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Abstract

In this work, we propose a new approach for motion planning
for nonholonomic car-like robots which is based on a Customiz-
able PRM (C-PRM). A major advantage of our approach is that
it enables thesameroadmap to be efficiently utilized for car-like
robots with different turning radii, which need not be known before
query time. OurC-PRM-based approach first builds a so-called
control roadmap which does not incorporate any nonholonomic
constraints. The control roadmap is used to efficiently generate
‘good’ configurations of the car, e.g., aligned with the roadway.
The control roadmap is also used to guide the roadmap connec-
tion. The paths encoded in the roadmap consist of straight-line
segments and arcs, where transitions between the two require full
stops of the car. The control roadmap assists in the optimization
and smoothing of these paths using cubic B-splines. Results with
a simple car-like robot are very promising.

1 Introduction

Automatic motion planning deals with finding a feasi-
ble sequence of motions to take some movable object (the
‘robot’) from a given initial configuration to some specified
goal configuration. While complete motion planning algo-
rithms do exist, they are rarely used in practice since they
are computationally infeasible in all but the simplest cases
[14, 19]. For this reason, attention has focused on proba-
bilistic methods, which sacrifice completeness in favor of
computational feasibility and applicability.

In particular, we note a class of algorithms known as
probabilistic roadmap (PRM) methods. The idea behind
PRMs is to create a graph of randomly generated collision-
free configurations which are connected by a simple and fast
local planning method. Actual global planning (queries)
is carried out on this graph. The initialPRMs were very
successful in solving difficult problems in high-dimensional
configuration spaces (C-space) that had previously resisted
efficient solution [12], and moreover, were simple and easy
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to implement, requiring only collision detection as a prim-
itive operation. These successes led to the application of
PRM motion planning techniques to a number of challeng-
ing problems arising in a variety of fields including robotics
(e.g., closed-chain systems [10, 16]), CAD (e.g., assem-
bly [25], maintainability [4, 8], deformable objects [2, 11]),
and even computational Biology and Chemistry (e.g., lig-
and docking [3, 5, 20], protein folding [3, 22, 23]). Indeed,
it can be argued that thePRM framework was instrumental
in this broadening of the range of applicability of motion
planning to include these kinds of problems.

Customizable PRM (C-PRM). In this work, we apply
the PRM methodology to planning trajectories for car-like
robots. Our approach is based on aPRM variant, called
C-PRM (or CustomizablePRM [21]), recently developed in
our group. C-PRM differs from traditionalPRMs in two
ways. First, in the roadmap construction stage, we build
coarse roadmaps by performing only approximate valida-
tion of roadmap nodes and edges. For example, we may
approximately check the validity of an edge by only check-
ing a small fraction of its intermediate configurations. Sec-
ond, in the query stage, the roadmap is validated and refined
only in the necessary regions, and moreover, iscustomized
in accordance with any specified query preferences.

The advantages ofC-PRM over traditionalPRMs, which
perform complete roadmap validation during preprocess-
ing, are efficiency, flexibility, and adaptability for differ-
ent robots. AC-PRM roadmap can be naturally pruned
to satisfy different query requirements, and is iteratively re-
fined in the meaningful areas as queries proceed. For car-
like robots, this means that the roadmap we construct can
be easily adapted and used for the planning of robots with
different turning radii, which was not possible with other
methods.

Motion planning for car-like robots. Car-like robots
typically have three degrees of freedom, i.e., two positional
dofs and one orientational dof, i.e.(x; y; �), which are re-
lated through an intrinsic nonholonomic constraint:

� _x sin � + _y cos � = 0 (1)

whose intuitive meaning is that car-like robots can only
move forward or backward. In addition, they generally also
have a lower-bound on their turning radius. Therefore, a
car-like robot cannot follow all collision free paths in a two-



dimensional environment. The path has to curve ’slowly’
enough for the car to follow.

Much research has been done on motion planning for
nonholonomic car-like robots (see [9] for a review). While
much of this work has used randomized methods, most of
it has utilized potential field methods (e.g. [6, 13]) as op-
posed to the increasingly popularPRM technique. A no-
table exception is the work of̌Svestka and Overmars on
car-like and tractor-trailer robots using theirPPP (Prob-
abilistic Path Planning) algorithm, see [9] and references
therein. Their method first generates configurations in C-
space (R2 � [0; 2�), and then connects them using an RTR
path local planning method. An RTR path is defined as the
concatenation of a rotational path, a translational path, and
another rotational path [26]. An alternative is to use a local
planner that constructs the shortest path connecting the two
configurations as was done in [18, 24]. Another random-
ized strategy that has been used for non-holonomic planning
is the RRT (Rapid-Exploring Random Tree) approach [15].
Here, the the nonholonomic constraints (e.g., the turning ra-
dius) are used to construct a tree of feasible paths emanating
from the starting configuration.

However, in all these previous methods, the roadmap is
built specifically for robots with a particular, pre-defined
turning radius. Thus, if different robots (with different
turning radii) are to operate in the same environment, they
would all need different roadmaps.

2 A C-PRM for Car-Like Robots
We propose a novel method for motion planning for non-

holonomic car-like robots. A major advantage of ourC-
PRM-based approach is that it enables thesameroadmap
to be efficiently utilized for car-like robots with different
turning radii. In addition, the computation costs (including
roadmap construction and querying), even for a single car-
like robot, are generally significantly less than with other
techniques, such as the PPP [9] or RRT [15] methods.

However, this work is not just simply another applica-
tion of C-PRM. In particular, the nonholonomic constraints,
and our goal of supporting different turning radii with the
same approximate roadmap, means that extra care must be
taken when constructing the roadmap. For example, sam-
pling strategies must be devised that are sensitive to the car’s
orientation, and connection (local planning) must be per-
formed without knowledge of the car’s turning radius (since
it will not be known until query time). Thus, the roadmap is
constructed hierarchically.

� First, we construct acontrol roadmapfor quickly es-
timating the connectivity of the free space. Here, no
restriction is placed on the car’s orientation or turning
radius and edges in the control roadmap are validated
very coarsely. (See Fig. 1(a).)

� Next, anapproximate roadmapis constructed from the
control roadmap. Nodes correspond to themidpoints
of the edges in the control roadmap, and they are now

(a)

(b)

Figure 1:The (a) control and (b) approximate roadmaps.

oriented along the direction of the edge (aligned with
the “roadway”). Roadmap nodes are connected if they
correspond to adjacent edges in the control roadmap.
At this point, only a very coarse bound is placed on the
turning radius – the turning radius of the actual robot
will be enforced at the query stage. (See Figure 1(b).)

As in [21], we believe the main strength of the roadmap
is that it can provide an estimation of the free space and its
connectivity. Even very coarse roadmaps, such as our con-
trol roadmap, can accomplish this task swiftly. They can
then be refined as necessary using more detailed validations
– but only in the regions determined promising by the ini-
tial coarse processing, which can save a significant amount
of processing time. A similar philosophy is proposed in the
Lazy PRM [7] and Fuzzy PRM [17] methods, which ad-
vocate an even coarser validation thanC-PRM – either no
validation at all [7] (i.e., accepting all roadmap nodes and
edges in the construction phase) or validating nodes but not
edges [17]. Our experience is that some, even very limited,
validation of both nodes and edges provides fairly good es-
timates of the free space to guide path selection, which in
turn can significantly reduce query costs.

In the following, we describe the details of the roadmap
construction and the adaptable query process for enforcing
variable turning radii. We model the car-like robot as a poly-
gon moving in a two-dimensional environment,R2, and its
C-space is represented byR2 � [0; 2�).

2.1 Control Roadmap
The control roadmap(Cntl-Rdmp) is constructed simi-

larly to mostPRM roadmaps, but using theC-PRM philoso-
phy of postponing detailed validation. In particular, we first
generate a sample of collision free nodes in the environ-
ment. As orientation information is not necessarily needed



at this stage, for collision detection purposes we can use a
disk of diameterd as our robot, whered is less than the
dimensions of the car-like robot. These points are called
control points (CPs). Alternatively, a robot more similarly
dimensioned to the car can be used. We use this second
option since our ‘cars’ were very simple objects.

We then try to connect each CP to itsk closest neighbors.
An edge is added to the control roadmap if the midpoint of
that edge is collision free. If the robot used at this stage is
not a disk, then collision checking is done by putting the
robot at that midpoint and orienting it along the edge.

2.2 Approximate Roadmap

We next construct an approximate roadmap from the
Cntl-Rdmp. Intuitively, we will use the Cntl-Rdmp to help
us compose (rather than randomly generate) nodes in the
car-like robot’sR2 � [0; 2�) C-space. The positional co-
ordinates of the nodes are the midpoints on the edges of
the Cntl-Rdmp, and their orientations are directed along the
edges, so as to align them with the roadway. If the validity
of these nodes was not already checked during construction
of the Cntl-Rdmp, they will be checked now before adding
them to the approximate roadmap.

In node connection, we connect nodes corresponding to
adjacent edges in the Cntl-Rdmp. For each such connec-
tion, the two nodes are connected via a simple arc and a line
segment if needed. For example (see Figure 2), consider
two nodes(r1; �1) and(r2; �2), and let their common end-
point in the Cntl-Rdmp ber3, whereri = (xi; yi). Also,
let a = kr1 � r3k and b = kr2 � r3k. Denote the an-
gle between the two edges as�. Then the curvature for the
arc is� = cot(�=2)=min(a; b), and the length of path is
l = 1=� � �+ ja� bj. The edge is added to roadmap, with-
out collision checking, if its curvature is smaller than some
threshold�max. This coarse curvature test filters useless
nodes and edges from the roadmap.

2.3 Querying – an adaptive approach

The roadmap can then be used to answer different
queries. Notice that so far we have not mentioned the mini-
mum turning radius of a specific car-like robot: the roadmap
construction is not dependent on it.

Now assume we want to find a path from a start point to
a goal point for a car-like robot which has minimum turn-
ing radiusrmin. To do this, we first connect the start and
the goal to the roadmap, and then remove all edges from the
roadmap with curvature larger than1=rmin. After that, we
use Dijkstra’s algorithm to find the shortest path between
the start and the goal. The path will consist of a sequence of
nodes from the roadmap. Note that such a path could pos-
sibly contain several cusps, which indicate transitions be-
tween forward and backward movements of the car. From
the perspective of the control roadmap, the path is deter-
mined by a sequence of control points. After we have a
path, we must validate it with finer resolution collision tests
since the validity of the edges has not been verified before.

If any node or edge on the path fails to meet the query re-
quirements, it is removed from the roadmap, a new shortest
path is found in the refined roadmap, and the process iterates
until a valid path is found or failure is reported.

Here, we can see how the same roadmap could be pruned
to meet the planning requirements of cars with different
turning radii, or indeed, any other requirement, such as
a pre-set minimum clearance. For example, if we subse-
quently want to plan a path for a robot with an even larger
turning radius, we can simply prune more edges from the
previously pruned roadmap until a path satisfying the cur-
vature requirement is obtained, or failure is reported.

3 Path Optimization: curvature properties
The path created above is made up of arcs and line seg-

ments. An unpleasant feature of this is that since the curva-
ture is not continuous along the path, the robot has to make
a complete stop each time it meets a curvature discontinuity.
Since each roadmap node along the path corresponds to an
edge in the control roadmap, it is a simple matter to retrieve
all the control points along the path.

A natural question that arises is whether it is possible
to find a better path, with fewer discontinuities in the curva-
ture, using the guidance of these control points (or polygon).
More precisely, we first partition the path at any cusps, into
forward and reverse segments, and process each segment
separately. Actually, it is convenient to reverse the state-
ment and ask a more general question: given this control
polygon, is it possible to get a collision free path with better
curvature (by better, we mean bigger and/or more continu-
ous curvature)?

In the following, we will show that for a given con-
trol polygon, arcs always perform better than quadratic B-
splines in terms of obtaining smaller maximum curvature.
The other option is cubic B-splines, which naturally provide
continuous curvature if the path happens also to be collision
free. We will show a heuristic that can be used to find better
knot sequences that minimize the maximum curvature along
the path.

3.1 Arcs and Quadratic B-splines
Compared with arcs and line segments, quadratic B-

splines look smoother. However, arcs are better at minimiz-
ing the maximum curvature along a curved segment con-
trolled by three control points (see Figure 2).

Consider the integration of they component along both
curves. We have

R
1=� � sin(�)d� = Y = c1, constant

c1, for both curves. Since both integrations go through the
same range of�, it is impossible for the curvature of the
quadratic B-spline curve to always be smaller than that of
the arc, since otherwise its integration along the path would
be larger thanY , the constant.

An alternative, more intuitive argument is to notice that
if the spline curve were to always have a smaller curvature
along its path, then we could draw a bigger arc inside it and
still be tangent to the control polygon, which is impossible
(a contradiction).
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Figure 2:An arc and a quadratic B-spline in a control polygon.

3.2 Arcs and Cubic B-splines

Since we would like to have continuous curvature along
the path and still follow the guidance of the control polygon,
it is natural to consider cubic B-splines.

Since at this point we have already found a path, we
can always return to the arc-line path if the cubic B-spline
is in collision. So, let us put the collision issue aside,
and ask what is the best knot sequence to minimize the
maximum curvature along the path? Here, we propose a
heuristic method which is based on the following observa-
tion. The cubic B-spline curve consists of a set ofC2 con-
tinuous Bezier curves. For each curve segment, we haveR
�ds = ��, i.e., the integration of the curvature is the dif-

ference between the directions at the end points, which can
be estimated as a constant. Since the curve lengths is di-
rectly related to�u = ui+1 � ui, increasing the knot range
�u will lower the curvature along that curve segment.

The heuristic works as follows: starting with chord-
length or uniform knot sequences, calculate the maximum
curvature along each Bezier curve segment, and denote
them asC1

max
; C2

max
; : : : ; Ci

max
; : : :. Denote also the knot

range for each curve segment as�u1;�u2; : : : ;�ui; : : :.
Then, in the next iteration, reassign the knot sequence
to ensure a new ratio among the�u. The new ratio is
C1
max

� �u1 : C2
max

� �u2 : : : : : Ci

max
� �ui : : : :.

Continue this process until the maximum curvature reaches
a minimum (most likely a local minimum) or a certain iter-
ation limit is reached.

Figure 3 shows one example, the result of a curve and its
curvature before (uniform knot sequences, dashed line) and
after running the heuristic (the solid line). One can that the
maximum curvature along the curve becomes smaller after
running the heuristic.

4 Implementation and Results

In this section, we show some results obtained using our
C-PRM-based planning approach for nonholonomic car-like
robots in several environments (see Figures 4–7). A sum-
mary of our results on these experiments is shown in Ta-
ble 1. It can be seen that in all cases, the planner is able to
find a fairly good solution in a short time.

All experiments were performed on a Pentium III 550
MHz PC using our C++OBPRM library [1], which includes
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Figure 3:The running results of the heuristic methods.

implementations of manyPRM variants. In addition to tradi-
tional randomized PRM for node generation, some control
roadmap nodes were generated using a variant of the me-
dial axisPRM, or MAPRM [27, 28], which attempts to place
nodes on the medial axis of the free C-space.

In all experiments described below, we use the same
‘car’. Its size is 12 by 5 (environment units). The distance
between the front and rear wheels is 8 units. The car can
drive both forward and backward. The size of the environ-
ment (the bounding box) is 72 by 32 units. All curvature
requirements are set as 6 units unless otherwise specified.

Running time
Roadmap Construction Query

Env. #Node #Edge time[sec] time[sec]
Scene 1 814 3249 3.26 5.81
Scene 2 3196 6316 15.82 6.52
Scene 3 4173 8805 32.49 9.94
Scene 4 1194 1991 2.50 4.43

Table 1: Roadmap statistics (number of nodes and edges) and
running times for constructing and querying the roadmap.

Scene I – Head-In Parking. In Figure 4, we show
a head-in parking scenario. As seen in Figure 4(a), the
path found by the planner looks quite realistic. To make
a smooth turn, the car first turned a bit to the right, and then
turned back to the left to the parking place, as people nor-
mally do. It took 3.26 seconds to construct the roadmap
and 5.81 seconds for the query to find a path. It takes more
time during the query since the roadmap is only approxi-
mately validated, and so this validation must be performed
at the query time. As described earlier, the user can spec-
ify turning radius and clearance requirements. In this case,
the bound on the turning radius was set to six environment
units. Figure 4(b) shows the path from part (a) after it has
been smoothed using a cubic B-spline (see Section 3.2).
Only part of the path is smoothed in this case so as not to
violate the turning radius requirements.
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Figure 4:Scene I – Head-in parking: (a) a solution path, and (b)
a new path after the old one has been partly smoothed using cubic
b-spline.

Scene II – Parallel Parking. In Figure 5, we show a
parallel parking scenario. It is interesting to note that under
different turning radii requirements, the planner found dif-
ferent paths – starting from the same roadmap. As shown
is Figure 5(a), with a smaller turning radius requirement the
planner selected the shortest path and drove the car essen-
tially straight into the spot. As the turning radius require-
ment approaches that of an actual car, the path looks more
natural, see Figure 5(b). This implies thatPRM-based path
planning for car-like robots is plausible, and also suggests
it is suitable for use in simulations, such as cars moving in
virtual scenes and other animations.

Scene III – Driving around Obstacles.Figure 6 shows
a scenario where the robot starts from the top-right corner
and its goal is the center of the left corridor. Here we show
the different paths the planner selects when the relative cost
of forward and backward motion is changed. In this sce-
nario, most human drivers would attempt to follow a path
that looks like an ”S”. However, when both forward and
backward driving are given equal weight, the planner finds
the shortest (in terms of length) path, which involves a sig-
nificant portion of backward movement (see in Figure 6(a)).
In this case, the shortest route for the car is to back out from
right corridor, turn around in the open space, drive into the
left corridor, and continue until it reaches the goal.

However, one can encode preferences in the roadmap by
weighting the edges. For example, in this situation, one
might put put more weight (or a penalty) on backward driv-
ing by, e.g., increasing the length of backward edges by a
factor of c, for some constantc. The new result, obtained
from the same roadmap, with the new weights processed in
the query phase, is shown is Figure 6(b). It can be seen that

(a)

(b)

Figure 5:Scene II – Parallel Parking. Solution paths with (a) an
unrealistic turning radius, and (b) a more realistic turning radius.
In both cases, the same roadmap was used. The different turning
radii were specified at query time.

it does follow an ”S” shape, as desired.

(a)

(b)

Figure 6:Scene III – Driving around Obstacles. In (a), the short-
est path requires a significant backwards segment, but in (b), an
alternative, more ‘natural’, path is obtained when backward driv-
ing is penalized by a factor of 10.

Scene IV – Navigating around Many Obstacles.Now
we test the algorithm in a scene with many (19) randomly
placed triangles. The control map and the real roadmap for
this scene are shown in Figure 1. From the roadmaps, it can



clearly be seen that the method is able to construct a fairly
good roadmap. It seems the planner is able to lay down
”roads” in most of the drivable space, even though the scene
is quite irregular. A solution path moving from the lower-
left to the upper-right corner is found in a few seconds, as
shown is Figure 7.

Figure 7:Scene IV – Navigating around many Obstacles. Navi-
gating in a complex scene with 19 randomly placed triangles.

5 Conclusion
In this paper, we present a newPRM-based approach for

car-like robot motion planning which is based on the Cus-
tomizablePRM (C-PRM). We describe how to use a so-
called ‘control roadmap’ to effectively generate good con-
figurations in the robot’s C-space and then swiftly connect
them into the final roadmap. A major strength of the method
is that thesameroadmap can be customized to do motion
planning for car-like robots with different turning radii. A
heuristic is also proposed for smoothing paths using cubic
B-splines.
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