
Lines Through Segments in Three Dimensional Space∗

(Extended Abstract)

Efi Fogel† Michael Hemmer† Asaf Porat† Dan Halperin†

Abstract

Given a set S of n line segments in three-dimensional space, finding all the lines that si-
multaneously intersect at least of line segments in S is a fundamental problem that arises in
a variety of domains including computer graphics, computer vision, robotics and automation,
to mention a few. We refer to this problem as the lines-through-segments problem, or LTS for
short. We present an efficient output-sensitive algorithm and its exact implementation to solve
the LTS problem. The algorithm properly handles all degenerate cases. For example, a line
segment may degenerate to a point, several segments may be coplanar, parallel, concurrent,
collinear, or they can even overlap. We provide a detailed analysis of all the (degenerate) cases
that can arise. To the best of our knowledge, this is the first algorithm (and implementation)
for the LTS problem that is (i) output sensitive and (ii) handles all degenerate cases. The al-
gorithm runs in O((n3 + I) log n) time, where I is the output size, and requires O(n log n+ J)
working space, where J is the maximum number of output elements that intersect two fixed line
segments; I and J are bounded by O(n4) and O(n2), respectively. We use Cgal arrangements
and in particular its support for two-dimensional arrangements in the plane and on the sphere
in our implementation. The efficiency of our implementation stems in part from careful crafting
of the algebraic tools needed in the computation. We also report on the performance of our
algorithm and its implementation compared to others. The source code of the LTS program as
well as the input examples for the experiments can be obtained from http://acg.cs.tau.ac.
il/projects/lts.

∗This work has been supported in part by the 7th Framework Programme for Research of the European Commis-
sion, under FET-Open grant number 255827 (CGL—Computational Geometry Learning), by the Israel Science Foun-
dation (grant no. 1102/11), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann Minkowski–
Minerva Center for Geometry at Tel Aviv University.

†School of Computer Science, Tel-Aviv University, 69978, Israel. efifogel@gmail.com, mhsaar@googlemail.com,
asafpor@gmail.com, danha@post.tau.ac.il.

1

http://acg.cs.tau.ac.il/projects/lts
http://acg.cs.tau.ac.il/projects/lts

1 Introduction

Given a set S of line segments in R3, we study the lines-through-segments
(LTS) problem, namely, the problem of computing all lines that simulta-
neously intersect four line segments in S. The figure to the right depicts
four lines (drawn in green) that intersect four line segments (drawn in blue
with a halftone pattern).

LTS is a fundamental problem that arises in a variety of domains.
For instance, solving the LTS problem can be used as the first step to-
wards solving the more general problem of finding all lines tangent to four
geometric objects taken from a set of geometric objects. The latter is
ubiquitous in many fields of computation such as computer graphics (vis-
ibility computations), computational geometry (line transversal), robotics
and automation (assembly planning), and computer vision. Computing visibility information, for
example, is crucial to many problems in computer graphics, vision, and robotics, such as computing
umbra and penumbra cast by a light source [9]. We are, in particular, motivated by assembly-
partitioning problems, where a given collection of pairwise interior disjoint polyhedra in some rela-
tive position in R3, referred to as an assembly, has to be partitioned into its basic polyhedra through
the applications of a sequence of transforms applied to subsets of the assembly [13,20].

(a) Three coplanar line seg-
ments lying in a plane P , and
an additional line segment pierc-
ing P .

(b) Two coplanar line segments
lying in a plane P , and two ad-
ditional line segments piercing P

at the same point.

(c) A hyperbolic
paraboloid.

(d) A hyperboloid of
one sheet.

Figure 1: Configurations of lines segments in which an infinite number lines intersect four line segments.

The number of lines that intersect four lines in R3 is 0, 1, 2, or infinite. Brönnimann et al. [7]
showed that the number of lines that intersect four arbitrary line segments in R3 is 0, 1, 2, 3, 4,
or infinite. The latter may happen only if the segments lie in one of the following configurations:1

(i) The four line segments are coplanar. (ii) Three lines segments lie in the same plane P , which
is pierced by the fourth segment; see Figure 1a. (iii) Two line segments lie in the same plane P ,
while the other two pierce P at the same point; see Figure 1b. (iv) At least three line segments
intersect at the same point. (v) At least two line segments overlap. (vi) All four line segments are
contained in the same ruling of a hyperbolic paraboloid or a hyperboloid of one sheet ; see Figure 1c
and Figure 1d, respectively. In addition, Brönnimann et al. showed that the lines lie in at most four
maximal connected components.2

A straightforward method to find all the lines that intersect four lines, given a set of n lines,
examines each quadruplet of lines. The examination is simplified using the Plücker coordinate

1Some conditions are omitted, e.g., no pair of the line segments are collinear.
2Two lines tangent to the same four line segments are in the same connected component iff one of the lines can

be continuously moved into the other while remaining tangent to the same four line-segments.

1

representation. The Plücker coordinates of a line L, defined by a sample point p on the line and a
vector ~u that expresses the direction of the line, are the six-tuple < ~u, ~u × p >. The side product
of two lines La and Lb with Plücker coordinates a = [a1, . . . , a6] and a = [b1, . . . , b6], is defined
as [18]: a ⊙ b = (a1b4 + a2b5 + a3b6 + a4b1 + a5b2 + a6b3). The side product is zero whenever La

and Lb intersect or are parallel and non zero otherwise. The method of finding intersecting lines
using the Plücker coordinates representation has been used by Hohmeyer and Teller [18] and also
described by Redburn [16]. This method was later used by Everett et al. [12] as a building block
for the problem of finding line transversals (the set of lines that intersect all given line segments).
The use of Plücker coordinates simplifies the algebra but does not obviate the need to process each
quadruplet of lines. The running time of this method is O(n4).

The combinatorial complexity of all the lines that intersect four line segments of a set of n line
segments is Θ(n4) (counting maximal connected components). The lower bound can be established
by placing two grids of n/2 line segments each in two parallel planes and passing a line through every
two intersection points, one from each grid. However, in many cases the number of output lines
is considerably smaller. The size of the output tends to be even smaller, when the input consists
of line segments (as opposed to lines), which is typically the case in practical problems, and it is
expected to decrease with the decrease of the lengths of the input line segments.

We present an efficient output-sensitive algorithm, and its complete and robust implementation
that solves the LTS problem in three-dimensional Euclidean space. The implementation is complete
in the sense that it handles all degenerate cases and guarantees exact results. Examples of degenerate
cases are: A line segment may degenerate to a point, several segments may intersect, be coplanar,
parallel, concurrent, lie on the same supporting line, or even overlap. To the best of our knowledge,
this is the first algorithm (and implementation) for the LTS problem that is (i) output sensitive
and (ii) handles all degenerate cases. The algorithm utilizes the idea of McKenna and O’Rouke [14]
to represent the set of lines that intersect three lines as a rectangular hyperbola with vertical and
horizontal asymptotes in R2. However, as opposed to their algorithm, which takes O(n4α(n)) time,
our algorithm is output sensitive and its asymptotic time and space complexities are O((n3+I) logn)
and O(n logn+J), respectively, where n is the input size, I is the output size, and J is the maximum
number of output elements that intersect two fixed line segments; I and J are bounded by O(n4)
and O(n2), respectively. The algorithm can be trivially altered to accept a constant c ≥ 4 and
compute all lines that simultaneously intersect exactly, or at least, c line segments from the input
set. In addition, the algorithm can easily be changed to compute transversals to line segments in
R3 [7].

A related problem to the problem at hand is the the lines-tangent-to-polytopes problem, or LTP
for short. Formally, given a set P of n convex polytopes in three-dimensional space, the objective
is to find all the lines that are simultaneously tangent to quadruples of polytopes in P . This, in
turn, can be generalized to the problem of determining the visibility between objects. In many
cases a solution to the visibility or LTP problems can also serve as a solution to the LTS problem.
Brönnimann et al. [6] provide a non-output sensitive solution to the visibility problem. It runs
in time O(n2k2 log n) for a scene of k polyhedra of total complexity n (although their algorithm
is sensitive to the size of the 2D visibility skeletons, calculated during the process). Devillers
et al. [10] introduce efficient algebraic methods to evaluate the geometric predicates required during
the visibility computation process.

Our algorithms are implemented on top of the Computational Geometry Algorithm Library
(Cgal) [?]. The implementation is mainly based on the 2D Arrangements package of the li-
brary [?]. This package supports the robust and efficient construction and maintenance of ar-
rangements induced by curves embedded on certain orientable two-dimensional parametric surfaces

2

in three-dimensional space [3,19], and robust operations on them.3 The implementation uses in par-
ticular 2D arrangements of rectangular hyperbolas with vertical and horizontal asymptotes in the
plane and 2D arrangements of geodesic arcs on the sphere [2]. We plan to make our new component
available as part of a future public release of Cgal.

The rest of this paper is organized as follows. In Section 2 we introduce the necessary terms and
definitions and the theoretical foundation of the algorithm that solves the LTS problem. In Section 3
we present a limited version of the algorithm. In Section 4 we describe the specially tuned algebraic
tools used in the implementation. We report on experimental results in Section 5 and suggest future
directions in Section 6. Because of space limitation many details of the analysis (Section 2) and the
algorithm (Section 3) are deferred to Appendix A and Appendix B, respectively.

2 Representation

For two fixed line segments S1 and S2 this section discusses the encoding of all lines that intersect
S1 and S2 and intersect a third line segment S3. We represent a line L ⊂ R3 by a point p ∈ R3

and a direction d ∈ R3 \ {O} as L(t) = p + t · d, where O denotes the origin and t ∈ R. Clearly,
this representation is not unique. A segment S ⊂ L ⊂ R3 is represented by restricting t to the
interval [a, b] ⊂ R. We refer to S(a) and S(b) as the source and target points, respectively, and set
a = 0 and b = 1. We denote the underlying line of a line segment S by L(S). Two lines are skew if
they are not coplanar. Three or more lines are concurrent if they all intersect at a common point.
Given two lines L1 and L2 we define a map ΨL1L2

as follows:

ΨL1L2
(q) = {(t1, t2) ∈ R2 |L1(t1), L2(t2), and q are collinear} .

That is, ΨL1L2
(q) maps a point in R3 to a set in R2. This set, which might be empty, corresponds

to all lines that contain q and intersect L1 and L2. Now, consider the pair (t1, t2) ∈ R2. If L1(t1) 6=
L2(t2), then this pair uniquely defines a line, namely, the line that intersects L1 and L2 at L1(t1) and
L2(t2), respectively. Thus, for skew lines L1 and L2 there is a canonical bijective map between R2

and all lines that intersect L1 and L2. It follows that for disjoint lines L1 and L2 and a third line L3

the set ΨL1L2
(L3) is sufficient to represent all lines that intersect L1, L2, and L3, where ΨL1L2

(L3) =
{ΨL1L2

(q) | q ∈ L3}. Similarly, we define Ψs1s2(q) = {[0, 1]2, |S1(t1), S2(t2), and q are collinear}
for two line segments S1 and S2. The characterization of ΨS1S2

(S3) = {ΨS1S2
(q) | q ∈ S3} serves

as the theoretical foundation of the algorithm that solves the LTS problem presented in Section 3.
As ΨS1S2

(x) = ΨL(S1)L(S2)(x) ∩ [0, 1]2, it is sufficient to analyze ΨL1L2
(S3) for a line segment S3.

A complete analysis of ΨL1L2
(S3), though, is necessary in order to handle all cases. However, due

to limited space, we concentrate on the case where the L1, L2, and S3 are pairwise skew, and the
directions of L1, L2 and L(S3) are linearly independent, and defer the complete characterization to
Appendix A. Section 2.2 introduces an additional mapping necessary in case S1 and S2 intersect.

2.1 Directions Are Linearly Independent

In this section we discuss all cases in which the direction vectors of the underlying lines of the seg-
ments are linearly independent. In this setting we can always apply a rational affine transformation
such that the three segments are given by Si(ti) = pi + ti · di, i ∈ {1, 2, 3}, where p1 = (a, b, c),
p2 = (d, e, f), p3 = O and di = ei (where ei denotes the unit vector along the ith axis). Thus, we
continue with a refined case distinction that only depends on the coordinates of p1 and p2.

3Arrangements on surfaces are supported as of Cgal version 3.4, albeit not documented yet.

3

(a) (b)

Figure 2: (a) Three surface patches the
lines of which intersect three skew line seg-
ments, S1, S2, and S3, in R3. These surface
patches are contained in a hyperboloid of one
sheet. (b) The point set ΨS1S2

(S3).

b 6= 0, d 6= 0, and c 6= f : All three lines are pairwise
skew. Consider the points L1(t1), L2(t2), and L3(t3).
These points are collinear iff

|(L1(t1)− L2(t2))× (L3(t3)− L2(t2))| = 0 . (2.1)

These are three dependent equations in three un-
knowns. Eliminating t3 we obtain the following expres-
sion for t2 in terms of t1:

t2(t1) =
e · t1 + (a · e− d · b)

t1 + a
. (2.2)

It implies that ΨL1L2
(L3) is a rectangular hyperbola

with a vertical asymptote at t1 = −a and a horizon-
tal asymptote at t2 = −e. The point (d − a, b − e)
corresponds to the line that is parallel to L3 and (by
definition) intersects L1 and L2. Thus, this point is not in ΨL1L2

(L3), as we consider affine space.
Nonetheless, we are interested in ΨL1L2

(S3), where S3 = {L3(t3) | t3 ∈ [0, 1]}. Solving the system
of equation 2.1 for t1 in terms of t3 yields

t1(t3) =
(d− a)t3 + fa− dc

t3 − f
. (2.3)

As t3 is restricted to [0, 1], t1 is restricted to T = {t1(t3) | t3 ∈ [0, 1]}. ΨL1L2
(S3) is not defined for

values of t1 6∈ T . Let t′ = min(t1(0), t1(1)) and t′′ = max(t1(0), t1(1)), where t1(0) = (dc − af)/f
and t1(1) = (dc + a − fa − d)/(f − 1). t1(t3) is a hyperbola with a vertical asymptote at t3 = f .
If f ∈ [0, 1], then T = (−∞, t′] ∪ [t′′,∞). Otherwise, T = [t′, t′′]. Recall that ΨL1L2

(S3) is also
not defined for the value t1 = −a due to the vertical asymptote of t2(t1). It follows that ΨS1S2

(S3)
consists of at most three maximal connected components, where each component represents a patch
of a ruled surface as depicted in Figure 2.

2.2 S1 and S2 Intersect

Assume L1 and L2 intersect, and let q = L1(t̃1) = L2(t̃2) be the intersection point. The point
(t̃1, t̃2) represents all lines that contain q. We represent these lines by points on a semi open upper
hemisphere centered at q. We define the additional map Ξq : R

3\{q} → H2 and Ξq(p) 7−→ d = s(p−
q)/|p− q|, with s ∈ {±1}, such that d ∈ H2 = {p | p ∈ S2 and p is lexicographically larger than O}.

In the generic case a segment S maps to one
or two geodesic arcs on H2. If S3 is a point, or
L(S3) contains q and S3 does not, Ξq(S) consists
of a single point. If q ∈ S3, we define Ξq(S3) =
H2. The left image of the figure to the right
depicts three line segments, S1, S2, and S3, such
that S1 and S2 intersect at q (and S3 does not).
The right image depicts the mapping Ξq(S3), where Ξq(S3) = {Ξq(p) | p ∈ S3}. It consists of two
geodesic arcs on H2.

2.3 S1 and S2 Are Collinear

The case where S1 and S2 are collinear completes the list of possible cases. If S1 and S2 do
not overlap, the only line that can possibly intersect S1 and S2 is the line containing S1 and S2.

4

Otherwise, the number of degrees of freedom of all the lines that intersect S1 and S2 is three.
In any case S1 and S2 are handled separately. The handling does not involve a mapping to a
two-dimensional surface, as explained in Appendix B.

Corollary 2.1. ΨS1S2
(S3) ⊂ R2 is either a point, a one dimensional set consisting of line segments

or arcs of rectangular hyperbolas with horizontal and vertical asymptotes, or a two-dimensional set
bounded by linear segments or arcs of such hyperbolas.

We are now ready to describe our algorithm for solving the LTS problem in its full generality.
For further details related to the variant cases handled see Appendix A.

3 The Algorithm

The input is a set S = {S1, . . . , Sn} of n line segments in R3. In general an input line segment
imposes an intersection constraint. By default we assume that a sub-segment that is the intersection
of multiple overlapping line segments imposes a single constraint, and a point that is either the
intersection of multiple line segments, or simply a degenerate line segment, imposes two constraints.
The user can override the default setting and require that every input line segment imposes exactly a
single constraint. The output is a set of at most O(n4) (one-dimensional) lines or (two-dimensional)
ruled surface patches in R3, such that each line abides by exactly four intersection constraints
imposed by the line segments in S, and all lines of each ruled surface patch abide by exactly four
such intersection constraints. The line segments that impose the constraints of an output element
are referred to as the generating line segments of that element. The generating line segments of
every output surface patch or line are provided as part of the output. An element of the output is
thus a pair of a line or a surface patch together with a quadruple of generating line segments.

To simplify the exposition of the algorithm, we assume that the line segments are full-dimensional,
pairwise disjoint, and no three line segments are coplanar. We describe the algorithm that handles
this case. Then, we relax the assumption to allow the line segments to intersect pairwise at discrete
and distinct points though. We describe the adjustments to the original algorithm necessary to
handle the additional case. Due to limited space we defer the description of the complete algorithm
that handles all cases to Appendix B. The complete algorithm also respects several different settings
selected by the user. They are also listed in the appendix.

3.1 Input Line Segments Are Pairwise Disjoint

We transform the original three-dimensional LTS problem into a collection of two-dimensional prob-
lems and use two-dimensional arrangements to solve them, exploiting the plane-sweep algorithmic
framework, which is output sensitive. We go over unordered pairs of line segments in S. For each
pair, (Si, Sj), we find all lines that intersect Si, Sj , and two other line segments in S, that have not
been found yet in previous iterations; see Algorithm 1 for pseudo code.

Algorithm 1 Compute lines that intersect line segments in S = {S1, . . . , Sn}.
1 for i = 1, . . . , n− 3,
2 for j = n, . . . , i+ 3,
3 Construct the arrangement ASiSj

induced by {ΨSiSj
(Sk) | k = i+ 1, . . . , j − 1}.

4 Extract lines that intersect Si and Sj from ASiSj
.

5

(a) (b)

Figure 3: (a) Four line segments, S1, S2, S3, S4,
supported by four lines of one ruling of a hyper-

bolic paraboloid, respectively; see also Figure 1c.
(b) The arrangement AS1S2

. The edge drawn in
purple is induced by two overlapping curves, one
in ΨS1S2

(S3) and the other in ΨS1S2
(S4).

In Line 3 of Algorithm 1 we construct the ar-
rangement ASiSj

induced by the point set Cij =
{ΨSiSj

(Sk) | k = i + 1, . . . , j − 1}. We process the
line segments Si+1, . . . , Sj−1 one at a time to pro-
duce the inducing point set Cij . Next, using a
plane-sweep algorithm, we construct the arrange-
ment ASiSj

induced by Cij . We store with each ver-
tex and edge of the arrangement ASiSj

the sorted
sequence of line segments that are mapped through
ΨSiSj

to the points and curves that induce that cell.
The segments are sorted by their indices.

We store only the minimal necessary set of
line segments in every sequence to save space and
clearly distinguish between line segments that map
to (zero-dimensional) points and those that map to
(one-dimensional) curves. A member of a sequence
of a vertex is a line segment that maps to a point p ∈ Cij . A member of a sequence of an edge is
a line segment that maps to a curve C ∈ Cij . Consider a curve C ∈ Cij , such that C ∈ ΨSiSj

(S).
The sequences of all edges induced by C contain S. However, the sequences of line segments of all
vertices incident to these edges do not contain S, as this information is immediately accessible from
the incident edges.

Curves in Cij may overlap; see Figure 3b. This degeneracy is handled as follows: let A′
S1S2

denote
an intermediate arrangement during the plane sweep. Let C ′ denote the geometric embedding of an
existing edge e′ of the arrangement A′

S1S2
, and let C ′′ ∈ ΨSiSj

(S) denote a new curve being inserted
into the arrangement, such that C ′′ and C ′ overlap; let C denote the common subcurve, and let e
denote the newly created edge whose geometric embedding is C. We store with the edge e a copy
of the sequence of line segments stored in e′ and insert S into it.

The generating line segments of every output element are immediately available from the se-
quences of line segments stored with vertices and edges. However, the role of these sequences
extends beyond reporting. It turns out that some intersection points do not represent lines that
intersect four line segments. An example of such a case occurs when either Si or Sj intersects a
third line segment, Sk. In such a case ΨSiSj

(Sk) consists of horizontal and vertical line segments;
see Appendix A. The intersection point of the vertical and horizontal line segments does not repre-
sent a line that intersects four line segments and, thus, must be ignored. This case is detected by
examining the sorted sequences of line segments.

In Line 4 of Algorithm 1 we extract the information and provide it to the user in a usable
format. We refer to an arrangement cell that represents a valid output element as an eligible cell.
The eligibility of a given cell is immediately established from the sequence of line segments stored
in that cell. We provide the user with the ability to iterate over eligible cells of different dimensions
separately. This way, for example, a user can choose to obtain only the vertices that represent
valid output lines. By default we consider a surface patch of the output represented by an edge or
a face open. For example, consider an edge e that satisfies the output criteria, and let C denote
its geometric embedding. The curve C is provided to the user as part of the iteration over the
one-dimensional output elements. The two endpoints of C are provided to the user as part of
the iteration over the zero-dimensional output elements. The user can override this setting, and
choose to consider surface patches closed. In this case the iteration over the zero-dimensional output
elements results with only eligible vertices that are not incident to eligible edges.

6

3.2 Input Line Segments May Intersect at Discrete and Distinct Points

Consider the case where Si and Sj intersect at a point, say p. In this case we must output every
line that contains p and abides by two additional intersection constraints. This information is not
present in the arrangements constructed by Algorithm 1. We can change the algorithm to construct
an arrangement ASiSj

for every ordered pair (i, j) of indices of line segments in S, where ASiSj
is

induced by {ΨSiSj
(S) |S ∈ S \ {Si, Sj}. Let Sk and Sℓ be two additional input line segments, such

that there exists a line, L, that intersects both Sk and Sℓ and contains p. Our assumption that the
line segments are not concurrent assures that neither Sk nor Sℓ contains p. L is represented by cells
in five different arrangements—all arrangements indexed by unordered pairs taken from {i, j, k, ℓ}
excluding (i, j). In order to output L only once, we must filter out all cells but one. While this
modification does not increase the asymptotic complexity of the algorithm, our experiments show
a considerable degradation in performance. Instead, we resort to a more efficient solution that also
uses two-dimensional arrangements, but this time on the sphere; see Algorithm 2 for the pseudo
code. Nevertheless, we support the user option to exhaustively construct arrangements for all
unordered pairs, in which case we obtain maximally connected components; see Appendix B.5.

Algorithm 2 Compute lines that intersect line segments in S = {S1, . . . , Sn}.
1 for i = 1, . . . , n− 3,
2 for j = n, . . . , i+ 3,
3 Construct the arrangement ASiSj

induced by {ΨSiSj
(Sk) | k = i+ 1, . . . , j − 1}.

4 Extract lines that intersect Si and Sj from ASiSj
.

5 if Si and Sj intersect,
6 Construct the arrangement As

Si∩Sj
induced by {ΞSi∩Sj

(Sk) | k = i+ 1, . . . , j − 1}.
7 Extract lines that intersect Si and Sj from As

Si∩Sj
.

In Line 6 of Algorithm 2 we construct an arrangement on the sphere centered at p—the inter-
section point of Si and Sj . The arrangement is induced by the point set Csij = {ΞSi∩Sj

(Sk) | k =
i+1, . . . , j−1}. We process the line segments Si+1, . . . , Sj−1 one at a time to produce the inducing
set Csij . When the underlying line of a line segment Sk contains the sphere center, ΞSi∩Sj

(Sk) con-
sists of a single point. For each k, i < k < j, ΞSi∩Sj

(Sk) consists of either an isolated point or at
most two geodesic arcs on the sphere; see Section 2.2. The pairwise intersections of the points and
arcs in Csij represent lines that intersect four input segments. Next, using a plane-sweep algorithm
on the sphere, we construct the arrangement As

Si∩Sj
induced by Csij . When ΞSi∩Sj

(Sk) consists of
a single point it induces a single vertex in the arrangement. We store with each vertex and edge of
the arrangement As

Si∩Sj
the sorted sequence of line segments that are mapped through ΞSi∩Sj

to
the points and geodesic arcs that induce that cell.

As with the planar arrangements, we store only the minimal necessary set of line segments
in every sequence. A member of a sequence of a vertex is a line segment that maps to a (zero-
dimensional) point p ∈ CsSi∩Sj

. A member of a sequence of an edge is a line segment that maps to

a (one-dimensional) geodesic arc C ∈ CsSi∩Sj
.

We extract the information from the arrangements on the sphere and provide it to the user in
a usable format. All the settings that apply to the processing of the arrangements in the plane
apply to the processing of the arrangements on the sphere as well; see Section 3.1. As with the
aforementioned processing of the arrangements in the plane, we provide the user with the ability to
iterate over eligible vertices and over eligible edges separately.

7

4 Lazy Algebraic Tools

Our implementations are exact and complete. In order to achieve this, Cgal in general, and
the Cgal 2D Arrangements package in particular, follows the exact geometric-computation (EGC)
paradigm. A naive attempt could realize this by carrying out each and every arithmetic operation
using an expensive unlimited-precision number type. However, only the discrete decisions in an
algorithm, namely the predicates, must be correct. This is a significant relaxation from the naive
concept of numerical exactness, as it is possible to use fast inexact arithmetic (e.g., double-precision
floating-point arithmetic [11]), while analyzing the correctness. If the computation reaches a stage
of uncertainty, the computation is redone using unlimited precision. In cases where such a state is
never reached, expensive computation is avoided, while the result is still certified. In this context
Cgal’s Lazy kernel [15] is the state of the art, as it not only provides filtered predicates, but also
delays the exact construction of coordinates and objects. While arithmetic is only carried out with
(floating-point) interval arithmetic [5], each constructed object stores its construction history in
a directed acyclic graph (DAG). Only in case the result of a predicate evaluated using interval
arithmetic is uncertain, the DAG is evaluated using unlimited precision.

Cgal follows the generic programming paradigm [1], that is, algorithms are formulated and
implemented such that they abstract away from the actual types, constructions, and predicates.
Using the C++ programming language this is realized by means of class and function templates.
Cgal’s arrangement class [?] is written such that it takes a traits class as a template argument,
which defines the used type of curves and also provides the required operations on these curves.

For the arrangement of geodesic arcs on the sphere we use the existing and efficient traits
class that we have used before [2]. As this only requires a linear kernel, it uses Cgal’s efficient
Lazy Kernel [5]. However, in order to compute the planar arrangements of rectangular hyperbolic
arcs with horizontal and vertical asymptotes, Cgal offered only a general traits class for rational
functions, which was introduced in [17]. The class uses the general univariate algebraic kernel [4] of
Cgal, which does not offer lazy constructions.

The aforementioned traits class is capable of representing rectangular hyperbolic arcs with hor-
izontal and vertical asymptotes. However, since it was developed for general rational functions,
the code is written assuming arbitrary degree in the numerator and denominator polynomials of
the rational function. In our case the degree of both is just one. It follows that the degree of the
polynomial, the roots of which represent the x-coordinates of intersection points of two hyperbolas,
is at most 2. That is, the solution to these polynomials, and thus the coordinates of the intersection
points, are numbers of only algebraic degree 2. The square-root extension type of Cgal represents
such a number as a + b

√
c, where a, b, c ∈ Q. This explicit representation makes it possible to use

the number type in conjunction with the lazy mechanism.
In order to benefit from this framework, we implemented a univariate algebraic kernel that

is, similar to [8], restricted to polynomials of degree 2. Enabling the use of Cgal’s square-root
extensions and in particular to use the lazy mechanism to speed up the computation. In addition,
we enhanced the implementation of the existing rational function traits, such that it is capable of
using any algebraic kernel that complies with the requirements in [?]. This traits class, instantiated
with the new algebraic kernel, uses lazy constructions and is thus able to handle hyperbolic arcs
with horizontal and vertical asymptotes in a more efficient manner than the one presented in [17],
as shown by experiments in Section 5.

8

5 Experimental Results

We have conducted several experiments on three types of data sets. The first produces the worst
case combinatorial output and has many degeneracies. The second consists of transformed versions
of the first and has many near-degeneracies. The third comprises random input. We report on the
time consumption of our implementation, and compare it to those of other implementations. All
experiments were performed on a Pentium PC clocked at 2.40 GHz.

5.1 Grid

Table 1: Output for the Grid Input. Time is measured in seconds.

Lines Planar Curves Spherical Arcs Planar Regions Time

10,000 36 1,224 17,060 20.74

The Grid data set com-
prises 40 line segments
arranged in two grids of
20 lines segments each ly-
ing in two planes parallel
to the yz-plane; see Section 1. Each grid consists of ten vertical and ten
horizontal line segments. The output consists of several planar patches
each lying in one of the two planes and exactly 10, 000 lines, such that
each contains one intersection point in one plane and one in the other
plane. Table 1 lists all output elements. 703 arrangements in the plane
and 200 arrangements on the sphere were constructed during the process. All single output lines
are represented by vertices of arrangements on the sphere. Such an arrangement is depicted in the
figure at the bottom of the previous page. The origin of the sphere is the intersection point of two
line segments S1 and S40 lying in the same plane. The arrangement is induced by the point set
{ΞS1∩S40

(Si) | i = 2, . . . , 39}.
The figure to the right depicts an arrangement in the plane con-

structed during the process. The arrangement is induced by the point set
{ΨS1S39

(Si) | i = 2, . . . , 38}. The line segments S1 and S39 are parallel seg-
ments lying in the same plane. Each face of the arrangement represents
a ruled surface patch, such that each line lying in the surface intersects
at least 6 and up to 20 line segments. Different colors represent different
number of originating line segments.

5.2 Transformed Grid

Table 2: Perturbed Grid. Time is measured in seconds.

Input

Unlimited Precision Double Precision

Time
Lines

Time
Lines

LTS Redburn Redburn

Perturbed Grid 23.72 140.17 12,139 0.70 12,009

Translated Grid 1 11.83 132.80 5,923 0.69 5,927

Translated Grid 2 6.90 128.80 1,350 0.70 1,253

We conducted three ad-
ditional experiments us-
ing a transformed ver-
sion of the Grid data
set. First, we slightly
perturbed the input line
segments, such that ev-
ery two line segments be-
came skew and the direc-
tions of every three line segments became linearly independent (referred to as Perturbed Grid).
Secondly, we translated the (perturbed) horizontal line segments of one grid along the plane that
contains this grid (referred to as Perturbed Grid 1), increasing the distance between the (per-
turbed) vertical and horizontal line segments of that grid. This drastically reduced the number of

9

output lines. Thirdly, we translated the (perturbed) horizontal line segments of the other grid along
the plane that contains this grid (referred to as Perturbed Grid 2), further reducing the number
of output lines. Table 2 shows the number of output lines and the time it took to perform the com-
putation using our implementation, referred to as LTS. The monotonic relation between the output
size and time consumption of our implementation is prominent. The table also shows the time it
took to perform the computation using two instances of a program developed by J. Redburn [16],
which represents lines by their Plücker coordinates and exhaustively examines every quadruple of
input line segments. One instance, relies on a number type with unlimited precision, while the other
resorts to double-precision floating-point numbers. As expected, when limited precision numbers
were used, the output was only an approximation. Notice that the influence of the output size on
the time consumption of Redburn’s implementation is negligible.4

5.3 Random Input

The Random data set consists of 50 line segments drawn uniformly at random. In particular, the
endpoints are selected uniformly at random within a sphere. We experimented with three different
radii, namely, Short, Medium, and Long listed in increasing lengths. We verified that the line
segments are in general position; that is, the directions of every three are linearly independent and
they are pairwise skew. Table 3 shows the number of output lines and the time it took to perform

Table 3: Random Input, 50 segments.

Input
Time

Lines
LTS LLTS Redburn

Short 3.04 1.06 300.4 0

Medium 6.80 2.82 314.0 20,742

Long 12.36 5.15 327.0 64,151

the computation using (i) our implementation re-
ferred to as LTS, (ii) our implementation enhanced
with the lazy mechanism referred to as LLTS (see
Section 4), and (iii) the instance of Redburn’s im-
plementation that relies on unlimited precision.
Once again, one can clearly observe how the time
consumption of our implementation decreases with
the decrease of the output size, which in turn de-
creases with the decrease in the line-segment lengths. Adversely, the time consumption of Redburn’s
implementation hardly changes.

6 Future Work

As mentioned in the introduction section, we are
motivated by assembly-partitioning problems. The
LTP problem is a building block in a solution that
we forsee to certain assembly-partitioning prob-
lems. We believe that the case analysis of lines
that intersect three line segments presented in Sec-
tion 2 could also serve as the theoretical founda-
tion of an output-sensitive algorithm that solves
the LTP problem. We strive to develop an output-
sensitive algorithm that solves the LTP problem, and provide an exact implementation of it. We
have already conceived the general framework for such an algorithm and implemented a raw version
that handles the general position case. However, we still need to enhance the algorithm and its
implementation to handle all cases and carefully analyze them. A glimpse at this future develop-

4Redburn’s implementation does not handle well degenerate input. Thus, we were unable to experiment with the
original Grid data set using this implementation.

10

ment can be seen in the figure above. It shows an icosahedron P and the arrangement induced by
the point set ΨS1S2

(E(P)), where E(P) is the set of the edges of P , and S1 and S2 are two skew
segments (omitted in the figure). The color of each edge of the arrangement is the same as the color
of its generating icosahedron edge. The boundary of the hole in the unbounded face contains points
that represent lines that intersect S1 and S2 and are tangent to P .

7 Acknowledgement

We thank Michael Hoffmann for helpful discussions on assembly partitioning, which inspired us to
conduct the research discussed in this article. We also thank Linqiao Zhang who provided us with
Redburn’s code that was used for the experiments. Zhang used it as part of an implementation of
an algorithm that constructs the visibility skeleton [21].

References

[1] M. H. Austern. Generic Programming and the Stl. Addison-Wesley, Boston, MA, USA, 1999.

[2] E. Berberich, E. Fogel, D. Halperin, M. Kerber, and O. Setter. Arrangements on parametric
surfaces II: Concretizations and applications. Math. in Comput. Sci., 4:67–91, 2010.

[3] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein. Arrangements on parametric
surfaces I: General framework and infrastructure. Math. in Comput. Sci., 4:45–66, 2010.

[4] E. Berberich, M. Hemmer, and M. Kerber. A generic algebraic kernel for non-linear geometric
applications. In Proc. 27th Annu. ACM Symp. Comput. Geom., pages 179–186, New York, NY,
USA, 2011. ACM Press.

[5] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters
for computational geometry. Disc. Appl. Math., 109:25–47, 2001.

[6] H. Brönnimann, O. Devillers, V. Dujmovic, H. Everett, M. Glisse, X. Goaoc, S. Lazard, and
H. suk Na. Lines and free line segments tangent to arbitrary three-dimensional convex polyhe-
dra. SIAM J. on Computing, 37:522–551, 2006.

[7] H. Brönnimann, H. Everett, S. Lazard, F. Sottile, and S. Whitesides. Transversals to line
segments in three-dimensional space. Disc. Comput. Geom., 34:381–390, 2005. 10.1007/s00454-
005-1183-1.

[8] P. M. de Castro, F. Cazals, S. Loriot, and M. Teillaud. Design of the Cgal 3D spherical
kernel and application to arrangements of circles on a sphere. Comput. Geom. Theory Appl.,
42(6–7):536–550, 2009.

[9] J. Demouth, O. Devillers, H. Everett, M. Glisse, S. Lazard, and R. Seidel. On the complexity
of umbra and penumbra. Comput. Geom. Theory Appl., 42:758–771, 2009.

[10] O. Devillers, M. Glisse, and S. Lazard. Predicates for line transversals to lines and line segments
in three-dimensional space. In Proc. 24th Annu. ACM Symp. Comput. Geom., pages 174–181.
ACM Press, 2008.

[11] O. Devillers and S. Pion. Efficient exact geometric predicates for Delaunay triangulations. In
Proc. 5th Workshop Alg. Eng. Experiments, pages 37–44, 2003.

11

[12] H. Everett, S. Lazard, W. Lenhart, J. Redburn, and L. Zhang. On the degree of standard
geometric predicates for line transversals. Comput. Geom. Theory Appl., 42(5):484–494, 2009.

[13] E. Fogel and D. Halperin. Polyhedral assembly partitioning with infinite translations or the
importance of being exact. In H. Choset, M. Morales, and T. D. Murphey, editors, Alg.
Foundations of Robotics VIII, volume 57 of Springer Tracts in Advanced Robotics, pages 417–
432. Springer, Heidelberg, Germany, 2009.

[14] M. McKenna and J. O’Rourke. Arrangements of lines in 3-space: a data structure with ap-
plications. In Proc. 4th Annu. ACM Symp. Comput. Geom., pages 371–380, New York, NY,
USA, 1988. ACM Press.

[15] S. Pion and A. Fabri. A Generic Lazy Evaluation Scheme for Exact Geometric Computations.
Sci. Comput. Programming, 76(4):307–323, Apr 2011.

[16] J. Redburn. Robust computation of the non-obstructed line segments tangent to four amongst
n triangles. PhD thesis, Williams College, Massachusetts, 2003.

[17] O. Salzman, M. Hemmer, B. Raveh, and D. Halperin. Motion planning via manifold samples.
In Proc. 19th Annu. Eur. Symp. Alg., pages 493–505, 2011.

[18] S. Teller and M. Hohmeyer. Determining the lines through four lines. j. of graphics, gpu, and
game tools, 4(3):11–22, 1999.

[19] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming techniques applied
to Cgal’s arrangement package. Comput. Geom. Theory Appl., 38(1–2):37–63, 2007. Special
issue on Cgal.

[20] R. H. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-Pérez. Two-handed assembly se-
quencing. Int. J. of Robotics Research, 14:335–350, 1995.

[21] L. Zhang, H. Everett, S. Lazard, C. Weibel, and S. Whitesides. On the size of the 3D visibility
skeleton: Experimental results. In Proc. 16th Annu. Eur. Symp. Alg., volume 5193/2008 of
LNCS, pages 805–816, Karlsruhe Allemagne, 2008. Springer.

12

A Characterization of Degenerate Cases

This appendix provides the complete characterization of ΨL1L2
; see Section 2.

A.1 Directions Are Linearly Independent

b 6= 0, d 6= 0, and c 6= f : All three lines are pairwise skew. ΨL1L2
(L3) is a rectangular hyperbola

with a vertical asymptote at t1 = −a and a horizontal asymptote at t2 = −e; see Figure 2. The
point (d − a, b − e) 6∈ ΨL1L2

(L3) corresponds to the line that intersects L1 and L2 but is parallel
to L3. Nonetheless, we are interested in ΨL1L2

(S3), where S3 = L3(t3) defined over t3 ∈ [0, 1]. As
t3 is restricted to [0, 1], t1 is restricted to T = {t1(t3) | t3 ∈ [0, 1]}. ΨL1L2

(S3) is not defined for
values of t1 6∈ T . Let t′ = min(t1(0), t1(1)) and t′′ = max(t1(0), t1(1)), where t1(0) = (dc − af)/f
and t1(1) = (dc + a − fa − d)/(f − 1). t1(t3) is a hyperbola with a vertical asymptote at t3 = f .
If f ∈ [0, 1], then T = (−∞, t′] ∪ [t′′,∞). Otherwise, T = [t′, t′′]. Recall that ΨL1L2

(S3) is also not
defined for the value t1 = −a due to the vertical asymptote of t2(t1); see Figure 2.
b 6= 0, d 6= 0, and c = f : L1 and L2 intersect at p = (d, b, c) = (d, b, f). L3 is skew to both and
intersects the z = c plane (which is spanned by L1 and L2) at q = (0, 0, c) = (0, 0, f). As in the
previous case, ΨL1L2

(L3) is a rectangular hyperbola. However, the point (d− a, b− e) ∈ ΨL1L2
(L3)

represents all lines containing p and intersecting L3; see also Section 2.2. In case q 6∈ S3, ΨL1L2
(S3)

degenerates to {(d− a, b− e)}.
b = 0, d 6= 0, and c 6= f : L1 intersects L3 at p = (0, 0, c). L2 intersects the xz-plane at q =
(d, 0, f). Eliminating t3 from 2.1 we obtain (e+ t2)(a+ t1) = 0. Thus, ΨL1L2

(L3) is a vertical line
at t1 = −a and a horizontal line at t2 = −e. t1 = −a represents all lines containing p and L2.
t2 = −e represents all lines in the xz-plane that contain q. Since we consider affine space, the point
(d− a,−e) 6∈ ΨL1L2

(L3). The point set ΨL1L2
(S3) (i) includes the vertical line only if p ∈ S3, and

(ii) includes the horizontal line only if q ∈ S2. As t3 is restricted to [0, 1], t1 is restricted to T =
{t1(t3) | t3 ∈ [0, 1]}. The horizontal line is not defined for values of t1 6∈ T . Let t′ = min(t1(0), t1(1))
and t′′ = max(t1(0), t1(1)), where t1(0) = (dc−af)/f and t1(1) = (dc+a−fa−d)/(f−1). t1(t3) is a
hyperbola with a vertical asymptote at t3 = f . If f ∈ [0, 1], then T = (−∞, t′]∪ [t′′,∞). Otherwise,
T = [t′, t′′]. For symmetry reasons this case essentially also covers the case b 6= 0, d = 0, where
the characters of the vertical and horizontal lines exchange.
b = 0, d = 0, and c 6= f : L1 and L2 are pairwise skew and intersect L3 at p = (0, 0, c) and
q = (0, 0, f), respectively. ΨL1L2

(L3) consists of a vertical line at t1 = −a and a horizontal line
at t2 = −e. ΨL1L2

(S3) includes the vertical and horizontal lines if S3 contains p = (0, 0, c) and
q = (0, 0, f), respectively.
b = 0, d 6= 0, and c = f : L1 and L2 intersect at p = (d, 0, c) = (d, 0, f). L1 and L3 intersect at
q = (0, 0, c) = (0, 0, f). ΨL1L2

(L3) consists of a vertical line at t1 = −a and a horizontal line at
t2 = −e. The latter is included in ΨL1L2

(S3) if q ∈ S3. t1 = −a corresponds to all lines containing
q and intersect L2. All points on t2 = −e correspond to L1. For symmetry reasons this essentially
also covers the case b 6= 0, d = 0.
b = 0, d = 0, and c = f : The three lines are concurrent at p = (0, 0, c) = (0, 0, f). ΨL1L2

(L3) =
{(−a,−e)}. (−a,−e) represents all lines that contain p.

A.2 Directions Are Not Linearly Independent

A.2.1 Directions of L1 and L2 are Linearly Independent

We consider the case where L1 and L2 are linearly independent. Thus, we can assume that d1 =
e1, d2 = e2, d3 = (u, v, 0), p1 = (a, b, c), p2 = (d, e, f) and p3 = O.

13

(a) (b) (c) (d)

1
2

5
6

9
14

1
2

(e)

4
5

1
5

(f) (g) (h)

Figure 4: Mappings of three line segments, S1, S2, and S3, in various configurations. The bottom
figures depict the corresponding mapping ΨS1S2

(S3). A point inside the yellow faces represents a line
tangent to the three line segments. (a) S1 and S2 are skew, and S1 and S3 intersect at q. (e) ΨS1S2

(S3)
consists of two collinear horizontal line segments and one vertical line segment. (b) S1 and S2 are skew,
and S1 and S3 overlap. (f) ΨS1S2

(S3) is an axis parallel rectangle. (c) S1 and S2 are coplanar, and S3

intersects the plane that contains S1 and S2 at a point. (g) ΨS1S2
(S3) consists of two hyperbolic arcs.

(d) S1 and S2 are parallel, and S3 intersects the plane that contains S1 and S2 at a point. (h) ΨS1S2
(S3)

consists of a single line segment.

c 6= 0, f 6= 0 and c 6= f : The three lines are skew. ΨL1L2
(L3) is the line t2 = (−fvt1− cue+ufb+

cdv−fav))/(cu). ΨL1L2
(S3) is a segment defined between t1 = −a+cd/f and t1 = u−a+c(d−u)/f .

Note that this also covers the case v = 0 (L3 parallel to L1) for which the line becomes horizontal.
For u = 0 (L3 parallel to L2) ΨL1L2

(S3) is the vertical line segment t1 = −a+ cd/f , define between
t2 = −e+ bf/c and t2 = v − e+ f(b− v)/c.
c 6= 0, f 6= 0 and c = f : L1 and L2 intersect at p = (d, e, c) = (d, e, f). Since L3 does not intersect
the plane spanned by L1 and L2, ΨL1L2

(L3) consists only of the point (d− a, b− e) representing all
lines containing p and L3.
c = 0, f 6= 0 and c 6= f :

• v 6= 0 : L1 intersects L3 at p = (bu/v, b, 0). ΨL1L2
(S3) is the vertical line t1 = −a + bu/v if

p ∈ S3 or empty otherwise.
• v = 0 ∧ b 6= 0 : L1 is parallel to L3 and since L2 does not intersect the plane spanned by L1

and L2, it is obvious that ΨL1L2
(L3) = ∅.

• v = 0 ∧ b = 0 : S3 overlaps with L1; thus ΨL1L2
(S3) is a two dimensional point set, namely,

the vertical slab with t1 between −a and u− a.
This essentially also covers case c 6= 0, f = 0 for symmetry reasons.
c = f = 0: L3 is contained in the plane spanned by L1 and L2, thus ΨL1L2

(L3) = R2 \ ℓ, where ℓ is
the line representing those lines that are parallel to L3. However, ΨL1L2

(S3) is a bit more complex.
ΨL1L2

(L3(t3)) is the rectangular hyperbola with additional parameter t3

t2(t1, t3) =
−((e− t3v)t1 + (bu− eu+ dv − av)t3 + ea− db)

(t1 + a− t3u)
.

This family has two fix points that that do not depend on t3: p′ = (d− a, b− e), which represents

14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Mappings of three coplanar line segments, S1, S2, and S3 in various configurations. The
bottom figures depict the corresponding mapping ΨS1S2

(S3). A point inside the yellow shape represents
a line tangent to the three line segments. (a) S1, S2, and S3 are pairwise disjoint. (b) S1 and S2

intersect, and S3 is disjoint from both. (c) S1, S2, and S3 are pairwise disjoint. (d) S1, S2, and S3

form a triangle. (e) ΨS1S2
(S3) consists of a single connected component. (f) ΨS1S2

(S3) consists of four
interior disjoint components. (g) ΨS1S2

(S3) consists of three disconnected components. (h) ΨS1S2
(S3)

consists of the boundary of the unit square.

the intersection of L1 and L2; and p′′ = (−a + bu/v,−e + dv/u), which corresponds to the line
L3. Since two such hyperbolas can only intersect in at most two points we can conclude that the
two-dimensional region ΨL1L2

(L3([0, 1] = S3)) is bounded by the hyperbolas ΨL1L2
(L3(0)) and

ΨL1L2
(L3(1)); see also Figure 5. In the case u = 0 (v = 0) p′′ is at infinity since all hyperbolas in

the family have the same vertical (horizontal) asymptote.

A.2.2 Directions of L1 and L2 Are Dependent

We consider the case where L1 and L2 are linearly dependent. Thus, we can assume that d1 =
(1, 0, 0), d2 = (u, 0, 0) 6= O, d3 = (0, 1, 0), p1 = (a, b, c), p2 = (d, e, f) and p3 = O.
c 6= 0, f 6= 0: L1 and L2 are parallel and do not intersect L3. L3 intersects the plane spanned
by L1 and L2 in p = (0, (ce − fb)/(c − f), 0). ΨL1L2

(L3) is the line t2 = (fa + ft1 − cd)/(cu).
ΨL1L2

(S3) = ∅ iff p 6∈ S3.
c = 0, f 6= 0: L1 and L2 are parallel. L1 intersects L3 at p = (0, b, 0). ΨL1L2

(L3) is the line vertical
line t1 = −a. ΨL1L2

(S3) = ∅ iff p 6∈ S3.
c 6= 0, f = 0: L1 and L2 are parallel. L2 intersects L3 at p = (0, e, 0). ΨL1L2

(L3) is the horizontal
line t2 = −d/u. ΨL1L2

(S3) = ∅ iff p 6∈ S3.
c = 0, f = 0: L1 and L2 are parallel and intersect L3 at p′ = (0, b, 0) and p′′ = (0, e, 0). Thus
ΨL1L2

(L3) = R2 \ ℓ, where ℓ is the line representing those lines that are parallel to L3. This case
is similar to the one in Subsection A.2.1. ΨL1L2

(L3(t3)) is a line u(b − t3)t2 = (−at3 − t1t3 +
dt3 − db+ et1 + ea). The family has a fix point p = (−a,−d/u), which corresponds to the line L3.
ΨL1L2

(L3([0, 1])) is a wedge which is bounded by the lines ΨL1L2
(L3(0)) and ΨL1L2

(L3(1)).

15

B The Complete Algorithm

We describe the complete algorithm that handles all degenerate cases, in particular, line segments
that degenerate to points, concurrent line segments, and collinear, including overlapping, line seg-
ments.

We set the line segments that degenerate to points apart from the rest. Let S ′ denote the subset
of such degenerate line segments, and S ′′ denote the full-dimensional line segments, S = S ′ ∪ S ′′.
The entire algorithm consists of three phases. During the first phase we go over all points in S ′.
For each point Si we find every line that contains Si, possibly contains other points in S ′, and
possibly intersects line segments in S ′′, such that the total number of imposing constraints is at
least four. During the second phase, we go over pairs of the full-dimensional line segments in S ′′
that are not collinear. For each pair, (Si, Sj), we find lines that intersect Si and Sj and other
line segments in S ′′, such that the total number of imposing constraints is at least four. These
constraints, however, might be imposed by collinear input line segments. The processing of groups
of four or more collinear line segments is deferred to the third phase. Such groups can easily be
detected by lexicographically sorting the line segments by their normalized Plücker coordinates.
W. l. o. g. assume that S consists of S ′′ sorted accordingly preceded by S ′. Also, assume that S ′
consists of m points; see Algorithm 3 for pseudo code (see Section 3 for definitions).

Algorithm 3 Compute lines that intersect line segments in S = {S1, . . . , Sn}.
Phase I

1.1 for i = 1, . . . ,m,
1.2.1 Construct the arrangement As

Si
induced by {ΞSi

(Sk) | k = i+ 1, . . . , n}.
1.2.2 Extract lines that intersect Si from As

Si
.

Phase II
2.1 for i = m+ 1, . . . , n− 3,
2.2 for j = n, . . . , i+ 3,
2.3 if Si and Sj are collinear, break.
2.5.1 Construct the arrangement ASiSj

induced by {ΨSiSj
(Sk) | k = i+ 1, . . . , j − 1}.

2.5.2 Extract lines that intersect Si and Sj from ASiSj
.

2.6 if Si and Sj intersect,
2.7.1 Construct the arrangement As

Si∩Sj
induced by {ΞSi∩Sj

(Sk) | k = i+ 1, . . . , j − 1}.
2.7.2 Extract lines that intersect Si and Sj from As

Si∩Sj
.

Phase III
3.1 i← m+ 1.
3.2 while i ≤ n− 3,
3.3 j ← i+ 1.
3.4 while j ≤ n,
3.5 if Si and Sj are not collinear,
3.6 if i+ 3 < j,
3.7 Process the set of collinear line segments Si, . . . , Sj−1.
3.8 i← j.
3.9 break.
3.10 j ← j + 1.
3.11 if i+ 3 < j,
3.12 Process the set of collinear line segments Si, . . . , Sj−1.
3.13 i← j.

16

We defer the description of Phase I to Appendix B.2, and proceed with the description of
Phase II.

B.1 The Processing of Arrangements in the Plane

B.1.1 Constructing the Arrangement in the Plane

(a) (b)

Figure 6: (a) Five line segments, S1, . . . , S5,
such that the first four are coplanar, and S5

pierces the plane containing the first four. (b) The
arrangement AS1S2

. The pink face represents a
ruled surface patch the lines of which intersect the
four coplanar line segments. The red curve rep-
resents a ruled surface patch the lines of which
intersect S1, S2, S3, and S5.

In Line 2.5.1 of Algorithm 3 we construct the
arrangement ASiSj

induced by the set Cij =
{ΨSiSj

(Sk) | k = i + 1, . . . , j − 1}. Notice that Si

and Sj are not collinear. We distinguish between
two disjoint subsets C′ij and C′′ij of Cij , such that
C′ij consists of one-dimensional hyperbolic arcs re-
stricted to the unit square, see Appendix A, and
C′′ij consists of two-dimensional regions bounded by
hyperbolic arcs and the unit square. (Recall that
ΨSiSj

(Sk) consists of two-dimensional regions if ei-
ther Si or Sj overlap with Sk, or Si, Sj , and Sk are
coplanar; see Appendix A.) We process the line
segments Si+1, . . . , Sj−1 one at a time to produce
the inducing point sets C′ij and C′′ij . Next, using a
plane-sweep algorithm, we construct the arrange-
ment A′

SiSj
induced by C′ij . The processing of C′′ij

is different, because C′′ij consists of two-dimensional
regions. For each maximal two-dimensional point
set Rk ∈ C′′ij , Rk ⊆ ΨSiSj

(Sk), we construct the arrangement Ak
SiSj

induced by Rk. Then, we

construct A′′
SiSj

by overlaying all the arrangements in {Ak
SiSj
|Rk ∈ C′′ij}. Finally, we overlay the

arrangements A′
SiSj

and A′′
SiSj

to produce the final arrangement ASiSj
; see Figure 6. The 2D Ar-

rangements package of Cgal supports an overlay operation, which computes the overlay of two
given arrangements. In practice, we apply this operation several times to compute A′′

SiSj
.

We store with each vertex and edge of the arrangementA′
SiSj

the sorted sequence of line segments
that are mapped through ΨSiSj

to the points and curves that induce that cell. Similarly, we store
with each face of the arrangement A′′

SiSj
the sorted sequence of the line segments mapped through

ΨSiSj
to the regions that induce that face. Each cell, i.e., vertex, edge, or face, of ASiSj

stores the
sequence of the line segments obtained during the overlay from the corresponding cell in A′

SiSj
and

A′′
SiSj

. We store only the minimal necessary set of line segments in every sequence. A member of a

sequence of a vertex is a line segment that maps to a (zero-dimensional) point p ∈ C′ij . A member of
a sequence of an edge is a line segment that maps to a (one-dimensional) curve C ∈ C′ij . A member
of a sequence of a face is a line segment that maps to a (two-dimensional) region R ∈ C′′ij . For
example, consider a curve C ∈ C′ij , such that C ⊆ ΨSiSj

(S). The sequences of all edges induced
by C contain S. However, the sequences of line segments of all vertices incident to these edges
do not contain S, as this information is immediately accessible from the incident edges. Similarly,
the sequences of all faces induced by a region R ⊆ ΨSiSj

(S) contain the line segment S, but the
sequences of all vertices and edges incident to these faces do not. When a new face, f , is formed
while overlaying two arrangements, say A1 and A2, we merge the sequence of line segments of the
two faces, f1 and f2 of A1 and A2, respectively, that induce f , and store the resulting sequence
in f .

17

B.1.2 Extracting the Information and User Options

In Line 2.5.2 of Algorithm 3 we extract the information from the arrangement ASiSj
and provide it

to the user in a usable format. Recall that a vertex represents a single line, while an edge or a face
represent a surface patch. A line or a surface patch are provided as output only if it abides by four
intersection constraints. Recall that the user can choose whether to count overlapping segments
as one constraint (the default), or as many constraints. If the user chooses to count overlapping
segments as one constraint, we ignore overlapping line segments when we traverse the sequences of
line segments stored with the arrangement cells. As the line segments are sorted by their normalized
Plücker coordinates, overlapping line segments are adjacent, and thus easy to detect. Observe that
two different line segments that map to the same hyperbolic arc may not necessarily overlap; see
Figure 3b. We provide the user with the ability to iterate over eligible cells of different dimensions
separately. By default we consider a surface patch of the output represented by an edge or a face
open. The user can override this setting, and choose to consider surface patches closed. In this
case the iteration over the zero-dimensional output elements results with only eligible vertices that
are not incident to eligible edges. Similarly, the iteration over the one-dimensional output elements
results with only eligible edges that are not incident to eligible faces.

By default, the generating line segments of every output surface patch or line are provided as
part of the output. For example, if a line, L, intersects five line segments, S1, . . . , S5, in general
position, then L appears in five different output elements, each with a different subset of four
generating line segments. The user can override this default setting and choose (i) not to include
the generating line segments in the output, and (ii) to obtain each output line or surface patch
exactly once. When the user chooses to exclude the generating line segments, we revert the default
setting of the second option to produce a compact output set that does not include repetitions; that
is, a given line is not returned more than once (as a single line or as part of a ruled surface patch).
Providing a compact output requires slightly more processing, which however does not compromise
the asymptotic complexity of the algorithm. The flexibility we allow adds some technical and
conceptual difficulties as explained below. However, it makes the implementation practical for
real-life applications.

Consider the line L above and assume that the user chooses to obtain a compact output set.
L must be provided only once as output. However, executing Algorithm 3 results with repetitions;
the line L is provided twice, because two vertices, say v15 and v14, that represent the line L exist
in two different arrangements, AS1S5

and AS1S4
, respectively. The sequence of line segments stored

in v15 consists of S2, S3, S4, and, thus, qualifies v15 as an eligible vertex. Similarly, the sequence
of line segments stored in v14 consists of S2, S3, and qualifies v14 as an eligible vertex as well. To
avoid repetitions, we alter the algorithm as follows: We consider the augmented set {ΨSiSj

(Sk) | k =
1, . . . , i−1, i+1, . . . , j−1, j+1, . . . , n} as the inducing set of the arrangement ASiSj

in Line 2.5.1. At
first glance this change may seem to produce even a larger amount of repetitions. Considering our
example, there are

(

5
2

)

different arrangements that contain an eligible vertex each that represents the
line L. We alter the iterations over the eligible cells to filter out cells that fail an additional criterion.
Let c be an eligible cell in the arrangement ASiSj

and let Sa1 , . . . , Saℓ be the generating line segments
stored in c. We output the line or surface patch represented by c, only if i < a1, . . . , aℓ < j. In our
example this would be the vertex v15 of the arrangement AS1S5

. Observe that every line that abides
by at least four intersection constraints is represented by several vertices of different arrangement
due to the augmentation of the inducing point sets. An alternative method to avoid repetitions of
lines in the output, for example, is to insert them first into a set data structure using their Plücker
coordinates as keys and filter out repetitions.

18

B.2 The Processing of Arrangements on the Sphere

B.2.1 Constructing the Arrangement

In Line 2.7.1 of Algorithm 3 we construct an arrangement on the sphere centered at p, the point of
intersection between Si and Sj . The arrangement is induced by the point set Csij = {ΞSi∩Sj

(Sk) | k =
i + 1, . . . , j − 1}. We maintain a set, Qij , of all the line segments Sk, i < k < j that contain p.
We process the line segments Si+1, . . . , Sj−1 one at a time to produce the inducing set Csij . If Sk

contains the sphere center p, we insert Sk into Qij and proceed. When the underlying line of
a line segment Sk contains the sphere center, ΞSi∩Sj

(Sk) consists of a single point. For each k,
i < k < j, ΞSi∩Sj

(Sk) consists of either an isolated point or at most two geodesic arc on H2; see
Section 2.2. These arcs or point represent lines that intersect Si and Sj at p and also intersect Sk.
The intersections of points and arcs in Csij represent lines that intersect at least four input segments.
Next, using a sweep of the sphere algorithm, we construct the arrangement As

Si∩Sj
induced by Csij .

When ΞSi∩Sj
(Sk) consists of a single point, it induces a single vertex in the arrangement.

Similarly, in Line 1.2.1 of Algorithm 3, we construct the arrangement As
Si

on the sphere centered
at Si to account for every line that contains the point Si and abides by at least two or three additional
constraints (depending on the user settings). The arrangement is induced by the sets C′si and C′′si .
We process the points Si+1, . . . , Sm one at a time to produce the inducing set C′si = {ΞSi

(Sk) | k =
i+1, . . . ,m}, which consists of points. We process the (full-dimensional) line segments Sm+1, . . . , Sn

one at a time to produce the inducing set C′′si = {ΞSi
(Sk) | k = i+ 1, . . . ,m}. As in the case above,

we maintain a set, Qij , of all the line segments from Sm+1, . . . , Sn that contain the point Si. If
Sk contains the point Si, we insert Sk into Qij and proceed. When the underlying line of a line
segment Sk contains the sphere center, ΞSi

(Sk) consists of a single point. Next, using a sweep of
the sphere algorithm, we construct the arrangement As

Si
induced by Csi = C′si ∪ C′′si .

In both cases we extend the vertex and edge records. In the former case we store with each vertex
and edge of the arrangement As

Si∩Sj
the sorted sequence of line segments that are mapped through

ΞSi∩Sj
to the points and geodesic arcs that induce that cell. In the latter case we store with each

vertex and edge of the arrangement As
Si

the sorted sequence of input (zero and full-dimensional)
line segments that are mapped through ΞSi

to the points and geodesic arcs that induce that cell.

B.2.2 Extracting the Information and User Options

In Line 1.2.2 and Line 2.7.2 of Algorithm 3 we extract the information from the arrangements on the
sphere and provide it to the user in a usable format. All the settings that apply to the processing
of the arrangements in the plane apply to the processing of the arrangements on the sphere as well;
see Section B.1.2. Recall that by default an element of the output is a pair of a line or a surface
patch and a tuple of generating line segments that impose exactly four constraints. If the user does
not change this default setting, the set, Qij , of line segments that contain the intersection point
p is ignored. Otherwise, all the line segments in this set are considered generating segments. As
with the aforementioned processing of the arrangements in the plane, we provide the user with the
ability to iterate over eligible vertices and over eligible edges separately. In addition, we allow the
user to exclude the generating segments from the output, and, independently, to obtain an output
set without repetitions. When the user selects such a compact output, we alter the processing of
the arrangement in the sphere in a similar way we alter the processing of the arrangement in the
plane. We consider the augmented set {ΞSi∩Sj

(Sk) | k = 1, . . . , i− 1, i+1, . . . , j− 1, j+1, . . . , n} as
the inducing set of the arrangement AS

SiSj
in Line 2.7.1, and filter out cells that fail the following

criterion: Let c be an eligible cell in the arrangement As
SiSj

and let Sa1 , . . . , Saℓ be the generating line
segments stored in c. We output the line or surface patch represented by c, only if i < a1, . . . , aℓ < j.

19

B.3 The Processing of Collinear Line Segments

Let L = {S1, ..., Sℓ} be a set of 4 ≤ ℓ collinear line segments and let L be their underlying line.
Assume L is processed in Line 3.7 or Line 3.12. If the user does not alter the default settings, we
generate

(

ℓ
4

)

output elements. Every output element consists of the line L and a different quadruple
of line segments from L. If the user chooses a compact output, L becomes the sole candidate for
the output. We return L only if it does not intersect any one of the line segments in S \ L to avoid
repetitions.

If the user alters the default settings, and chooses to consider every input line segment as a
single constraint, we also need to account for all lines that intersect sub-segments that are the
intersections of at least four input line segments. We construct a one-dimensional arrangement Aℓ

embedded in the line L induced by the line segments in L. We store with each vertex and edge of Aℓ

the inducing line segments of that cell. As with the aforementioned processing of two-dimensional
arrangements, we provide the user with the ability to iterate over eligible vertices and over eligible
edges separately. As in the case above, if the user chooses a compact output, we return a line only
if it does not intersect any one of the line segments in S \ L. Observe that in this case an eligible
edge, the geometric embedding of which is the overlapping sub segment of some input line segments,
represents a ruled surface patch. We split this surface patch into as many as necessary lines and
surface patches that do not intersect any one of the line segments in S \ L.

B.4 Complexity Analysis

Setting apart the subset S ′ of line segments that degenerate to points is naturally done in linear
time. Sorting the subset, S ′′, of full-dimensional line segments according to their normalized Plücker
coordinates is done in O(n logn) time. Constructing the arrangement As

Si
for a given point Si ∈ S ′ is

done in O((n+ki) log n) time using a plane-sweep algorithm, where ki in the number of intersections
of the inducing geodesic arcs. The total time it takes to construct all arrangements {As

Si
| i =

1, . . . ,m} is O((mn+ I1) log n), where I1 is the total number of respective intersections. Extracting
the output lines from all arrangements {As

Si
| i = 1, . . . ,m} takes O((mn+ I1)) time in total. Given

two line segments Si, Sj ∈ S ′′, constructing the arrangement A′
SiSj

is done in O((n+k′ij) log n) time

using a plane-sweep algorithm, where k′ij in the number of intersections of the inducing hyperbolic
arcs. Constructing the arrangement A′′

SiSj
can also be done in O((n + k′′ij) log n), where k′′ij in

the number of intersections of the inducing regions. Computing the overlay of A′
SiSj

and A′′
SiSj

is

done in O((n + kij) log n) time, where kij in the number of intersections of the curves of the two
arrangements. If Si and Sj intersect, we also construct the arrangement AS

SiSj
in O((n+ ksij) log n)

time, where ksij in the number of intersections of the geodesic arcs. Thus, the total time it takes to

construct and process all arrangements in Phase II is O((n3+I2) log n), where I2 is the total number
of respective intersections. The asymptotic resource-consumption of Phase III is negligible compared
to those of the other phases. In summary, the entire process can be performed in O((n3 + I) log n)
running time, and O(n + J) working space. Where n is the input size, I is the output size, and J
is the maximum number of intersections in a single arrangement. I and J are bounded by O(n4)
and O(n2), respectively.

B.5 Output Quality

The output of Algorithm 3 is canonical, because the input line segments are sorted by their nor-
malized Plücker coordinates to start with. However, the output is not canonical, for example, when
the input is subject to affine transformation. Consider the segments in S = {S1, S2, S3, S4} de-

20

(a)

1
4

7
20

1
4

7
20 r

H1

H2

G

(b) (c)

7
20

13
28

1
3

(d)

Figure 7: The processing of three coplanar line segments. (a) S1, S2, and S3 are coplanar. S4 pierces
the plane containing S1, S2, and S3. (b) The arrangement AS1S4

induced by ΨS1S4
(S2 ∪ S3). (c) The

arrangementAs
S1∩S4

induced by ΞS1∩S4
(S2∪S3). (d) The arrangementAS1S2

induced by ΨS1S2
(S3∪S4).

picted in Figure 7a. The segments S1, S3, and S4 are coplanar; they all lie in the plane P . The
forth segment, S2, intersects P at the point p. The point set ΨS1S4

(S3), depicted in Figure 7b,
consists of two disconnected axes-aligned rectangles that in particular do not include the point r, as
it does not represent a valid line. The point set ΨS1S4

(S2), depicted in the figure as well, consists
of three hyperbolic arcs, H1, H2, and G, where H1 and H2 lie on the same hyperbola and split
at r. Feeding S as input to Algorithm 3 results with five output elements: the line L1 containing
p and the intersection point S1 ∩ S3, the line L2 containing p and the intersection point S4 ∩ S3,
two surface patches represented by the two hyperbolic arcs H1 and H2, respectively, and the line,
L3, containing p and the intersection point S1 ∩ S4. The latter results from the processing of the
arrangement As

S1∩S4
on the sphere; see Figure 7c. On the other hand, feeding S ′ = {S1, S3, S4, S2}

as input to Algorithm 3 results with three output elements; see Figure 7d. An absolute canonical
output might be hard to come up with. However, we do allow the user to select a criterion for the
output set trading off different characteristics as explained next. First, we go over all unordered
pairs (i, j); that is, Line 2.1 and Line 2.2 of Algorithm 3 become:

2.1 for i = m+ 1, . . . , n− 1,
2.2 for j = n, . . . , i+ 1,

Next, we consider the augmented set {ΨSiSj
(Sk) | k = 1, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n} as

the inducing set of the arrangement ASiSj
in Line 2.5.1 and the augmented set {ΞSi∩Sj

(Sk) | k =
1, . . . , i−1, i+1, . . . , j−1, j+1, . . . , n} as the inducing set of the arrangement AS

SiSj
in Line 2.7.1—

the same augmented sets we consider to avoid repetitions; see Section B.1.2 and Section B.2.2.
Finally, we change the criterion that we use to filter out ineligible cells as follows. Let c be an
eligible cell in the arrangement ASiSj

or As
Si∩Sj

. We output the line or surface patch represented by
c, only if c satisfies the user selected criterion. We support two criteria: one that favors the planar
arrangements and another that favors the spherical arrangements. If the user chooses the former
criterion, we do not use arrangements on the sphere at all. Instead, we extract the output from
the planar arrangements. In this case we obtain the minimal number of output elements, which are
also maximally connected. If the user chooses the latter criterion, we extract as many as output
elements as possible from the spherical arrangements.

21

	Introduction
	Representation
	Directions Are Linearly Independent
	S1 and S2 Intersect
	S1 and S2 Are Collinear

	The Algorithm
	Input Line Segments Are Pairwise Disjoint
	Input Line Segments May Intersect at Discrete and Distinct Points

	Lazy Algebraic Tools
	Experimental Results
	Grid
	Transformed Grid
	Random Input

	Future Work
	Acknowledgement
	Characterization of Degenerate Cases
	Directions Are Linearly Independent
	Directions Are Not Linearly Independent
	Directions of L1 and L2 are Linearly Independent
	Directions of L1 and L2 Are Dependent

	The Complete Algorithm
	The Processing of Arrangements in the Plane
	Constructing the Arrangement in the Plane
	Extracting the Information and User Options

	The Processing of Arrangements on the Sphere
	Constructing the Arrangement
	Extracting the Information and User Options

	The Processing of Collinear Line Segments
	Complexity Analysis
	Output Quality

