Robot motion planning

 and the connection to nearest-neighbor search
Computational Geometry Course

Michal Kleinbort
Tel Aviv University, Dec 2020

A robot

- A mechanical device capable of sensing its environment and controlled by a computing system
- Operates in a real-world workspace, populated by physical objects
- Performs tasks by executing motions in the workspace
- An autonomous robot is required to plan its own motions automatically in order to achieve a given task

Some examples

Some examples

In the context of COVID-19

The motion-planning problem

Given:

- A robot R
- A workspace \mathcal{W} (with obstacles)
- Initial and final positions

Goal:

- Plan a continuous path for the robot from the initial position to the final position, while avoiding collision
 with obstacles and self collisions of the robot

A configuration of the robot

A configuration of the robot is a complete specification of the position of every point of the robot, e.g., $\left(x, y, \Theta_{1}, \Theta_{2}, \Theta_{3}\right)$

The dimension

The dimension of the motion-planning problem (or the number of degrees of freedom) is the smallest number $d \geq 1$ of coordinates needed to represent a configuration of the robot.

Complex robots

$\left(x, y, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}\right)$

Multiple robots

The configuration space

The d-dimensional space \mathcal{C} containing all possible configurations of the robot is called the configuration space (C -space).
A subset $\mathcal{F} \subset \mathcal{C}$ of all the collision-free configurations is called the free space.
The C-obstacles, defined as $\mathcal{C}_{\text {forb }}=\mathcal{C} \backslash \mathcal{F}$, are rarely represented exactly (may have a complex mathematical representation).

Figures from [Lynch and Park, 16]

An alternative formulation of the MP problem

Given:

- A point robot
- A d-dimensional configuration space \mathcal{C} (C-space)
- C-obstacles (often not explicitly given) $\mathcal{C}_{\text {forb }}$
- Free space $\mathcal{F}=\mathcal{C} \backslash \mathcal{C}_{\text {forb }}$
- Initial and final configurations

Goal:

- Plan a continuous path in the free space from the initial configuration to the final configuration

An alternative formulation of the MP problem

Figures from [Lynch and Park, 16]

Challenges

- High-dimensional problems are "hard" to solve
- Finding an optimal path is harder than finding a path
- minimal path length
- maximal distance from obstacles

- smoothness

Sampling-based methods for solving the problem

- Attempt to capture the structure of the C-space by constructing a graph with n randomly sampled nodes (called a roadmap)
- The nodes are collision-free configurations sampled at random
- Two nearby nodes are connected by an edge if the path between them is collision-free
- We can often say something about the asymptotic behavior of the algorithm (as $n \rightarrow \infty$):
- probabilistically complete (PC) algorithm: With high probability finds a solution as $n \rightarrow \infty$, if one exists

Primitive operations in sampling-based methods

- Collision detection (CD)
- Determines whether a configuration or a C-space path between two configurations is collision-free. The latter is termed local planning (LP)
- Complexity usually depends on both the complexity of the workspace obstacles and the complexity of the robot
- Nearest-neighbor search (NN)
- Returns the nearest neighbor (or neighbors) of a given configuration
- Complexity depends on the number n of nodes and the dimension d

The main practical computational bottleneck is typically considered to be CD (including LP)

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Involves CD operation

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Involves NN operation (r-nearest neighbors or k-nearest neighbors)

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Involves CD operation (as an LP sub-procedure)

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Involves CD operation (as an LP sub-procedure)

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Given a query-start and goal configurations-add them to the roadmap and find a roadmap path

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is embedded in the free space [Kavraki et al., 95]

Given a query-start and goal configurations-add them to the roadmap and find a roadmap path

Asymptotic optimality

An asymptotically optimal (AO) algorithm is guaranteed to return a solution that converges to the optimum as $n \rightarrow \infty$.

Results from the seminal work of [Karaman and Frazzoli, 11]:

- PRM *——PRM with connection radius $r_{n}>\gamma\left(\frac{\log n}{n}\right)^{1 / d}$ for some $\gamma>0$-is AO
- r_{n} cannot be smaller than $\gamma^{\prime} n^{-1 / d}$, for some $\gamma^{\prime}>0$

- Two single query AO planners: RRT*, RRG

Sampling-based planners

single-robot planners

The main practical computational bottleneck is typically considered to be CD (including LP).

We formally prove that the complexity of NN search dominates the asymptotic running time of several AO algorithms.
*appeared in: WAFR 2016

The bottleneck in SB planners [K., Salzman and Halperin, 16]

We characterize settings in which the role of NN is far from negligible and show experimentally that NN may dominate CD after finite time.

*appeared in: WAFR 2016

NN-sensitive settings

Efficient, specifically-tailored NN data structures can be used in such settings to reduce the overall time of the motion-planning algorithm

Adapting "all-pairs NN" for sampling-based planners [K., Salz-

man and Halperin, 15]

- In several planning algorithms "all-pairs" r-NN are used with a predefined value $r(n)=O\left(\left(\frac{\log n}{n}\right)^{1 / d}\right)$ to achieve AO
- Randomly transformed grids (RTG) [Aiger, Kaplan, Sharir, 14] is a novel method for approximate all-pairs r-NN

*appeared in: ICRA 2015

Adapting "all-pairs NN" for sampling-based planners [K., Salz-

man and Halperin, 15]

- We implemented RTG and used it for certain (NN-sensitive) sampling-based algorithms
- We obtain significant speedups improving: the construction time, the time to find an initial solution, and the time to converge to high-quality solutions

Faster convergence to high-quality solutions (6D non-Euclidean C-space)
*appeared in: ICRA 2015

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in the free space [LaValle and Kuffner, 01]

Rapidly exploring random tree (RRT)

GEOM-RRT $\left(x_{i n i t}, X_{\text {goal }}, k, \eta\right)$:

1) T.init ($x_{i n i t}$)
2) for $i=1$ to k do
3) $\quad x_{\text {rand }} \leftarrow$ RANDOM_STATE ()
4) $\quad x_{n e a r} \leftarrow$ NEAREST_NEIGHBOR $\left(x_{\text {rand }}, T\right)$
5) $\quad x_{\text {new }} \leftarrow$ NEW_STATE $\left(x_{\text {rand }}, x_{\text {near }}, \eta\right)$
6) if COLLISION_EREE $\left(x_{\text {near }}, x_{n e w}\right)$ then
7) T.add_vertex $\left(x_{\text {new }}\right)$
8) T.add_edge $\left(x_{n e a r}, x_{n e w}\right)$
9) return T

More about RRT

- Probably the most commonly used planner
- Well suited to complex tasks involving kinodynamic constraints:
Example: a kinodynamic car
Each state keeps ($x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}$) and there are two control inputs (signed speed u_{s} and steering angle u_{ϕ})

$$
\begin{aligned}
\dot{x} & =u_{s} \cos \theta, \\
\dot{y} & =u_{s} \sin \theta, \\
\dot{\theta} & =\frac{u_{s}}{L} \tan u_{\phi},
\end{aligned}
$$

More about RRT

- Probably the most commonly used planner
- Well suited to complex tasks involving kinodynamic constraints:

Does not require a steering function that returns a trajectory between two states-corresponds to solving the Two-point boundary value problem (BVP)

Probabilistic completeness of RRT

In [K. et al., 19] we devise a rigorous proof for the PC of RRT

Notation:

- The free space $\mathcal{F} \subset \mathcal{C}$
- Euclidean metric $\|\cdot\|$
- A valid path $\pi:\left[0, t_{\pi}\right] \rightarrow \mathcal{F}$,
$\pi(0)=x_{\text {init }}$,
$\pi\left(t_{\pi}\right)=x_{\text {goal }} \in X_{\text {goal }}$
- $\delta>0$ is the clearance of π from the obstacles

PC proof of (geometric) RRT

- Wlog, assume that a valid trajectory π exists, whose length is L
- Let $m=5 L / \nu$, where $\nu=\min (\delta, \eta)$
- Let $x_{0}=x_{\text {init }}, \ldots, x_{m}=x_{\text {goal }}$ be a sequence of $m+1$ points along π
- Dividing π into sub-trajectories of length $\nu / 5$
- Let $\mathcal{B}_{\nu / 5}\left(x_{0}\right), \ldots, \mathcal{B}_{\nu / 5}\left(x_{m}\right)$ be a set of balls of radius $\nu / 5$

- We prove that with high probability RRT will generate a path that goes through these balls

Lemma 1

Let $x_{i}^{\prime} \in \mathcal{B}_{\nu / 5}\left(x_{i}\right)$ be a vertex in T and let $x_{\text {rand }} \in \mathcal{B}_{\nu / 5}\left(x_{i+1}\right)$.
Then $\overline{x_{\text {rand }} x_{\text {near }}} \subset \mathcal{F}$, where $x_{\text {near }}$ is the nearest neighbor of $x_{\text {rand }}$ in T.

Proof of Lemma 1

We show that $\left\|x_{\text {near }}-x_{i}\right\| \leq \delta$:

- $\left\|x_{\text {near }}-x_{i}\right\| \leq\left\|x_{\text {near }}-x_{\text {rand }}\right\|+\left\|x_{\text {rand }}-x_{i}\right\|$ (triangle inequality)
- $\left\|x_{\text {near }}-x_{\text {rand }}\right\| \leq\left\|x_{i}^{\prime}-x_{\text {rand }}\right\|$ (since $x_{\text {near }}$ is the nearest neighbor of $x_{\text {rand }}$)
- $\left\|x_{i}^{\prime}-x_{\text {rand }}\right\| \leq 3 \cdot \nu / 5, \quad\left\|x_{\text {rand }}-x_{i}\right\| \leq 2 \cdot \nu / 5$
- Therefore, $\left\|x_{\text {near }}-x_{i}\right\| \leq 5 \cdot \nu / 5=\nu \leq \delta \Rightarrow x_{\text {near }} \in \mathcal{B}_{\delta}\left(x_{i}\right)$
- Since $x_{\text {near }}, x_{\text {rand }} \in \mathcal{B}_{\delta}\left(x_{i}\right)$ then $\overline{x_{\text {rand }} X_{\text {near }}} \subset \mathcal{F}$

Note that $\left\|x_{\text {near }}-x_{\text {rand }}\right\| \leq 3 \cdot \nu / 5<\nu \leq \eta \quad \Rightarrow \quad x_{\text {new }}=x_{\text {rand }}$.

Theorem: RRT is PC

Theorem 1
The probability that RRT fails to reach $x_{\text {goal }}$ from $x_{\text {init }}$ after k iterations is $\leq a e^{-b k}$, for some $a, b \in \mathbb{R}_{>0}$

- Assume that $\mathcal{B}_{\nu / 5}\left(x_{i}\right)$ contains an RRT vertex
- Let p be the prob. that in the next iteration an RRT vertex will be added to $\mathcal{B}_{\nu / 5}\left(x_{i+1}\right)$
- From Lemma 1, choosing $x_{\text {rand }} \in \mathcal{B}_{\nu / 5}\left(x_{i+1}\right)$ ensures this
- Since $x_{\text {rand }}$ is drawn uniformly at random from $[0,1]^{d}$, we have that $p=\left|\mathcal{B}_{\nu / 5}\right| /\left|[0,1]^{d}\right|$

Theorem: RRT is PC (cont.)

- To reach $x_{\text {goal }}$ from $x_{\text {init }}$ we need to repeat this step m times

- Let X_{k} be the number of successes in k trials
- The prob. of failure: $\operatorname{Pr}\left[X_{k}<m\right] \leq \frac{m}{(k-1)!} k^{m} e^{-p k}$
- p, m are fixed and independent of k, therefore, $\operatorname{Pr}\left[X_{k}<m\right]$ decays to zero exponentially with k

AO-RRT: an AO variant of RRT [Hauser and Zhou, 16]

- "Operates" in the state-cost space (a $(d+1)$-dimensional space)
- In [K. et al., 20] we show that the cost of the solution found approaches the optimal cost as $n \rightarrow \infty$

The End

