Voronoi diagrams [Aurenhammer & Klein, 2000] Theoretical:

- Edelsbrunner and Seidel [1986] observed the connection between Voronoi diagrams and envelopes
- Randomized incremental construction [Guibas et al., 1992]
- Abstract Voronoi diagrams [Klein, 1989, Klein et al., 1993]

Practical but non-exact:

- VRONI code for two-dimensional Voronoi diagrams of points and line segments (and circular arcs) [Held, 2001]
- Use of Graphics Processing Unit (GPU) [Hoff III et al., 1999, Nielsen, 2008]

Practical and exact:

- New D&C [Aichholzer et al., 2009] computes bounded Euclidean VD in the plane
- CGAL Delaunay graphs for computing standard Voronoi diagrams, Apollonius diagrams, and segment Voronoi diagrams [Boissonnat et al., 2002, Emiris & Karavelas, 2006, Karavelas, 2004].
- Segment Voronoi diagrams [Burnikel et al., 1994] and Randomized incremental construction for abstract VD [Seel, 1994] in LEDA

Lower Envelopes

and Voronoi Diagrams

Definition

Given a set of bivariate functions $S = \{s_1, \ldots, s_n\}$, their lower envelope is defined to be their pointwise minimum:

 $\Psi(\mathbf{x},\mathbf{y}) = \min_{1 \le i \le n} s_i(\mathbf{x},\mathbf{y})$

Lower Envelopes

and Voronoi Diagrams

Definition

Given a set of bivariate functions $S = \{s_1, \ldots, s_n\}$, their lower envelope is defined to be their pointwise minimum:

$$\Psi(x,y) = \min_{1 \le i \le n} s_i(x,y)$$

Corollary

Voronoi diagrams are the minimization diagrams of the distance functions from each site [Edelsbrunner & Seidel, 1986]

Distance functions are paraboloids

Looking from bottom gives us the Voronoi diagram

The Divide-and-Conquer Algorithm

Let S be a set of n sites

- Partition S into two disjoint subsets S_1 and S_2 of equal size
- 2 Construct $Vor_{\rho}(S_1)$ and $Vor_{\rho}(S_2)$ recursively
- Solution Merge the two Voronoi diagrams to obtain $Vor_{\rho}(S)$

The Merging Step

• Overlay $\operatorname{Vor}_{\rho}(S_1)$ and $\operatorname{Vor}_{\rho}(S_2)$

The Merging Step

• Overlay $\operatorname{Vor}_{\rho}(S_1)$ and $\operatorname{Vor}_{\rho}(S_2)$

- Partition each face to points closer to a site in S₁ and points closer to a site in S₂
- Label feature of the refined overlay with the sites nearest to it

The Merging Step

• Overlay $\operatorname{Vor}_{\rho}(S_1)$ and $\operatorname{Vor}_{\rho}(S_2)$

- Partition each face to points closer to a site in S₁ and points closer to a site in S₂
- Label feature of the refined overlay with the sites nearest to it
- Remove redundant features

Complexity

 Theoretical worst-case time complexity is quadratic even for diagrams of linear complexity

Complexity

- Theoretical worst-case time complexity is quadratic even for diagrams of linear complexity
- Using randomization we get a better complexity

Theorem (Sharir)

For a type of two-dimensional Voronoi diagrams of complexity F(n), if we randomly split the sites into two subsets then the expected complexity of the overlay of the Voronoi diagrams is O(F(n)).

Corollary

For a type of two-dimensional Voronoi diagrams of linear complexity the divide-and-conquer envelope algorithm computes it in expected $O(n \log^2 n)$ time. For a type of two-dimensional Voronoi diagrams of $F(n) \in \Omega(n^{1+\varepsilon})$ complexity, the expected running time is $O(F(n) \log n)$.

245

Envelopes and Arrangements in CGAL

- Envelope_3 package in CGAL constructs lower and upper envelopes of general surfaces [Meyerovitch, 2006]
- Based on the Arrangement_on_surface_2 (previously Arrangement_2) package
- Robust and exact
 - All inputs are handled correctly (including degenerate inputs)
 - Exact number types are used to achieve exact results
- Efficient
- Part of the CGAL basic library

Implementation and Interface

- Reduced and simplified interface for diagrams with one-dimensional bisectors
- Computing diagrams the curves of which are currently supported by the arrangement package is made easy
- The framework supports types of diagrams that most frameworks do not support:
 - Quadratic-size diagrams, e.g., Möbius diagrams and triangle-area distance-function Voronoi diagrams
 - Non-connected bisectors, e.g., anisotropic Voronoi diagrams
 - Two-dimensional bisectors

Other Advantages

The diagrams are represented as CGAL arrangements

Other Advantages

The diagrams are represented as CGAL arrangements

- The vertices, edges, and faces of the diagrams can easily be traversed while obtaining coordinates to any desired precision
- Point-location functionality
- Inserting and removing curves

Other Advantages

The diagrams are represented as CGAL arrangements

- The vertices, edges, and faces of the diagrams can easily be traversed while obtaining coordinates to any desired precision
- Point-location functionality
- Inserting and removing curves
- Overlay between diagrams, which is used, for example, for computing minimum-width annulus and for representing the local zones of two competing telecommunication operators [Baccelli et al., 2000]
- etc.

Overlaying an arrangement and a Voronoi diagram on the sphere

Application: Minimum-Width Annulus

- Goal: Given a set of disks in the plane, find an annulus of minimum width containing the disks
- Minimum-width annulus (MWA) has applications in tolerancing metrology and facility location
- We extended a known algorithm for computing a minimum-width annulus of points [Ebara et al., 1989] to disks

www.npl.co.uk/server.php

cgm.cs.mcgill.ca/~athens/cs507/Projects/ 2004/Emory-Merryman

Nearest Voronoi is replaced by the Apollonius diagram

 $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| - \mathbf{r}_i$

Nearest Voronoi is replaced by the Apollonius diagram

Farthest Apollonius diagram is not good in this case

 $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| - r_i$ the farthest point of

We need to consider the farthest point of the disk from a point

Voronoi Nearest is replaced by the Apollonius diagram

Farthest Apollonius diagram is not good in this case

Farthest-Point Farthest-Site VD replaces the farthest VD

 $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| - \mathbf{r}_i$

We need to consider the farthest point of $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| + r_i$ the disk from a point

Voronoi Nearest is replaced by the Apollonius diagram

Farthest Apollonius diagram is not good in this case

Farthest-Point Farthest-Site VD replaces the farthest VD

We need to consider $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| - r_i$ the farthest point of $\delta(\mathbf{x}, \mathbf{d}_i) = ||\mathbf{x} - \mathbf{c}_i|| + r_i$ the disk from a point

Farthest-point farthest-site is a farthest-site Apollonius with negative radii and was easily produced using our framework

Contributions to CGAL

- Contribution in the development of the Arrangement_on_surface_2 package
- Extending the Envelope_3 package to support envelopes embedded on two-dimensional surfaces
- Enhancing existing traits classes for the arrangement package
 - Extending the circular-arcs traits to support unbounded lines (for the Möbius diagram)
 - Contribution to the traits class that supports algebraic plane curves

Boolean set operation on the sphere

Future Work

- Enrich the variety of Voronoi diagrams computed with the framework
 - Voronoi diagrams of circular arcs
 - Voronoi diagrams of weighted segments
 - Voronoi diagrams under the Manhattan metric
 - Hausdorff Voronoi diagrams
 - Diagrams embedded on other two-dimensional surfaces
 - and more

Future Work

- Enrich the variety of Voronoi diagrams computed with the framework
 - Voronoi diagrams of circular arcs
 - Voronoi diagrams of weighted segments
 - Voronoi diagrams under the Manhattan metric
 - Hausdorff Voronoi diagrams
 - Diagrams embedded on other two-dimensional surfaces
 - and more
- Improve the performance of the code in practice
 - Avoid overlaying the entire arrangements in the merge step

Future Work

- Enrich the variety of Voronoi diagrams computed with the framework
 - Voronoi diagrams of circular arcs
 - Voronoi diagrams of weighted segments
 - Voronoi diagrams under the Manhattan metric
 - Hausdorff Voronoi diagrams
 - Diagrams embedded on other two-dimensional surfaces
 - and more
- Improve the performance of the code in practice
 - Avoid overlaying the entire arrangements in the merge step
- Minimum-width annuli of other types of objects

Literature I

Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., & Rabl, M. (2009). Divide-and-conquer for Voronoi diagrams revisited.

In Abstracts of the 25th European Workshop on Computational Geometry (pp. 293–296).

Anstreicher, K. M. (2004).

The thirteen spheres: A new proof. Discrete & Computational Geometry, 31(4), 613–625.

Aurenhammer, F. & Klein, R. (2000).

Voronoi diagrams. In J.-R. Sack & J. B. Urrutia (Eds.), Handbook of Computational Geometry chapter 5, (pp. 201–290). Elsevier Science Publishers, B.V. North-Holland.

Baccelli, F., Gloaguen, C., & Zuyev, S. (2000).

Superposition of planar Voronoi tessellations. Stochastic Models, 16, 69–98.

Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., & Yvinec, M. (2002).

Triangulations in CGAL.

Computational Geometry: Theory and Applications, 22(1-3), 5-19.

Burnikel, C., Mehlhorn, K., & Schirra, S. (1994).

How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In Proceedings of the 2nd Annual European Symposium on Algorithms (ESA), volume 855 of LNCS (pp. 227–239).: Springer-Verlag.

Ebara, H., Fukuyama, N., Nakano, H., & Nakanishi, Y. (1989).

Roundness algorithms using the Voronoi diagrams.

In Abstracts of the 1st Canadian Conference on Computational Geometry (pp. 41).

Literature II

Edelsbrunner, H. & Seidel, R. (1986).

Voronoi diagrams and arrangements. Discrete & Computational Geometry, 1(1), 25–44.

Emiris, I. Z. & Karavelas, M. I. (2006).

The predicates of the Apollonius diagram: Algorithmic analysis and implementation. *Computational Geometry: Theory and Applications*, 33(1-2), 18–57.

Guibas, L. J., Knuth, D. E., & Sharir, M. (1992).

Randomized incremental construction of Delaunay and Voronoi diagrams. *Algorithmica*, 7(1-6), 381–413.

Held, M. (2001).

VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments.

Computational Geometry: Theory and Applications, 18(2), 95–123.

Hoff III, K. E., Keyser, J., Lin, M., Manocha, D., & Culver, T. (1999).

Fast computation of generalized Voronoi diagrams using graphics hardware.

In Proceedings of the 26th Annual International Conference on Computer Graphics and Interactive Techniques (pp. 277–286).: Association for Computing Machinery (ACM) Press.

Karavelas, M. I. (2004).

A robust and efficient implementation for the segment Voronoi diagram.

In Proceedings of the 1st Annual International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) (pp. 51–62).

Klein, R. (1989).

Concrete and Abstract Voronoi Diagrams, volume 400 of LNCS. Springer-Verlag.

Literature III

Klein, R., Mehlhorn, K., & Meiser, S. (1993).

Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications, 3(3), 157–184.

Meyerovitch, M. (2006).

Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In Proceedings of the 14th Annual European Symposium on Algorithms (ESA) (pp. 792–803). Full thesis version on: http://acg.cs.tau.ac.il/projects/internal-projects/envelopes-of-surfaces.

Nielsen, F. (2008).

An interactive tour of Voronoi diagrams on the GPU.

In ShaderX⁶: Advanced Rendering Techniques. Charles River Media.

Seel, M. (1994).

Eine Implementierung abstrakter Voronoidiagramme. Master's thesis, Universität des Saarlandes.

Sugihara, K. (2002).

Laguerre Voronoi diagram on the sphere. Journal for Geometry and Graphics, 6(1), 69–81.

Avoiding Filter Failures: The 3-Bisector Optimization

Observation

Given three Voronoi sites and their pairwise bisectors, if two of the bisectors intersect then the third bisector passes through their intersection point(s)

Avoiding Filter Failures: The 3-Bisector Optimization

Observation

Given three Voronoi sites and their pairwise bisectors, if two of the bisectors intersect then the third bisector passes through their intersection point(s)

Avoiding Filter Failures: The 3-Bisector Optimization

Observation

Given three Voronoi sites and their pairwise bisectors, if two of the bisectors intersect then the third bisector passes through their intersection point(s)

Conclusion

We can prevent filter-failures caused by inserting a curve into an arrangement when the curve passes exactly through an existing vertex of the arrangement

Simplified Zone Algorithm

- CGAL uses the zone algorithm to partition each face with the bisector
- The zone algorithm does redundant work when it comes to the standard Voronoi diagram (all the faces are convex)
- Using a simplified version of the zone algorithm gives us an additional performance improvement

- Applications of diagrams on the sphere:
 - Properties of the spherical Voronoi diagram are used to prove the *the thirteen spheres* theorem [Anstreicher, 2004]
 - Power diagram on the sphere are used to determine whether a query point is in the union of circles on the sphere
 - Find connected components of sets of circles on the sphere

- Applications of diagrams on the sphere:
 - Properties of the spherical Voronoi diagram are used to prove the *the thirteen spheres* theorem [Anstreicher, 2004]
 - Power diagram on the sphere are used to determine whether a query point is in the union of circles on the sphere
 - Find connected components of sets of circles on the sphere
- Given a point *p* and a circle with center *q* and radius *r* on the sphere, the spherical power "proximity" between *p* and the circle is defined to be cos d(p,q)/cos r where d(⋅, ⋅) is the geodesic distance [Sugihara, 2002]

- Applications of diagrams on the sphere:
 - Properties of the spherical Voronoi diagram are used to prove the *the thirteen spheres* theorem [Anstreicher, 2004]
 - Power diagram on the sphere are used to determine whether a query point is in the union of circles on the sphere
 - Find connected components of sets of circles on the sphere
- Given a point *p* and a circle with center *q* and radius *r* on the sphere, the spherical power "proximity" between *p* and the circle is defined to be cos d(p,q) / cos r where d(·, ·) is the geodesic distance [Sugihara, 2002]
- Bisectors are great circles
- Larger circles have greater influence locally, but less influence on the other side of the sphere

- Applications of diagrams on the sphere:
 - Properties of the spherical Voronoi diagram are used to prove the *the thirteen spheres* theorem [Anstreicher, 2004]
 - Power diagram on the sphere are used to determine whether a query point is in the union of circles on the sphere
 - Find connected components of sets of circles on the sphere
- Given a point *p* and a circle with center *q* and radius *r* on the sphere, the spherical power "proximity" between *p* and the circle is defined to be cos d(p,q) / cos r where d(·, ·) is the geodesic distance [Sugihara, 2002]
- Bisectors are great circles
- Larger circles have greater influence locally, but less influence on the other side of the sphere
- There can be empty cells

Comments on Triangle-Area Voronoi Diagram

- The triangle area distance function between a point *x* ∈ ℝ² to a Voronoi site {*p*, *q*} is defined by the area of △*xpq*
- The bisector of two sites {*p*₁, *q*₁} and {*p*₂, *q*₂} consists of two intersecting rational lines in the general case

Comments on Triangle-Area Voronoi Diagram

- The triangle area distance function between a point *x* ∈ ℝ² to a Voronoi site {*p*, *q*} is defined by the area of △*xpq*
- The bisector of two sites {*p*₁, *q*₁} and {*p*₂, *q*₂} consists of two intersecting rational lines in the general case
- If the two segments are parallel, then the bisector is a pair of parallel lines that become the same line if the lengths of the two segments is equal

Comments on Triangle-Area Voronoi Diagram

- The triangle area distance function between a point x ∈ ℝ² to a Voronoi site {p, q} is defined by the area of △xpq
- The bisector of two sites {*p*₁, *q*₁} and {*p*₂, *q*₂} consists of two intersecting rational lines in the general case
- If the two segments are parallel, then the bisector is a pair of parallel lines that become the same line if the lengths of the two segments is equal
- If the two segments are collinear then the bisector is either one line, or, in case that of equal lengths does not exist.
 - Both sides of the one line are dominated by the larger segment

