
Robot motion planning
and the connection to nearest-neighbor search

Computational Geometry Course

Michal Kleinbort
Tel Aviv University, Dec 2020

A robot

• A mechanical device capable of sensing its environment and
controlled by a computing system

• Operates in a real-world workspace, populated by physical
objects

• Performs tasks by executing motions in the workspace
• An autonomous robot is required to plan its own motions

automatically in order to achieve a given task

1

Some examples

2

Some examples

In the context of COVID-19

2

The motion-planning problem

Given:
• A robot R
• A workspace W (with obstacles)
• Initial and final positions

Goal:
• Plan a continuous path for the robot

from the initial position to the final
position, while avoiding collision
with obstacles and self collisions of
the robot

3

A configuration of the robot

A configuration of the robot is a complete specification of the
position of every point of the robot, e.g., (x , y ,Θ1,Θ2,Θ3)

4

The dimension

The dimension of the motion-planning problem (or the number of
degrees of freedom) is the smallest number d ≥ 1 of coordinates
needed to represent a configuration of the robot.

5

The configuration space

The d-dimensional space C containing all possible configurations of
the robot is called the configuration space (C-space).
A subset F ⊂ C of all the collision-free configurations is called the
free space.
The C-obstacles, defined as Cforb = C \ F , are rarely represented
exactly (may have a complex mathematical representation).

Figures from [Lynch and Park, 16]
6

An alternative formulation of the MP problem

Given:

• A point robot
• A d-dimensional configuration space C (C-space)
• C-obstacles (often not explicitly given) Cforb

• Free space F = C \ Cforb

• Initial and final configurations

Goal:

• Plan a continuous path in the free space from the initial
configuration to the final configuration

7

An alternative formulation of the MP problem

Figures from [Lynch and Park, 16]

7

Challenges

• High-dimensional problems are
“hard” to solve

• Finding an optimal path is harder
than finding a path

• minimal path length
• maximal distance from obstacles
• smoothness

8

Sampling-based methods for solving the problem

• Attempt to capture the structure of the C-space by
constructing a graph with n randomly sampled nodes (called a
roadmap)

• The nodes are collision-free configurations sampled at random
• Two nearby nodes are connected by an edge if the path

between them is collision-free
• We can often say something about the asymptotic behavior of

the algorithm (as n→∞):
• probabilistically complete (PC) algorithm: With high

probability finds a solution as n→∞, if one exists

9

Primitive operations in sampling-based methods

• Collision detection (CD)
• Determines whether a configuration or a C-space path between

two configurations is collision-free. The latter is termed local
planning (LP)

• Complexity usually depends on both the complexity of the
workspace obstacles and the complexity of the robot

• Nearest-neighbor search (NN)
• Returns the nearest neighbor (or neighbors) of a given

configuration
• Complexity depends on the number n of nodes and the

dimension d

The main practical computational bottleneck is typically
considered to be CD (including LP)

10

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Query: Givenstart and two confifdsfsdfsdfsdfdsffdsfsdfsdfsdfsd-
ddddddddddddddddddddddddddddddddddsfsdfsdgurations

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Query: Givenstart and two confifdsfsdfsdfsdfdsffdsfsdfsdfsdfsd-
ddddddddddddddddddddddddddddddddddsfsdfsdgurations

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Involves CD operation
Query: Given configurations, find the

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Query: Givenstart and two confifdsfsdfsdfsdfdsffdsfsdfsdfsdfsd-
ddddddddddddddddddddddddddddddddddsfsdfsdgurations

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

r

Involves NN operation (r -nearest neighbors or k-nearest neighbors)
Query: Given configurations, find the

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Involves CD operation (as an LP sub-procedure)
Query: Given configurations, find the shortest path h

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Involves CD operation (as an LP sub-procedure)
Query: Given configurations, find the shortest path h

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Query: Givenstart and two confifdsfsdfsdfsdfdsffdsfsdfsdfsdfsd-
ddddddddddddddddddddddddddddddddddsfsdfsdgurations

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Query: Givenstart and two confifdsfsdfsdfsdfdsffdsfsdfsdfsdfsd-
ddddddddddddddddddddddddddddddddddsfsdfsdgurations

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Given a query—start and goal configurations—add them to the
roadmap and find a roadmap path

11

Probabilistic roadmaps (PRM)

Multi-query algorithm that generates a roadmap (graph) that is
embedded in the free space [Kavraki et al., 95]

Given a query—start and goal configurations—add them to the
roadmap and find a roadmap path

11

Asymptotic optimality

An asymptotically optimal (AO) algorithm is guaranteed to return
a solution that converges to the optimum as n→∞.

Results from the seminal work of [Karaman
and Frazzoli, 11]:

• PRM*—PRM with connection radius
rn > γ

(
log n

n

)1/d
for some γ > 0—is AO

• rn cannot be smaller than γ′n−1/d , for
some γ′ > 0

• Two single query AO planners: RRT*,
RRG

12

Sampling-based planners

single-robot planners

LBT-RRT MPLB

FMT*RRG

PRM

BTT

dRRT dRRT*M*

multi-robot planners

length cost

bottleneck
cost

BFMT*

SPARS2RSEC

13

The bottleneck in SB planners [K., Salzman and Halperin, 16]

The main practical computational bottleneck is typically
considered to be CD (including LP).

We formally prove that the complexity of NN search dominates the
asymptotic running time of several AO algorithms.

*appeared in: WAFR 2016

14

The bottleneck in SB planners [K., Salzman and Halperin, 16]

We characterize settings in which the role of NN is far from
negligible and show experimentally that NN may dominate CD
after finite time.

*appeared in: WAFR 2016

14

NN-sensitive settings

Efficient, specifically-tailored NN data structures can be used in
such settings to reduce the overall time of the motion-planning
algorithm

15

Adapting “all-pairs rNN” for sampling-based planners [K., Salz-
man and Halperin, 15]

• In several planning algorithms “all-pairs” r -NN are used with a
predefined value r(n) = O((log n

n)1/d) to achieve AO
• Randomly transformed grids (RTG) [Aiger, Kaplan, Sharir, 14]

is a novel method for approximate all-pairs r -NN

*appeared in: ICRA 2015

16

Adapting “all-pairs rNN” for sampling-based planners [K., Salz-
man and Halperin, 15]

• We implemented RTG and used it for certain (NN-sensitive)
sampling-based algorithms

• We obtain significant speedups improving: the construction
time, the time to find an initial solution, and the time to
converge to high-quality solutions

Faster convergence to high-quality solutions (6D
non-Euclidean C-space)

*appeared in: ICRA 2015
16

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

xnear

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

xnear

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xnew

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

xnear

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

xrand

xnear

17

Rapidly exploring random tree (RRT)

Single-query algorithm that generates a tree that is embedded in
the free space [LaValle and Kuffner, 01]

17

Rapidly exploring random tree (RRT)

17

More about RRT

• Probably the most commonly used planner
• Well suited to complex tasks involving kinodynamic

constraints:
Example: a kinodynamic car
Each state keeps (x , y , θ, ẋ , ẏ , θ̇) and there are two control
inputs (signed speed us and steering angle uφ)

ẋ = us cos θ,
ẏ = us sin θ,
θ̇ = us

L tan uφ,

L

uφ

(x, y)

θ

18

More about RRT

• Probably the most commonly used planner
• Well suited to complex tasks involving kinodynamic

constraints:

Does not require a steering function that returns a trajectory
between two states—corresponds to solving the Two-point
boundary value problem (BVP)

18

Probabilistic completeness of RRT

In [K. et al., 19] we devise a rigorous proof for the PC of RRT

Notation:

• The free space F ⊂ C
• Euclidean metric ‖·‖
• A valid path π : [0, tπ]→ F ,
π(0) = xinit,
π(tπ) = xgoal ∈ Xgoal

• δ > 0 is the clearance of π from the obstacles

19

PC proof of (geometric) RRT

• Wlog, assume that a valid trajectory π exists, whose length is
L

• Let m = 5L/ν, where ν = min(δ, η)
• Let x0 = xinit, . . . , xm = xgoal be a sequence of m + 1 points

along π
• Dividing π into sub-trajectories of length ν/5

• Let Bν/5(x0), . . . ,Bν/5(xm) be a set of balls of radius ν/5

• We prove that with high probability RRT will generate a path
that goes through these balls

20

Lemma 1

Let x ′i ∈ Bν/5(xi) be a vertex in T and let xrand ∈ Bν/5(xi+1).
Then xrandxnear ⊂ F , where xnear is the nearest neighbor of xrand in
T .

xi xi+1

ν
5 ν

5

x′i

xrand

xnear
≤ ν

21

Proof of Lemma 1

We show that ‖xnear − xi‖≤ δ:

• ‖xnear − xi‖≤ ‖xnear − xrand‖+‖xrand − xi‖ (triangle inequality)
• ‖xnear − xrand‖≤ ‖x ′i − xrand‖ (since xnear is the nearest

neighbor of xrand)
• ‖x ′i − xrand‖≤ 3 · ν/5, ‖xrand − xi‖≤ 2 · ν/5
• Therefore, ‖xnear − xi‖≤ 5 · ν/5 = ν ≤ δ ⇒ xnear ∈ Bδ(xi)
• Since xnear, xrand ∈ Bδ(xi) then xrandxnear ⊂ F

xi xi+1

ν
5 ν

5

x′i

xrand

xnear
≤ ν

Note that ‖xnear − xrand‖≤ 3 · ν/5 < ν ≤ η ⇒ xnew = xrand.
22

Theorem: RRT is PC

Theorem 1
The probability that RRT fails to reach xgoal from xinit after k
iterations is ≤ ae−bk , for some a, b ∈ R>0

• Assume that Bν/5(xi) contains an RRT vertex
• Let p be the prob. that in the next iteration an RRT vertex

will be added to Bν/5(xi+1)
• From Lemma 1, choosing xrand ∈ Bν/5(xi+1) ensures this
• Since xrand is drawn uniformly at random from [0, 1]d , we

have that p = |Bν/5|/|[0, 1]d |

23

Theorem: RRT is PC (cont.)

• To reach xgoal from xinit we need to repeat this step m times
1− p 1− p 1− p 1

p p p p

(0) (1) (2) (m)

• Let Xk be the number of successes in k trials
• The prob. of failure: Pr[Xk < m] ≤ m

(k−1)!k
me−pk

• p,m are fixed and independent of k, therefore, Pr[Xk < m]
decays to zero exponentially with k

24

AO-RRT: an AO variant of RRT [Hauser and Zhou, 16]

• “Operates” in the state-cost space (a (d + 1)-dimensional
space)

• In [K. et al., 20] we show that the cost of the solution found
approaches the optimal cost as n→∞

ym = (xgoal, cδ)

r
y1

y2 yi
yi+1

πδ

B0 Bm
y0 = (xinit, 0)

25

The End

26

