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High Precision Conservative Surface Mesh Generation
for Swept Volumes

Andreas von Dziegielewski, Michael Hemmer and Elmar Schömer

Abstract—We present a novel, efficient and flexible scheme
to generate a high quality mesh that approximates the outer
boundary of a swept volume. Our approach comes with two
guarantees. First, the approximation is conservative, i.e., the
swept volume is enclosed by the generated mesh. Second, the
one-sided Hausdorff distance of the generated mesh to the swept
volume is upper bounded by a user defined tolerance. Exploiting
this tolerance the algorithm generates a mesh that is adapted
to the local complexity of the swept volume boundary, keeping
the overall output complexity remarkably low. The algorithm is
two-phased: the actual sweep and the mesh generation. In the
sweeping phase we introduce a general framework to compute
a compressed voxelization. The phase is tailored for an easy
application of parallelization techniques. We show this for our
exemplary implementation and provide a multi-core solution as
well as a GPU based solution using CUDA. For the meshing phase
we utilize and extend the well known Delaunay refinement such
that it generates an adaptive conservative approximation that
obeys the user defined upper bound on the one-sided Hausdorff
distance to the swept volume. The approach is able to handle
inputs of high complexity and compute an approximation with
a very high precision, which we demonstrate on real industrial
data sets.

Note to Practitioners — This work is motivated by the
following problem we were posed by a car manufacturer: To
measure the movement of an engine during test drives, sensors
were placed onto the motor compartment of a car.

With this setup the sensors recorded the position and
orientation of the engine every 5 ms. The reason for these
test drives were clearance checks between parts of the engine
and other components, fixated on the chassis, e.g., the oil
pan and a neighboring component, cf. Figure 1. We are now
interested in the following question: Which volume in space
does the vibrating part of the engine occupy? We here present
a method that approximatively computes the outer boundary
of this volume that is also called the swept volume. The model
that generates the volume (hence generator) will be a CAD
model, that is swept (hence swept volume) along the sequence
of motions (trajectory).

A trajectory can of course also come from CAD. The
scenario depicted in Figure 2 shows a user-created path during
maintainability analysis. The swept volume (or rather its outer
boundary) can be used to verify that the path is collision
free and that spatial tolerances are not violated. In contrast
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Fig. 2. Example of a CAD user generated swept volume for maintainability
analysis. Left: transparent swept volume boundary (red) with engine (green)
and chassis (blue). Right: non-transparent swept volume boundary (red) and
chassis (blue).

to previous methods that compute the swept volume, our
swept volume approximation is reliable, meaning, that we give
guarantees on the quality of our approximation in terms of how
close we are to the actual swept volume.

Future work would be the extension of our approach to
kinematic chains, e.g., the swept volume of a car seat under
all possible configurations.

Index Terms—Swept Volume Boundary Computation, Vox-
elization, Delaunay Refinement, GPU, CGAL

I. INTRODUCTION

The swept volume SV is defined as the set of all points
touched by a solid (the generator) while performing a mo-
tion. Its computation plays an important role in computer
aided design (CAD), numerically controlled (NC) machining
verification and graphical modeling. In robotics and motion
planing the swept volume can be used for the determination
of workspace or to efficiently verify that an already computed
path remains valid while other parts of the design may change.

Most applications demand a mesh M that conservatively
approximates the outer boundary of SV , that is, SV should
be enclosed byM. At the same time, the approximation error
of M to SV should be globally bounded. An appropriate
measure for this error is the one-sided Hausdorff distance, that,
for two compact sets A,B ⊂ R3, is defined as h(A,B) =
maxa∈Aminb∈B d(a, b), where d(·, ·) is the Euclidean dis-
tance. For instance, assuming that h(M, SV ) ≤ δ, one can
bound the Euclidean distance between SV and obstacle O:

d(O,M) ≤ d(SV,O) ≤ d(O,M) + δ, (1)

which is crucial for clearance checks, maintainability analysis,
and similar tasks. The first inequality in (1) is a direct result
of the conservativeness demand, we now give proof for the
second inequality:
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Fig. 1. Swept volume boundary (red, left: transparent, right: non-transparent) of the bottom part of the engine (oil pan, green) under the transformations of
the recorded vibration to verify that a safety distance to the neighboring component (blue) is kept.

Proof: Let h(M, SV ) ≤ δ and let m ∈ M be the point
closest to O, i.e., d(M,O) = d(m,O). Then with the triangle
inequality it holds

d(SV,O) ≤ d(m,O) + d(m,SV )

≤ d(M,O) + max
a∈M

min
b∈SV

d(a, b)

≤ d(M,O) + δ.

Furthermore, it is important to keep the complexity of
M low. This is becoming more and more relevant due to
increasing model complexity and high demands concerning
error tolerance. Moreover, a practical algorithm should be
tolerant towards topologically inconsistent input data and
should preferably impose no restrictions on the input models.

A. Previous and related work
Mathematical formulations describing the swept volume

include Jacobian rank deficiency methods, sweep differential
equations and envelope theory; for a survey see the work of
Abdel-Malek et al. [1]. Numerical approximation of swept
volume boundaries utilizing implicit modeling was introduced
in [20].

For the special case of sweeping a polyhedral object, Weld
and Leu [24] have shown that it suffices to compute the
swept volume of the polygonal faces, which leads to ruled
and developable surfaces and polygons of the generator itself.
Polyhedral approximations of these surfaces were proposed by
Abrams and Allen [2].

A similar approach was recently presented by Campen
and Kobbelt [7], who apply local culling criteria to rule out
triangles that will not contribute to the outer boundary of
the swept volume approximation. For both approaches the
resulting mesh is non-adaptive and possibly very complex
since it is formed by all (portions of) triangles that are
reachable from the outside.

Kim et al. [15] as well as Himmelstein et al. [10] compute
a directed distance field to the tessellated ruled and devel-
opable surfaces utilizing the GPU. The resulting mesh is then
extracted via isosurface reconstruction. However, the massive
memory demand for storing a full volumetric distance field
limits the geometric accuracy of the approximation. Further-
more, as they rely on GPU rasterization, they cannot give

geometrical guarantees because sharp features can be missed.
Recently Zhang [26] et al. extended the approach of [15] to
give topological guarantees but do not regard conservativeness.
The approach is able to overcome the memory issues of [15]
by using a memory friendly adaptive distance field, but this
is at the price of increased run time, which finally limits the
applicability of their approach. The authors claim to be able
to achieve arbitrarily tight error-bounds (although they do not
regard conservativeness), but unfortunately no timings for a
priori error bounds are given. Schwanecke and Kobbelt [21]
used an octree to store a volumetric approximation of the
swept volume, unfortunately their method restricts the gen-
erator to a set of spheres.

Another approach for reducing memory consumption is
to store only 2D images of the sweep and reconstruct an
approximation of the SV from them. These image based
SV-approximations, that often utilize the depth buffer, were
first introduced in [11]. They were used for displaying pur-
poses [13], [12], [25] as well as for 3D mesh extraction [3].

The method recently proposed in [23] uses a conservative
depth buffer voxelization and an error bound mesh simplifica-
tion phase. The output mesh is adaptive and almost everywhere
manifold. It is conservative, but error bounds can not be
given for all concave parts of the swept volume. This is
the only method that regards conservativeness, but since the
approach uses a depth buffer voxelization it can not give
guarantees for concave regions. Moreover, it generates a very
complex intermediate mesh, which limits the applicability of
the approach.

In summary, all listed approaches have the deficiency that
they produce a highly over-tessellated mesh in the first place,
which usually requires a post processing step that may anni-
hilate possible guarantees.

All of the aforementioned approaches are unable to handle
input data of high complexity at a reasonable computational
time (as required by our applications), except [23], but the
error bounds given in [23] are not global.

B. Our contribution

As discussed above, a major problem of previous ap-
proaches is the high complexity of the output or at least of in-
termediate stages. The scheme presented in this paper proposes
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an initial sweeping phase (Section II), which accumulates only
the necessary information in a compressed voxelization V0.
For the subsequent meshing phase (Section III) we modified
Delaunay refinement [5] to generate a non-uniform mesh M
that conservatively approximates V0. Simultaneously, bounds
on the one-sided Hausdorff distance from M to V0 are
withheld. The resulting mesh is of remarkably low complexity
as it nicely adapts to the local complexity of the swept volume
boundary.

Section IV presents detailed benchmarks including data
sets of high complexity and compares a multi-core and GPU
based versions of our implementation. The paper closes with
conclusions and a discussion on further work.

II. SWEEPING PHASE

For a given generator and trajectory, the sweeping phase
computes a compressed voxelization of the swept volume. The
side length of a voxel is ε = 2−D, where D is provided by
the user. It is assumed that the generator and its trajectory are
scaled such that the swept volume fits into the [0, 1]3 cube.

The subsequent discussion of the sweeping scheme focusses
on the memory efficient management of the generated voxels,
which is essential to achieve the required precisions (see also
Section IV). Thus, for now, the actual voxel generation method
is treated as a black box. However, it is assumed that the
chosen method is able to generate a watertight voxelization
that covers at least the boundary of the swept volume that is
defined by a requested portion of the trajectory.

A. Memory Management

1) Octree: In order to decrease the memory usage we
store a voxelization in a pointer-less octree that is internally
represented using a hash set.1 A cell of the octree is encoded
by a 4-tuple of (short) integers (i, j, k, `), corresponding
to the cube [iL, iL + L] × [jL, jL + L] × [kL, kL + L],
where L = 2D−`. Thus, on level ` = D each cell exactly
corresponds to one voxel. A cell is marked as occupied by its
existence in the hash set. In case all 8 children of a cell exists
the cell is created and the children are deleted. Thus, a voxel is
not occupied if the voxel itself and none of its ancestors exist
in the hash set. Obviously, the octree has D = log 1/ε levels.
Thus, insertion (amortized) as well as testing containment is
in O(log 1/ε).

2) Sweep: For efficiency reasons, we can assume that the
chosen voxel generation method tries to generate only voxels
that contribute to the outer boundary, i.e., by ruling out inner
geometry using local culling criteria as, e.g, used in [2], [15],
and [7]. However, since this local filtering can not be perfect,
the complexity of the generated voxel set V is usually cubic. At
the same time, the octree is hindered to combine voxels into
larger cells since several voxels of the volume are missing.
Thus, even with the octree, we would easily get a memory
consumption of O(1/ε3).

Therefore, we propose to indeed structure the voxel gen-
eration in a sweep-like manner, that is, starting at the initial

1We use boost::unordered_set; www.boost.org.

position we request the black box to generate only voxels up
to a certain time step. While this time step progresses we
keep track of the memory usage. As soon as we detect that
memory becomes scarce, the sweep is interrupted and we start
a compression phase that fills up all interior holes of V . This
depicted in Figure 3. The compression step, which we discuss

Fig. 3. When memory becomes scarce, the sweep is stopped and the octree
is filled to reduce memory consumption. Then the sweep continues.

in the next section, can be repeated during the sweep whenever
it is necessary. In any case, we do at least one compression
at the very end of the sweep. Since the compression fills all
inner holes, we can expect that, for reasonable volumes, the
size of the resulting octree is O(1/ε2), i.e., proportional to the
area occupied by the outer boundary of V .

Fig. 4. Hierarchical coarsening of the hull and filling of the octree in order
to reduce memory consumption.

3) Compression: A naive approach consists in applying a
flood-fill method: One first computes a hull H by crawling
along the outer boundary of V storing every outer voxel
that has a neighbor in V . This hull is then flooded starting
from an initial seed voxel (any voxel that was generated
before) and recursively exploring all its neighbors. The voxels
generated this way replace the old set V . However, this naive
approach would touch all voxels in the volume and would take
O(ε−3 log 1/ε) time. We here present a flooding method that
carefully applies a hierarchical scheme. The idea is to fill up
the large innermost cells of the octree first.

The hull H is computed as before and represented as an
octree with depth D. It is a thin layer of voxels coating V . We

www.boost.org
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now incrementally coarsen H0 = H by applying the following
rule: every direct parent of a leaf of Hi−1 becomes a part of
the new layer and is stored in Hi having only depth D − i.
Note that this process inflates the hull, which also occupies
parts of V . The parts of the volume that are not occupied on
the coarse layers are exactly those that we want to fill first in
the subsequent filling step. The idea of the hierarchical filling
is depicted in Figure 4.

In order to distinguish the interior from the exterior volume
it is also essential to have a seed inside, which starts the
flooding. Therefore, we also coarsen the given seed. In case
the cell of the seed gets occupied by the inflating hull we
try to rescue it to a neighboring cell that is not yet occupied.
However, since the inflating hull would eventually occupy the
full cube, the seed must die at some point. Hence, we start the
flooding on the most coarse level for which we were able to
keep the seed. We then use the resulting volume as seed for the
next finer layer and so on. Thus, in case the seed did not die
too early, we can expect that we only touch a quadratic number
of cells, which corresponds to a runtime of O(ε−2 log 1/ε)

In order to increase the success rate of this heuristic, and
since the volume may also have several disconnect regions
on coarse levels, we simply maintain several seeds simultane-
ously. This strategy was sufficient in all tested scenarios.

An example of a hierarchical filling with seeds is depicted
in Figure 5.

Fig. 5. Hierarchical coarsening of the hull and filling of the octree in order
to reduce memory consumption, with seeds inside.

B. Implementation Details

In our application we are given a discrete trajectory as the
input is the result of a densely sampled continuous motion.
Thus, it is reasonable to define a polyhedral approximation
of the swept volume by linearly interpolating between time
steps. That is, we tessellate the boundary of each swept edge
with two triangles by inserting the diagonal with the lower

dihedral angle, as proposed by [7]; see also Figure 6. However,
in constrast to [7] these triangles are never stored since they
are immediately voxelized.

Fig. 6. Sweeping a triangle yields three ruled surfaces, each of which is
approximated and tessellated by inserting a diagonal.

The actual voxelization of each triangle is based on a simple
recursive subdivision scheme. Starting from the initial cube,
the cubes that still intersect the triangle are subdivided into
eight smaller cubes of equal size until the required resolution
is reached. The intersection test is based on the separating
axis theorem. However, similar to [4], the code is explicitly
designed to take advantage of the fact that all cubes share the
same orientation.

1) Parallelization multi-core: The voxelization of the dif-
ferent triangles is obviously a task that can be spread among
several processors. However, it is crucial that all threads work
as independent as possible from each other. In particular, only
one thread can write into the octree at a time. We call this
thread the master thread. All other threads are responsible for
voxel generation and write these voxels into buffers that are
local to each thread. The master thread then picks up these
voxels from time to time and inserts them into the octree.

The above scheme is simple since it requires almost no
synchronization among threads. However, already with a very
small number of threads the actual bottleneck is the insertion
of voxels into the octree. This is to a large extent caused by the
fact that during the sweep most voxels are actually generated
several times. Hence, the idea is to shift the work to the other
threads and to filter out redundant voxels before they reach
the master thread as much as possible. In order to do so we
keep a copy of the main octree that we update from time to
time. This copy can be used by the other threads to discard
many voxels that have already been generated. We are able to
keep the synchronization overhead at a very low level while
only a few redundant voxels reach the master thread.

2) Parallelization GPU: The GPU version of the vox-
elization algorithm is implemented using CUDA. Instead of
voxelizing each triangle separately, now chunks of triangles
are collected and voxelized on the GPU in a single step. In
order to reduce the number of redundant voxels we unify the
generated voxels of each chunk on the GPU using thrust2.
Thereafter, the voxels are downloaded to CPU memory and
inserted into the octree.

Recently a method to generate a solid octree representation
directly on the GPU has been proposed [22]. Unfortunately, as
the method relies on parity flips to identify inside and outside
regions, it can only work on watertight meshes and therefore
is not applicable in our case. Further, the authors state that

2http://code.google.com/p/thrust/
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model type culled rate time (s)
bunny non-exact 3872286 93% 1.13

exact 3872574 93% 1.69
dragon non-exact 419484337 93% 122

exact 419743207 94% 156
engine non-exact 200786335 85% 216

exact 198871494 84% 421
steering non-exact 25793875185 89% 9576

exact 25795597787 89% 12886

TABLE I
COMPARISON BETWEEN EXACT AND NON-EXACT CULLING METHODS.

”adding individual nodes on the fly during voxelization is
ill-suited in a massively parallel context”. This is a severe
problem when trying to move the octree to the GPU, since we
need the octree to be highly dynamic.

C. Exact Culling

We are aware of the problem that the box-triangle in-
tersection test our voxelization relies on might cause our
voxelization not to be conservative due to rounding errors.
But we believe that missing the one or another voxel is not
a severe problem, and could be compensated by adding an
additional outer voxel layer to the final voxelization.

However, if we falsely cull a whole triangle (of arbitrary
size) we could rip significant holes in the voxelization. Thus
we implemented an exact culling that is based on an exact
point-plane-test (CGAL::orientation_3, [6]). For this
reason we did not move the culling part to the GPU as well.
Results for the different culling methods are shown in Table I.
Listed are the number of triangles that could be culled based
on local criteria and the culling rate, which is the ratio of the
culled triangles and the number of candidate triangles, i.e., the
number of all triangles generated during the sweep, either by
interpolating edges or by the generator itself. The last column
shows the computational time of the methods. It is the time
spent merely on culling without voxelization on a single core.

The culling rates are in between 84-94% which is similar to
those reported in [7]. One can see that rates for exact culling
and non-exact culling differ, which means that having the exact
version is important if one is interested in giving guarantees.

III. MESH GENERATION PHASE

We compute the mesh M using Delaunay refinement [5].
However, we carefully modified the algorithm such that we
can ensure that M is contained in a tolerance volume of the
voxelization from the previous phase. This allows us to ensure
conservativeness and a bound on the one-sided Hausdorff
distance while keeping the complexity of M low. We first
give a brief review of Delaunay refinement.

A. Delaunay refinement

For a given domain D, the algorithm produces a mesh M
that approximates the boundary ∂D of D. Starting from an
initial point set on ∂D, the process maintains a Delaunay
triangulation of this point set. This is a 3D complex, that
is, a set of faces with dimension 0 (vertices), 1 (edges), 2

(facets/triangles) and 3 (cells/tetrahedra). Thereby, the algo-
rithm classifies each tetrahedron as interior or exterior. A facet
belongs to the mesh if the classification of the two neighboring
tetrahedra differs. Such a boundary surface facet f can be
refined by inducing a new point, namely an intersection point
of its Voronoi edge (the dual of f ) with ∂D.3 The refinement
process successively refines boundary facets that are classified
as bad facets, e.g., a facet may simply be considered too large.
Note that giving a (very small) maximal facet size would
already ensure a bound on the one-sided Hausdorff distance
of M to D. However, due to the high precision requirements
in our setting, this would result in a uniform highly tessellated
mesh with unacceptable complexity.

B. Modification

We start from the voxelization V0 that was obtained in the
sweeping phase. To achieve conservativeness it is not an option
to approximate the boundary of V0, since in convex regions of
V0 the mesh would always intersect V0. Instead we compute
two offsets V1 and V2 (one additional layer of voxels each) and
set D := V1. More precisely, we introduce two new predicates
that declare a facet as bad if f ∩ V0 6= ∅ or f ∩ V2 6= f ,
respectively. An illustration of the overall process is given in
Figure 7.

The process terminates since the mesh converges towards
∂V1 and since the minimal distance of ∂V1 to ∂V0 as well as
the minimal distance of ∂V1 to ∂V2 is ε. The first predicate
obviously ensures conservativeness while the second allows us
to bound the Hausdorff distance: Since each point on M is
within V2 it is at most two voxels away from V0. This bounds
the one-sided Hausdorff distance of M to V0 to 2

√
3ε in R3,

i.e., two voxel diagonals (see also Figure 8).

ε

δ

V0

V1

V2

M

∂V1

bad f

Fig. 8. A two-dimensional illustration of the voxelization V0 organized as
an octree and its two offsets V1 and V2. Vertices of the mesh M are placed
on the surface of V1. δ indicates the maximal distances of a point on M to
V0.

C. Implementation details

Due to its flexibility, we use the Delaunay refinement
package [19] of CGAL4. In particular, it was possible to
provide our own type for D and our own set of criteria

3On the duality of the Delaunay triangulation and the Voronoi diagram see
for instance [8].

4Computational Geometry Algorithms Library, www.cgal.org.

www.cgal.org
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V0

V1

V2

e1 e2

V0

V1

V2

V0

V1

V2

Fig. 7. Illustration of Delaunay refinement for our approach in 2D (voxelization omitted). To the left: A possible initial state. An initial set of sample points
induces a Delaunay triangulation and the corresponding Voronoi diagram. Possible refinement points are indicated as black squares. In the middle: e1 (e2)
is scheduled for refinement since it leaves V2 (intersects V0). To the right: A final mesh, all boundary edges (triangles in 3D) are in the desired tolerance
region V2 \ V0.

to classify triangles as bad. The two predicates are actually
implemented at once: A facet is voxelized and declared bad
if one of its voxels is contained in V0 or not contained in V2,
respectively.

We remark that the above criteria alone are sufficient to
achieve a mesh with the promised guarantees. However, in
addition we also kept CGAL’s standard criteria providing
the possibility for the user to control the quality of the
resulting mesh, i.e., it is possible to set an upper bound on the
minimal angle and the size of triangles, respectively. Statistics
demonstrating the quality of the resulting mesh can be found
in [5].

IV. RESULTS

To a large extent, our work was motivated by the concrete
demand of a large German car manufacturer that required a
mesh of a swept volume with the above properties for two
scenarios which differ in the motion that is performed by the
solid, namely:
• the trajectory represents an assembly path,
• the trajectory represents a vibration.

For both scenarios the expected complexity n (#triangles) of
the generator is rather high: for instance a mesh representing
the main engine of a car or truck. In the vibration scenario
also the complexity m (#samples) of the discrete trajectory
is very high, since its transformations were recorded during a
test drive with very small sampling intervals of 5 ms.

Benchmarks for the multi-core version were done on a
machine with 16 Intel(R) Xeon(R) CPU X555 with 2.67GHz
and 48GB main memory. For the GPU version we used a
machine with an Intel Core i7 at 3.20GHz and 12GB RAM,
and an NVIDIA GeForce GTX 480 with 1536MB RAM.

Table II shows the runtime of our scenarios for several
resolutions, i.e., different depths of the octree. The scenarios
bunny, dragon and engine all describe significant motions,
whereas the movement of the steering gear is a vibration.
The timings given are total, i.e., account for the sweeping
and meshing phases. For complex scenarios most of the time
is spent on the sweeping phase and the time consumption
for meshing can be neglected. For the GPU version, we
could not get timings for the scenarios at resolution 12 (other
than the bunny) since the machine went out of memory (the
compression scheme as discussed in Section II-A3 is currently
not implemented in our CUDA version).

The input complexity of the bunny scenario is rather low,
hence the overhead for organizing the threads compensates
for the parallel computation. The GPU is at its best for this
scenario. Since the triangles as well as the edges of the
bunny model are equally sized, not too small, and the motion
is significant, the voxelization algorithm produces a massive
amount of voxels per triangle, thus keeping all threads on the
GPU equally busy.

For the dragon and the engine one can see a nice speedup
when using multi-core. However, one can observe a stagnation,
which starts at 8 cores. This is caused by the fact that the
actual bottleneck is (despite the filtering for redundant voxels
as discussed in Section II-B1) the insertion of voxels into the
octree by the master thread. The GPU version greatly improves
the pure voxelization algorithm and thus can compete with or
even beat the multi-core implementation on 16 CPUs.

The scenario of the steering gear is a vibration, which
implies that the vast majority of voxels is generated several
times. Hence the filtering scheme (Section II-B1) boosts the
performance of the multi-core implementation, since in most
rounds only a few voxels actually reach the master thread.

The output complexities for the real world scenarios are
comparable to those of the input generators (92k for steering
at D = 11, 279k for D = 12, 252k for engine at D = 11, 1M
at D = 12).

V. CONCLUSION

We have introduced a framework that combines a sweeping
phase, which computes a compressed voxelization of the
swept volume with a subsequent meshing phase. The pro-
posed sweeping scheme is independent from the used voxel
generation approach and uses a new compression approach
that is applied depending on the current memory consumption.
The presented meshing scheme is conservative and guarantees
a global error bound in terms of the one-sided Hausdorff
distance to the provided voxelization.

By our exemplary implementation we have shown that our
method lends itself perfectly to parallelization. The introduced
concepts are part of the general framework and can be applied
to any voxelization strategy. As the main bottleneck is the
insertion into the octree, it should be possible to reach similar
performance for even more involved voxelization approaches.

As demonstrated in Section IV, the approach is capable to
handle very complex industrial data sets. In particular, we are
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1-CPU 4-CPU 8-CPU 16-CPU CUDA
scenario n m 10 11 10 11 10 11 12 10 11 12 10 11 12
bunny 8100 129 25.2 96.8 24.5 99.6 22.5 96.9 434 22.6 95.5 429 20.2 83.7 372
dragon 871k 129 393 788 154 399 92.9 299 1745 83.5 309 1623 137 325 -
engine 328k 191 601 1239 225 562 127 475 3807 127 429 3669 122 405 -
steering 261k 27k 18k 27k 7216 10k 3453 4733 8725 3150 3807 7060 9200 15k -

TABLE II
TOTAL RUNTIME (IN SECONDS) FOR DIFFERENT SCENARIOS IN DIFFERENT RESOLUTIONS COMPARING GPU WITH MULTI-CPU SOLUTION.

Fig. 9. Engine scenario. Despite the very high precision (D = 12), the resulting mesh has only roughly 1M triangles. The magnification shows the very
fine details caused by the generator in its end position. The original component (green) is a malformed mesh from CAD consisting of ca. 300k triangles.

not aware of any approach that could cope with such complex
inputs while keeping the above mentioned guarantees. The
complexity (number of generated triangles in the sweeping
operation) in our data sets ranges from ≈ 1M (bunny) to
≈ 1000M (steering) and our grid resolution is up to 212.
In [26] bounds on the two-sided Hausdorff distance are given
but the complexity of the benchmarks is only between 27k
and 1.32M with a maximum resolution of the underlying grid
of 29. In [10] the generator models have complexity of at
most 55k triangles and the resolution of the underlying grid is
at most 28. The authors in [15] used grids of resolution 27 and
the number of triangles emerging from the sweep operation are
below 1M .

Using CGAL’s Delaunay refinement, the resulting mesh is
free of self intersections and of high quality (triangle size,
minimal angle). Moreover, exploring the allowed tolerance
the approach results in a mesh that adapts nicely to the
local complexity of the approximated volume, which keeps
the complexity of the resulting mesh remarkably low (cf.
Figure 9). Thus, the resulting mesh is well suited for further
processing in industrial applications.

Although it may seem at a first glance that our approach,
voxelization and subsequent mesh extraction, is nothing new
and could be realized with several methods, it is the high
precision and conservativeness demands that limit or hinder
their usage.

First of all most common algorithms on mesh generation
like marching cubes [18] or dual contouring [14] merely
sample data on the vertices or edges of the grid, hence sharp
features could easily be missed and conservativeness can not
be guaranteed.

The high precision we want to achieve necessitates a high
voxel resolution. Thus any mesh extraction method working
on a uniform grid, like marching cubes [18] or some of its
variants [16], [9] would yield a highly over-tessellated mesh
that had to be decimated in subsequent processing.

Several mesh extraction methods focus on sharp feature
reconstruction and store first order information (e.g. normals).
Although this might improve visual pleasance, the additional
memory cost of storing this information (e.g. 10 floats in [14])
would be a severe problem.

We have found in this work that the approach of conser-
vative voxelization with additional voxel layers, that form
a tolerance volume, works perfectly together with Delaunay
refinement to generate an approximation that meets the above
demands. The voxelization can easily be stored in an octree,
thus even the huge number of triangles emerging from sweep-
ing a complex generator can be processed.

VI. FURTHER WORK

The currently implemented voxelization approach computes
a conservative approximation to a tessellated swept volume
boundary as proposed in [7]. This tessellation might not be
conservative. Strictly speaking this could lead to occasional
areas of non-conservativeness. Although this is not severe for
the dense samplings in our applications, it might be for other
applications.

However, if the used voxelization approach is conservative
we can guarantee that the resulting mesh is conservative for all
cases. Alternatively, if the voxelization approach can provide
an error bound εv , we can easily incorporate this additional
error into our method by simply adding an appropriate amount
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of additional voxel layers to V0. Moreover, one can bound the
deviation of M to the actual SV in terms of the one-sided
Hausdorff distance. Let nadd be the number of additional voxel
layers then we can bound the error by

h(M, SV ) ≤ (2 + nadd)
√
3ε+ εv.

For previous approaches the computational bottleneck lies
in the transformation of triangles into a volumetric represen-
tation, e.g. > 99% for the benchmarks in [26] and 75− 88%
in [15]. These approaches could benefit from our presented
framework, since the number of triangles that we can process
per second is several orders of magnitude higher. In [26]
triangles are inserted into an adaptive distance field with an
error bound comparable to D = 8 with an average rate of
roughly 1000 triangles/second (for D = 9 only roughly 10
triangles/second), whereas we can insert triangles into our
octree data structure with D = 12 at an average rate of up to
106 triangles/seconds (steering scenario) on a machine with a
CPU clocked as in [26] but 16 cores.

Thus, we plan to add further conservative voxelization
algorithms for other swept volume boundary definitions, e.g.,
similar to the error bounded tessellation of ruled surfaces as
used in [15] or even a direct voxelization of the occurring
surfaces.

Moreover, we are confident that our method can be extended
to approximate the outer boundary of a Minkowski sum of
two triangular meshes. Culling criteria for Minkowski sum
boundaries that will work well with our voxelization scheme
can be found, e.g., in the recent work of Li and McMains [17]
and in [7].
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