Supplementary On-line Proofs for Sampling-Diagram Automata: a Tool for Analyzing Path Quality in Tree Planners

Oren Nechushtan ${ }^{1 *}$, Barak Raveh ${ }^{12 *}$, and Dan Halperin ${ }^{1}$
${ }^{1}$ School of Computer Science, Tel-Aviv University, \{theoren, barak, danha\}@post.tau.ac.il *
${ }^{2}$ Dept. of Microbiology and Molecular Genetics, IMRIC, The Hebrew University

Additional Lemmas used for proving Theorem 2 in Section 4

Note that the main lemma used in the proof of Theorem 2 is Lemma 7 below, and the other lemmas are used as auxiliary geometric lemmas. For completeness, we include in this document a figure of the Promenade motion-planning problem, as it appears in the main text.

Fig. 1: An illustration of the Promenade motion planning problem, a square obstacle within a square bounding-box. In this example, q_{1} and q_{2} lie on opposite sides of the promenade. Type- A (solid line) and type- B (dashed line) solution paths between q_{1} and q_{2} are shown, as defined in Section 4. The ratio between their length, denoted μ, is approximately $\frac{1}{3}$ in this case.

Lemma 3. Let s denote a non-rejecting state in an $A S D \mathbb{A}$. If \mathbb{A} moves to s after reading a word W with $S_{\text {cur }}$ being the swath produced by Bi-RRT, and if
(i) $R=R\left(D_{\sigma}[s]\right)$ is the intersection of \mathbb{C} free with a half-plane, and
(ii) $q_{1}, q_{2} \notin R$

* ON and BR contributed equally to this work
then $S_{\text {cur }} \cap R=\phi$.
Proof. For any non-rejecting state s, since R is the intersection of a half-plane with \mathbb{C}, R forms a "visibility block" in the configuration space. Formally, if $s, t \in \mathbb{C}_{\text {free }} \backslash R$ then the line between s and t does not intersect R due to the convexity of either half-plane. Since \mathbb{A} is an ASD, we know that no sample σ_{i} ever hit R on its way to the state s. Since also $q_{1}, q_{2} \notin R$, we conclude the swaths produced by Bi-RRT also do not intersect R.

Lemma 4. Let B_{1} denote the top-left square in $\mathbb{C}_{\text {free }}$ and let $G \subset B_{1}$ denote a smaller homothetic square adjacent to the top-right corner of B_{1}. Given $1 \leq p \leq \infty$ let $L_{\text {top }}$ (resp. $L_{b o t t o m}$) denote the ℓ_{p}-bisector of c_{1} and the top-(bottom-, resp.) left corner of G. Then, any point r in \mathbb{C} free to the right of c_{1} and above both $L_{\text {top }}$ and $L_{\text {bottom }}$ is closer to any point in G than to c_{1}.

Proof. For any point r to the right of c_{1}, the ℓ_{p}-distance from r to a point in G attains its maximum on either the top-left or bottom-left corners of G. Since r is above both bisectors, then c_{1} is farther away from r than all points in G.

Fig. 2: Let B_{1} denote the top-left free square $[0,1] \times[\alpha+1, \alpha+2]$ and let $G \subset B_{1}$ denote a small homothetic square adjacent to the top-right corner of B_{1}. Let c_{1} and c_{2} denote the top-left and top-right corners of the obstacle. Let $L_{\text {top }}$ (resp. $L_{\text {bottom }}$) denote the ℓ_{1}-bisector of c_{1} and the top-(bottom-, resp.) left point of G, restricted to the points to the right of c_{1} within $\mathbb{C}_{\text {free }}$. Then, for any point r to the right of c_{1} and above both $L_{t o p}$ and $L_{b o t t o m}, r$ is closer to any point in G than to c_{1}.

See Figure 2 for an illustration of $L_{t o p}$ and $L_{b o t t o m}$ using the ℓ_{1}-norm.
Notice that generally for $1<p<\infty L_{\text {top }}$ and $L_{b o t t o m}$ may intersect. It is also easy to show that taking G small enough guaranties that the zone in \mathbb{C} free defined in the previous Lemma by the bisectors and c_{1} is not empty. E.g., if G is a $\gamma \times \gamma$ square with $\gamma<1 / 2$ then the zone is non-empty for ℓ_{1}.

Think of S as the $S_{\text {cur }}$ induced by \mathbb{A}_{α}.
Lemma 5. Let $\left(c_{1}, c_{2}\right)$ denote two adjacent corners of the inner-square in \mathcal{P}_{α}. Let δ denote the open disc around c_{2} whose boundary passes through c_{1}. Let

Fig. 3: Let δ denote the ℓ_{2}-disc around c_{2} with c_{1} on its boundary and let $S_{c u r}$ denote the swath of the current Bi-RRT algorithm iteration over A_{α} where $\alpha \geq 2$. (i) For any point $\sigma_{o l d} \in \mathbb{C}_{\text {free }}$ within the intersection of δ and ${ }^{\text {quad }} c_{2}$, the topleft quadrant of $c_{2}, \sigma_{\text {old }}$ is closer than c_{1} to any given point $\sigma_{\text {new }}$ in $B_{2} ;(i i)$ If $S_{\text {cur }}$ intersects δ in c_{2} quad , the bottom-right quadrant of c_{2}, and satisfies that $S_{\text {cur }} \cap$ Hidden Zone $\neq \phi \xlongequal{\Longrightarrow} S_{\text {cur }} \cap$ Visible Zone $\neq \phi$, then extending $T_{\text {cur }}$ towards a new sample $\sigma_{\text {new }}$ within B_{2} - the right green(solid) square, adds the sample $\sigma_{\text {new }}$ to $T_{\text {cur }}$ as a stopping configuration; (iii) For any point r on the $\operatorname{arc} \partial^{*} \delta, r$ is closer to B_{1} - the left green(solid) square - than to c_{1}.
${ }^{\text {quad }} c_{2}$ and $c_{2_{\text {quad }}}$ denote the top-left and bottom-right quadrants of c_{2}, resp.. Define Hidden Zone as the rectangle $[0,1] \times[0, \alpha+1]$, Neutral Zone as the rectangle $[1, a+1] \times[0,1]$ and Visible Zone as the triangle $(\alpha, \alpha+2)(\alpha+2, \alpha+2)(\alpha+2, \alpha)$. Then,
(i) For any point $\sigma_{\text {old }} \in \mathbb{C}_{\text {free }}$ within the intersection of δ and ${ }^{\text {quad }} c_{2}$, $\sigma_{\text {old }}$ is closer than c_{1} to any given point $\sigma_{\text {new }}$ in B_{2}.
(ii) If $S \subset \mathbb{C}$ free satisfies that S intersects $\delta \cap c_{2_{\text {quad }}}$ and

$$
\begin{equation*}
S \cap \text { Hidden Zone } \neq \phi \Longrightarrow S \cap \text { Visible Zone } \neq \phi, \tag{1}
\end{equation*}
$$

then extending S towards a new sample $\sigma_{\text {new }}$ within the B_{2} region (the green(solid) square in Figure 3), as defined by $\operatorname{Bi}-R R T_{\ell_{p}}\left(\mathcal{P}_{\alpha}\right)$, adds $\sigma_{\text {new }}$ to S.
(iii) Let $\partial^{*} \delta$ denote the boundary of δ that lies within $\mathbb{C}_{\text {free }}$ and ${ }^{\text {quad }} c_{2}$. For any point r on $\partial^{*} \delta \backslash c_{1}, r$ is closer to B_{1} than to c_{1}.

Proof. [of Lemma 5] Assume that $\alpha \geq 2$ and $1 \leq p \leq \infty$ are as mentioned in the Lemma. Assume w.l.o.g. by symmetry of the workspace, that c_{1} and c_{2} are the top-left and top-right, resp., corners of the square obstacle, as depicted in Figure 3. Let δ denote the open ℓ_{p}-disc with radius α around c_{2} and let $\partial^{*} \delta$ be as in the Lemma (notice that by definition $c_{1} \in \partial^{*} \delta$).
(i) Observation 6 For any $1<p<\infty$ and any two points $a, b \in \mathbb{R}^{2}$ satisfying $a_{x}<b_{x}$ and $a_{y}<b_{y}$ the ℓ_{p}-bisector of (a, b), is strongly monotonically decreasing in x as a function of y. For $p=\infty$ the same holds with strongly monotonically relaxed by weakly monotonically. For $p=1$ we further relax - for any two points $a, b \in \mathbb{R}^{2}$ satisfying $b_{x}-a_{x}>\ell_{p}-\operatorname{dist}(a, b) / 2>0$ the ℓ_{p}-bisector of (a, b) is weakly monotonically decreasing in x as a function of y.
Note that generally for $p=1$ and $p=\infty$ the bisector may be of full dimension rather than a simple curve.
Using Observation 6 for any $1 \leq p \leq \infty$ and any point $\sigma_{\text {old }} \in \delta$, the ℓ_{p}-bisector of $\left(c_{1}, \sigma_{\text {old }}\right)$, is monotonically decreasing in x as a function of y and by definition $\ell_{p}-\operatorname{dist}\left(c_{2}, c_{1}\right)>\ell_{p}-\operatorname{dist}\left(c_{2}, \sigma_{o l d}\right)$. Hence the bisector passes below or completely to the left of c_{2}, proving that any point $\sigma_{\text {new }}$ in B_{2}, the top-right quadrant of c_{2}, is closer to $\sigma_{\text {old }}$ than to c_{1}.
(ii) Assume on the contrary that there exists a swath $S \subset \mathbb{C}$ free with $\sigma_{\text {old }} \in S \cap \delta \cap c_{2_{\text {quad }}}$ such that extending S towards $\sigma_{\text {new }}$ does not add $\sigma_{\text {new }} \in B_{2}$ to $\stackrel{S}{S}$. Let $\sigma_{\text {near }}$ be the ℓ_{p}-nearest point of $S_{\text {cur }}$ to $\sigma_{\text {new }}$. By the geometry of the workspace, $\sigma_{\text {near }}$ is invisible to $\sigma_{\text {new }}$ and therefore lies either in Hidden Zone or in Neutral Zone. Using (mirror image of) Part (i) any point $q \in$ Neutral Zone satisfies

$$
\ell_{p}-\operatorname{dist}\left(q, \sigma_{\text {new }}\right)>\ell_{p}-\operatorname{dist}\left(c_{3}, \sigma_{\text {new }}\right) \geq \ell_{p}-\operatorname{dist}\left(\sigma_{\text {old }}, \sigma_{\text {new }}\right)
$$

implying that $\sigma_{\text {near }} \notin S \cap$ Neutral Zone. Hence, there exists a point $q \in S \cap$ Hidden Zone that is not visible from $\sigma_{\text {new }}$. By inference (1)
$S \cap$ Visible Zone $\neq \phi$. It remains as an easy exercise for the reader to prove that for any $\alpha \geq 2$, any point $\sigma_{\text {new }} \in \operatorname{interior}\left(B_{2}\right)$ and any point $s \in$ Visible Zone

$$
\ell_{p}-\operatorname{dist}\left(q, \sigma_{n e w}\right) \geq \ell_{p}-\operatorname{dist}\left(c_{1}, \sigma_{n e w}\right)>\ell_{p}-\operatorname{dist}\left(s, \sigma_{n e w}\right)
$$

a contradiction to the definition of $\sigma_{n e a r}$ as closest point.
(iii) Let r denote a point on $\partial^{*} \delta \backslash c_{1}$. Then for any $1 \leq p<\infty$ the point $u:=\left(1, q_{y}\right)$, is the closest point to r in B_{1}. In particular it is closer than c_{1}. For $p=\infty, r$ itself belongs to B_{1}, and is closer to B_{1} than to c_{1}.

Lemma 7. Let $\alpha \geq 2$ and $1 \leq p \leq \infty$ and let $\left(c_{1}, c_{2}\right)$ denote two adjacent corners of the inner-square in \mathbb{A}_{α}. Let $q_{1}, q_{2} \in \mathbb{C}$ free denote an initial and goal configurations between A_{1} and B_{1}, and A_{2} and B_{2}, resp., as depicted in Figure 1. Given a sequence of tree labels $\Theta_{m}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in\left\{\hat{T}_{1}, \hat{T}_{2}\right\}^{m}$ together with a sequence of samples $\Sigma_{m}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$, we let $W\left(\Theta_{m}, \Sigma_{m}\right)$ denote the word $\overline{w_{1} w_{2} \ldots w_{m}}$, where $w_{t}=\left(\theta_{t}, \sigma_{t}\right)$.
(i) If $\overline{w_{1} w_{2} \ldots w_{t_{i}}}$ is a minimal prefix of the word W that moves $s_{\text {init }}$ to s_{i}, then $\sigma_{t_{i}}$ is added to S_{1},
(ii) If $\overline{w_{1} w_{2} \ldots w_{t_{i i i}}}$ is a minimal prefix of the word W that moves $s_{i n i t}$ to s_{i}, and then to $s_{i i i}$, then $\sigma_{t_{i i i}}$ is added to S_{1}, and
(iii) If $\overline{w_{1} w_{2} \ldots w_{t_{\text {accept } 1}}}$ is a minimal prefix of the word W that moves $s_{\text {init }}$ to s_{i} then to $s_{i i i}$, and then finally to $s_{\text {accept1 }}$, then $\sigma_{t_{\text {accept } 1}}$ is added to both S_{1} and S_{2}.

Proof. [Lemma 7] Let $q_{1} \in \mathbb{C}_{\text {free }}$ be the initial configuration between A_{1} and B_{1} as depicted in Figure 1. Let $\Theta_{m}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in\left\{\hat{T}_{1}, \hat{T}_{2}\right\}^{m}$ be a sequence of tree labels and $\Sigma_{m}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$ be a sequence of sampling.
(i) Let $W^{i}=\overline{w_{1} w_{2} \ldots w_{t_{i}}}$ be a minimal prefix of the word $W\left(\Theta_{m}, \Sigma_{m}\right)$, that moves $s_{\text {init }}$ to s_{i}. Let $S_{\text {cur }}$ be the induced swath by reading W^{i} into \mathbb{A}_{α}. Since we moved by W^{i} to the left neighbor of $s_{\text {init }}$ then $\theta_{i}=\hat{T}_{1}$ and $S_{\text {cur }}=S_{1}$. As \mathbb{A}_{α} is an ASD, and as $s_{i} \in \operatorname{States}\left(\mathbb{A}_{\alpha}\right)$ is nonrejecting then W^{i} realizes $D_{\sigma}\left[s_{i}\right]$. Let δ denote the ℓ_{p} disc of radius α around c_{1}. Clearly $q_{1} \in \delta$ as for any vector $v \in \mathbb{R}^{2}$ and any $1 \leq p \leq \infty$ $\ell_{1}-\operatorname{norm}(v) \leq \ell_{p}-\operatorname{norm}(v)$ and since q_{1} was picked between A_{1} and B_{1}. Using (the mirror image of) Lemma 5 Part (ii), it is enough to prove that if $S_{\text {cur }}$ intersects the Hidden Zone $(1, \alpha+2) \times(0,1)$, then it also intersects the Visible Zone triangle $(0, \alpha)(0, \alpha+2)(2, \alpha+2)$; proving that the nearest point $\sigma_{\text {near }}$ of $S_{\text {cur }}$ is visible from $\sigma_{\text {new }}$. By construction of the workspace removing A_{1} and the Visible Zone breaks \mathbb{C} free into two disconnected zones, with $q_{1} \in S_{\text {cur }}\left(q_{1} \in S_{1}\right.$ by definition) in the left zone and $S_{\text {cur }} \cap$ Hidden Zone $\neq \phi$ in the right zone. Since W^{i} realizes s_{i} then none of the first t_{i} 'th samples in Σ_{m} intersects $R\left(D_{\sigma}\left[s_{i}\right]\right)$ and using Lemma 3 $S_{\text {cur }} \cap R\left(D_{\sigma}\left[s_{i}\right]\right)=\phi$. Hence $S_{\text {cur }} \cap$ Visible Zone $\neq \phi$ and it follows that the first sample $\sigma_{t_{i}} \in \Sigma_{m}$ that intersects B_{1} is added to S_{1}.
(ii) Let $W^{i i i}=\overline{w_{1} w_{2} \ldots w_{t_{i i i}}}$ be a minimal prefix of the word $W\left(\Theta_{m}, \Sigma_{m}\right)$, that moves along $s_{\text {init }} \rightarrow s_{i} \rightarrow s_{i i i}$. Let $S_{\text {cur }}$ be the induced swath by reading $W^{i i i}$ into \mathbb{A}_{α}. Since we moved by $W^{i i i}$ to the left neighbor of s_{i} then $\theta_{\text {iii }}=\hat{T}_{1}$ and $S_{\text {cur }}=S_{1}$. As \mathbb{A}_{α} is an ASD, and as $s_{i i i}$ is non-rejecting then $W^{i i i}$ realizes $D_{\sigma}\left[s_{i i i}\right]$. Hence, $\sigma_{t_{i i i}} \in F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$. Using Part (i), $S_{1} \cap \Delta^{+}\left(s_{i}\right) \neq \phi$. Let $L_{\text {top }}$ (resp. $L_{\text {bottom }}$) denote the ℓ_{p}-bisector of c_{1} and the top-(bottom-, resp.) left corner of $F_{1}\left(D_{\sigma}\left[s_{i}\right]\right)$. Using Lemma 4, any point in $F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$ is closer to any point in $F_{1}\left(D_{\sigma}\left[s_{i}\right]\right)$ than to c_{1}. Also, since $F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$ is on the left half of $D_{\sigma}\left[s_{i i i}\right]$, any point in $F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$ is closer to c_{1} than to c_{2}. Hence, the nearest neighbor in $S_{\text {cur }}$ to $\sigma_{t_{i i i}} \in F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$ is closer than both c_{1} and c_{2} and therefore visible from $\sigma_{t_{i i i}}$. This proves this part of the Lemma.
(iii) Let $q_{2} \in \mathbb{C}$ free be the goal configuration between A_{2} and B_{2} as depicted in Figure 1. Let $W^{\text {accept } 1}=\overline{w_{1} w_{2} \ldots w_{t_{a c c e p t 1}}}$ be a minimal prefix of the word $W\left(\Theta_{m}, \Sigma_{m}\right)$, that moves along $s_{\text {init }} \rightarrow s_{i} \rightarrow s_{i i i} \rightarrow s_{\text {accept1 }}$. Let $S_{\text {cur }}$ be the induced swath by reading $W^{\text {accept } 1}$ into \mathbb{A}_{α}. Assume we moved by $W^{\text {accept } 1}$ using the left out-edge of $s_{i i i}$. Then $\theta_{\text {accept } 1}=\hat{T}_{1}$ and $S_{\text {cur }}=S_{1}$. As \mathbb{A}_{α} is an ASD, and as $s_{\text {accept } 1}$ is non-rejecting then $W^{\text {accept } 1}$ realizes $D_{\sigma}\left[s_{\text {accept } 1}\right]$. Hence, $\sigma_{t_{\text {accept } 1}} \in F_{1}\left(D_{\sigma}\left[s_{\text {accept } 1}\right]\right)$. Using Part (ii), $S_{1} \cap \Delta^{+}\left(s_{i i i}\right) \neq \phi$. Note that $\Delta^{+}\left(s_{\text {accept1 }}\right)$ was constructed such that it is contained in the disc δ with radius α around c_{2}. Using Lemma 5 Part (ii), any point in $\Delta^{+}\left(s_{\text {accept1 }}\right)$ is closer to any point in $F_{1}\left(D_{\sigma}\left[s_{i i i}\right]\right)$ than to c_{1} and therefore is added to S_{1}. Using the same Lemma, since q_{2} is between A_{2} and B_{2} then $\sigma_{t_{\text {accept } 1}}$ is connected also to S_{2}. Hence, the last sample connected both trees. This proves the last part of the Lemma.

The other cases of moving using the right out-edges follows on the same line of reasoning.

