
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Lines Through Segments in

Three Dimensional Space∗

Efi Fogel† Michael Hemmer† Asaf Porat†

Dan Halperin†

Abstract

We present an efficient output-sensitive algorithm and
its exact implementation to solve the following prob-
lem: Given a set S of n line segments in three-
dimensional space, find all the lines that simultane-
ously intersect quadruples of line segments in S. We
refer to this problem as the lines-through-segments

problem, or LTS for short. The algorithm properly
handles all degenerate cases. Since we do not assume
general position, we compute all lines that intersect
at least four segments in S. The algorithm runs in
O((n3 + I) log n) time, and requires O(n + I) work-
ing space, where I is the output size; I is bounded
by O(n4). We use Cgal arrangements and in par-
ticular its support for two-dimensional arrangements
in the plane and on the sphere to efficiently compute
the intersecting lines in an exact manner. We also
report on the performance of our algorithm and its
implementation compared to others. The source code
of the LTS program as well as the input examples for
the experiments can be obtained from http://acg.
cs.tau.ac.il/projects/lts.

1 Introduction

LTS is a fundamental problem that arises in a variety
of domains. For instance, solving the LTS problem
can be used as the first step towards solving the more
general problem of finding all lines tangent to four
polyhedral objects taken from a set of polyhedral ob-
jects. The latter is ubiquitous in many fields of com-
putation such as computer graphics (visibility compu-
tations), computational geometry (line transversal),
robotics and automation (assembly planning), and
computer vision.

∗This work has been supported in part by the 7th Frame-
work Programme for Research of the European Commission,
under FET-Open grant number 255827 (CGL—Computational
Geometry Learning), by the Israel Science Foundation (grant
no. 1102/11), by the German-Israeli Foundation (grant no.
969/07), and by the Hermann Minkowski–Minerva Center for
Geometry at Tel Aviv University.

†School of Computer Science, Tel-Aviv University,
69978, Israel. efifogel@gmail.com, mhsaar@gmail.com,
asafpor@gmail.com, danha@post.tau.ac.il.

The number of lines that intersect four lines in R
3 is

0, 1, 2, or infinite. Brönnimann et al. [3] showed that
the number of lines that intersect four arbitrary line
segments in R

3 is 0, 1, 2, 3, 4, or infinite. In addition,
they showed that the lines lie in at most four maximal
connected components.1

Figure 1: Four lines
(drawn in green) that
intersect four line seg-
ments (drawn in blue
with a halftone pattern).

A straightforward
method to find all the
lines that intersect four
lines, given a set of n lines,
examines each quadruplet
of lines using the Plücker
coordinate representation.
Hohmeyer and Teller [7]
and Redburn [6] exploited
this method. It was later
used by Everett et al. [4]
as a building block for
the problem of finding
line transversals (the set
of lines that intersect all
given line segments). Nat-
urally, the running time of
this method is O(n4).

The combinatorial complexity of all the lines that
intersect four line segments of a set of n line segments
is Θ(n4). The lower bound can be easily established
by placing two grids of line segments in two paral-
lel planes, respectively. However, in many cases the
number of output lines is considerably smaller. The
size of the output tends to be even smaller, when the
input consists of line segments (as opposed to lines),
which is typically the case in practical problems.

We present an efficient output-sensitive algorithm,
and its complete and robust implementation that
solves the LTS problem in three-dimensional Eu-
clidean space. The implementation is complete in the
sense that it handles all degenerate cases and guaran-
tees exact results. Examples of degenerate cases are:
A line segment may degenerate to a point, several
segments may intersect, be coplanar, parallel, concur-
rent, lie on the same supporting line, or even overlap.
To the best of our knowledge, this is the first algo-
rithm (and implementation) for the LTS problem that
is (i) output sensitive and (ii) handles all degenerate
cases. The algorithm utilizes the idea of McKenna
and O’Rouke [5] to represent the set of lines that in-
tersect three lines as a rectangular hyperbola with
vertical and horizontal asymptotes in R

2. However,
as opposed to their algorithm, which takes O(n4α(n))
time, our algorithm is output sensitive and its asymp-
totic time and space complexities are O((n3+I) log n)
and O(n + I), respectively, where n is the input size

1Two lines tangent to the same four line segments are in
the same connected component iff one of the lines can be con-
tinuously moved into the other while remaining tangent to the
same four line-segments.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

http://acg.cs.tau.ac.il/projects/lts
http://acg.cs.tau.ac.il/projects/lts


28th European Workshop on Computational Geometry, 2012

and I is the output size; I is bounded by O(n4).
Our algorithm is implemented on top of the Com-

putational Geometry Algorithm Library (Cgal) [8].
The implementation is mainly based on the 2D Ar-

rangements package of the library [10]. This pack-
age supports the robust and efficient construction and
maintenance of arrangements induced by curves em-
bedded on certain orientable two-dimensional para-
metric surfaces in three-dimensional space [2, 9], and
robust operations on them.2 The implementation uses
in particular 2D arrangements of rectangular hyper-
bolas with vertical and horizontal asymptotes in the
plane and 2D arrangements of geodesic arcs on the
sphere [1].

2 Representation

In this section we discuss the encoding of all lines
that intersect two fixed line segments, S1 and S2, and
a third line segment S3. However, due to space lim-
itation, we only discuss the generic case, where the
lines underlying the input line segments are pairwise
disjoint and their direction vectors are linearly inde-
pendent. Then, we give one simple non-generic case.

We represent a line L ⊂ R
3 by a point p ∈ R

3

and a direction d ∈ R
3 \ {O} as L(t) = p + t · d,

where O denotes the origin and t ∈ R. Clearly, this
representation is not unique. A segment S ⊂ L ⊂ R

3

is represented by restricting t to the interval [a, b] ⊂ R.
We refer to S(0) and S(a) as the source and target
points, respectively. We denote the underlying line of
a line segment S by L(S). Two lines are skew if they
are not coplanar. Three or more lines are concurrent

if they all intersect at a common point.
Given two lines L1 and L2 we define a map

ΨL1L2
as follows: ΨL1L2

(p) = {(t1, t2) ∈
R

2 |L1(t1), L2(t2), and p are collinear} . That is,
ΨL1L2

maps a point in R
3 to a set in R

2. This set,
which might be empty, corresponds to all lines that
contain p and intersect L1 and L2. Now consider the
pair (t1, t2) ∈ R

2. If L1(t1) 6= L2(t2), then this pair
uniquely defines the line that intersects L1 and L2 at
L1(t1) and L2(t2), respectively. Thus, for skew lines
L1 and L2 there is a canonical bijective map between
R

2 and all lines that intersect L1 and L2.
The characterization of ΨS1S2

(S3) =
ΨL(S1)L(S2)(S3) ∩ [0, 1]2 serves as the theoretical
foundation of the algorithm that solves the LTS
problem presented in Section 3. In the generic case,
which we sketch in the next subsection, ΨS1S2

(S3)
consists of at most three arcs lying on a rectangular
hyperbola with a vertical and a horizontal asymptote.
In degenerate cases, which we omit here, the base
curve may be a single line, or a pair of a horizontal
and a vertical line. In some cases, e.g., S1, S2, and S2

2Arrangements on surfaces are supported as of Cgal ver-
sion 3.4, albeit not documented yet.

(a) (b)

Figure 2: (a) Three surface patches the lines of which
intersect three pairwise skew line segments, S1, S2, and
S3, in R

3. These surface patches are contained in a
hyperboloid of one sheet. (b) The point set ΨS1S2

(S3).

are coplanar, ΨS1S2
(S3), is a two-dimensional region

that is bounded by curves of the above kind.
If S1 and S2 intersect, it is impossible to encode

the lines that go through the intersection point by
ΨS1S2

(S3). This case requires a special representation
as discussed in Section 2.2.

2.1 Generic Case

We assume that the direction vectors of the underly-
ing lines of the input line segments are linearly inde-
pendent. Thus, we can apply a rational affine trans-
formation, such that the three segments are given by
Si(ti) = pi + ti · di, i ∈ {1, 2, 3}, where p1 = (a, b, c),
p2 = (d, e, f), p3 = O and di = ei (where ei denotes
the unit vector along the ith axis).

We further assume that the underlying lines are
pairwise disjoint, which implies that b 6= 0, d 6= 0, and
c 6= f . Consider the points L1(t1), L2(t2), and L3(t3).
These points are collinear iff |(L1(t1) − L2(t2)) ×
(L3(t3) − L2(t2))| = 0. These are three dependent
equations in three unknowns. Eliminating t3 we ob-
tain the following expression for t2 in terms of t1:

t2(t1) =
e · t1 + (a · e− d · b)

t1 + a
. (1)

It implies that ΨL1L2
(L3) is a rectangular hyperbola

with a vertical asymptote and a horizontal asymptote.
Nonetheless, we are interested in ΨS1S2

(S3). Recall
that all ti, 1 ≤ i ≤ 3, are restricted to [0, 1]. Similar
to Equation 1, we can eliminate t2 and solve for t1 in
terms of t3. It is then easy to show that ΨS1S2

(S3)
consists of at most three maximal connected compo-
nents, where each component represents a patch of a
ruled surface as depicted in Figure 2.

2.2 S1 and S2 Intersect

Assume L1 and L2 intersect, and let q = L1(t̃1) =
L2(t̃2) be the intersection point. The point (t̃1, t̃2)
represents all lines that contain q. We represent



EuroCG 2012, Assisi, Italy, March 19–21, 2012

(a) (b)

Figure 3: (a) Three line segments, S1, S2, and S3, such
that S1 and S2 intersect at q (and S3 does not). (b)
The mapping Ξq(S3), where Ξq(S3) = {Ξq(p) | p ∈ S3},
which consists of two geodesic arcs on H

2.

these lines by points on a semi open upper hemi-
sphere centered at q. We define the additional map
Ξq : R3\{q} → H

2 and Ξq(p) 7−→ d = s(p−q)/|p−q|,
with s ∈ {±1}, such that d ∈ H

2 = {p | p ∈
S
2 and p is lexicographically larger than O}. In the

generic case a segment S maps to one or two geodesic
arcs on H

2. If S3 is a point, or L(S3) contains q and
S3 does not, Ξq(S) consists of a single point. If q ∈ S3,
we define Ξq(S3) = H

2; see Figure 3.

3 The Algorithm

We describe the algorithm that handles only a reduced
set of cases due to space limitation. Henceforth, we
assume that none of the input line segments degen-
erates to a single point and no three line segments
are concurrent or coplanar. The complete algorithm,
which is omitted here, handles all cases.

The input is a set S = {S1, . . . , Sn} of n line seg-
ments in R

3. The output is a set of at most O(n4)
lines in R

3, such that each line intersects four line
segments in S. The intersected line segments are pro-
vided as part of the output.

The idea is to process each pair, (Si, Sj) with i <
j − 2, and construct the planar arrangement, Aij , in-
duced by the set {ΨSiSj

(Sk) | i < k < j}. As we limit
ourself to the generic case here, Aij is induced only by
hyperbolic arcs. Each intersection point of two such
arcs represents a line that intersects Si and Sj as well
as the two segments that are mapped through ΨSiSj

to the hyperbolic arcs. Considering only pairs of seg-
ments Si and Sj with i < j − 2 and constructing the
corresponding arrangement using only the line seg-
ments of the set {Sk | i < k < j}, ensures that every
output line is reported exactly once.

If Si and Sj intersect, we also construct an arrange-
ment of geodesic arcs on the half-sphere H

2 centered
at their intersection point. The arrangement is in-
duced by the central projections of the other segments
on the sphere. Again, an intersection of two geodesic
arcs encode lines that intersect four segments.

Using the sweep line algorithm, each arrangement,
Aij , is constructed in O(n log n+ Iij) time, where Iij
in the number of intersections in Aij . Since there are

O(n2) arrangements, the total runtime is O(n3 log n+
I). As only one arrangement must be retained at
a time, the required storage space is O(n log n + J),
where J is the maximum number of intersections in a
single arrangement. J is bounded by O(n2).

We remark that the complete algorithm, which is
implemented, is necessarily more involved. In partic-
ular, in some degenerate cases Ψ(Si, Sj)(Sk) is a two
dimensional patch that is bounded by hyperbolic arcs
and line segements. In these cases we use the over-
lay algorithm of CGAL to add the two dimensional
patches to the arrangement generated by the sweep.

4 Experimental Results

We have conducted several experiments on three types
of data sets. The first comprises random input. The
second produces the worst-case combinatorial out-
put and has many degeneracies. The third consists
of transformed versions of the former and has many
near-degeneracies. We report on the time consump-
tion of our implementation, and compare it to the im-
plementation of J. Redburn [6]. All experiments were
performed on a Pentium PC clocked at 2.40 GHz.

4.1 Random Input

Input
Time

Lines
LTS Red

Short 1.06 300.4 0
Medium 2.82 314.0 20,742
Long 5.15 327.0 64,151

The Random
data set con-
sists of 50 line
segments drawn
uniformly at
random. In
particular, the endpoints are selected uniformly at
random within a sphere. We experimented with
three different radii, namely, Short, Medium, and
Long listed in increasing lengths. We verified that
the line segments are in general position. The table
above shows the number of output lines and the time
in seconds it took to perform the computation using
our implementation, referred to as LTS, and an
instance of a program developed by J. Redburn [6]
that relies on unlimited precision, referred to as Red.
One can clearly observe how the time consumption
of our implementation decreases with the decrease
of the output size, which in turn decreases with
the decrease in the line-segment lengths. Adversely,
the time consumption of Redburn’s implementation
hardly changes.

4.2 Grid

The Grid data set, which attains the maximal number
of output lines, comprises 40 line segments arranged
in two grids of 20 lines segments each lying in two
planes parallel to the yz plane. Each grid consists of
ten vertical and ten horizontal line segments. Thus,



28th European Workshop on Computational Geometry, 2012

each plane contains 100 intersection points, which im-
plies that the output includes exactly 1002 = 10, 000
lines, each containing one intersection point of each
plane. Due to the degenerate nature of the input, the
output also includes several planar patches each ly-
ing in one of the two planes that contain the input
grids, which we also compute but not elaborate on
any further here. Using our implementation it took
20.74 seconds to compute the output. Unfortunately,
Redburn’s implementation could not handle this case.

We remark that every
output line is represented
by a vertex of an arrange-
ment on the sphere. The
figure to the right depicts
one sample arrangement on the sphere centered at the
intersection point of two line segments, S1 and S40, ly-
ing in the same plane. The arrangement is induced by
the set of geodesic arcs {ΞS1∩S40

(Si) | i = 2, . . . , 39}.

4.3 Transformed Grid

We conducted three additional experiments using a
transformed version of the Grid data set. First, we
slightly perturbed the input line segments, such that
every two line segments became skew and the direc-
tions of every three line segments became linearly in-
dependent (input I). Secondly, we translated the (per-
turbed) horizontal line segments of one grid along the
plane that contains this grid (input II), increasing the
distance between the (perturbed) vertical and hori-
zontal line segments of the grid. This drastically re-
duced the number of output lines. We then applied a
similar translation to the other plane (input III), fur-
ther reducing the size of the output. Table 1 shows
the number of output lines and the time it took to
perform the computation using our implementation.
The output sensitivity of our algorithm is prominent.
The table also shows the time it took to perform the
computation using two instances of the program de-
veloped by Redburn. One instance, relies on a num-
ber type with unlimited precision, while the other re-
sorts to double-precision floating-point numbers. As
expected, when limited precision numbers were used,
the output was only an approximation. Notice that
the influence of the output size on the time consump-
tion of Redburn’s implementation is negligible.

Table 1: Perturbed Grid. Time is measured in seconds.

Input

Unlimited Prec. Double Prec.

Time
Lines

Time
Lines

LTS Red Red

I 23.72 140.17 12,139 0.70 12,009
II 11.83 132.80 5,923 0.69 5,927
III 6.90 128.80 1,350 0.70 1,253

5 Acknowledgement

We thank Michael Hoffmann for helpful discussions on

assembly partitioning, which inspired us to conduct the

research discussed in this article. We also thank Linqiao

Zhang who provided us with Redburn’s code that was used

for the experiments. Zhang used it as part of an imple-

mentation of an algorithm that constructs the visibility

skeleton [11].

References

[1] E. Berberich, E. Fogel, D. Halperin, M. Kerber, and
O. Setter. Arrangements on parametric surfaces II:
Concretizations and applications. Math. in Comput.

Sci., 4:67–91, 2010.

[2] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn,
and R. Wein. Arrangements on parametric surfaces
I: General framework and infrastructure. Math. in

Comput. Sci., 4:45–66, 2010.

[3] H. Brönnimann, H. Everett, S. Lazard, F. Sottile, and
S. Whitesides. Transversals to line segments in three-
dimensional space. Disc. Comput. Geom., 34:381–
390, 2005. 10.1007/s00454-005-1183-1.

[4] H. Everett, S. Lazard, W. Lenhart, J. Redburn, and
L. Zhang. On the degree of standard geometric pred-
icates for line transversals. Comput. Geom. Theory

Appl., 42(5):484–494, 2009.

[5] M. McKenna and J. O’Rourke. Arrangements of lines
in 3-space: a data structure with applications. In
Proc. 4th Annu. ACM Symp. Comput. Geom., pages
371–380, New York, NY, USA, 1988. ACM Press.

[6] J. Redburn. Robust computation of the non-

obstructed line segments tangent to four amongst

n triangles. PhD thesis, Williams College, Mas-
sachusetts, 2003.

[7] S. Teller and M. Hohmeyer. Determining the lines
through four lines. j. of graphics, gpu, and game tools,
4(3):11–22, 1999.

[8] The Cgal Project. Cgal User and Reference

Manual. Cgal Editorial Board, 3.9 edition,
2011. http://www.cgal.org/Manual/3.9/doc_html/
cgal_manual/title.html.

[9] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
Advanced programming techniques applied to
Cgal’s arrangement package. Comput. Geom.

Theory Appl., 38(1–2):37–63, 2007. Special issue on
Cgal.

[10] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
2D arrangements. In Cgal User and Refer-

ence Manual. Cgal Editorial Board, 3.9 edition,
2011. http://www.cgal.org/Manual/3.9/doc_html/
cgal_manual/packages.html#Pkg:Arrangement2.

[11] L. Zhang, H. Everett, S. Lazard, C. Weibel, and
S. Whitesides. On the size of the 3D visibility skele-
ton: Experimental results. In Proc. 16th Annu. Eur.

Symp. Alg., volume 5193/2008 of LNCS, pages 805–
816, Karlsruhe Allemagne, 2008. Springer.

http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/title.html
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/title.html
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:Arrangement2
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:Arrangement2

	Introduction
	Representation
	Generic Case
	S1 and S2 Intersect

	The Algorithm
	Experimental Results
	Random Input
	Grid
	Transformed Grid

	Acknowledgement

