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Contribution of the Thesis

General framework for computing two-dimensional Voronoi
diagrams

First exact implementation of several types of diagrams:
⋆ Möbius diagrams
⋆ Anisotropic diagrams
⋆ Farthest-site Voronoi diagrams
⋆ and more
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Contribution of the Thesis

General framework for computing two-dimensional Voronoi
diagrams

First exact implementation of several types of diagrams:
⋆ Möbius diagrams
⋆ Anisotropic diagrams
⋆ Farthest-site Voronoi diagrams
⋆ and more

Handling diagrams on the sphere (with infrastructure for handling
other surfaces)

Computing minimum-width annulus of a set of disks in the plane:
Theory and practice

Contributions to the Computational Geometry Algorithms Library
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Available Diagrams
Nearest-Site Voronoi Diagrams

Standard Voronoi diagrams and power diagrams Apollonius (additively-weighted Voronoi) diagrams

Möbius and anisotropic diagrams Voronoi diagram of linear objects
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Available Diagrams
More Diagrams of Linear Objects
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Available Diagrams
On the Sphere
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Available Diagrams
Others

Farthest-site Voronoi Diagrams:

Two-site triangle-area distance function Voronoi diagram
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Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Fractals from Voronoi diagrams
http://www.righto.com/fractals/vor.html
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Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Voronoi diagram of segments
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d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Voronoi diagram on the sphere

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 13



Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Apollonius diagram
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Some of the Related Work

About 1 in 16 papers in computational geometry deals with Voronoi
diagrams [Aurenhammer & Klein, 2000]
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Some of the Related Work

About 1 in 16 papers in computational geometry deals with Voronoi
diagrams [Aurenhammer & Klein, 2000]
Theoretical:

Edelsbrunner and Seidel [1986] observed the connection between
Voronoi diagrams and envelopes

Randomized incremental construction [Guibas et al., 1992]

Abstract Voronoi diagrams [Klein, 1989, Klein et al., 1993]

Practical but non-exact:

VRONI code for two-dimensional Voronoi diagrams of points and
line segments (and circular arcs) [Held, 2001]

Use of Graphics Processing Unit (GPU)
[Hoff III et al., 1999, Nielsen, 2008]
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Some of the Related Work
Cont.

Practical and exact:

New D&C [Aichholzer et al., 2009] computes bounded Euclidean
VD in the plane

CGAL Delaunay graphs for computing standard Voronoi diagrams,
Apollonius diagrams, and segment Voronoi
diagrams [Boissonnat et al., 2002, Emiris & Karavelas, 2006,
Karavelas, 2004].

Segment Voronoi diagrams [Burnikel et al., 1994] and
Randomized incremental construction for abstract VD [Seel, 1994]
in LEDA
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Lower Envelopes
and Voronoi Diagrams

Definition
Given a set of bivariate functions
S = {s1, . . . , sn}, their lower envelope is
defined to be their pointwise minimum:

Ψ(x , y) = min
1≤i≤n

si(x , y)
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Lower Envelopes
and Voronoi Diagrams

Definition
Given a set of bivariate functions
S = {s1, . . . , sn}, their lower envelope is
defined to be their pointwise minimum:

Ψ(x , y) = min
1≤i≤n

si(x , y)

Corollary
Voronoi diagrams are the minimization
diagrams of the distance functions from each
site [Edelsbrunner & Seidel, 1986]

Distance functions are paraboloids

Looking from bottom gives us
the Voronoi diagram
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The Divide-and-Conquer Algorithm

Let S be a set of n sites
1 Partition S into two disjoint subsets S1 and S2 of equal size
2 Construct Vorρ(S1) and Vorρ(S2) recursively
3 Merge the two Voronoi diagrams to obtain Vorρ(S)
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2)
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2)

2 Partition each face to points closer to a site in S1 and points closer
to a site in S2

3 Label feature of the refined overlay with the sites nearest to it
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2)

2 Partition each face to points closer to a site in S1 and points closer
to a site in S2

3 Label feature of the refined overlay with the sites nearest to it
4 Remove redundant features
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Complexity

Theoretical worst-case time complexity is quadratic even for
diagrams of linear complexity
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Complexity

Theoretical worst-case time complexity is quadratic even for
diagrams of linear complexity

Using randomization we get a better complexity

Theorem (Sharir)

For a type of two-dimensional Voronoi diagrams of complexity F (n), if
we randomly split the sites into two subsets then the expected
complexity of the overlay of the Voronoi diagrams is O(F (n)).

Corollary
For a type of two-dimensional Voronoi diagrams of linear complexity
the divide-and-conquer envelope algorithm computes it in expected
O(n log2 n) time. For a type of two-dimensional Voronoi diagrams of
F (n) ∈ Ω(n1+ε) complexity, the expected running time is O(F (n) log n).
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Envelopes and Arrangements in CGAL

Envelope_3 package in CGAL constructs lower and upper
envelopes of general surfaces [Meyerovitch, 2006]

Based on the Arrangement_on_surface_2 (previously
Arrangement_2) package
Robust and exact

All inputs are handled correctly (including degenerate inputs)
Exact number types are used to achieve exact results

Efficient

Part of the CGAL basic library
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Implementation and Interface

Reduced and simplified interface for diagrams with
one-dimensional bisectors

Computing diagrams the curves of which are currently supported
by the arrangement package is made easy
The framework supports types of diagrams that most frameworks
do not support:

Quadratic-size diagrams, e.g., Möbius diagrams and triangle-area
distance-function Voronoi diagrams
Non-connected bisectors, e.g., anisotropic Voronoi diagrams
Two-dimensional bisectors
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Other Advantages
The diagrams are represented as CGAL arrangements
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Other Advantages
The diagrams are represented as CGAL arrangements

The vertices, edges, and faces of the diagrams can easily be
traversed while obtaining coordinates to any desired precision
Point-location functionality
Inserting and removing curves
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Other Advantages
The diagrams are represented as CGAL arrangements

The vertices, edges, and faces of the diagrams can easily be
traversed while obtaining coordinates to any desired precision
Point-location functionality
Inserting and removing curves
Overlay between diagrams, which is used, for example, for
computing minimum-width annulus and for representing the local
zones of two competing telecommunication operators
[Baccelli et al., 2000]
etc.

Overlaying an arrangement and a Voronoi diagram on the sphere

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 31



Application: Minimum-Width Annulus
Goal: Given a set of disks in the plane, find
an annulus of minimum width containing the
disks

Minimum-width annulus (MWA) has
applications in tolerancing metrology and
facility location

We extended a known algorithm for
computing a minimum-width annulus of
points [Ebara et al., 1989] to disks

O
Out

IN

R

r

In

www.npl.co.uk/server.php
cgm.cs.mcgill.ca/˜athens/cs507/Projects/
2004/Emory-Merryman
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MWA of Disks in the Plane
Nearest Voronoi
is replaced by the
Apollonius diagram

δ(x , di ) = ||x − ci || − ri
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MWA of Disks in the Plane
Nearest Voronoi
is replaced by the
Apollonius diagram

Farthest Apollonius
diagram is not good
in this case

δ(x , di ) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point
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MWA of Disks in the Plane
Nearest Voronoi
is replaced by the
Apollonius diagram

Farthest Apollonius
diagram is not good
in this case

Farthest-Point Far-
thest-Site VD re-
places the farthest
VD

δ(x , di ) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point

δ(x , di ) = ||x − ci || + ri
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MWA of Disks in the Plane
Nearest Voronoi
is replaced by the
Apollonius diagram

Farthest Apollonius
diagram is not good
in this case

Farthest-Point Far-
thest-Site VD re-
places the farthest
VD

δ(x , di ) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point

δ(x , di ) = ||x − ci || + ri

Farthest-point farthest-site is a farthest-site Apollonius with negative
radii and was easily produced using our framework
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MWA of Disks in the Plane
Cont.
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MWA of Disks in the Plane
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Contributions to CGAL

Contribution in the development of the Arrangement_on_-

surface_2 package
Extending the Envelope_3 package to support envelopes
embedded on two-dimensional surfaces
Enhancing existing traits classes for the arrangement package

Extending the circular-arcs traits to support unbounded lines (for
the Möbius diagram)
Contribution to the traits class that supports algebraic plane curves

Boolean set operation on the sphere
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Future Work

Enrich the variety of Voronoi diagrams computed with the
framework

Voronoi diagrams of circular arcs
Voronoi diagrams of weighted segments
Voronoi diagrams under the Manhattan metric
Hausdorff Voronoi diagrams
Diagrams embedded on other two-dimensional surfaces
and more
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Future Work

Enrich the variety of Voronoi diagrams computed with the
framework

Voronoi diagrams of circular arcs
Voronoi diagrams of weighted segments
Voronoi diagrams under the Manhattan metric
Hausdorff Voronoi diagrams
Diagrams embedded on other two-dimensional surfaces
and more

Improve the performance of the code in practice
Avoid overlaying the entire arrangements in the merge step
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Future Work

Enrich the variety of Voronoi diagrams computed with the
framework

Voronoi diagrams of circular arcs
Voronoi diagrams of weighted segments
Voronoi diagrams under the Manhattan metric
Hausdorff Voronoi diagrams
Diagrams embedded on other two-dimensional surfaces
and more

Improve the performance of the code in practice
Avoid overlaying the entire arrangements in the merge step

Minimum-width annuli of other types of objects
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Avoiding Filter Failures: The 3-Bisector Optimization

Observation
Given three Voronoi sites and their
pairwise bisectors, if two of the
bisectors intersect then the third
bisector passes through their
intersection point(s)
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Observation
Given three Voronoi sites and their
pairwise bisectors, if two of the
bisectors intersect then the third
bisector passes through their
intersection point(s)
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Avoiding Filter Failures: The 3-Bisector Optimization

Observation
Given three Voronoi sites and their
pairwise bisectors, if two of the
bisectors intersect then the third
bisector passes through their
intersection point(s)

Conclusion
We can prevent filter-failures caused by inserting a curve into an
arrangement when the curve passes exactly through an existing vertex
of the arrangement
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Simplified Zone Algorithm

CGAL uses the zone algorithm to partition each face with the
bisector

The zone algorithm does redundant work when it comes to the
standard Voronoi diagram (all the faces are convex)

Using a simplified version of the zone algorithm gives us an
additional performance improvement

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 49



Power Diagrams on the Sphere
and Applications

Applications of diagrams on the sphere:
Properties of the spherical Voronoi diagram are used to prove the
the thirteen spheres theorem [Anstreicher, 2004]
Power diagram on the sphere are used to determine whether a
query point is in the union of circles on the sphere
Find connected components of sets of circles on the sphere

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 50



Power Diagrams on the Sphere
and Applications

Applications of diagrams on the sphere:
Properties of the spherical Voronoi diagram are used to prove the
the thirteen spheres theorem [Anstreicher, 2004]
Power diagram on the sphere are used to determine whether a
query point is in the union of circles on the sphere
Find connected components of sets of circles on the sphere

Given a point p and a circle with center q and
radius r on the sphere, the spherical power
“proximity” between p and the circle is defined to
be cos d(p,q)

cos r where d(·, ·) is the geodesic
distance [Sugihara, 2002]
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Power Diagrams on the Sphere
and Applications

Applications of diagrams on the sphere:
Properties of the spherical Voronoi diagram are used to prove the
the thirteen spheres theorem [Anstreicher, 2004]
Power diagram on the sphere are used to determine whether a
query point is in the union of circles on the sphere
Find connected components of sets of circles on the sphere

Given a point p and a circle with center q and
radius r on the sphere, the spherical power
“proximity” between p and the circle is defined to
be cos d(p,q)

cos r where d(·, ·) is the geodesic
distance [Sugihara, 2002]

Bisectors are great circles

Larger circles have greater influence locally, but
less influence on the other side of the sphere
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Power Diagrams on the Sphere
and Applications

Applications of diagrams on the sphere:
Properties of the spherical Voronoi diagram are used to prove the
the thirteen spheres theorem [Anstreicher, 2004]
Power diagram on the sphere are used to determine whether a
query point is in the union of circles on the sphere
Find connected components of sets of circles on the sphere

Given a point p and a circle with center q and
radius r on the sphere, the spherical power
“proximity” between p and the circle is defined to
be cos d(p,q)

cos r where d(·, ·) is the geodesic
distance [Sugihara, 2002]

Bisectors are great circles

Larger circles have greater influence locally, but
less influence on the other side of the sphere

There can be empty cells
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Comments on Triangle-Area Voronoi Diagram

The triangle area distance function between a point x ∈ R
2 to a

Voronoi site {p, q} is defined by the area of △xpq

The bisector of two sites {p1, q1} and {p2, q2} consists of two
intersecting rational lines in the general case

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 54



Comments on Triangle-Area Voronoi Diagram

The triangle area distance function between a point x ∈ R
2 to a

Voronoi site {p, q} is defined by the area of △xpq

The bisector of two sites {p1, q1} and {p2, q2} consists of two
intersecting rational lines in the general case

If the two segments are parallel, then the bisector is a pair of
parallel lines that become the same line if the lengths of the two
segments is equal
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Comments on Triangle-Area Voronoi Diagram

The triangle area distance function between a point x ∈ R
2 to a

Voronoi site {p, q} is defined by the area of △xpq

The bisector of two sites {p1, q1} and {p2, q2} consists of two
intersecting rational lines in the general case

If the two segments are parallel, then the bisector is a pair of
parallel lines that become the same line if the lengths of the two
segments is equal
If the two segments are collinear then the bisector is either one
line, or, in case that of equal lengths does not exist.

Both sides of the one line are dominated by the larger segment

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 56


	Overview
	Introduction
	The Algorithm
	Implementation Details
	Application: Minimum-Width Annulus
	Future Work

