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Abstract

We present a simple and natural extension of the multi-robot motion planning problem
where the robots are partitioned into groups (colors), such that in each group the robots are
interchangeable. Every robot is no longer required to move to a specific target, but rather to
some target placement that is assigned to its group. We call this problem k-color multi-robot
motion planning and provide a sampling-based algorithm specifically designed for solving
it. At the heart of the algorithm is a novel technique where the k-color problem is reduced
to several discrete multi-robot motion planning problems. These reductions amplify basic
samples into massive collections of free placements and paths for the robots. We demonstrate
the performance of the algorithm by an implementation for the case of disc robots moving
among polygonal obstacles in the plane and show that it successfully and efficiently copes
with a variety of challenging scenarios, involving many robots, while a simplified version of
this algorithm, that can be viewed as an extension of a prevalent sampling-based algorithm
for the k-color case, fails even on simple scenarios. Interestingly, our algorithm outperforms
a state-of-the-art implementation for the standard multi-robot problem, in which each robot
has a distinct color.

This work was presented in the Workshop on the Algorithmic Foundations of Robotics
and has been invited to a special issue of the International Journal of Robotics Research
that is dedicated to selected papers from this conference.
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1
Introduction

Figure 1.1: An example of a
3-color scenario with three dif-
ferent groups of robots. The
star-shaped (orange) robots are
required to exchange “rooms”
with the snake (red) robots
while the two puzzle-like (pur-
ple) robots should return to
their start positions in the end
of the motion. Obstacles are
drawn in gray.

Motion planning is a fundamental problem in robotics and
has applications in different fields such as the study of
protein folding, computer graphics, computer-aided design
and manufacturing (CAD/CAM), and computer games.

The problem of motion planning, in its most basic
form, is to find a collision-free path for a robot from start
to goal placements while moving in an environment clut-
tered with obstacles.

An obvious extension of this problem is multi-robot mo-
tion planning, where several robots share a workspace and
have to avoid collision with obstacles as well as with fel-
low robots. In many situations it is natural to assume
that some robots are identical, in form and in function-
ality, and therefore are indistinguishable. In this setting
every target position should be occupied by some robot of
a kind (and not necessarily by a specific robot).

We consider the problem of k-color multi-robot motion
planning—a simple and natural extension of the multi-
robot problem where the robots are partitioned into k
groups (colors) such that within each group the robots
are interchangeable. Every such group has a set of target
positions, of size equal to the number of robots in that
group. Every robot is no longer required to move to a
specific target, but rather to some target position that is
assigned to its group. However, we still require that all
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the target positions will be covered by the end of the motion of the robots. We term the
special case where k = 1 the unlabeled multi-robot motion planning problem.

As an example consider a fleet of mobile robots operating in a factory that are given the
task of cleaning a set of specific locations. The robots are indistinguishable from one another,
and therefore any robot can be assigned to any location. Now assume that in addition to
the mobile robots, another class of maintenance robots is employed by the factory; again,
we consider all the maintenance robots to be of the same kind and interchangeable for the
given task. This turns the unlabeled problem into a k-color problem, where k = 2 in this
case.

From now on we will refer to the classic multi-robot motion planning problem as fully-
colored, as it is a special case of the k-color problem where k is equal to the number of robots
and every group is of size one.

1.1 Previous Work

Throughout this thesis we will assume some familiarity with the basic terms in the area of
motion planning. For more background on motion planning, see, e.g., [5, 18].

The first efforts in motion planning in general, and the multi-robot case in particular, were
aimed toward the design of complete algorithms, guaranteed to find a solution when one exists
or report that none exists otherwise. Schwartz and Sharir were the first to give [25] a complete
algorithm for a multi-robot problem, specifically dealing with the case of coordinating disc
robots in the plane. The running time of their algorithm is exponential in the number of
robots. A work by Hopcroft et al. [11] presented soon after suggested that in some cases
the exponential running time may be unavoidable, showing that even the relatively simple
setting of rectangular robots bound in a rectangular region is PSPACE-hard in the number
of robots.

The hardness of the multi-robot problem involving a large number of robots can be
attributed to its high number of degrees of freedom (or dofs)—the sum of the dofs of the
individual robots. Some efforts were made in the direction of reducing the effective number
of dofs. Aronov et al. [2] showed that for systems of two or three robots a path can be
constructed, if one exists, where the robots move while maintaining contact, thus reducing
the number of dofs by one or two, depending on the number of robots. van den Berg et al.
[27] proposed a general scheme for decomposing a multi-robot problem into a sequence of
subproblems, each consisting of a subset of robots, where every subproblem can be solved
separately and the results can be combined into a solution for the original problem. This
method reduces the number of dofs that need to be treated simultaneously from the number
of dofs of the entire problem to the number of dofs of the largest subproblem.

An opposite approach to the complete planners is the decoupled approach, trading com-
pleteness with efficiency. Decoupled algorithms solve separate subproblems (usually for in-
dividual robots) and combine the individual solutions into a global solution. Although this
approach can be efficient in some cases, it does not guarantee finding a solution if one exists
and usually works only for a restricted set of problems. An example of such an algorithm
can be found in the work of van den Berg and Overmars [28] where every robot is given a

2



priority and for each robot, the motion path is constructed to avoid collision with both static
obstacles and lower-priority robots that are considered as moving obstacles. In other works,
as in Leroy et al. [19], individual paths are computed and velocity tuning is performed to
avoid collision between robots.

In recent years, the sampling-based approach to solving motion-planning problems has
become increasingly popular due to its efficiency, simplicity and the fact that it is appli-
cable to a wide range of problems. Unlike the complete planners that explicitly build the
configuration space of a given problem, i.e., the state of all possible configurations of a
robot, sampling-based algorithms construct an implicit representation of a robot configura-
tion space by sampling this space for valid robot placements and connecting near-by samples.
The connections between samples form a roadmap whose vertices describe valid placements
for the robot and the edges represent valid paths from one placement to the other. Due to
the implicit representation of the configuration space and their simplicity, sampling-based
algorithms tend to be much faster than complete planners in practice, and are applicable
to problems with a large number of dofs such as the multi-robot problem. Although these
algorithms are not complete, many of them are probabilistically complete, that is, they are
guaranteed to find a solution, if one exists, given sufficient amount of time. Examples of
such algorithms are the PRM algorithm [13] by Kavraki et al. and the RRT algorithm [17]
by Kuffner and LaValle. Such algorithms can be easily extended to the multi-robot case
by considering the fleet of robots as one large composite robot [24]. Several tailor-made
sampling-based algorithms have been proposed for the multi-robot case [10, 29]. For more
information on sampling-based algorithms see, e.g., [18].

Figure 1.2: The famous 15-
puzzle. Figure was taken from
en.wikipedia.org/wiki/15 puzzle.

An abstract form of the multi-robot motion planning
problem is the pebble motion on graphs problem [16]. This
is a general case of the famous 15-puzzle [20] where peb-
bles occupying distinct vertices of a given graph are moved
from one set of vertices to another, where the pebbles
are bound to move on the edges of the graph. This
field of research was extensively studied in the last three
decades, and an in-depth overview is given in Chapter 3.
Even though there is a fundamental difference between
the pebble problem and the multi-robot problem —the
former is held in a discrete domain while the latter in the
continuous—still the two problems are interweaved and ex-
hibit several points of similarity. Kornhauser et al. were
the first [16] to suggest that an algorithm for the pebble
may be found useful in tackling the multi-robot motion
planning problem, contemplating “... it is hoped that the
techniques introduced for the solution of the pebble coordination problem may be applicable
to special cases of the general geometric problem”.
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1.2 Contribution

We present a sampling-based algorithm for the k-color problem (for any k). This algorithm
is aimed to solve the most general cases of this problem and does not make any assumptions
regarding the workspace or the structure of the robots.

Our algorithm for the k-color problem—the KPUMP algorithm—reduces the k-color
problem to several discrete pebble problems. Specifically, a sample generated by KPUMP
represents a local k-color problem that is embedded in a variant of the pebble motion prob-
lem. Those pebble problems are constructed in a manner that enables the algorithm to
transform movements of pebbles into valid motions of the robots. This allows KPUMP to
generate a wide range of motions and placements for the robots with minimal investigation of
the configuration space, thus reducing the dependence of the algorithm on costly geometric
tools such as the collision detector.

As reflected in the experiments reported below for the case of disc robots in the plane,
KPUMP proves to be efficient, even on challenging scenes, and is able to solve problems
involving a large number of robots using a modest number of samples. Interestingly, it
performs well even on inputs of the standard (fully-colored) multi-robot problem.

This algorithm is simple to implement and does not require special geometric components
beyond single-robot local planners and single-robot collision detectors. We compare the
performance of our algorithm with a simplified version of KPUMP that can be considered as
a variant of the PRM algorithm for the same problem. We note that the latter performs much
slower than KPUMP and fails to solve even problems that are considered to be simple for
KPUMP. Moreover, concentrating on the fully-colored case, KPUMP outperforms a state-of-
the-art implementation of the PRM algorithm. We show that by making a simple assumption
on the work of the connection generator, it can be proved that KPUMP is probabilistically
complete.

Our discussion will mainly focus on UPUMP—an algorithm for the unlabeled case, since
its extension for the k-color case, namely KPUMP, is almost straightforward. The experi-
ments though will demonstrate the power of KPUMP for various values of k.

The organization of the paper is as follows. In Chapter 2 we give formal definitions of the
unlabeled and k-color problems. In Chapter 3 we present a variant of the pebble problem
and discuss its properties which will be exploited by our algorithms. In Chapter 4 we present
UPUMP. In Chapter 5 we describe the changes to UPUMP that are necessary in order to
transform it into KPUMP. In Chapter 6 the completeness of our algorithms is discussed. We
present experimental results for the case of disc robots moving among polygonal obstacles
in the plane in Chapter 7 and discuss certain properties of our techniques in Chapter 8, as
well as further work.
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2
Preliminaries and Terminology

Let r be a robot operating in the workspace W . We denote by F(r) the free space of a robot
r—the collection of all collision-free single-robot configurations.1 Given s, t ∈ F(r), a path
for r from s to t is a continuous function π : [0, 1]→ F(r), such that π(0) = s, π(1) = t.

Unlabeled Multi-Robot Motion Planning. We say that two robots r, r′ are geometri-
cally identical if F(r) = F(r′) for the same workspace W . Let R = {r1, . . . , rm} be a set of m
geometrically identical robots, operating in a workspace W . We may use F to denote F(ri)
for any 1 ≤ i ≤ m. Let C = {c1, . . . , cm|ci ∈ F} be a set of m single-robot configurations.
C is a configuration if for every c, c′ ∈ C, with c 6= c′, the robots r, r′ ∈ R, placed in c, c′,
do not collide. Notice that we reserve the unqualified term configuration to refer to a set of
m collision-free single-robot configurations. Other types of configurations will be qualified:
single-robot configurations and pumped configurations.

Given two configurations S = {s1, . . . , sm}, T = {t1, . . . , tm}, named start and target,
respectively, we define U = (R, S, T ) as the unlabeled problem, which is shorthand for the
unlabeled multi-robot motion planning problem. Our goal is to find an unlabeled path πU ,
defined as follows. Firstly, πU is a collection of m paths {π1, . . . , πm} such that for every
i, πi is a collision-free path for the robot ri from si to some t ∈ T . Secondly, the robots
have to remain collision-free while moving on the respective paths, i.e., for every θ ∈ [0, 1],
πU(θ) = {π1(θ), . . . , πm(θ)} is a configuration. Notice that this also implies that πU(1) is
some permutation of T .

Throughout this thesis, we use the notation r(c) ⊂ C, for c ∈ F , to represent the portion
of the configuration space covered by a robot r ∈ R placed in the single-robot configuration
c. Note that two robots from R collide, when placed in c, c′ ∈ F , if r(c) ∩ r(c′) 6= ∅.

1We assume that F(r) is an open set. This is not critical in the algorithms below as we assume that the
robot never moves in contact with the obstacles.

5



k-Color Multi-Robot Motion Planning. The k-color problem L is defined by the set
of unlabeled problems {U1, . . . ,Uk}, where Ui = (Ri, Si, Ti) and |Ri|= mi. Now we wish to
find for every Ui an unlabeled path πUi with the additional requirement that robots from
different unlabeled problems do not collide. A special case of this problem, usually named
simply multi-robot motion planning, is a k-color problem where for every Ui it holds that
|Ri|= 1. In our context we call this special case fully-colored.
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3
The Pebble Motion Problem

In this chapter we survey several results that are related to the pebble motion on graph
problem. Then, in preparation for the algorithm presented in the next chapter, we discuss
a variant of the problem that can be viewed as a discretization of the unlabeled problem.
This discretization is defined in a manner that will allow us to transform local unlabeled
problems into pebble problems such that a movement of the pebbles can be transformed
back into valid robot motions. We explain below where our formulation is different from the
standard presentation of the pebble motion problem.

3.1 Overview

The pebble-motion-on-graph problem is a general case of the famous 15-puzzle [20] where
pebbles occupying distinct vertices of a given graph are moved from one set of vertices to
another. Formally, given a graph and a set of distinct pebbles—each pebble is assigned with
a start and target a vertex—the goal is to move the pebbles from start to target, restricting
each vertex to accommodate at most one pebble at a time. This problem was extensively
studied in the past three decades and various results exist.

The first group of results focuses on the question of feasibility of a given pebble problem—
does a solution exists to the given instance of the problem? Wilson [32] considered the case
of a bi-connected graph1 with a single unoccupied vertex and described a feasibility criterion.
Kornhauser et al. [16, 15] extended the result of Wilson to general graphs and an arbitrary
number of pebbles. The extended feasibility criterion can be validated in polynomial time.
Another interesting result described in this work is the bound on the number of pebble moves
that is necessary and sufficient for solving a given instance. Specifically, it is shown that

1A graph is bi-connected if it is connected and remains connected after a removal of any single vertex.
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every pebble problem can be solved using O(n3) moves, and that some problems require
Ω(n3) moves—making the bound tight (where n is the number of vertices in the graph, and
consequently, the maximal number of pebbles). More recently, Aulleta et al. [3] described a
linear-time feasibility algorithm for the case of a tree. Goraly and Hassin [9] extended this
result and provide a linear-time feasibility algorithm for the general graph case. Moreover,
their algorithm applies to a generalized version of the pebble problem, that allows the target
positions to be shared among some of the pebbles, similarly to the k-color problem.

We proceed to describe techniques for finding a concrete solution. Kornhauser et al.
mention that an algorithm can be deduced from their feasibility criterion, although it may
require some effort, as a concrete description of the algorithm is not provided. An algorithm
by Luna and Bekris [21] demonstrates that the pebble problem can be solved using two
relatively simple primitives—one that pushes a group of pebbles on a path, and the other that
swaps the positions of two pebbles. A recent work by Yu and LaValle [33] demonstrates that
the unlabeled variant of the pebble problem can be efficiently solved using flow algorithms.
We also mention the M* algorithm by Wanger et al. [30], that can be applied to the pebble
problem, although it is suitable for a wider range of problems and can be used for solving
the continuous multi-robot motion planning problem [31].

The problem of finding an optimal solution to the pebble problem, i.e., one that minimizes
the number of moves, is known to be NP-hard, even for the generalized 15-puzzle on an n×n
grid [8]. In [4] the complexity of other variations of the pebble problem is discussed, as well
as several approximation algorithms. We mention that finding an optimal solution to a
simplified version of the pebble problem with a single pebble and movable pebble-obstacles
is NP-hard as well [22].

3.2 Formal Definition

We now formally describe the variant of the pebble problem that will be used throughout this
thesis. A pebble problem [16] P(G,S, T,m) is defined by an undirected graph G = (V,E),
and two sets of vertices S, T ⊆ V , where |S|= |T |= m. A pebble placement is an ordered set
of m distinct vertices of V . Initially, m identical pebbles τ1, . . . , τm are placed in S. We wish
to find a chain of placements π∗ = P1, . . . , P`, called a pebble path, which obeys the following
set of rules. Firstly, we demand that P1 = S. Secondly, for every two consecutive placements
P = {p1, . . . , pm}, P ′ = {p′1, . . . , p′m} and every 1 ≤ i ≤ m it holds that (pi, p

′
i) ∈ E or pi = p′i,

i.e., the pebble τi is allowed to stay in its current vertex or move to a neighboring vertex in
the graph.

Next we depart from the problem definition in [16]. We demand that P` is some permu-
tation of the elements of T (The original formulation [16] specified which pebble will reside
on which specific vertex of T ). We do, however, impose an additional requirement—the
separation rule—which requires that the pebbles will move separately, i.e., for every two
consecutive placements P, P ′, as defined above, exactly one pebble τi makes a move on an
edge, while the other pebbles remain stationary. More formally, there exists 1 ≤ i ≤ m such
that (pi, p

′
i) ∈ E and for every j 6= i it holds that pj = p′j. The reason for this restriction

will become clear later on.
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3.3 Solvability

We provide a simple test to identify whether a given pebble problem has a solution. We
start with a pair of basic definitions.

Definition 1. Let V ′ be a pebble placement of P(G,S, T,m) and let {G1, . . . , Gh} be the
set of maximal connected subgraphs of G, where Gi = (Vi, Ei). The signature of V ′ is defined
as sig(G, V ′) = {|V ′ ∩ Vi|}hi=1.

Namely, the signature of a placement is the number of pebbles in every connected com-
ponent. Using this definition we define an equivalence relation between placements.

Definition 2. Let V ′, V ′′ be two placements of P(G,S, T,m). We say that the two place-
ments are equivalent if sig(G, V ′) = sig(G, V ′′) and denote this property by V ′ ≡ V ′′.

We emphasize that this equivalence relation is only defined between placements of the
same graph. The variant of the pebble problem used in this work possesses the following
property, which states that there exists a pebble path between every two equivalent pebble
placements. This property plays a central role in the design of the UPUMP algorithm,
presented in the next chapters.

Lemma 1. For every pebble problem P(G,S, T,m) such that S ≡ T , there exists a pebble
path from S to T .

Proof. This lemma is a generalization of [15, Section 3, first Lemma] where an algorithm
for the case of a connected graph is given. We mention that this algorithm constructs a
spanning tree of G and restricts the movements of the pebbles to the edges of the tree.

From now on, we will refer to the algorithm that solves the pebble problem as pebble
solver, which given a pebble problem returns a pebble path, if one exists.





4
Algorithm for the Unlabeled Case: Pumped

Configurations

In this chapter we present our main contribution — a sampling-based algorithm for the un-
labeled problem. The algorithm, UPUMP, generates a collection of geometrically-embedded
graphs. These are called pebble graphs and enable to map valid movements of pebbles from
one pebble placement to the other on these graphs, into motions of robots between con-
figurations in the continuous space. The vertices of such pebble graphs are single-robot
configurations while the edges represent single-robot paths. We generate a pebble graph
by sampling a set of single-robot configurations, called pumped configurations, of size larger
than the actual number of robots, to seemingly accommodate an increased number of robots.

This technique makes use of the fact that our problem does not involve one complex
robot, but rather a collection of robots operating in the same configuration space. This is in
contrast with a popular sampling-based technique, which considers the group of robots as
one composite robot. In our opinion, the latter suffers from an acute disadvantage compared
to our technique. We will demonstrate this claim experimentally and discuss the benefits of
UPUMP and KPUMP in depth later on, in Chapter 8.

After discussing the construction of pebble graphs and exploring their various properties
we show that they can be connected to generate more complex paths where the robots not
only move within a single pebble graph but also between different pebble graphs on collision-
free paths. We conclude this chapter with a description of the sampling-based algorithm.

4.1 Construction of Pebble Graphs

We now define more formally some of the aforementioned structures. Recall that a config-
uration is a collection of m single-robot configurations, where m is the actual number of
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robots, i.e., |R|= m, for which the m robots are collision-free.

Definition 3. Let V = {v1, . . . , vn} for n ≥ m be a set of single-robot configurations such
that for every v ∈ V it holds that v ∈ F , where F = F(r) for some r ∈ R. V is a pumped
configuration if every C ⊆ V , such that |C|= m, is a configuration.

This implies that a pumped configuration can accommodate an increased number of
robots, n to be exact. A possible implementation of a procedure that generates a pumped
configuration is given in Algorithm 1.

Given a pumped configuration V we construct the graph G = (V,E) where the edges
represent paths in F for individual robots. We call it a pebble graph, and view it as embedded
in the free configuration space. To generate the edges of G, and the respective paths, we
utilize the edge planner mechanism that is described below. This, in turn, relies on the local
planner component, which traditionally attempts to connect two single-robot configurations
with a straight-line path, although a more sophisticated technique can be used.

Given v, v′ ∈ V such that V is a pumped configuration and v 6= v′, let π be a path for
r ∈ R from v to v′ that was generated by the local planner. If for every u ∈ V , where
u 6= v, v′, the robot r, while moving on π, does not collide with a (geometrically identical)
robot placed in u, then the edge planner returns π. Otherwise, it reports failure.

A procedure for the creation of a pebble graph is described in Algorithm 2. The edge
planner is applied on every pair v 6= v′ in V . Upon successful generation of a path πv,v′ the
edge (v, v′) is added to G. An example of a pumped configuration, as well as its underlying
graph, are given in Figure 4.1.

V

C ′

C

2

1

G

3

(a) (b)

Figure 4.1: (a) Pumped configuration V with m = 3, n = 7, for the problem of disc robots
in the plane. C,C ′ are two configurations such that C,C ′ ⊂ V . (b) The pebble graph G is
induced by V using an edge planner that tries to connect pairs of single-robot configurations
with a straight-line path. In addition, a path induced by a pebble path, from C to C ′, is
described, where the arrows describe the movements of the robots from one single-robot
configuration to its neighbor, and the numbers indicate the order in which those movements
occur.
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Algorithm 1 PUMPED CONFIGURATION(n)

1: V ← ∅
2: while |V |6= n do
3: v ← RANDOM SAMPLE()
4: valid← TRUE
5: for all v′ ∈ V, v 6= v′ do
6: if r(v) ∩ r(v′) 6= ∅ then
7: valid← FALSE
8: if valid then
9: V ← V ∪ {v}
10: return V

Algorithm 2 PEBBLE GRAPH(n)

1: V ← PUMPED CONFIGURATION(n)
2: E ← ∅
3: for all v, v′ ∈ V, v 6= v′ do
4: πv,v′ ← EDGE PLANNER(V, v, v′)
5: if πv,v′ 6= ⊥ then
6: E ← E ∪ {(v, v′)}
7: return G = (V,E)

4.2 Properties of Pebble Graphs

We now discuss the various properties of this special graph. We first note that every config-
uration C ⊂ V is also a pebble placement for some pebble problem that is defined on G. A
less obvious property of the pebble graph G, which is described in the following proposition,
allows us to transform pebble paths into robot paths.

Proposition 1. Let G = (V,E) be a pebble graph and let C,C ′ ⊂ V be two configurations
such that C ≡ C ′. Then there exists a path πU ′ for U ′ = (C,C ′).

Proof. By Lemma 1 there is a pebble path π∗ for the pebble problem P(G,C,C ′,m). We
transform the movements of the pebbles into π∗ to a valid motion of the robots in the
following manner. A movement of the pebble τi on the edge (v, v′) ∈ E is transformed to the
the motion of the robot ri along the path πv,v′ . Notice that a collision between a robot and
an obstacle cannot occur since the path was generated by the edge planner. Additionally,
a moving robot cannot collide with another “stationary” robot that resides in some other
vertex u ∈ V . Finally, a collision between two moving robots cannot occur since the pebble
path π∗ must respect the separation rule (Chapter 3), which states that at most one pebble
is allowed to move at a given time.
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4.3 Connecting Pebble Graphs

Proposition 1 implies that certain unlabeled problems can be solved using a single pebble
graph. However, this statement does not hold for many other instances of the unlabeled
problem. As an example, consider an unlabeled problem U = (S, T ) in which there exists at
least one pair s ∈ S, t ∈ T, s 6= t, such that a robot r ∈ R placed in s overlaps with another
robot r′ ∈ R placed in t. Thus, s, t cannot be in the same pumped configuration.

Fortunately, we can combine several graphs in order to find paths for more general un-
labeled problems. For instance, robots may move from a pebble graph GS = (V,E) where
S ⊂ V , through several other pebble graphs until they will finally reach GT = (V ′, E ′) where
T ⊂ V ′.

We first show that given two pebble graphs and an unlabeled path connecting two con-
figurations, one from every graph, the robots can move from the first pebble graph to the
second. This path serves as a “bridge” between the two graphs and connects not only
the two configurations but many other configurations from the two graphs as well. Before
describing a mechanism to generate such paths we provide a concrete description of the
property discussed here in the form of the following lemma. We omit its proof, which is
straightforward.

Lemma 2. Let C ⊂ V,C ′ ⊂ V ′ be two configurations of the pebble graphs G = (V,E),
G′ = (V ′, E ′),respectively, and let πC,C′ be a path for the unlabeled problem U ′ = (C,C ′). In
addition, let D,D′ be two configurations such that D ⊂ V,D′ ⊂ V ′ and D ≡ C,D′ ≡ C ′.
Then there exists a path πU ′′ for U ′′ = (D,D′).

Paths similar to πC,C′ described above are generated using the following component which
generalizes the component local planner used in standard sampling-based algorithms. We
postpone a detailed description of this component to Chapter 4.5.

Given two pumped configurations V, V ′ and an integer q, the connection generator returns
q unlabeled paths such that every returned path πC,C′ is a solution for some unlabeled
problem U ′ = (C,C ′) where C,C ′ are configurations such that C ⊂ V,C ′ ⊂ V ′.

By Lemma 2, a single connection implicitly connects a collection of configurations with
a specific signature from the first graph with a similar collection in the second graph. We
require from the connection generator to create several such connections in order to connect
a variety of signatures between the two graphs.

4.4 Description of UPUMP

Next, we extend Lemma 2 to describe still more complex paths. The UPUMP algorithm has
a preprocessing phase and a query phase. In the first phase it samples a collection of pebble
graphs and connects them using the connection generator. Those connections represent edges
in a roadmap H whose vertices are configurations from the different pebble graphs. Addi-
tional edges, which represent paths between configurations within the same pebble graph,
are added to H afterwards. In the query phase, given start and target configurations S, T ,
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UPUMP generates two pebble graphs that contain them. These two graphs are connected
to other previously sampled pebble graphs. We give a more formal description below, along
with the description of the parameters used by UPUMP.

Parameters. g is the number of sampled pebble graphs; n represents the size of a sampled
pumped configuration; q is the maximal number of connections between two pebble graphs.

Preprocessing (Algorithm 3). UPUMP samples a collection G of g pebble graphs (line 3).
For every pair of sampled pebble graphs G = (V,E), G′ = (V ′, E ′) we apply the CONNECT
procedure (line 6), which generates several connections between the two pebble graphs, and
updates the roadmap accordingly. Then, we add edges to H that represent connections
that follow from Proposition 1 (line 8). Recall that two configurations are equivalent only if
they were taken from the same pebble graph, and their signatures are identical. We add an
edge between them but do not generate the respective paths at this point, as only some of
them will eventually participate in a path returned in the query phase (an economical “lazy”
approach).

Connect (Algorithm 4). This is an auxiliary method, which uses the connection generator
component to connect two given pebble graphs (line 1). For every path πC,C′ returned by
the connection generator, where C,C ′ are configurations of G,G′, respectively, C and C ′ are
added as vertices to the roadmap H together with an edge between them. To this edge the
information πC,C′ is attached.

Query (Algorithm 5). In this phase, UPUMP is given the start and target configurations.
As S, T can be considered as pumped configurations (containing m single-robot configura-
tions) we generate the respective pebble graphs GS, GT (line 1). We then connect GS, GT to
previously sampled pebble graphs using the connection generator and add relevant vertices
and edges to H (the CONNECT procedure described in Algorithm 4). Finally, if S, T are
connected in H a path retrieval is carried out.

Path Retrieval (Algorithm 6). Using a graph search algorithm, a path is found between
S and T in H (line 2). Then, it is transformed into a solution to the unlabeled problem
U = (R, S, T ). If two consecutive configurations Ci−1, Ci on the path are equivalent, then
the respective pebble path is produced (line 6) and converted to a path for the unlabeled
problem U = (R,Ci−1, Ci), following the process described in Proposition 1. If on the other
hand Ci−1 6≡ Ci, then the path πCi−1,Ci

, that was generated by the connection generator, is
used.
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Algorithm 3 PREPROCESS(g, q, n)

1: V ← ∅; E ← ∅; H = (V , E)
2: G ← ∅
3: for i = 1→ g do
4: G← PEBBLE GRAPH(n)
5: G ← G ∪ {G}
6: for all G,G′ ∈ G do
7: CONNECT(G,G′, q)
8: for all C,C ′ ∈ V where C ≡ C ′ do
9: E ← E ∪ {(C,C ′)}

Algorithm 4 CONNECT(G = (V,E), G′ = (V ′, E ′), q)

1: {(C1, C
′
1), . . . , (Cq, C

′
q)} ← CONGEN(V, V ′, q)

2: for i = 1→ q do
3: V ← V ∪ {Ci, C ′i}
4: E ← E ∪ {(Ci, C ′i)}

Algorithm 5 QUERY(S, T, q)

1: GS = (S, ∅); GT = (T, ∅)
2: for all G ∈ G do
3: CONNECT(G,GS, q)
4: CONNECT(G,GT , q)
5: if S, T not connected in H then
6: return FAILURE
7: return RETRIEVE PATH(H, S, T )

Algorithm 6 RETRIEVE PATH(S, T )

1: Π← ∅
2: {C0, . . . , C`} ← GRAPH PATH(H, S, T )
3: for i = 1→ ` do
4: if Ci−1 ≡ Ci then
5: G← pebble graph of Ci
6: π∗ ← PEBBLE SOLVER(G,Ci−1, Ci)
7: π ← TRANSFORM PATH(π∗)
8: Π.append(π)
9: else
10: Π.append(πCi−1,Ci

)
11: return Π
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4.5 Algorithm for the Connection Generator

We describe an algorithm for the connection generator component (CONGEN), used by
UPUMP. Recall that the connection generator is given two pumped configurations V, V ′ and
an integer q that represents the number of desired connections. Throughout this section
we will use the local planner mechanism, that was used in the implementation of the edge
planner (Chapter 4.1). Recall that given two single-robot configurations v, v′ ∈ F the local
planner attempts to construct a path πv,v′ for a robot r ∈ R from v to v′.

The algorithm transforms the problem of finding paths between pumped configurations
into the problem of finding an independent set in an undirected graph. We generate the
set of pairs L = {(v, v′)|v ∈ V, v′ ∈ V ′, πv,v′ 6= ⊥}. Namely, these are pairs of elements
from V, V ′ for which the local planner successfully generated a path. We say that two pairs
(v, v′), (u, u′) ∈ L interfere if there exists θ ∈ [0, 1] such that a robot r ∈ R placed in
πv,v′(θ) collides with another robot r′ ∈ R placed in πu,u′(θ). Notice that every two pairs
(v, v′), (u, u′) ∈ L, such that v = u or v′ = u′, interfere by definition. We construct the
interference graph I whose vertices are the elements of L, i.e., every vertex of I represents
a path. We connect a pair of vertices of I by an edge if they interfere.

Notice that by definition, every independent set of size m of the vertices of I repre-
sents a collection of m non-colliding single-robot paths. Note that the problem of finding an
independent set is known to be NP-Hard.

We use the following heuristic to find several independent sets: vertices of the graph are
examined one by one, the order is determined by a random permutation of the vertices. A
new vertex is added to the set only if it is not connected to other vertices that are already
in the set.

Remark. We concede that our approach to finding an independent set is not guaranteed
to find a solution. This may impede attempts to prove the completeness of the UPUMP
algorithm. We address this issue in Chapter 6 and state the modification that could lead to
a probabilistic completeness proof of UPUMP.





5
Algorithm for the k-Color Case

We describe the changes required to transform UPUMP into KPUMP—an algorithm for the
k-color problem. We stress that the extension to the k-color case is straightforward and we
provide it here only for the completeness of presentation. KPUMP simultaneously samples
several pumped configurations—each corresponds to a different color and hence to a different
unlabeled problem. The resulting pebble graphs are constructed in a manner that prevents
collision between robots of different colors. This calls for the redefinition of the edge planner
mechanism (Chapter 4) as well as other components.

5.1 Composite Pebble Graphs

We begin with several definitions, which extend the primitives presented in the description
of UPUMP. Recall that the k-color problem L is defined by U1, . . . ,Uk where each Ui =
(Ri, Si, Ti) is an unlabeled problem and |Ri|= mi.

Definition 4. Let C = {C1, . . . , Ck} be a collection of k configurations, where Ci is a
configuration of Ui. C is a composite configuration if for every c ∈ Ci, c′ ∈ Cj, where i 6= j,
it holds that Ri(c) ∩Rj(c

′) = ∅.

Definition 5. Let V = {V1, . . . , Vk} be a collection of pumped configurations, where Vi
is a pumped configuration for Ui. V is a composite pumped configuration if every C =
{C1, . . . , Ck}, such that |Ci|= mi and Ci ⊂ Vi, is a composite configuration.

Let V be a composite pumped configuration, as defined above. We construct a pebble
graph for every pumped configuration Vi of V. The edges of every graph are generated in
a similar manner to the unlabeled case, although here we impose more restrictions to avoid
the collision between robots of different colors.
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Next, we generate the composite pebble graph G = {G1, . . . , Gk}, where Gi is the pebble
graph that resulted from the pumped configuration Vi. We now define an equivalence relation
between composite configurations of the same composite pebble graph. Recall that two
configurations are equivalent, if their signatures are identical (Definition 2). We generalize
this notion for the case of composite configurations.

Definition 6. Let G = {G1, . . . , Gk} be a composite pebble graph, where Gi = (Vi, Ei). Let
C = {C1, . . . , Ck},C′ = {C ′1, . . . , C ′k} be two composite configurations, where Ci, C

′
i ⊂ Vi.

We say that C and C′ are equivalent, and denote this relation by C ≡ C′, if for every
1 ≤ i ≤ k it holds that Ci ≡ C ′i, where the latter “≡” symbol represents the equivalence
relation between configurations.

The following proposition is a generalization of Proposition 1 and its proof is omitted as
it is similar to the proof for the unlabeled case.

Proposition 2. Let C = {C1, . . . , Ck},C′ = {C ′1, . . . , C ′k} be two composite configurations
of the same composite pebble graph. If C ≡ C′ then there exists a solution to the k-color
problem {U ′1, . . . ,U ′k}, where U ′i = (Ri, Ci, C

′
i).

5.2 Description of KPUMP

We describe the sampling-based algorithm for the k-color case. KPUMP constructs a
roadmap H whose vertices are composite configurations (recall that in UPUMP, the ver-
tices of this roadmap were configurations). The edges of H represent valid paths between
composite configurations. These paths either connect equivalent composite configurations,
as described in Proposition 2, or composite configurations from different composite graphs,
where the latter paths are generated using the following mechanism, which is a generaliza-
tion of the connection generator (Chapter 4.3). Given two composite pumped configurations,
and an integer q, the composite connection generator returns a collection of q paths, for the
k-color problem, between the two composite pumped configurations.

We now return to the description of KPUMP. KPUMP samples composite pumped con-
figurations V1,V2, . . . ,Vg and generates the respective composite pebble graphs G1, . . . ,Gg.
Given a path between two composite configurations C,C′ returned by the composite connec-
tion generator we add the vertices C,C′ to H and the respective edge. Finally we connect the
start and target composite configurations S,T, respectively, to previously sampled composite
pebble graphs.
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6
Toward Probabilistic Completeness of UPUMP

We show that by making a simple assumption on the work of the connection generator, it
can be proved that UPUMP is probabilistically complete. In order to do so we show that a
simplified version of the UPUMP algorithm, called UBASIC, is probabilistically complete. Its
samples consist of pumped configurations of size m (as opposed to size n > m in Chapter 4)
which result in degenerate pebble graphs where the number of vertices is equal to the number
of pebbles. We prove the completeness of UBASIC by showing a reduction from the PRM
algorithm for the fully-colored multi-robot motion planning problem. The completeness of
UPUMP follows as a rather straightforward corollary.

We stress that it still might be possible that UPUMP (and KPUMP), in its original
formulation, is probabilistically complete, and we hope that the efforts made in this chapter
will ultimately assist in proving this.

6.1 The PRM Algorithm for the Fully-Colored Case

The PRM algorithm was initially designed to solve single-robot motion planning problems.
However, it can be used for solving the fully-colored multi-robot motion planning problem
by considering the fleet of robots as one composite robot. We briefly describe the PRM
algorithm for the fully-colored case. Recall that in the fully-colored problem, every robot ri
is assigned with specific start and target positions si, ti. For the purpose of the probabilistic
completeness proof of UPUMP, we may assume that the robots are geometrically identical.

Recall that the PRM algorithm for the single-robot case consists of two main phases. In
the preprocessing phase the algorithm samples a collection of valid single-robot configura-
tions. Then, for every sampled single-robot configuration it finds its nearest neighbors and
tries to connect it to the neighbors using the local planner. In the query phase, the start and
target single-robot configurations are connected to the constructed roadmap by considering
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connections to the nearest neighbors of the start and target, respectively. We intentionally
avoid from referring to a specific neighbor finding technique since there are several methods
that are suitable for this task. Our only requirement from the neighbor-finding technique is
that it will lead to a probabilistically complete PRM algorithm. Such methods are described
in the work of Karaman and Frazolli [12], where the issue of completeness is discussed as
well.

In the case of the fully-colored multi-robot motion planning problem, every sample of
the PRM consists of m single-robot configurations, one single-robot configuration for every
robot. In contrast with the unlabeled case, where every robot can be assigned with any
single-robot configuration, here every single-robot configuration is associated with a specific
robot. This is formalized in the following definition.

Definition 7. Let C = {c1, . . . , cm} be a configuration and let σ be some permutation of
{1, . . . ,m}. The ordered configuration of C for the permutation σ is defined to be σ(C) =
(cσ(1), . . . , cσ(m)).

We denote by σI the identity permutation. In an ordered configuration σ(C) a position of
the robot ri is represented by cσ(i). Hence, the samples of the PRM algorithm for the fully-
colored case are ordered configurations. For simplicity, we may assume that a configuration
is sampled and a specific permutation σPRM is assigned to it. A connection between two
ordered configuration is achieved by applying the multi-robot local planner. This component
returns a set of m paths between two ordered configuration (if they exist), one for each robot,
such that they are all collision free, both with respect to the obstacles and with respect to
the other robots.

Definition 8. Let σ(C) = (c1, . . . , cm), σ′(C ′) = (c′1, . . . , c
′
m) be two ordered configurations.

Denote by πi the path returned by the local planner (Chapter 4.1) on the input ci, c
′
i. Suppose

that for every i, it holds that πi 6= ⊥, namely, the local planner successfully generated a path
for the input ci, c

′
i. In addition, suppose that every pair of paths πi, πj is collision free, i.e.,

for every θ ∈ [0, 1], r(πi(θ)) ∩ r(πj(θ)) = ∅ ,where r(c), for c ∈ C, represents the portion of
the configuration space that is covered by the robot that is placed in c (Chapter 2). Then
the multi-robot local planner returns the set of paths {π1, . . . , πm}. Otherwise, it returns ⊥.

If the multi-robot local planner successfully connects two ordered configurations, then
an edge between them is added to the PRM roadmap. We summarize the steps of the
PRM algorithm for the fully-colored problem. In the preprocessing phase, PRM samples
a collection of ordered configurations {σPRM(C1), . . . , σPRM(Cg)}. Then, for every sampled
ordered configuration it finds a set of neighbors and attempts to connect them with the
current sample. We refer to the roadmap that results from this process as the induced
roadmap of the samples σPRM(C1), . . . , σPRM(Cg). In the query phase, the PRM algorithm
is given two ordered configurations (s1, . . . , sm), (t1, . . . , tm), and attempts to connect them
to the roadmap. The following theorem is a generalization of the completeness theorem for
the single-robot case [12].

Theorem 1. Let {U1, . . . ,Um} be a fully-colored problem where Ui = (ri, si, ti) for which
there is a solution. Then there exist constants a > 0, g0 ∈ N, such that a PRM algorithm
with g > g0 samples will find a solution with probability at least 1− e−ag.
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6.2 The UBASIC Algorithm

We present the UBASIC algorithm, which is a simplified version of the UPUMP algorithm.
The pseudo-code of UBASIC is identical to the one described for UPUMP in Chapter 4.
However, we set the number of vertices of the sampled pebble graphs to be m, i.e., we assign
n := m. This forces Algorithm 2 to generate configurations, instead of pumped configura-
tions. In order to show that UBASIC is complete, we enforce an additional constraint on
the connection generator. It is described next.

Recall that the connection generator transforms the task of pathfinding between two
pumped configurations to the problem of finding an independent set of size m, that repre-
sents a set of non-colliding paths, in the interference graph I (Chapter 4.5). Currently, the
independent sets in I are found using a greedy technique, which is not guaranteed to find
a solution, even if one exists. We will introduce below an additional step to the connection
generator that is guaranteed to find at least one solution, if exists. For now, we assume that
the following assumption holds. We will discuss its impact on UPUMP later on.

Assumption 1. Let C,C ′ be two configurations. Suppose that there exist two permutations,
σ, σ′, for which the multi-robot local planner finds a path for the input σ(C), σ′(C ′). Then,
upon the application of the connection generator on the input C,C ′, it returns at least one
path πC,C′ , that is a solution to the unlabeled problem U ′ = (C,C ′).

Notice that we do not insist that the connection generator will return exactly the same
path that was generated by the multi-robot local planner. The following observation shows
that an unlabeled problem has a solution if and only if there exists a solution to some fully-
colored problem from a family of problems. It is a crucial component in the probabilistic
completeness proof of the UBASIC algorithm.

Observation 1. Let U = (R, S, T ) be an unlabeled problem, where R = {r1, . . . , rm}, S =
{s1, . . . , sm}, T = {t1, . . . , tm}. There is a solution to U if and only if there exists a permuta-
tion σT , such that there is a solution to the fully-colored problem L = {U1, . . . ,Um}, where
Ui = (ri, si, t

′
i) and σT (T ) = (t′1, . . . , t

′
m).

Lemma 3. Let C1, . . . , Cg be a collection of configurations sampled by UBASIC in the pre-
processing stage. Denote by GPRM the PRM roadmap that is induced by the collection of PRM
samples σPRM(C1), . . . , σPRM(Cg). Suppose that there exists a permutation σT for which the
PRM algorithm, with the roadmap GPRM, finds a solution for the query σI(S), σT (T ) (where
σI is the identity permutation). Then, UBASIC will successfully find a solution for the query
(S, T ).

Proof. Denote by σI(S) = σI(C0), σPRM(C1), . . . , σPRM(C`−1), σT (C`) = σT (T ), the path that
was found by the PRM roadmap GPRM after connecting the query σI(S), σT (T ). Thus, the
multi-robot local planner successfully connected every pair of consecutive ordered configu-
rations σPRM(Ci), σPRM(Ci+1) along the path (the same applies to the ends of the path).
By Assumption 1, we deduce that the connection generator successfully connects Ci, Ci+1.
Thus, Ci, Ci+1 are connected in the roadmap H in the UBASIC algorithm.
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Using this connection between PRM and UBASIC we show that the latter is probabilis-
tically complete.

Theorem 2. Let U = (R, S, T ) be an unlabeled problem for which there is a solution. Then
there exist constants a > 0, g0 ∈ N, such that the UBASIC algorithm with g > g0 samples
will find a solution with probability at least 1− e−ag.

Proof. By Observation 1, there exists a permutation σT for which there is a solution to the
fully colored problem L = {U1, . . . ,Um}, where Ui = (ri, si, t

′
i) and σT (T ) = (t′1, . . . , t

′
m). Let

C1, . . . , Cg be the collection of the g configurations sampled by UBASIC. By Theorem 1, the
PRM algorithm, with the roadmap induced by the samples σPRM(C1), . . . , σPRM(Cg), will
find a solution for the query σI(S), σT (T ), with probability at least 1 − e−ag. If the latter
occurs, then by Lemma 4, UBASIC finds a solution as well. Thus, UPUMP finds a solution
with probability at least 1− e−ag.

6.3 Extending Completeness to UPUMP

We force UPUMP to generate a roadmap that simulates a run of the UBASIC, by modifying
Assumption 1. Recall, that in the UPUMP algorithm, the connection generator is applied
on pumped configurations (and not configurations, as in UBASIC).

Let V = {v1, . . . , vn} be a pumped configuration. Denote by V (m) the configuration that
consists the first m elements of V .

Assumption 2. Let V, V ′ be two pumped configurations. Suppose that there exist two
permutations, σ, σ′, for which the multi-robot local planner finds a path for the input
σ(V (m)), σ′((V ′(m)). Then, upon the application of the connection generator on the in-
put pumped configurations V, V ′, it must return at least one path πV,V ′ , that is a solution
to the unlabeled problem U ′ = (V, V ′).

Under this Assumption 2, we extend Lemma 4 for the UPUMP algorithm.

Lemma 4. Let G1, . . . , Gg be a collection of pebble graphs sampled by UPUMP in the pre-
processing stage, where Gi = (Vi, Ei), and Vi is a pumped configuration. Denote by GPRM the
PRM roadmap that is induced by the collection of PRM samples σPRM(V1(m)), . . . , σPRM(Vg(m)).
Suppose that there exists a permutation σT for which the PRM algorithm, with the roadmap
GPRM, finds a solution for the query σI(S), σT (T ). Then, UPUMP will successfully find a
solution for the query (S, T ).

The proof is trivial, and hence omitted. The following corollary immediately follows.

Corollary 1. Let U = (R, S, T ) be an unlabeled problem for which there is a solution. Then
there exist constants a > 0, g0 ∈ N, such that the UPUMP algorithm with g > g0 samples of
pebble graphs will find a solution with probability at least 1− e−ag.
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6.4 Reinforcing the Connection Generator

As mentioned earlier, in its current state (as described in Chapter 4.5) the connection gener-
ator does not fulfil the requirement of Assumption 1. Thus, a modification of the component
is required if we wish guarantee the correctness of Theorem 2.

We describe a simple alternative implementation of the connection generator component
that is based on integer programming (IP) and guarantees to find a connection if one exists,
thus fulfilling Assumption 1.

Recall that in UBASIC the connection generator is given two configurations V = {v1, . . . , vm},
V ′ = {v′1, . . . , v′m}. In addition, recall that L = {(v, v′)|v ∈ V, v′ ∈ V ′, πv,v′ 6= ⊥} is the set
of all pairs of elements from V, V ′ for which the local planner successfully generated a path.
To every pair (v, v′) ∈ L we assign the boolean variable xv,v′ ∈ {0, 1} that indicates whether
the respective path is selected for the connection. Our goal is to find m non-interfering pairs.
This results in the following two constraints.

1. If (v, v′), (u, u′) ∈ L interfere then xv,v′ + xu,u′ ≤ 1.

2.
∑

(v,v′)∈L xv,v′ = m.

We mention that although the problem of integer programming is known to be NP-hard,
in practice these problems can be solved efficiently using various software packages, e.g., [6].





7
Experimental Results

We describe experimental results for the case of disc robots in the plane moving amidst polyg-
onal obstacles. We show results for five challenging scenarios and compare the performance
of KPUMP with two other sampling-based algorithms. Specifically we compare KPUMP
with the PRM implementation of the OOPSMP package [23] on inputs of the fully-colored
problem. For other inputs we use a basic sampling-based algorithm for the k-color problem
called KBASIC, which is an extension of the UBASIC, described in the previous chapter.

KPUMP was implemented in C++ using CGAL Arrangements [7] and the Boost Graph
Library (BGL) [26]. The code was tested on a PC with Intel i7-2600 3.40GHz processor
with 8GB of memory, running a Windows 7 64-bit OS. For the implementation of the local
planner, which attempts to connect two single-robot configurations with a simple path, a
straight-line connection strategy [1] was used. This strategy attempts to move a robot along
a straight line drawn between two single-robot configurations.

Parameters of KPUMP. The algorithm has three parameters that affect its performance:
g describes the number of the sampled pebble graphs in the UPUMP algorithm, or the
number of composite pebble graphs in KPUMP; q is the number of connections produced
by the connection generator between two samples; µ is the maximal number of single-robot
configurations that one sample comprises, i.e., for every sampled pumped configuration V =
{V1, . . . , Vk} it holds that

∑|Vi|≤ µ. The value of the latter parameter depends on the
input problem. For unlabeled problems, increasing µ results in increased connectivity of the
resulting pebble graphs. Thus, it will be beneficial that the pumped configurations will be as
large as possible (limited by the geometry of the scenario). On the other hand, in k-colored
problems, where k > 1 the value µ has to be set more carefully as an excessively high value
of µ will reduce the connectivity of the pebble graphs. This stems from the fact that a
single-robot path produced by the edge planner has to avoid collision with robots from other
groups. Consequently, as the value of µ grows it becomes harder to connect single-robot
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configurations using an edge planner.

Test Scenarios. The scenarios are illustrated in Figure 7.1 and represent a variety of
challenging problems. The unlabeled problem in (a) involves the motion of a large collection
of robots. Scenarios (b) and (e) describe 2-color and 4-color problems comprising a large
number of robots as well. Although scenarios (c), (d) do not involve as many robots, they
are nevertheless challenging. This range of problems demonstrate the work of the various
components of the KPUMP algorithm. In the first three scenarios the resulting pebble graphs
have a low number of connected components due to the low value of k (as in scenario (a)) or
high clearance from the obstacles (as in (e)). Therefore, large portions of the resulting paths
involve the motions of the robots on paths induced by pebble problems. While the generated
graphs in scenarios (c) and (d) have low connectivity, KPUMP still performs well—due to
the use of the connection generator.

Table 7.1: Results for selected scenarios.

Properties Parameters Time
k m M g q µ (secs)

(a) 1 25 25 2 5000 150 23.2
(b) 2 8 16 50 1000 40 20.3
(c) 8 1 8 100 150 32 213.7
(d) 5 1 5 50 100 25 1.9
(e) 4 3 12 40 250 28 32.9

The results of running KPUMP for spe-
cific parameters are given in Table 7.1.
In addition to the parameters mentioned
above, the table contains the values k for the
number of colors, m the number of robots
in every color and M the total number of
robots. The running times are given in
seconds and represent the overall duration
of the preprocessing and query phases, for
a single query. The parameters used by
KPUMP and other algorithms, mentioned later on, were manually optimized over a con-
crete set. A failure was declared when an algorithm was unable to solve a scenario for more
than three runs out of five.

Comparison with Other Algorithms. The first part of the comparison involves solely
inputs of the fully-colored problem. We compare KPUMP with the implementation of PRM
provided by OOPSMP, which, by our experience, is very efficient. This algorithm is designed
for solving fully-colored multi-robot motion planning problems. While OOPSMP required
100 seconds to solve scenario (d), KPUMP managed to solve it in 1.9 seconds. Scenario (c)
proved to be even more challenging for OOPSMP, which failed to solve it, even when was
given 5000 seconds of preprocessing time, whereas KPUMP solved in 213.7 seconds.

In order to provide a more informative comparison, we ran both algorithms on scenarios
(c),(d), only that now we increased the difficulty of these scenarios gradually—incrementally
introducing the robots, i.e., starting with a single robot and adding the others one by one,
as long as OOPSMP succeeded solving the new inputs in reasonable time. In this case
OOPSMP was able to solve scenario (c) with five robots, while the case of six robots was
out of its reach (when given 5000 seconds of preprocessing time). The speedup of KPUMP
compared to OOPSMP for this new range of scenarios is depicted in Figure 7.2 along with an
additional test case (“decoupled-simple”), which is a simpler variant of scenario (c) with some
of the obstacles removed and the radius of the robots decreased. The latter was designed to
test the performance of OOPSMP on problems involving a higher number of robots.

As we are not aware of any other algorithms for the k-color problem, we designed a basic
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algorithm to compare KPUMP with. This algorithm, which we call KBASIC, is a special
case of KPUMP that samples configurations, instead of pumped configurations, and can be
viewed as an extension of PRM for the k-color case (for more details, see Chapter 6). The
entire set of scenarios (a)-(e),(a*)-(d*), in their original form, proved to be too challenging
for KBASIC, which spent at times more than ten minutes in typical runs. Similarly to
the previous comparison we designed a set of simple test scenarios. Specifically, scenario
(e) was converted into five k-color problems for 1 ≤ k ≤ 5 by partitioning the robots
into k groups such that robot number i was assigned to the group i mod k. Then, as in
the previous comparison, the robots were introduced incrementally. Figure 7.2 depicts the
speedup of KPUMP compared with KBASIC for each of the k-color problems. This shows
that KPUMP outperforms KBASIC in every possible setting, be it a k-color, unlabeled or
fully-colored problem.
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(a) Unlabeled (b) 2-Color (c) Fully-Colored: Decoupled

(d) Fully-Colored: Coupled (e) 4-Color

Figure 7.1: [Best viewed in color] Start positions of the robots are indicated by discs while
target positions are illustrated as circles in respective colors (unless otherwise indicated). (a)
Unlabeled scene with twenty five robots. (b) 2-Color scene; the two groups are required to
switch positions. (c) Fully-colored scene with eight robots. (d) Fully-colored scene with five
robots. (e) 4-Color scene; every group has to move in a clockwise manner to the next room,
e.g., the blue group should move to the top room.
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Figure 7.2: [Best viewed in color] Comparing KPUMP with OOPSMP/PRM and KBASIC.
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8
Discussion and Further Work

In this chapter we discuss the various properties of the KPUMP algorithm and novelties it
encompasses, as well as directions for future research.

8.1 Shortcomings of the Composite Robot Approach

While the composite robot approach usually leads to probabilistically complete algorithms,
a property which is not provided in decoupled planners, it suffers from inefficiency. The
traditional composite robot approach to the multi-robot problem treats the group of robots as
one composite robot whose configuration space is the Cartesian product of the configuration
spaces of the individual robots. With this approach, single-robot tools, such as sampling-
based algorithms, can be used to solve multi-robot problems. For instance, this technique is
used in the software packages OOPSMP and OMPL [14, 23] where PRM is applied to the
fully-colored problem, and in the KBASIC algorithm discussed above. Paths generated by
this approach usually force the robots to move simultaneously from one placement to the
other, where none of the robots remains in the same position while the others are moving.

We believe that such paths are unnatural in the multi-robot setting and are more difficult
to produce than paths that involve motion of only few robots at a time. Given collision-free
placements for all the robots it is usually possible to move some of the robots to different
placements without altering the placements of the rest of the robots, i.e., those robots remain
still. For instance, consider a configuration C = {c1, . . . , cm} for some unlabeled problem
U with m robots. Unless the workspace is extremely tight, another configuration C ′ can
be derived from C where only c1 is moved to c′1. Moreover, connecting two such configura-
tions by a path requires only a single-robot collision-free path for which the moving robot
does not collide with the other robots placed in c2, . . . , cm. In contrast, the connection of
two “unrelated” configurations by a path imposes much harder constraints—m single-robot
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collision-free paths have to be created and in addition, robots moving along those paths must
not collide with each other.

KPUMP utilizes this observation by restricting the movements of the robots along certain
path sections—induced by pebble problems—to motions of individual robots. We emphasize
that KPUMP does not preclude simultaneous movements of robots when necessary, specifi-
cally on path sections where the robots move from one pebble graph to the other along paths
generated by the connection generator.

8.2 Amplification of Samples

Pumped configurations that are sampled by KPUMP, and the resulting pebble graphs, are
fairly simple structures which require only little effort to generate. Yet, using the transfor-
mation to pebble problems, these samples are amplified to describe not only placements and
paths for single robots, but also to represent an incredible amount of paths and positions for
all the robots in a given problem. However, this information is not represented explicitly and
only little storage space is required to represent a pebble graph. In addition, a small num-
ber of configurations must be stored. Specifically, these are configurations through which
the pebble graphs connects to other graphs. Such configurations are selected by the con-
nection generator. Similarly, this component does not require an explicit representation of
all the configurations represented by the pebble graph. Furthermore, continuing the theme
presented here that one action leads to a large number of outcomes, namely, a sample of
a pumped configuration results in many configurations, a path generated by a connection
generator not only connects two configurations from the two pebble graphs, but also a large
number of configurations from them, which are not necessarily directly connected. Thus,
these properties enable KPUMP to generate a variety of configurations and motions of the
robots, using only few samples. To reproduce this variety by KBASIC one must generate
far more samples.

An additional advantage of the use of pebble graphs lies in the fact that they can be
connected more easily than two configurations, when a powerful component as the connection
generator is at hand. Using this component, KPUMP succeeds in solving difficult scenarios
even when generated pebble graphs suffer from low connectivity, as in the scenarios (c) and
(d), depicted in Figure 7.1.

8.3 Further Work

Our immediate future goal is to investigate the completeness of the original formulation of
the algorithm, i.e., using the connection generator algorithm that appears in Chapter 4. In
addition, it would be interesting to apply KPUMP to problems that involve more complex
robots (e.g., rotating and translating polygons in the plane, multi-joint robots). The ex-
periments carried in this work suggest that the k-color problem, for various values of k, is
less challenging than a fully-colored problem (with the same number of robots). Hence, it
may be interesting to investigate the computational complexity of the unlabeled and k-color
problems.
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