
EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

High Quality Surface Mesh Generation for Swept Volumes∗

Andreas von Dziegielewski † Michael Hemmer‡

Abstract

We present a novel and efficient technique to gener-
ate a high quality mesh that approximates the outer
boundary of a swept volume (SV). Our approach
comes with two guarantees. First, the approxima-
tion is conservative, i.e. the swept volume is enclosed
by the output mesh. Second, the one-sided Hausdorff
distance of the generated mesh to the swept volume is
upper bounded by a user defined tolerance. Exploit-
ing this tolerance our method produces an anisotropic
mesh which nicely adapts to the local complexity of
the approximated swept volume boundary. The algo-
rithm is two phased: a initialization phase that gen-
erates a conservative voxelization of the swept vol-
ume, and the actual mesh generation which is based
on CGAL’s Delaunay refinement implementation.

1 Introduction

The swept volume is defined as the entity of all points
touched by a solid (the generator) under the transfor-
mations of either a continuous or discrete trajectory.
In the context of this paper, we assume a discrete
trajectory and define SV as the entity obtained by
linear interpolating the generator geometry between
consecutive time steps, as proposed in [2].

The swept volume plays an important role in com-
puter aided design (CAD), numerically controlled
(NC) machining verification, robot analysis and
graphical modeling. For safety reasons most applica-
tions demand for a conservative approximation of SV,
that is, the result must contain SV. At the same time,
the result should approximate SV as close as possi-
ble while keeping the complexity of the output low,
the latter becoming more and more relevant due to
increasing model complexity and high demands con-
cerning error tolerance. Moreover, a practical algo-
rithm should be tolerant to topologically inconsistent
input data and should preferably impose no restric-
tions on the input models.

∗This work has been supported in part by the 7th Frame-
work Programme for Research of the European Commission,
under FET-Open grant number 255827, CGL, Computational
Goemetry Learning.
†Institut für Informatik, Johannes Gutenberg Universität

Mainz, dziegiel@uni-mainz.de
‡School for Computer Science, Tel Aviv University,

mhsaar@google.mail.com

1.1 Previous and related work

Mathematical formulations describing the swept vol-
ume include Jacobian rank deficiency methods, sweep
differential equations and envelope theory, for a sur-
vey see [1].
Practical approaches, most relying on volumetric SV
representations cannot give geometrical guarantees
because sharp features can be missed ([7, 6]). In [11]
the authors claim to be able to archieve arbitrarily
tight error-bounds (although do not regard conser-
vativeness) but unfortunately no timings for a priori
error bounds are given. They all produce a highly
overtessallated mesh and do not propose any error
bound mesh simplification method. Applying error
bound simplification (e.g. [10]) to these meshes, a pos-
teriori, will always be limited by the storage needed
for the mass of triangles of the original mesh.

Recent approaches [9, 3] are able to produce a con-
servative approximation. In [3] local culling criteria
are applied to generate a superset of the SV bound-
ary that is then blended using a BSP tree. Their out-
put mesh is non-adaptive and possibly highly overtes-
sellated, and further simplification in convex regions
would violate conservativeness. The method pro-
posed in [9] relies on special conservative depth buffer
voxelization and an error bound mesh simplification
phase. The output mesh is adaptive and almost every-
where manifold. It is conservative, but error bounds
can not be given for all concave parts of the SV.

Figure 1: Bunny swept along a trajectory consisting
of 12 transformations.

27th European Workshop on Computational Geometry, 2011

1.2 Our contribution

In contrast to these previous approaches our mesh is
build top down, i.e. we start from a coarse mesh and
apply local refinement until we are guaranteed a con-
servative and error bound approximation of the outer
SV boundary. More precisely, we guarantee that the
one-sided Hausdorff distance to SV does not exceed
the user defined tolerance δ. In addition the result-
ing anisotropic mesh is of high quality while keeping
the complexity relatively low, that is: produced trian-
gles obey quality constrains such as lower bounds on
smallest angles while mesh density adapts to the local
complexity of SV as far as it is required by δ. The
algorithm is two phased: a initialization phase that
generates a conservative voxelization of the swept vol-
ume, and the actual mesh generation which is based
on CGAL’s Delaunay refinement implementation [8].

The Delaunay refiment and the general scheme of
the approach are discussed in Section 2. More details
of the initialization phase, are then discussed in Sec-
tion 3. Implementation details and some preliminary
results are presented in Section 4.

2 Overview

In order to generate the output mesh we apply De-
launay refinement which is known to be one of the
most powerful techniques in the field of mesh gener-
ation and surface approximation. More precisely, our
algorithm utilizes CGAL’s frame work for 3D mesh
generation [8] which we briefly review next.

Starting from an initial points set on the surface of
the to be meshed domain D, the process maintains a
Delaunay triangulation of this point set. Thereby, it
classifies each tetrahedron as interior or exterior ac-
cording to the position of the center of its circumscrib-
ing ball. A triangle is said to belong to the surface
if the classification of the two neighboring tetrahedra
differ. Such a surface facet f can be refined by induc-
ing the intersection point of its Voronoi edge (the dual
of f) with ∂D.1 The refinement process now succes-
sively refines those boundary facets that are classified
as bad facets, for instance, triangles that are consid-
ered two large or whose minimal angle is too small.
The latter criterion ensures well formed triangles in
the resulting mesh.

The main idea of our approach is to add another
criterion that classifies a boundary facet as bad if: (a)
the facet intersects SV or (b) the one-sided Hausdorff-
distance of the facet to SV is too large. Note that
part (a) implies that we can not place intersection
points directly on ∂SV since boundary facets would
always intersect SV in regions where SV is locally
convex. Thus the idea is to place intersections points

1On the duality of the Delaunay triangulation and the
Voronoi diagram see for instance [4]

Figure 2: Sweeping a triangle yields a prism with
three ruled surfaces, each of which is approximated
and tessellated by inserting the diagonal with the
lower dihedral angle.

on some offset of SV at about half of the user defined
tolerance. This way it is guaranteed that boundary
facets eventually fulfill both conditions which in turn
guarantees termination of the generation process.

The approach is two phased: In a initialization
phase we generate a conservative and sufficiently pre-
cise voxelization V0 of SV. In addition we compute
two offsets V1 and V2 by successively adding an ad-
ditional layer of voxels to V0. In the second phase,
the mesh generation phase, we set D = V1. Intersec-
tion points of Voronoi edges with ∂V1 are computed
using bisection. In order to classify a facet, the facet
is voxelized. The facet is considered as bad if one of
its voxels is contained in V0 (ensuring (a)) or outside
of V2 (ensuring (b)).

Thus the core of our approach is an efficient gener-
ation of V0 and its offsets, which is discussed next.

3 Initialization Phase

In order to obey the user defined tolerance δ it is
of course necessary to chose the size of each voxel ε
smaller than δ. Taking into account that the diagonal
of a voxel is ε

√
3, the two layers for V2 as well as an-

other layer for the conservative voxelization of V0 we
have to chose ε < δ/3

√
3. That is, for a reasonable

scenario with an area of interest of about 1m3 and
a user defined tolerance of 1mm this would result in
about 52003 ' 140 ∗ 109 voxel, which brings memory
consumption onto the table. In order to decrease the
memory usage we store a voxelization as an octree
which we, similar to [5], internally represented by a
hash set. A node is marked as occupied by its pure
existence in the hash set. In case all 8 children of a
node are marked the node is marked and the children
can be deleted. A voxel is not covered if its leaf and
non of its ancestors exists in the hash set. Testing con-
tainment as well as insertion is in O(log 1/ε) However,
the most important property is that for a reasonable
SV one can expect a memory consumption that is
proportional to ∂SV, i.e., quadratic in 1/ε.

Assuming a linear interpolation every triangle gives
rise to a deformed prism between two trajectory po-
sitions, see also Figure 2. Thus inserting all voxels of

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000

ti
m

e
[s

ec
]

resolution

total time
initialization

facet badness
point queries

Figure 3: Total time in relation to main functions.

a conservative voxelization of each such prism would
directly yield V0. Since generating all these voxels is
to expensive we follow a culling heuristic by [3] that
tries to rule out those triangles (of the prisms) that do
not contribute to the boundary. This is based on local
criteria of the mesh in relation to the current direction
of the motion. Only the remaining triangles are then
voxelized. The voxelization is based on a simple sub-
division scheme. Starting from the initial cube, the
boxes that still intersect the triangle are subdivided
until the required resolution is reached. The intersec-
tion test is based on the separating axes theorem. The
result ∂Ṽ0 is a subset of V0 and contains ∂V0. In a
next step we generate ∂V1 = V1\V0 by crawling along
the outer boundary of ∂Ṽ0. We then throw away ∂Ṽ0
and generate V0 by filling ∂V1. V1 is then generated
by simply adding ∂V1 to a copy of V0. V2 is created in
a similar fashion. Since ∂Ṽ0 and ∂V1 are stored in a
plain hash set the crawling is, for reasonable volumes,
in O((1/ε)2). Note that the filling is not cubic since
it uses an hierarchic scheme, which we can no discuss
here due to limited space.

4 Preliminary Results

All benchmarks were measured on a Intel(R)
Core(TM) i5 CPU M 450 with 2.40GHz with 512 kB
cache under Ubuntu Linux and the GNU C++ com-
piler v4.4 with optimizations (-O2). However, we only
use one CPU since we did not parallelize any part of
the approach yet.

The swept Stanford Bunny, Figures 1 and 5, were
generated from an initial mesh with 8100 triangles and
trajectories of size 12/50. The resolution was set to
210 = 1024 which corresponds to δ ' 0.005. One can
see that the mesh nicely adapts to the local complex-
ity of SV, with sparse areas in well behaved regions.
The resulting mesh has only about 20k/10k bound-
ary facets. Figure 3 shows the obtained times for the
Stanford Bunny shown in Figure 1. Note that times

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000

ti
m

e
[s

ec
]

resolution

hull generation total
voxelization

crawling

Figure 4: Times for initialization phase.

and resolution are given in a logarithmic scale. The
graphs show the total time in relation to three ma-
jor components: the time for the initialization phase,
time spend in point classification and facet classifica-
tion. The sum of the later two is essentially the time
spend in the mesh generation phase. Thus already for
such a small example the initialization phase clearly
dominates the time used overall.

It turns out that most of the time of the initializa-
tion phase is currently spend in the voxelization of all
triangles that where not culled and the computation
of the hull surrounding it. All other steps such as the
hierarchical filling of V0 and the offset computation
to compute V1 and V2 from V0 are not relevant. Fig-
ure 4, shows a more detailed plot of the time spend
in the hull computation. Initially, the voxelization is
clearly the dominating part, but for high resolution
the hull computation eventually takes over. This is
due to the fact that the offset computation in this
part is more expensive since the volume is not filled
and thus the size of the octree is much larger. How-
ever, for larger models and larger trajectories the first
part would currently be the most dominating time
factor.

5 Further Work

Though our results are already very promising we
already see several, partially obvious, optimizations
that where not yet applied due to lack of time.

Using only one offset would significantly improve
memory usage but would also improve ε to δ/4. It
only requires a slightly modified point generation
function. On the other hand, the new scheme would
only leave a corridor of width about δ/2 to place tri-
angles. This would probably have a negative impact
on the size of the resulting mesh. For the current
scheme the width is about 2δ/3.

It is clear that the voxel generation can be easily
parallelized. For instance, each CPU may be ded-

27th European Workshop on Computational Geometry, 2011

icated to a certain volume in space. The resulting
octrees may be merged afterwards. That is, it is easy
to parallelize the currently most time consuming part
of the algorithm. An obvious alternative is to move
the voxel generation to the GPU.

So far our implementation can not handle input
meshes that are not manifolds. However, this is just
due to missing case distinction in the current code
handling the culling. In principal the approach is able
to easly handle meshes that are not watertight or have
other topological inconsistencies. For instance, the
voxelization would fill the gap if it is smaller than ε.
Note that this also means that the approach ignores
narrow tunnels to maybe rather large caves inside the
model. In case the tunnel has diameter around delta
the hull computation explores the cave, but it may
appear as a closed void since the tunnel is closed due
to the subsequent offset computations. Note that this
does not contradict our guarantees since we are only
interested in the one-sided Hausdorff-distance.

Figure 5: Bunny swept along a trajectory consisting
of 50 transformations.

6 Conclusion

To the best of our knowledge this is the first con-
servative approache for swept volume mesh geneara-
tion that also guarantees an approximation quality in
terms of the one-sided Hausdorff distance. The result-
ings meshes are of high quality and very reasonable
size, which makes them ideal for further processing
in industrial applications. Moreover, our prelimiary
benchmark results indicate that the approach should
even applicalbe for very large inputs, in particular,
once the parallization of the initialization phase is in
place.

For recent improvements, more examples and
other supplementary material we refer to our

website: http://acg.cs.tau.ac.il/projects/

internal-projects/swept-volume/.

Acknowledgments

We thank R. Erbes for supplying us with the voxelization

algorithm for triangles.

References

[1] K. Abdel-Malek, D. Blackmore, and K. Joy.
Swept volumes: Foundations, perspectives, and
applications. International Journal of Shape
Modeling, 23(5):1–25, 2004.

[2] S. Abrams and P. K. Allen. Computing swept
volumes. Journal of Visualization and Computer
Animation, 11:69–82, 2000.

[3] M. Campen and L. Kobbelt. Polygonal bound-
ary evaluation of minkowski sums and swept vol-
umes. In Eurographics Symposium on Geometry
Processing (SGP 2010), 2010.

[4] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, 3rd edition,
2008.

[5] S. F. Frisken and R. N. Perry. Simple and ef-
ficient traversal methods for quadtrees and oc-
trees. Journal of Graphics Tools, 7(3):1–12, 2002.

[6] J. C. Himmelstein, E. Ferre, and J.-P. Laumond.
Swept volume approximation of polygon soups.
In ICRA, pages 4854–4860, 2007.

[7] Y. J. Kim, G. Varadhan, M. C. Lin, and
D. Manocha. Fast swept volume approximation
of complex polyhedral models. In SM ’03: Pro-
ceedings of the eighth ACM symposium on Solid
modeling and applications, pages 11–22, New
York, NY, USA, 2003. ACM.

[8] L. Rineau and M. Yvinec. 3D Surface Mesher,
3.2 edition, 2006. CGAL User and Reference
Manual.

[9] A. von Dziegielewski, R. Erbes, and E. Schömer.
Conservative swept volume boundary approxi-
mation. In SPM ’10: Proceedings of the 14th
ACM Symposium on Solid and Physical Model-
ing, pages 171–176, New York, NY, USA, 2010.
ACM.

[10] S. Zelinka and M. Garland. Permission grids:
Practical, error-bounded simplification. ACM
Transactions on Graphics, 21:2002, 2002.

http://acg.cs.tau.ac.il/projects/internal-projects/swept-volume/
http://acg.cs.tau.ac.il/projects/internal-projects/swept-volume/

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

[11] X. Zhang, Y. J. Kim, and D. Manocha. Reliable
sweeps. In SPM ’09: 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling,
pages 373–378, New York, NY, USA, 2009. ACM.

	Introduction
	Previous and related work
	Our contribution

	Overview
	Initialization Phase
	Preliminary Results
	Further Work
	Conclusion

