
Improved Implementation of Point Location in

General Two-Dimensional Subdivisions?

Michael Hemmer, Michal Kleinbort, and Dan Halperin

Tel-Aviv University, Israel

Abstract. We present a major revamp of the point-location data struc-
ture for general two-dimensional subdivisions via randomized incremen-
tal construction, implemented in Cgal, the Computational Geometry
Algorithms Library. We can now guarantee that the constructed directed
acyclic graph G is of linear size and provides logarithmic query time. Via
the construction of the Voronoi diagram for a given point set S of size n,
this also enables nearest-neighbor queries in guaranteed O(logn) time.
Another major innovation is the support of general unbounded subdivi-
sions as well as subdivisions of two-dimensional parametric surfaces such
as spheres, tori, cylinders. The implementation is exact, complete, and
general, i.e., it can also handle non-linear subdivisions. Like the previ-
ous version, the data structure supports modi�cations of the subdivision,
such as insertions and deletions of edges, after the initial preprocessing. A
major challenge is to retain the expected O(n logn) preprocessing time
while providing the above (deterministic) space and query-time guar-
antees. We describe e�cient preprocessing algorithms, which explicitly
verify the length L of the longest query path. However, instead of using L,
our implementation is based on the depth D of G. Although we prove that
the worst case ratio of D and L is Θ(n/ logn), we conjecture, based on
our experimental results, that this solution achieves expected O(n logn)
preprocessing time.

1 Introduction

Birn et al. [1] presented a structure for planar nearest-neighbor queries, based on
Delaunay triangulations, named Full Delaunay Hierarchies (FDH). The FDH is
a very simple, and thus light, data structure that is also very easy to construct.
It outperforms many other methods in several scenarios, but it does not have
a worst-case optimal behavior. However, it is claimed [1] that methods that do
have this behavior are too cumbersome to implement and thus not available. We
got challenged by this claim.

? This work has been supported in part by the 7th Framework Programme for Re-
search of the European Commission, under FET-Open grant number 255827 (CGL�
Computational Geometry Learning), by the Israel Science Foundation (grant no.
1102/11), and by the Hermann Minkowski�Minerva Center for Geometry at Tel
Aviv University.

In this article we present an improved version of Cgal's planar point loca-
tion that implements the famous incremental construction (RIC) algorithm as
introduced by Mulmuley [2] and Seidel [3]. The algorithm constructs a linear
size data structure that guarantees a logarithmic query time. It enables nearest-
neighbor queries in guaranteed O(log n) time via planar point location in the
Voronoi Diagram of the input points. In Section 4 we compare our revised im-
plementation for point location, applied to nearest neighbor search, against the
FDH. Naturally, this is only a byproduct of our e�orts as planar point location
is a very fundamental problem in Computational Geometry. It has numerous ap-
plications in a variety of domains including computer graphics, motion planning,
computer aided design (CAD) and geographic information systems (GIS).

Previous Work: Most solutions can only provide an expected query time
of O(log n) but cannot guarantee it, in particular, those that only require O(n)
space. Some may be restricted to static scenes that do not change, while others
can only support linear geometry.

Triangulation-based point location methods, such as the approaches by Kirk-
patrick [4] and Devillers [5] combine a logarithmic hierarchy with some walk
strategy. Both require only linear space and Kirkpatrick can even guarantee log-
arithmic query time. However, both are restricted to linear geometry, since they
build on a triangulation of the actual input.

Many methods can be summarized under the model of the trapezoidal search
graph as pointed out by Seidel and Adamy [6]. Conceptually, the initial subdi-
vision is further subdivided into trapezoids by emitting vertical rays (in both
directions) at every endpoint of the input, which is the fundamental search struc-
ture. In principal, all these solutions can be generalized to support input curves
that are decomposable into a �nite number of x-monotone pieces.

The slabs method of Dobkin and Lipton [7] is one of the earliest examples.
Every endpoint induces a vertical wall giving rise to 2n+1 vertical slabs. A point
location is performed by a binary search to locate the correct slab and another
search within the slab in O(log n) time. Preparata [8] introduced a method that
avoids the decomposition into n + 1 slabs reducing the required space from
O(n2) to O(n log n). Sarnak and Tarjan [9] went back to the slabs of Dobkin
and Lipton and added the idea of persistent data structures, which reduced the
space consumption to O(n). Another example for this model is the separating
chains method of Lee and Preparata [10]. Combining it with fractional cascading,
Edelsbrunner et al. [11], achieved O(log n) query time as well. For other methods
and variants the reader is referred to a comprehensive overview given in [12].

An asymptotically optimal solution is the randomized incremental construc-
tion (RIC), which was introduced by Mulmuley [2] and Seidel [3]. In the static
setting, it achieves O(n log n) preprocessing time, O(log n) query time and O(n)
space, all in expectancy. As pointed out in [13], the latter two can even be worst-
case guaranteed. It is also claimed there that one can achieve these worst-case
bounds in an expected preprocessing time of O(n log2 n), but no concrete proof
is given. The approach is able to handle dynamic scenes; that is, it is possible to
add or delete edges later on. This method is discussed in more detail in Section 2.

Contribution: We present here a major revision of the trapezoidal-map
random incremental construction algorithm for planar point location in Cgal.
As the previous implementation, it provides a linear size data structure for non-
linear subdivisions that can handle static as well as dynamic scenes. The new
version is now able to guarantee O(log n) query time and O(n) space. Following
recent changes in the �2D Arrangements" package [14], the implementation now
also supports unbounded subdivisions as well as ones that are embedded on
two-dimensional parametric surfaces. After a review of the RIC in Section 2, we
discuss, in Section 3, the di�erence between the length L of the longest search
path and the depth D of the DAG. We prove that the worst-case ratio of D and L
is Θ(n/ log n). Moreover, we describe two algorithms for the preprocessing stage
that achieve guaranteed O(n) size and O(log n) query time. Both are based on a
veri�cation of L after the DAG has been constructed: An implemented one that
runs in expected O(n log2 n) time, and a more e�cient one that runs in expected
O(n log n) time. The latter is a very recent addition that was not included in the
reviewed submission. However, the solution that is integrated into CGAL is based
on a veri�cation of D. Based on our experimental results, we conjecture that it
also achieves expected O(n log n) preprocessing time. Section 4 demonstrates
the performance of the new implementation by comparing our point location
in a Voronoi Diagram with the nearest neighbor implementation of the FDH
and others. Section 5 presents more details on the new implementation. To the
best of our knowledge, this is the only available implementation for guaranteed
logarithmic query time point location in general two-dimensional subdivisions.

2 Review of the RIC for Point Location

We review here the random incremental construction (RIC) of an e�cient point
location structure, as introduced by [2, 3] and described in [13, 15]. For ease of
reading we discuss the algorithm in case the input is in general position. Given
an arrangement of n pairwise interior disjoint x-monotone curves, a random
permutation of the curves is inserted incrementally, constructing the Trapezoidal
Map, which is obtained by extending vertical walls from each endpoint upward
and downward until an input curve is reached or the wall extends to in�nity.
During the incremental construction, an auxiliary search structure, a directed
acyclic graph (DAG), is maintained. It has one root and many leaves, one for
every trapezoid in the trapezoidal map. Every internal node is a binary decision
node, representing either an endpoint p, deciding whether a query lies to the
left or to the right of the vertical line through p, or a curve, deciding if a query
is above or below it. When we reach a curve-node, we are guaranteed that the
query point lies in the x-range of the curve. The trapezoids in the leaves are
interconnected, such that each trapezoid knows its (at most) four neighboring
trapezoids, two to the left and two to the right. In particular, there are no
common x-coordinates for two distinct endpoints1.

1 In the general case all endpoints are lexicographically compared; �rst by the x-
coordinate and then by the y-coordinate. This implies that two covertical points
produce a virtual trapezoid, which has a zero width.

cv1(p1, q1)

cv2(p2, q2)

A
B

D

C

cv1(p1, q1)

cv2(p2, q2)

A
B

IE F

G

HHC HD

B

cv1

q1

p1

A

C

D

B I

F

E

q2

p2

cv1

q1

p1

cv2

G

A

H

HC

HD

C

D

cv2

(a) (b)

Fig. 1: Trapezoidal decomposition and the constructed DAG for two segments
cv1 and cv2: (a) before and (b) after the insertion of cv2. The insertion of cv2
splits the trapezoids C,D into E,F,HC and G, I,HD, respectively. HC and HD

are merged into H, as they share the same top (and bottom) curves.

When a new x-monotone curve is inserted, the trapezoid containing its left
endpoint is located by a search from root to leaf. Then, using the connectivity
mechanism described above, the trapezoids intersected by the curve are gradu-
ally revealed and updated. Merging new trapezoids, if needed, takes time that
is linear in the number of intersected trapezoids. The merge makes the data
structure become a DAG (as illustrated in Figure 1) with expected O(n) size,
instead of an Ω(n log n) size binary tree [6]. For an unlucky insertion order the
size of the resulting data structure may be quadratic, and the longest search
path may be linear. However, due to the randomization one can expect O(n)
space, O(log n) query time, and O(n log n) preprocessing time.

3 On the Di�erence between Paths and Search Paths

As shown in [13], one can build a data structure, which guarantees O(log n) query
time and O(n) size, by monitoring the size and the length of the longest search
path L during the construction. The idea is that as soon as one of the values
becomes too large, the structure is rebuilt using a di�erent random insertion
order. It is shown that only a small constant number of rebuilds is expected.
However, in order to retain the expected construction time of O(n log n), both
values must be e�ciently accessible. While this is trivial for the size, it is not
clear how to achieve this for L. Hence, we resort to the depth D of the DAG,
which is an upper bound on L as the set of all possible search paths is a subset
of all paths in the DAG. Thus, the resulting data structure still guarantees a
logarithmic query time.

The depth D can be made accessible in constant time by storing the depth
of each leaf in the leaf itself, and maintaining the maximum depth in a separate
variable. The cost of maintaining the depth can be charged to new nodes, since

existing nodes never change their depth value. This is not possible for L while
retaining linear space, since each leaf would have to store a non-constant number
of values, i.e., one for each valid search path that reaches it. In fact the memory
consumption would be equivalent to the data structure that one would obtain
without merging trapezoids, namely the trapezoidal search tree, which for certain
scenarios requiresΩ(n log n)memory as shown in [6]. In particular, it is necessary
to merge as (also in practice) the sizes of the resulting search tree and the
resulting DAG considerably di�er.

In Section 3.1 we show that for a given DAG its depth D can be linear while L
is still logarithmic, that is, such a DAG would trigger an unnecessary rebuild. It
is thus questionable whether one can still expect a constant number of rebuilds
when relying on D. Our experiments in Subsection 3.3 show that in practice the
two values hardly di�er, which indicates that it is su�cient to rely onD. However,
a theoretical proof to consolidate this is still missing. Subsection 3.2 provides
e�cient preprocessing solutions for the static scenario (where all segments are
given in advance). As such, we see it as a concretization of, and an improvement
over, the claim mentioned in [13].

3.1 Worst Case Ratio of Depth and Longest Search Path

B I

F

E

q2

p2

cv1

q1

cv2

G

A

K

cv3

q3J

M

N

p1

p3

cv1
cv2

A

B

I
E F

G

J
cv3

M

K

N

cv2

The �gure to the right shows the
DAG of Figure 1 after inserting
a third segment. There are two
paths that reach the trapezoid N
(black and gray arrows). However,
the gray path is not a valid search
path, since all points in N are to
the right of q1; that is, such a
search would never visit the left
child of q1. It does, however, de-
termine the depth of N , since it is
the longer path of the two. In the
sequel we use this observation to
construct an example that shows that the ratio between D and L can be as large
as Ω(n/ log n). Moreover, we will show that this bound is tight.

We start by constructing a simple-
to-demonstrate lower bound that achieves
Ω(
√
n) ratio between D and L. Assuming that

n = k2 ∈ N, the construction consists of k
blocks, each containing k horizontal segments.
The blocks are arranged as depicted in the �g-
ure to the right. Segments are inserted from
top to bottom. A block starts with a large segment at the top, which we call
the cover segment, while the other segments successively shrink in size. Now the
next block is placed to the left and below the previous block. Only the cover
segment of this block extends below the previous block, which causes a merge
as illustrated in Figure 2. All k =

√
n blocks are placed in this fashion. This

A

B

C
D

E
F

G

H

I

K

cv1(p1, q1)

cv2(p2, q2)

cv3(p3, q3)

cv4(p4, q4)

L
M

I’ C’ D’ E’

A

B

C
D

E
F

G

H

I

K

cv1(p1, q1)

cv2(p2, q2)

cv3(p3, q3)

cv4(p4, q4)

L
M

N

B

A

H

L

G

M

F

EI

D

C

q4

cv4

cv3

q3

p3

cv2

q2

p2

cv4

cv1

cv4cv4

p4

q1

p1

N

K I’

C’

D’

E’

(a) (b)

Fig. 2: (a) The trapezoidal-map after inserting cv4. The map is displayed before
and after the merge of I ′, C ′, D′, and E′ into N , in the top and bottom illustra-
tions, respectively. A query path to the region of I ′ in N will take 3 steps, while
the depth of N in this example is 11.

construction ensures that each newly inserted segment intersects the trapezoid
with the largest depth, which increases D. The largest depth of Ω(n) is �nally
achieved in the trapezoid below the lowest segment. However, the actual search
path into this trapezoid has only O(

√
n) length, since for each previous block it

only passes through one node in order to skip it and O(
√
n) in the last block.

The following construction, which uses a
recursive scheme, establishes the lower bound
Ω(n/ log n) for D/L. Blocks are constructed
and arranged in a similar fashion as in the
previous construction. However, this time we
have log n blocks, where block i contains n/2i

segments. Within each block we then apply
the same scheme recursively as depicted in the
�gure to the right. Again segments are inserted top to bottom such that the depth
of Ω(n) is achieved in the trapezoid below the lowest segment. The fact that the
lengths of all search paths are logarithmic can be proven by the following argu-
ment. By induction we assume that the longest path within a block of size n/2i

is some constant times (log2 n− i). Obviously this is true for a block containing
only one segment. Now, in order to reach block i with n/2i segments, we require
i− 1 comparisons to skip the i− 1st preceding blocks. Thus in total the search
path is of logarithmic length.

Theorem 1. The Ω(n/ log n) worst-case lower bound on D/L is tight.

Proof. Obviously, D of O(n) is the maximal achievable depth, since by construc-
tion each segment can only appear once along any path in the DAG. It remains
to show that for any scenario with n segments there is no DAG for which L is

smaller than Ω(log n). Since there are n segments, there are at least n di�erent
trapezoids having these segments as their top boundary. Let T be a decision tree
of the optimal search structure. Each path in the decision tree corresponds to
a valid search path in the DAG and vice versa. The depth of T must be larger
than log2 n, since it is only a binary tree. We conclude that the worst case ratio
of D and L is Θ(n/ log n). ut

3.2 E�cient Solutions for Static Subdivisions

We �rst describe an algorithm for static scenes that runs in expected O(n log2 n)
time, constructing a DAG of linear size in which L is O(log n). The result is based
on the following lemma. The proof is given in the full version of this paper [16].

Lemma 1. Let S be a planar subdivision induced by n pairwise interior disjoint
x-monotone curves. The expected size of the trapezoidal search tree T , which is
constructed as the RIC above but without merges, is O(n log n).

The following algorithm compute_max_search_path_length computes L in
expected O(n log2 n) time. Starting at the root it descends towards the leaves
in a recursive fashion. Taking the history of the current path into account, each
recursion call maintains the interval of x values that are still possible. Thus, if an
x-coordinate of a point node is not contained in the interval the recursion does
not need to split. This means that the algorithm essentially mimics T (as it would
have been constructed), since the recursion only follows possible search paths.
By Lemma 1 the expected number of leaves of T , and thus of search paths, is
O(n log n). Since the expected length of a query is O(log n) this algorithm takes
expected O(n log2 n) time.

De�nition 1. f(n) denotes the time it takes to verify that, in a linear size DAG
constructed over a planar subdivision of n x-monotone curves, L is bounded by
c log n for a constant c.

Theorem 2. Let S be a planar subdivision with n x-monotone curves. A point
location data structure for S, which has O(n) size and O(log n) query time in
the worst case, can be built in O(n log n+ f(n)) expected time, where f(n) is as
de�ned above.

Proof. The construction of a DAG with some random insertion order takes ex-
pected O(n log n) time. The linear size can be veri�ed trivially on the �y. After
the construction the algorithm compute_max_search_path_length is used to
verify that L is logarithmic. The veri�cation of the size and L may trigger re-
builds with a new random insertion order. However, according to [13], one can
expect only a constant number of rebuilds. Thus, the overall expected runtime
remains expected O(n log n+ f(n)). ut

The veri�cation process described above takes expected O(n log2 n) time.
However, one can do better as we brie�y sketch next. Let T be the collection of

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10 100 1000 10000 100000 1e+06 1e+07

d
ep

th
 /

 s
ea

rc
h
 p

at
h
 l

en
g
th

number of input segments

D/L Random Segments

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 10 100 1000 10000 100000

d
ep

th
 /

 s
ea

rc
h
 p

at
h
 l

en
g
th

number of Voronoi sites

D/L Voronoi Diagram

Fig. 3: Ratio of D and L in two scenarios: random segments (left), Voronoi dia-
gram of random points (right). Plots show average value with error bars.

all the trapezoids created during the construction of the DAG, including inter-
mediate trapezoids that are later killed by the insertion of later segments. Let
A(T) denote the arrangement of the trapezoids. The depth of a point p in the
arrangement is de�ned as the number of trapezoids in T that cover p. The key
to the improved algorithm is the following observation by Har-Peled.

Observation 1. The length of a path in the DAG for a query point p is at most
three times the depth of p in A(T).

It follows that we need to verify that the maximum depth of a point in A(T)
is some constant c1 log n. We do this as follows. We �rst transform the collection
T into a collection R of axis-parallel rectangles such that the maximum depth in
A(R) is the same as the maximum depth in A(T). This can be done in O(nlogn)
time since the input segments in S are interior pairwise disjoint, and we rely on
the separation property of the segments in S stemming from [17]. We then apply
an algorithm by Alt and Scharf [18], which detects the maximum depth in an
arrangement of n rectangles in O(n log n) time. Notice that we only apply this
veri�cation algorithm on DAGs of linear size. Putting everything together we
obtain:

Theorem 3. Let S be a planar subdivision with n x-monotone curves. A point
location data structure for S, which has O(n) size and O(log n) query time in
the worst case, can be built in O(n log n) expected time. 2

3.3 Experimental Results

Since D is an upper bound on L and since D is accessible in constant time our im-
plementation explores an alternative that monitors D instead of L. Though this
may cause some additional rebuilds, the experiments in this section give strong

2 Theorem 3 has been added to the paper after the ESA review process. The main re-
sult of this section in the original submission was Theorem 2 with f(n) = O(n log2 n).

evidence that one can still expect O(n log n) preprocessing time. We compared D
and L in two di�erent scenarios: random non-intersecting line segments and
Voronoi diagram for random sites.3 Each scenario was tested with an increasing
number of subdivision edges, with several runs for each input. Figure 3 displays
the average D/L ratio, and also the minimal and maximal ones. Obviously, the
average ratio is close to 1 and never exceeded a value of 1.3.

These experimental results indicate that replacing the test for the length of
the longest path L by the depth D of the DAG in the randomized incremen-
tal construction essentially does not harm the runtime. However, the following
conjecture remains to be proven.

Conjecture 1. There exists a constant c > 0 such that the runtime of the random-
ized incremental algorithm, modi�ed such that it rebuilds in case the depth D
of the DAG becomes larger than c log n, is expected O(n log n), i.e., the number
of expected rebuilds is still constant.

4 Nearest Neighbor Search in Guaranteed O(logn) Time

As stated in the Introduction, we were challenged by the claim of Birn et al. [1]
that guaranteed logarithmic nearest-neighbor search can be achieved via e�cient
point location on top of the Voronoi Diagram of the input points, but that this
approach �does not seem to be used in practice". With this section we would like
to emphasize that such an approach is available and that it should be considered
for use in practice. Using the RIC planar point location, the main advantage
would be that query times are stable and independent of the actual scenario.

4.1 Nearest Neighbor Search via Voronoi Diagram

Given a set P of n points, which we wish to preprocess for e�cient point location
queries, we �rst create a Delaunay triangulation (DT) which takes O(n log n) ex-
pected time. The Voronoi diagram (VD) is then obtained by dualizing. Using a
sweep, the arrangement representing the VD, which has at most 3n − 6 edges,
can be constructed in O(n log n) time. However, taking advantage of the spatial
coherence of the edges, we use a more e�cient method that directly inserts VD
edges while crawling over the DT. The resulting arrangement is then further
processed by our RIC implementation. If Conjecture 1 is true then this takes
expected O(n log n) time. Alternatively, it would have been possible to imple-
ment the solution presented in Subsection 3.2 (for which we can prove expected
O(n log n) preprocessing time).

4.2 Nearest Neighbor Search via Full Delaunay Hierarchy

The full Delaunay hierarchy (FDH) presented in [1] is based on the fact that
one can �nd the nearest neighbor by performing a greedy walk on the edges of
the Delaunay triangulation (DT). The di�erence is that the FDH keeps all edges

3 Additional experimental results that include also the scenarios constructed in Sec-
tion 3.1 can be found at http://acg.cs.tau.ac.il/projects/lppl.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000 25000 30000 35000

to
ta

l
q
u
er

y
 t

im
e

in
 s

ec

number of input points

ENNRIC
EFDH
FFDH

 CGAL_KD
 CGAL_DH

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000

to
ta

l
q
u
er

y
 t

im
e

in
 s

ec

number of input points

 CGAL_DH
FFDH
EFDH

ENNRIC
 CGAL_KD

Fig. 4: Performance of 500k nearest-neighbor queries for di�erent methods on
two scenarios: (left) random points; (right) circle with outliers.

that appear during the randomized construction [19] of the DT in a �attened
n-level hierarchy structure, where level i contains the DT of the �rst i points.
Thus, a walk that starts at the �rst point is accelerated due to long edges that
appeared at an early stage of the construction process while the DT was still
sparse. The FDH is a very light, easy to implement, and fast data structure with
expected O(n log n) construction time that achieves an expected O(log n) query
path length. However, a query may take O(n) time since the degree of nodes can
be linear. For the experiments we used two exact variants: a basic exact version
(EFDH) and a (usually faster) version (FFDH) that �rst performs a walk using
inexact �oating point arithmetic and then continues with an exact walk.

4.3 Experimental Results

We compared our implementation for nearest-neighbor search using the RIC
point location on the Voronoi-diagram (ENNRIC) to the following exact meth-
ods: EFDH, FFDH, Cgal's Delaunay hierarchy (CGAL_DH) [5], and Cgal's
kd-tree (CGAL_KD).4

All experiments have been executed on a Intel(R) Core(TM) i5 CPU M 450
with 2.40GHz, 512 kB cache and 4GB RAMmemory, running Ubuntu 10.10. Pro-
grams were compiled using g++ version 4.4.5 optimized with -O3 and -DNDEBUG.
The left plot of Figure 4 displays the total query time in a random scenario, in
which both input points and query points are randomly chosen within the unit
square. Clearly, all methods have logarithmic query time, however due to larger
constants ENNRIC is slower. The other plot presents a combined scenario of
(n− blog nc) equally spaced input points on the unit circle and blog nc random
outliers. The queries are random points in the same region. In this experiment
the CGAL_KD and ENNRIC are signi�cantly faster and maintain a stable query
time. A similar scenario that was tested contains equally spaced input points on
a circle and a point in the center with random query points inside the circle.
The di�erences there are even more signi�cant than in the previous scenario.
As for the preprocessing time in all tested scenarios, obviously ENNRIC cannot
compete with the fast construction time of the other methods.

4 Due to similar performance we elided the kd-tree implementation in ANN [20].

5 Cgal's New RIC Point Location

With this article we announce our revamp of Cgal's implementation of planar
point location via the randomized incremental construction of the trapezoidal
map, which is going to be available in the upcoming Cgal release 4.1.

Like the previous implementation by Oren Nechushtan [21], it is part of the
�2D Arrangements� package [22] of Cgal. It allows both insertions and deletions
of edges. The implementation is exact and covers all degenerate cases. Following
the generic-programming paradigm [23] it can be easily applied to linear geometry
but also to non-linear geometry such as algebraic curves or Bézier curves. The
main new feature, and this is what triggered this major revision, is the support
for unbounded curves, as it was introduced for the �2D Arrangements� package
in [14], enabling point location on two-dimensional parametric surfaces (e.g.,
spheres, tori, etc.) as well.

In addition we did a major overhaul of the code basis. In particular, we
maintain the depth D of the DAG as described in Section 3 such that D is
accessible in constant time. Thus we can now guarantee logarithmic query time
after every operation. Moreover, the data structure now operates directly on the
entities of the arrangement. In particular, it avoids copying of geometric data
which can signi�cantly reduce the amount of additional memory that is used by
the search structure. This is important, since due to the generic nature of the
code it is not clear whether the geometric types (user provided) are referenced.

To the best of our knowledge, this is the only available implementation of a
point location method with a guaranteed logarithmic query time that can handle
two-dimensional subdivisions to this generality. Furthermore, it is the fastest
available point location method, in terms of query time, forCgal arrangements.5

6 Open Problem

Prove Conjecture 1, that is, prove that it is possible to rely on the depth D of the
DAG and still expect only a constant number of rebuilds. This solution would
not require any changes to the current implementation.

Acknowledgement: The authors thank Sariel Har-Peled for sharing Observa-
tion 1, which is essential to the expected O(n log n) time algorithm for producing
a worst-case linear-size and logarithmic-time point-location data structure.

References

1. Birn, M., Holtgrewe, M., Sanders, P., Singler, J.: Simple and fast nearest neighbor
search. In: Workshop on Algorithm Engineering and Experiments. (2010) 43�54

2. Mulmuley, K.: A fast planar partition algorithm, i. J. Symb. Comput. 10(3/4)
(1990) 253�280

5 See http://acg.cs.tau.ac.il/projects/lppl for a comparison to Cgal Land-
marks point location [24].

3. Seidel, R.: A simple and fast incremental randomized algorithm for computing
trapezoidal decompositions and for triangulating polygons. J. Comput. Geom. 1
(1991) 51�64

4. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1)
(1983) 28�35

5. Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13(2) (2002)
163�180

6. Seidel, R., Adamy, U.: On the exact worst case query complexity of planar point
location. J. Algorithms 37(1) (2000) 189�217

7. Dobkin, D.P., Lipton, R.J.: Multidimensional searching problems. SIAM J. Com-
put. 5(2) (1976) 181�186

8. Preparata, F.P.: A new approach to planar point location. SIAM J. Comput. 10(3)
(1981) 473�482

9. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
mun. ACM 29(7) (1986) 669�679

10. Lee, D.T., Preparata, F.P.: Location of a point in a planar subdivision and its
applications. In: ACM Symposium on Theory of Computing (STOC). STOC '76,
New York, NY, USA, ACM (1976) 231�235

11. Edelsbrunner, H., Guibas, L.J., Stol�, J.: Optimal point location in a monotone
subdivision. SIAM J. Comput. 15(2) (1986) 317�340

12. Snoeyink, J.: Point location. In Goodman, J.E., O'Rourke, J., eds.: Handbook of
Discrete and Computational Geometry. CRC Press LLC, Boca Raton, FL (2004)
767�785

13. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Third edn. Springer-Verlag (2008)

14. Berberich, E., Fogel, E., Halperin, D., Melhorn, K., , Wein, R.: Arrangements
on parametric surfaces I: General framework and infrastructure. Mathematics in
Computer Science 4 (2010) 67�91

15. Mulmuley, K.: Computational geometry - an introduction through randomized
algorithms. Prentice Hall (1994)

16. Hemmer, M., Kleinbort, M., Halperin, D.: Improved implementation of point lo-
cation in general two-dimensional subdivisions. CoRR abs/1205.5434 (2012)

17. Guibas, L.J., Yao, F.F.: On translating a set of rectangles. In: STOC. (1980)
154�160

18. Alt, H., Scharf, L.: Computing the depth of an arrangement of axis-aligned rectan-
gles in parallel. In: Proceedings of the 26th European Workshop on Computational
Geometry (EuroCG), Dortmund, Germany (March 2010) 33�36

19. Amenta, N., Choi, S., Rote, G.: Incremental constructions con brio. In: Symposium
on Computational Geometry. (2003) 211�219

20. Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching
http://www.cs.umd.edu/~mount/ANN/.

21. Flato, E., Halperin, D., Hanniel, I., Nechushtan, O., Ezra, E.: The design and
implementation of planar maps in CGAL. ACM Journal of Experimental Algo-
rithmics 5 (2000) 13

22. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zuk-
erman, B.: 2D arrangements. In: CGAL User and Reference Manual. 4.0 edn.
CGAL Editorial Board (2012)

23. Austern, M.H.: Generic Programming and the STL. Addison-Wesley (1999)
24. Haran, I., Halperin, D.: An experimental study of point location in planar arrange-

ments in CGAL. ACM Journal of Experimental Algorithmics 13 (2008)

