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Abstract

Recently, the Arrangement 2 package of Cgal, the
Computational Geometry Algorithms Library, has
been greatly extended to support arrangements of
curves embedded on two-dimensional parametric sur-
faces. The general framework for sweeping a set
of curves embedded on a two-dimensional paramet-
ric surface was introduced in [3]. In this paper
we concentrate on the specific algorithms and im-
plementation details involved in the exact construc-
tion and maintenance of arrangements induced by
arcs of great circles embedded on the sphere, also
known as geodesic arcs, and on the exact compu-
tation of Voronoi diagrams on the sphere, the bi-
sectors of which are geodesic arcs. This class of
Voronoi diagrams includes the subclass of Voronoi
diagrams of points and its generalization, power di-
agrams, also known as Laguerre Voronoi diagrams.
The resulting diagrams are represented as arrange-
ments, and can be passed as input to consecutive op-
erations supported by the Arrangement 2 package and
its derivatives. The implementation is complete in
the sense that it handles degenerate input, and it pro-
duces exact results. An example that uses real world
data is included. Additional material is available at
http://www.cs.tau.ac.il/~efif/VOS.

1 Introduction

Given a finite collection C of geometric objects (such
as lines, planes, or spheres) the arrangement A(C) is
the subdivision of the space where these objects reside
into cells as induced by the objects in C. In this pa-
per we concentrate on the particular class of arrange-
ments, where the embedding space is the sphere, and
the inducing objects are geodesic arcs. There is an
analogy between this class of arrangements and the
class of planar arrangements induced by linear curves
(i.e., segments, rays, and lines), as properties of lin-
ear curves in the plane can be often, (but not always),
adapted to geodesic arcs on the sphere. The ability to
robustly construct arrangements of geodesic arcs on
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the sphere, and carry out exact operations on them
using only (exact) rational arithmetic is a key prop-
erty that enables an efficient implementation.

Recently, a software package that computes exact
arrangements of general circles on the sphere was in-
troduced [5]. The extended Arrangement 2 package
was used to compute arrangements on quadrics [3]
and on Dupin cyclides [4], which contain the torus
as a special case. The technique to compute Voronoi
diagrams on two-dimensional parametric surfaces de-
scribed in this paper can be applied to these surfaces
as well, conditioned on the ability to handle bisectors
of sites embedded on these surfaces.

Voronoi diagrams were thoroughly investigated and
were used to solve many geometric problems [1, 17].
One of the interesting properties observed about this
decomposition of a space is its strong connection to
arrangements [6], a property that yields a very general
approach for computing Voronoi diagrams.

The concept of computing cells of points that are
closer to a certain object than to any other object,
among finite number of objects, was extended to var-
ious kinds of geometric sites, ambient spaces, and dis-
tance functions, e.g., power diagrams of circles in the
plane, multiplicatively weighted Voronoi diagrams,
additively weighted Voronoi diagrams [1, 2, 17]. One
immediate extension is computing Voronoi diagrams
on two-dimensional parametric surfaces [12] in gen-
eral, and on the sphere [15, 16] in particular.

2 Arrangements on Surfaces

A parameterized surface S is defined by a function fS :
IP → IR3, where the domain IP = U × V is a rectan-
gular two-dimensional parameter space with bottom,
top, left, and right boundaries, and the range fS is a
continuous function. We allow U = [umin, umax], U =
[umin, +∞), U = (−∞, umax], or U = (−∞, +∞), and
similarly for V . A contraction point p ∈ S is a singu-
lar point, which is the mapping of a whole boundary
of the domain IP. For example, if the top boundary is
contracted, we have ∀u ∈ U, fS(u, vmax) = p′ for some
fixed point p′ ∈ IR3. An identification curve C ⊂ S is
a continuous curve, which is the mapping of opposite
closed boundaries of the domain IP. For example, if
the left and right boundaries are identified, we have
∀v ∈ V, fS(umin, v) = fS(umax, v). A curve in the do-
main is defined as a function γ : I → IP where (i) I is
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an open, half-open, or closed interval with endpoints
0 and 1; (ii) γ is continuous and injective, except for
closed curves, where γ(0) = γ(1); (iii) if 0 6∈ I, the
curve has no start point, and emanates “from infin-
ity”. It holds that limt→0+ ‖γ(t)‖ = ∞ (we have a
similar condition if 1 6∈ I), and we assume that these
limits exist. A weakly u-monotone curve C ⊂ S is the
mapping of a curve γ, such that if t1 < t2 then γ(t1)
is lexicographically smaller than γ(t2).

The Arrangement 2 package of Cgal, the Compu-
tational Geometry Algorithms Library,1 included in
Version 3.3 supports planar arrangements induces by
planar curves. Recently, this package has been ex-
tended to support arrangements of curves embedded
on a two-dimensional parametric surface [3]. The ex-
tended package can handle curves that approach a
boundary in case it is unbounded, or reach a bound-
ary in case it is bounded. In the bounded case, a
boundary can define either a contraction point or an
identification curve2. The extended package is real-
ized as a prototypical Cgal package, and is planned
to be included in the next public release.

The main class of the Arrangement 2 package repre-
sents the embedding of a set of continuous weakly u-
monotone curves that are pairwise disjoint in their in-
teriors on a two-dimensional parametric surface. The
package offers various operations on arrangements
stored in this representation, such as point location,
insertion of curves, removal of curves, and overlay
computation.

Code reuse is maximized by generalizing the preva-
lent algorithms and their implementations. The gen-
eralized code handles features embedded on a modi-
fied surface S̃ : feS

= fS(u, v) | (u, v) ∈ ĨP defined over

a modified parameter space ĨP, where the boundaries
are removed. Specific code that handles features that
approach or reach the boundaries is added to yield a
complete implementation.

The implementation of the various algorithms that
construct and manipulate arrangements is generic, as
it is independent on the type of curves they handle.
All steps of the algorithms are enabled by a mini-
mal set of geometric primitives, such as comparing
two points in uv-lexicographic order, computing in-
tersection points, etc. These primitives are gathered
in a traits class, which models a geometry-traits con-
cept [19]. Different geometry-traits classes are pro-
vided in the Arrangement 2 package to handle various
families of curves, e.g., line segments, conic arcs, etc.

The geometry-traits concept is factored into a hi-
erarchy of refined concepts. The refinement hierar-
chy is defined according to the identified minimal
requirements imposed by different algorithms that
operate on arrangements, thus alleviating the pro-

1http://www.cgal.org
2We do not support surfaces, which contain a contracted

identification curve.
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Figure 1: Hierarchy of Geometry Traits Concepts for Ar-

rangement on Surface.

duction of traits classes, and increasing the usabil-
ity of the algorithms. We refer to the entire hi-
erarchy of refinements defined in Version 3.3 as a
single concept called NoBoundaryTraits for simplic-
ity. The extended package introduces new con-
cepts, models of which are able to handle un-
bounded curves or bounded curves, the endpoints
of which coincide with contraction points or lie on
identification curves; see Figure 1. The “abstract”
HasBoundaryTraits sub-hierarchy lists additional pred-
icates required to handle both curves that reach or
approach the boundaries of the parameter space. It
has no models. The refined BoundedBoundaryTraits

and UnboundedBoundaryTraits sub-hierarchies list ad-
ditional predicates required to handle bounded and
unbounded curves respectively. The geometry-traits
class that handles arcs of great circles models the
BoundedBoundaryTraits concept, as the parameter
space is bounded in all four directions. Finally, the
AllBoundaryTraits sub-hierarchy refines all the above.
A model of this concept can handle unbounded curves
in some directions and bounded curves in others.

3 Handling Arcs of Great Circles on the Sphere

We use the following parameterization of the unit
sphere: IP = [−π, π] × [−π

2 , π
2 ] and fS(u, v) =

(cosu cos v, sin u cos v, sin v). This parameterization
induces two contraction points ps = (0, 0,−1) and
pn = (0, 0, 1), referred to as the south and north poles
respectively, and an identification curve that coincides
with the opposite Prime (Greenwich) Meridian.

The geometry-traits class for geodesic arcs on the
sphere is parameterized with a geometric kernel [10]
that encapsulates the number type used to represent
coordinates of geometric objects and to carry out al-
gebraic operations on those objects. The implemen-
tation handles all degeneracies, and is exact as long
as the underlying number type supports the arith-
metic operations +, −, ∗, and / in unlimited preci-
sion over the rationals, such as the one provided by
Gmp3. A point in our arrangement is defined to be an
unnormalized vector that emanates from the origin,
extended with an enumeration that indicates whether
the vector (i) pierces the south pole, (ii) pierces the

3http://www.swox.com/gmp/
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north pole, (iii) intersects the identification arc, or
(iv) is in any other direction. An arc of a great cir-
cle is represented by its two endpoints, by the normal
of the plane that contains the arc, and some Boolean
flags that cache information. The orientation of the
plane and the source and target endpoints determine
which one of the two great arcs is considered. The
flags are used to expedite the performance.

All the required geometric operations listed in the
traits concept are implemented using only rational
arithmetic. Degeneracies, such as overlapping arcs
that occur during intersection computation, are prop-
erly handled. The end result is a robust yet efficient
implementation.

4 Applications

Armed with the geometry-traits for geodesic arcs on
the sphere, we can use all the arrangement machinery
to solve a variety of problems involving such arrange-
ments. In particular, we compute Minkowski sums of
convex polyhedra [7], by overlaying their respective
Gaussian maps, which are arrangements of geodesics
on the sphere. We also compute various Voronoi dia-
grams on the sphere through the computation of the
lower envelope of the site-distance functions over the
sphere. This section describes the latter application.

We define lower envelopes of functions on the sphere
in a way similar to the standard definition of lower
envelopes of bivariate functions in space [8]:

Definition 1 Given a set of bivariate functions F =
{f1, . . . , fn}, where fi : S

2 → R, their lower enve-
lope Ψ(u, v) is defined to be their pointwise minimum

Ψ(u, v) = min1≤i≤n fi(u, v).

The minimization diagram M(F ) of the set F is the
two-dimensional map obtained by central projection
of the lower envelope onto S

2.

Definition 2 Given two points pi, pj ∈ S
2, the dis-

tance between them ρ(pi, pj) is defined to be the

length of a geodesic arc that connects pi and pj .

Definition 3 Given a set of n points P =
{p1, . . . , pn}, pi ∈ S

2, we define R(P, pi) = {x ∈ S
2 |

ρ(x, pi) < ρ(x, pj), j 6= i}. R(P, pi) is the region of all

points that are closer to pi then to any other point in

P .

The Voronoi diagram of P over S
2 is defined to be

the regions R(P, p1), R(P, p2), . . . , R(P, pn) and their
boundaries.

Edelsbrunner and Seidel [6] observed the connec-
tion between Voronoi diagrams in R

d and lower en-
velopes of the corresponding distance functions to
the sites in R

d+1. This also holds for our spher-
ical case. From the above definitions it is clear
that if fi : S

2 → R is set to be fi(x) = ρ(x, pi),

for i = 1, . . . , n, then the minimization diagram of
{f1, . . . , fn} over S

2 is exactly the Voronoi diagram of
P over S

2.

A new framework based on the envelope algorithm
of Cgal [13] was developed to compute different types
of Voronoi diagrams. The implementation is exact
and can handle degenerate input. The framework
provides a reduced and convenient interface between
the construction of the diagrams and the construc-
tion of envelopes, which in turn are computed using
the Envelope 3 package [14]. Obtaining a new type of
Voronoi diagrams only amounts to the provision of a
traits class that handles the type of bisector curves of
the new diagram type [9]. This traits class models the
EnvelopeVoronoiTraits concept that refines one of the
traits concepts mentioned in Section 2. Essentially,
every type of Voronoi diagram, the bisectors of which
can be handled by an arrangement traits class, can
be implemented using this framework. The bisector
curves between point sites on the sphere are great cir-
cles [16, 17], handled by the newly developed traits
class described in Section 3; see Figure 2(a).

v
0

pi/2

−pi

u

0

pi

We implicitly con-
struct envelopes of dis-
tance functions defined
over the sphere to
compute Voronoi dia-
grams. The image
to the right illustrates
the distance function
from (0, 0) ∈ [−π, π] ×
[−π

2 , π
2 ] on the sphere

in the parameter space. The great circle bisector of
two point sites on the sphere is the intersection of
the sphere and the bisector plane of the points in R
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(imposed by the Euclidean metric).

The envelope code together with the traits class for
geodesic arcs on the sphere enable the computation
of Voronoi diagrams on the sphere, the bisectors of
which are great circles or piecewise curves composed
of geodesic arcs. Another type of Voronoi diagrams
whose bisectors are great circles is the power diagram
of circles on the sphere [18], which generalizes the
Voronoi diagram of points; see Figure 2(b). Power
diagrams on the sphere have several applications sim-
ilar to the applications of power diagrams in the plane.
For example, determining whether a point is included
in the union of circles on the sphere, and finding the
boundary of the union of circles on the sphere [11, 18].

Given two circles on the sphere c1 and c2, let p1 and
p2 be the planes containing c1 and c2 respectively.
The bisector of c1 and c2 is the intersection of the
sphere and the plane that contains the intersection
line of p1 and p2 and the origin. If p1 and p2 are
parallel planes, then the bisector is the intersection of
the sphere and the plane that contains the origin and
is parallel to both p1 and p2.

3



(a) (b)

Figure 2: Voronoi diagrams on the sphere. Sites are drawn

in black and Voronoi edges are drawn in blue. (a) A Voronoi

diagram of 14 random points. (b) A power diagram of 10

random circles.

(a) (b)

Figure 3: Arrangements on the sphere.

Figure 3(a) shows an ar-
rangement on the sphere in-
duced by (i) the continents
and some of the islands on
earth, and (ii) the institu-
tions that participate in the
ACS project,4 which appear
as isolated vertices. The
sphere is oriented such that
Nancy is at the center. The arrangement consists of
1053 vertices, 1081 edges, and 117 faces. The data
was taken from gnuplot5 and from google maps6. Fig-
ure 3(b) shows an arrangement that represents the
Voronoi diagram of the eight cities, the institutions
above are located at, namely Athens, Berlin, Gronin-
gen, Nancy, Saarbrücken, Sophia-Antipolis, Tel Aviv,
and Zurich. The figure above shows the overlay of
the two arrangements shown in Figure 3. Recall that
arrangement points are represented as an unnormal-
ized vector; see Section 3. The coordinates of such
points are converted into machine floating-point only
for rendering purposes.
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