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Abstract

We present a general and modular algorithmic framework for path planning of robots. Our framework com-
bines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together
with sampling-based approaches that are appropriate for higher dimensions. We suggest taking samples that
are entire low-dimensional manifolds of the configuration space. These samples capture the connectivity of
the configuration space much better than isolated point samples. Geometric algorithms then provide power-
ful primitive operations for complete analysis of the low-dimensional manifolds. We have implemented our
framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles.
To this end, we have developed a primitive operation for the analysis of an appropriate set of manifolds using
arrangements of curves of rational functions. This modular integration of several carefully engineered com-
ponents has led to a significant speedup over a careful implementation of the PRM (Probabilistic Roadmap
Planner) algorithm, which represents the sampling-based approach that is prevalent in practice. For exam-
ple, in a tight passage scenario we demonstrate a 27-fold speedup in running time. We prove that a specific
instance of the framework is probabilistically complete. We believe that this proof is an intermediate stage
towards a general proof of the entire framework. As part of the implementation, we construct a set of critical
curves to decompose manifolds representing the motion of a robot free to rotate while translating along a
fixed segment. The curves, which are rational functions, are passed on to the Cgal (the Computational
Geometry Algorithms Library) arrangement package in order to decompose the space into free and forbidden
cells; thus the implementation requires the arrangement package to handle such curves. We therefore devel-
oped a C++ traits class to facilitate the implementation. We include experimental results and comparisons
with similar traits classes which demonstrate the efficiency of our traits class and note that it is integrated
into Cgal 3.9.
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1
Introduction

1.1 Motion Planning

Motion planning, in the simplest of forms, refers to the computational process of moving from one place to
another in the presence of obstacles. We defer the formal definition to Chapter 2 and informally consider
a rigid or articulated robot R in a two-dimensional or three-dimensional workspace moving amidst static
obstacles. The robot is required to move from a free initial position to a desired free target position in
a collision free path avoiding the obstacles. We motivate the subject by presenting several applications in
diverse domains. For a general overview of the subject and its application, we refer the reader to [15, 43, 45].

Robotics Numerous robots use motion planning algorithms for path planning. One example is ATH-
LETE, a six-legged lunar vehicle developed by the Jet Propulsion Laboratory. The vehicle rolls on wheels
when possible, but can use the wheels as feet to walk when necessary, allowing for progress in rough and
steep terrain. Hauser et al. present in [29] a planner to compute these motions generating a sequence of
candidate footfalls and continuous motions to reach them.

Medical Surgery Many medical procedures nowadays use robots in general and motion planning in par-
ticular to enable previously impossible operations. One such application is planning the motion of steerable
needles [67]: Such needles, used in many diagnostic and therapeutic medical procedures, require planning
capabilities that are often beyond the human intuition due to the needles’ complex kinematics. Automatic
planning algorithms are developed to enable physicians to harness the full potential of steerable needles.

Computational Biology Many problems arise in computational biology where it is necessary to reason
about the motion of molecules. One such problem is drug design: A drug is most commonly a small organic
molecule or a ligand that may achieve a therapeutic benefit to the patient by binding with a protein [34].
Most computational models of protein-ligand interactions consider only the energetics of the final bound
state of the complex and do not examine the dynamics of the ligand as it enters the binding site. In contrast,
using motion-planning techniques, Singh et al. [63] verify the existence of a low-energy path for a given
ligand to a binding pocket of a protein.

Virtual Prototyping Complex systems are designed using Computer Aided Design (CAD) applications.
It is desirable to provide feedback to designers regarding the different attributes of a design such as analyzing
manufacturability and serviceability. Virtual prototyping motivates the development of planners able to
compute complex paths efficiently and reliably in complex geometric environments.

The next section surveys briefly the field of motion planning. Although formal definitions are deferred to
Chapter 2, the section attempts to provide insights on the various approaches used to design motion planning
algorithms. It starts by informally introducing the problem and continues to discuss the two principal
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(a) ATHLETE lunar robot (b) Steerable needle (c) Linkage representation
of a molecule

(d) Virtual prototyping of
an engine

Figure 1.1: Motion planning applications

approaches in the field, the combinatorial approach and the sampling-based approach. Some methods,
including the one presented in this thesis, attempt to combine the two approaches. These approaches are
surveyed in an attempt to present the foundations that led to this work.

1.2 Motion Planning Algorithms

In motion planning, we consider a robot R moving in the plane or in space. There may be obstacles that
the robot should not intersect while moving and restrictions on the set of valid movements that the robot
may perform. The valid movements of the robot may include translations (movement in the space without
changing the orientation), rotations (rotation around a specific point or axis or the rotation of joints), a
combination of the above and more. The spatial pose of a robot R may be described by several parameters
depending on the possible movements of the robot. If R can only translate then the spatial position of a
specific point in R, its reference point, is used to specify its location. If it can also rotate around a specific
point or if it has rotatable joints, the amount of counterclockwise rotation relative to an initial orientation
is another parameter that needs to be considered.

We refer to the set of parameters defining the spatial pose of a robot R as the robot’s configuration. The
minimal number of parameters needed to uniquely define a configuration is termed the number of degrees of
freedom (dof s) of R. The set of all robot configurations C is termed the configuration space of the robot, and
decomposes into the disjoint sets of free and forbidden configurations, namely Cfree and Cforb, respectively.

Analytic solutions to the general motion planning problem. The motion-planning problem
is computationally hard with respect to the number of dofs [56], yet much research has been devoted to
solving both the general problem and its various instances using a combination of geometric, algebraic
and combinatorial tools. The configuration-space formalism was introduced by Lozano-Perez [49]. Then,
in the seminal “piano movers” series of articles [58, 59], Schwartz and Sharir introduced the notion of
configuration-space critical curves or critical (hyper-)surfaces, which identify potential transitions between
robot configurations in Cfree and Cforb in closed-form, decomposing the configuration space into a finite set
of cells that are fully contained in either Cfree or Cforb. Using this approach, Schwartz and Sharir proposed
the first general algorithm for solving the motion planning problem, with running time that is doubly-
exponential in the number of dof s [59]. This was later improved to exponential running time using a
decomposition method by Chazelle et al. [14]. Another exponential time algorithm for the general motion-
planning problem was proposed by Canny [11] and improved by Basu et al. [5]. The latter approach is
generally considered too complicated to be implemented in practice.

Solutions to low-dimensional instances of the problem. Although the motion-planning problem
cannot be solved analytically in an efficient manner for the general case, more efficient algorithms have
been proposed for various low-dimensional instances [43, 60]. In [48] Lozano-Perez presents Minkowski sums
(discussed in detail in Chapter 2) as a method to compute the configuration space of translating convex
polygons and polyhedra and suggests an algorithm to compute the Minkowski sum of two convex sets. In
addition, algorithms for approximating the configuration space of rotating polyhedra are presented in [48].
The bounds for computing the Minkowski sum of two convex polyhedral robots in three-dimensional space
were improved by Aronov and Sharir in [1]. Improved bounds for the case of translation with rotation of a
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polygonal robot in the plane are presented in [4, 28].

Implementing algorithms in the field of computational geometry revealed an interesting gap between
theory and practice leading to the development of a subdiscipline of Applied Computational Geometry.
This gap will be discussed in Chapter 6 yet it is worth noting that many fundamental computational-
geometry algorithms were only recently implemented robustly and exactly. This is due to advances in applied
computational geometry in recent years that have led to a set of implemented tools that are of interest in this
context. Cgal, the Computational Geometry Algorithms Library incorporates many such tools [65]. For
instance, Minkowski sums, have a fast, robust and exact planar and three-dimensional implementations [21,
26, 69]. Likewise, Cgal offers implementations of planar arrangements1 of curves [65, C.30] (to which the
Tel-Aviv University group is a major contributor), and for cylindrical algebraic decomposition of algebraic
surfaces in R3 [9]. These are essential components in the original theoretical algorithm by Schwartz and
Sharir from 1983 [59]. For a general survey of related approaches see [60].

Sampling-based approaches to motion planning. In recent years, the sampling-based approach to
motion-planning has extended the applicability of motion planning algorithms beyond the restricted subset
of problems that can be efficiently solved by exact algorithms [15, 45]. Sampling-based motion planning
algorithms, such as Probabilistic Roadmaps (PRM) [36], Expansive Space Trees (EST) [32] and Rapidly-
exploring Random Trees (RRT) [44] as well as their many variants, aim to capture the connectivity of Cfree in
a graph data structure via random sampling of robot configurations. This can be done either in a multi-query
setting, to efficiently answer multiple queries for the same scenario, as in the PRM algorithm, or in a single-
query setting, as in the RRT and EST algorithms. For a general survey on these approaches see [15, C.7].
Importantly, the PRM and RRT algorithms were both shown to be probabilistically complete [32, 35, 39, 40],
that is, they are guaranteed to find a valid solution, if one exists, given an infinite amount of time. However,
the required running time for finding a valid solution cannot be computed for new queries at run-time in
practice, and the proper usage of sampling-based approaches may still be considered somewhat of an art.
Moreover, sampling-based methods are also considered sensitive to tight passages in the configuration space,
due to the high probability of missing such passages.

Hybrid methods for motion-planning: The analytic solutions, while complete, are complex and
almost impractical for high-dimensional problems. The probabilistic methods, on the other hand, are simple
and work well in very high dimensions when there exists a path with high clearance2. Few hybrid methods
attempt to combine deterministic and probabilistic planning strategies. Hirsch and Halperin [31] study two-
disc motion planning by exactly decomposing the configuration space of each robot, then combining the two
solutions to a set of free, forbidden and mixed cells, and using PRM to construct the final connectivity graph.
Zhang et al. [74] use PRM in conjunction with approximate cell decomposition, which also divides space
into free, forbidden and mixed cells. Other studies suggest to connect a dense set of near-by configuration
space “slices”. Each slice is decomposed into free and forbidden cells, but adjacent slices are connected in
an inexact manner, by e.g., identifying overlaps between adjacent slices [17, pp. 283-287], or by heuristic
interpolation and local-planning [47]. In [71] a 6 dof RRT planner is presented with a 3 dof local planner
hybridizing probabilistic, heuristic and deterministic methods.

1.3 Contribution and Thesis Organization

In this thesis, we describe a novel general scheme for motion planing via manifold samples (MMS), which
extends sampling-based techniques like PRM. The scheme has been presented recently in the European
symposium on Algorithms (ESA) 2011 [57] and is based on joint work with Michael Hemmer, Barak Raveh
and Dan Halperin.

Instead of sampling isolated robot configurations, we sample entire low-dimensional manifolds, which can
be analyzed by complete and exact methods for decomposing space. This yields an explicit representation
of maximal connected patches of free configurations on each manifold, and provides a much better coverage

1A subdivision of the plane into zero-dimensional, one-dimensional and two-dimensional cells, called vertices, edges and
faces, respectively induced by the curves. See also Section 2.1.

2The clearance at point p along a path is the minimal distance from p to an obstacle. The clearance of a path is the maximal
clearance of all points along the path.
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of the configuration space compared to isolated point samples. At the same time, the manifold samples are
deliberately chosen such that they are likely to intersect each other, which allows to establish connections
among different manifolds.

We present an application of MMS to the concrete case of a polygonal robot translating and rotating
in the plane amidst polygonal obstacles. We present in detail appropriate families of manifolds as well as
filtering schemes that should also be of interest for other scenarios. We present an exact analytic solution and
efficient implementation to a motion planning problem instance, which to the best of our knowledge has not
been analytically studied before. Namely, that of moving a polygonal robot in the plane with rotation and
translation along an arbitrary segment, which involves advanced algebraic and extension of state-of-the-art
applied-geometry tools.

To ease the reading of the thesis, it is divided into two parts: The first, oriented to readers familiar with
motion planning, presents the new motion-planning scheme, its analysis, a specific implemented instance
including technical details and experimental results. The second part, assumes some familiarity with recent
developments on the applied side of Computational Geometry, discusses in detail a C++ package. The
package, which was integrated into Cgal, was developed to facilitate the implementation of the motion
planner discussed in the first part of the thesis. Appendix A provides details on the analytic solution for the
case of a rotating polygonal robot while translating along an arbitrary line segment.
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Part I

Motion Planning

We present a general and modular algorithmic framework for path planning of robots. Our frame-
work combines geometric methods for exact and complete analysis of low-dimensional configuration spaces,
together with sampling-based approaches that are appropriate for higher dimensions. We suggest taking
samples that are entire low-dimensional manifolds of the configuration space. These samples capture the
connectivity of the configuration space much better than isolated point samples. Geometric algorithms
then provide powerful primitive operations for complete analysis of the low-dimensional manifolds. We have
implemented our framework for the concrete case of a polygonal robot translating and rotating amidst polyg-
onal obstacles. This modular integration of several carefully engineered components has led to a significant
speedup when compared to a common implementation of the sampling-based PRM algorithm, which repre-
sents an approach that is prevalent in practice. For example, in a tight passage scenario we demonstrate a
27-fold speedup in running time. We conclude with a proof of probabilistic completeness for the framework
for a polygonal robot translating and rotating in the plane.





2
Preliminaries

This chapter provides background material and definitions required for the first part of the thesis. Section
2.1 provides an introduction to Arrangements, which play a fundamental role in computational geometry.
In the context of this work, arrangements are used to explicitly represent parts of the configuration space
intersected by manifolds. Section 2.2 provides a formal definition of the motion planning problem. It outlines
the Probabilistic Motion Planner (PRM) algorithm, essential for understanding the thesis, as this work stems
from the PRM algorithm.

2.1 Arrangements

Arrangements serve as a fundamental building block in computational geometry in general and in motion
planning algorithms in particular. They allow a discretization of a continuous space in an efficient manner
without loosing any information regarding the space. Examples of such algorithms will be presented in
Section 2.2 and will be used throughout this work. For a full survey on the subject of arrangement see [61].

Figure 2.1: Snowman
arrangement

Given a finite set of hyper-surfaces C in Rd, the arrangement A(C) is a subdivi-
sion of Rd into maximal open connected cells of dimension 0, 1, . . . , d induced by C.
In the sequel we limit ourselves to planar arrangements unless stated otherwise. To
demonstrate a planar arrangement we refer the reader to Figure 2.1. One can see
four faces (snowman’s body, head, nose and unbounded face), six curves (two circles
creating the snowman’s body and face, two segments creating the snowman’s hands
and two segments creating the snowman’s nose), two isolated vertices (creating the
snowman’s eyes) and five intersection points.

If we denote by n the number of curves in the arrangement and assume that
they are all algebraic curves of maximum constant degree, then the combinatorial
complexity of a planar arrangement (the complexity of the vertices, edges and faces)
is at most O(n2). This bound is tight in the worst case — for example a grid of n/2 horizontal segments
intersecting n/2 vertical segments. The combinatorial complexity of a single face in an arrangement of
n low-degree algebraic curves in the plane is only O(λs(n)) for some constant parameter s that depends
on the degree of the curves; here λs(n) is the nearly-linear maximum length of (n, s) Davenport-Schinzel
sequences [25].
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Figure 2.2: Vertical de-
composition

As each face in an arrangement may be complex, many computational geometry
algorithms require further refinement of a given arrangement. A common method
is vertical decomposition. Vertical decomposition is a subdivision of each cell of the
arrangement into trapezoids by extending a vertical segment upwards and down-
ward from each vertex until the extension touches a feature of the arrangement
(see Figure 2.2 for an example of a vertical decomposition of an arrangement of
segments). For a thorough description of vertical decompositions and common ap-
plications see [17]. As opposed to the original arrangement, in the decomposed
arrangement, each face is bounded by up to four curves (hence having constant
combinatorial complexity): The bottom of the face (floor curve), the top of the face (ceiling curve) and
possibly two vertical segments at the sides (referred to as the walls of the face). Moreover, if the curves
are segments, each cell in the decomposition is convex, which allows for queries on the cells to be answered
quickly. Section 2.2 presents an application of vertical decomposition in motion planning.

2.2 Motion planning

2.2.1 Background

We refer to the workspace W as a subset of the two- or three-dimensional physical space: W ⊂ Rk s.t k ∈
{2, 3}; thus the workspace is the physical space in which the robot is moving. It is usually convenient (and
reasonable) to assume that W is bounded by a two- or three-dimensional box. The robot R is a collection
of rigid objects. The workspace also consists of obstacles that are a collection of rigid objects that R should
not intersect.

A configuration c is a set of parameters specifying the position and orientation of all the bodies composing
R. The Configuration Space C is the set of all configurations and the number of Degrees of Freedom (dof)
of R is the minimal number of independent parameters needed to uniquely define each configuration. Thus a
(complex) robot in the two- or three-dimensional space can be represented as a point in a (possibly) higher-
dimensional parameterized space. We term a configuration as collision free if it represents a placement of the
robot in W such that R does not intersect any obstacle, and does not violate the mechanical limitations of
the robot. A configuration is said to be semi-free if it represents a placement of the robot in W such that R
“grazes” an obstacle but does not intersect any other obstacle. The configuration space C is thus divided
into the two disjoint sets: The free space Cfree which is the open set of configurations that are collision free
and the forbidden space Cforb = C \ Cfree.

We demonstrate the notion of configuration space by considering two simple scenarios in a two-dimensional
workspace. Let R be a polygonal robot such that the movements of R are restricted to translations only.
Let pr be a point in R (any point in W would suffice), every point in R is at constant distance from pr
wherever the R is placed in W (the orientation with respect to pr does not change either). Thus the place-
ment of R is uniquely defined by specifying the placement of pr. In this case the configuration space is
two-dimensional and a configuration is represented by two parameters x and y: the location of the reference
point pr in W . If we allow the robot to rotate as well as translate, to uniquely identify the placement of R,
the amount of counterclock rotation with regards to an initial orientation should be specified. In this case
the configuration space is three-dimensional. A configuration is represented by two parameters x and y for
the location of the reference point in W and a third parameter θ for the amount of counterclock rotation
with regards to an initial orientation.

A path γ is a continuous mapping γ : [0, 1]→ C and a free path is a path γ such that every configuration
in the path is in Cfree. This allows for a formal definition of the basic path planning problem—finding a free
path for a robot amidst obstacles in a workspace from a given free source configuration to a desired free
target configuration. There are many variants and extensions to the definitions above, a robot, for example
may not be rigid and the obstacles may move with time.

Several families of algorithms have been proposed to address the path planning problem, these families
include Potential Fields, Sampling-Based Motion Planning, Visibility Graphs and more. We survey several
families, for a thorough introduction to the field see, e.g., [43].
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2.2.2 Combinatorial Motion Planning

Combinatorial motion planning approaches find paths through the continuous configuration space without
resorting to approximations. Some of the methods are impractical for high-dimensional configuration spaces
but for one of the simplest, most fundamental of motion-planning problems, namely a robot translating
amidst obstacles, an exact and efficient combinatorial motion planning algorithm exists that uses Minkowski
Sums.

Minkowski Sums

Figure 2.3: Minkowski sum of a
rectangle and a triangle

Given two sets P,Q ∈ Rd, their Minkowski sum, denoted as P ⊕ Q, is
their point-wise vector sum, namely the set: P ⊕ Q = {p + q|p ∈ P, q ∈
Q}. Figure 2.3 demonstrates the Minkowski sum of a rectangle and a
triangle in the plane. Minkowski sums are used in many applications,
such as motion planning, computer-aided design and manufacturing. The
complexity of the Minkowski sum of two planar polygons P , Q with m
and n vertices respectively is Θ(m+n) if both P and Q are convex, Θ(mn)
in the case one of the two is convex [37] and Θ(m2n2) in the general case.

Minkowski sums can be used to detect collision between two sets and compute their relative placement.
These basic operations play an important role in solving motion-planning problems as will be demonstrated
below. Let P and Q be two point sets in the plane having a non-empty intersection, let p ∈ P ∩ Q and
let −Q denote the reflection of Q about the origin. Note that since p ∈ Q, then −p ∈ −Q and thus P ⊕ (−Q)
contains the origin as (0, 0) = p + (−p). The reverse direction is also true: if (0, 0) ∈ P ⊕ (−Q), then
P ∩Q 6= ∅. Thus, the sum P ⊕Q is the configuration-space obstacle induced by the obstacle P with respect
to the robot Q.

These properties of Minkowski sums lead to immediate applications in combinatorial motion planning
for a translating polygonal robot:

• Collision detection: Detecting collision between a robot R and an obstacle O can be done by testing
if the origin lies inside the Minkowski sum of the reflected robot and the obstacle M = −R⊕O.

• Computing Cforb: Let P1, . . . Pm be the set of polygonal obstacles and let r0 ∈ R be a reference point
on the robot R. Translating R such that r0 coincides with the origin, and reflecting the robot about
the origin leads us to −R. Thus Cforb =

⋃i=1
m Oi ⊕−R.

• Determining if a collision-free path exists: given a free start location s and a free target location
t, we wish to determine whether there exists a collision-free path connecting s and t. We simply
compute Cforb, and consider its complement, Cfree = R2 \ Cforb. A path exists between s and t iff these
two points lie in the same connected component of Cfree.

Figure 2.4a demonstrates a workspace consisting of polygonal obstacles (blue) and a disk robot (green),
while Figure 2.4b illustrates the corresponding configuration space computed using the Minkowski sum of
the reflected robot and the obstacles. The configuration space representation reduces the motion-planning
problem to a point in the plane translating amidst the inflated obstacles.

Once the configuration space is computed, determining if a collision-free path exists is straightforward
as demonstrated. Computing the path may be slightly more complicated. Several approaches exist, all
represent the continuous motion planning problem discretely without losing any of the original connectivity
information needed to solve it.

Planar Roadmap Generation

In this section we review several techniques for computing a path for a point amidst polygonal obstacles. The
techniques discretize a continuous space by generating a roadmap—a graph-like representation of the space
at hand. The motivation for examining this simple case may come either from the workspace (applications

9



(a) Workspace (b) Corresponding configuration space

Figure 2.4: Workspace and corresponding configuration space of a disk

considering a point robot) or the configuration space (a configuration is a point representation of a complex
robot as demonstrated above). In particular, Minkowski Sums provide us with a reduction from polygon
motion to point robot motion. We will describe three methods for planning a path for a point:

• Cell Decomposition Roadmap

• Shortest Path Roadmap

• Maximum Clearance Roadmap

The Cell Decomposition Roadmaps The basic idea behind this method is that a path between
the initial configuration and the goal configuration can be determined by subdividing the free space into
smaller regions called cells. After this decomposition, a connectivity graph is constructed according to the
adjacency relationships between the cells, where the nodes represent the cells in the free space, and the edges
between the nodes show that there is a free crossing between the corresponding cells. From this connectivity
graph, a continuous path can be determined by simply following adjacent free cells from the source point
to the target point. Planning a path inside a decomposed cell is usually trivial due to the low complexity
of the decomposed cell. A vertical decomposition as described in Section 2.1 is a common choice for cell
decomposition. Figure 2.5 demonstrates a decomposition of the free space computed using Minkowski sums
into cells and a path planned in the decomposed free space.

Figure 2.5: Path in the decomposed free space

Shortest-Path Roadmaps A simple and powerful algorithm exists for computing the shortest path
between two points as introduced first in [51]. To consider this algorithm one must expand the notion of the
free space Cfree which was defined as an open set to include its boundaries. We must consider the problem
of determining shortest paths in the closure of Cfree. This means that the robot is allowed to “touch” or
“graze” the obstacles, but it is not allowed to penetrate them. A semi-free path is defined as a path that is
in the closure of Cfree.
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(a) Visibility graph (b) Reduced visibility graph (c) Shortest path

Figure 2.6: Visibility graph and shortest path

Let P = P1, . . . , Pm be a set of simple pairwise interior-disjoint polygons having n vertices in total. The
visibility graph of P is an undirected graph defined on the set of polygon vertices, whose set of edges consists
of those pairs of vertices that are mutually visible. Two vertices are mutually visible if the straight line
segment connecting them does not intersect the interior of any of the polygons in P . In this case, we call this
segment a visibility edge. The visibility graph (consisting of the vertices and all the visibility edges) can be
used to compute shortest paths amidst polygonal obstacles, where the polygons are considered as open sets.
Each edge is given a weight equal to the Euclidean distance between its two end-vertices. To find a shortest
path between a source and a target configuration, one simply needs to connect them to the visibility graph
and execute Dijkstra’s algorithm [18] starting from the vertex representing the source configuration. In fact,
it is sufficient to consider only the edges that are bitangent to the polygons they connect, namely edges that
can be infinitesimally extended in both directions without penetrating any polygon. Such bitangent edges
are called reduced visibility edges (see Figure 2.6 for an illustration).

The path created using the visibility graph is the shortest path between the source and the target
configurations. As such, the robot’s clearance (namely the minimal distance from the obstacles) is zero in
the general case. This may be undesirable in some applications.

Maximum-Clearance Roadmaps A maximum clearance roadmap tries to keep the robot as far from
the obstacles as possible. For a point robot this means moving along the bisectors of the Voronoi Diagram:
Let O = {o1, . . . , on} be a set of n objects referred to as Voronoi sites. The Voronoi diagram Vor(O) is the
partition of space into maximally connected cells where each cell consists of the points that are closest to
one particular site (or a set of sites). These cells are referred to as Voronoi cells. The bisector B(oi, oj)
of two Voronoi sites oi and oj is the locus of points that have an equal distance to both sites. That is
B(oi, oj) = {p|dist(oi, p) = dist(oj , p)}. An edge in the Voronoi diagram is thus part of a bisector of two
sites such that there does not exist a third site closer to any point on the edge.

The Voronoi diagram can be used to compute paths of maximal clearance from the obstacles. The source
and target configurations are added to the roadmap by connecting them to the closest bisector. It can be
shown that the total complexity of a planar Voronoi diagram is O(n) where n is the total number of polygon
vertices and that it can be constructed in O(n log n) time (see e.g. [2, 72]).

Figure 2.7: Maximum-clearance roadmap of two obstacles
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(a) Workspace (b) Robot’s vertex - obstacles’s edge
critical curve

(c) Robot’s edge - obstacles’s vertex
critical curve

Figure 2.8: Critical curve (in a dashed line) example

Explicit General Representation of the Configuration Space

An explicit representation of the configuration space for the general case may be extremely complicated
as it may involve curves of high algebraic complexity, yet for some cases an explicit representation of the
configuration space (or part of it) is needed. Computing the configuration space explicitly relies on the
notion of critical curves initially presented in [59] and arrangements (see Section 2.1). A simple observation
on the structure of the configuration space is that the changes between Cfree and Cforb occur when the robot
is tangent to an obstacle.

In a two-dimensional configuration space, the changes between Cfree and Cforb occur when a robot’s vertex
coincides with an obstacle’s edge or when a robot’s edge coincides with an obstacle’s vertex. These two cases
will be referred to as vertex-edge and edge-vertex, respectively. These incidences are represented by curves in
the configuration space. If all these critical curves are inserted in to an arrangement, each of the arrangement
cells is completely in Cfree or in Cforb. This gives a discretization of the continuous configuration space without
loosing any data.

This is best demonstrated by a simple example, in Figure 2.8, on the left-hand side, we see a square
robot R and a line-segment obstacle that R should avoid. The middle figure demonstrates a critical curve
formed by translating R while one vertex is tangent to the obstacle’s edge. The right-hand figure demon-
strates a critical curve formed by translating R while one edge is tangent to the obstacle’s vertex.

Although the method holds for any configuration space of degree d, it is impractical for large d as the
induced critical surfaces may be of dimension d− 1 and the arrangement’s complexity is exponential in d in
the worst case [56].

2.2.3 Sampling-Based Motion Planning

Sampling-based motion planning algorithms attempt to capture the connectivity of the free space by sam-
pling configurations, hence avoiding an explicit representation of the configuration space. These algorithms
construct roadmaps similar to those discussed in the previous section. Typically they are faster than an-
alytic methods yet they lack the complete information regrading the structure of the configuration space.
Sampling-based approaches can be divided into two families: The first, attempts to construct a roadmap of
the entire free space (hence suitable for multi-query problems) while the second, attempts to incrementally
explore the free space by attempting to connect a source configuration and a target configuration (hence
more suitable for single-query problems).

We will describe an algorithm from the first family: the Probabilistic Roadmap Planner (PRM). Algo-
rithms from the second family share basic common features applied in a different fashion. For a recent survey
on the subject of sampling-based motion planning see [66]. A PRM-type algorithm consists of two stages:
A preprocessing stage and a query stage.
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(a) PRM sampled milestones (b) PRM valid milestones (c) PRM local paths (d) PRM roadmap

Figure 2.9: PRM example

Probabilistic Roadmap Planner The preprocessing stage constructs a data structure, referred to as
a Roadmap, which is a graph where the vertices are the free configurations and the edges represent valid
paths between pairs of free configurations. Algorithm 1 outlines the sampling stage: the configuration space
is sampled to produce free configurations or milestones (line 4). The algorithm typically uses a collision
detector to test if the sampled configuration is collision free or not (line 5); configurations which are not
collision free are discarded. Collision-free configurations are added to the roadmap as outlined in Algorithm
2: neighboring configurations (usually k nearest neighbors, where k is a parameter of the algorithm) are
located (line 2). For each such neighbor, a local planner attempts to connect the two configurations (line 4)
and if a path exists an edge is added to the graph. The local planner typically uses dense sampling between
the configurations in order to determine if a collision free path exists.

Figure 2.9 demonstrates the preprocessing stage1 of the PRM algorithm applied to the configuration space
illustrated in Figure 2.4b. Figure 2.9a illustrates a set of configurations (both valid and invalid) sampled by
the PRM algorithm . Figure 2.9b illustrates the discarding of invalid samples by the algorithm leaving only
a set of collision-free samples. Figure 2.9c illustrates the attempts to connect close-by configurations by a
local planning including valid and invalid local paths while Figure 2.9d illustrates the final roadmap after
the invalid local paths are discarded.

In the query stage (Algorithm 3) the source and target configurations are added to the graph and
connected to nearby configurations using the local planner. Then, the graph is searched for a path between
the nodes to yield a free path in the configuration space. This is illustrated in Figure 2.10 where Figure 2.10a
illustrates the query, Figure 2.10b illustrates the additional edges added to the roadmap, and Figure 2.10c
illustrates the solution.

The algorithm’s variants include different sampling strategies and different connection strategies. The
reader is referred to [45, C. 5] for an extensive discussion on the variants and their properties.

As discussed in [33] the PRM uses only two probes: the collision detector and the local planner. Hence
the roadmap is built by considering a restricted portion of the configuration space at each step. This
gives sampling-based planners the ability to create a roadmap representing the connectivity of Cfree without
explicitly considering the complete structure of Cfree as opposed to combinatorial planners. Yet this also
reveals the main drawback of sampling-based planners. In Figure 2.11 [33], we see a very simple example
for which the PRM algorithm performs poorly. The narrow corridor in the workspace is a narrow passage in
the configuration space. The probability of the PRM algorithm to sample configurations within the narrow

1The figure does not follow Algorithms 1 and 2 exactly. Algorithms 1 and 2 consider configurations one at a time while the
figure considers sets of configurations for ease of visualization.

(a) PRM sampled milestones (b) PRM valid milestones (c) PRM roadmap

Figure 2.10: PRM example
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Algorithm 1 build roadmap (G = (V,E), k)

1: V ← {}
2: E ← {}
3: loop
4: c←sample configuration()
5: if collision free (c) then
6: add configuration(G, c, k)
7: end if
8: end loop

Algorithm 2 add configuration (G = (V,E), c, k)

1: V ← V ∪ {c}
2: Nc ←nearest neighbors(V, c, k)
3: for all n ∈ Nc do
4: if local planner (c, n) 6= ∅ then
5: E ← E ∪ {(c, n)}
6: end if
7: end for

Algorithm 3 query (G = (V,E), s, t)

1: if s /∈ V then
2: add configuration(G, s, k)
3: end if
4: if t /∈ V then
5: add configuration(G, t, k)
6: end if
7: return find path(G, s, t)
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passage is low due to the measure of the passage. Moreover, the probability to connect two configurations
that lie in the narrow passage is low due to the shape of the passage.

Figure 2.11: The plot shows the average running time for a PRM algorithm to connect configurations q1 and
q2 as the width of the corridor decreases. Figure taken from [33].

Probabilistic Completeness Although the PRM algorithm may perform poorly for some practical
cases, it has the appealing attribute of probabilistic completeness: The algorithm is guaranteed to find a
valid solution, if one exists, given an infinite amount of time.

The following theorem is proved in [15, C.7] for a PRM operating in Euclidean Rd, where Qfree denotes
the free subset of [0, 1]d, clr(γ) is the clearance of a path and the measure µ is the volume of space:

Theorem 2.2.1. Let a, b ∈ Qfree such that there exists a path γ between a and b. Then the probability of
PRM correctly answering the query (a, b) after generating n configurations is given by

Pr[(a, b)Success] = 1− Pr[(a,b)Failure] ≥ 1−
⌈

2L

ρ

⌉
e−σ

dn.

Where L is the length of the path γ, ρ = clr(γ), B1(·) is the unit ball in Rd and σ = µ(B1(·))
2dµ(Qfree)
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3
MMS Framework

This chapter describes a general framework for solving motion-planning problems: Motion Planning via
Manifold Samples or MMS for short. We propose a multi-query planner for path planning problems of a
possibly high-dimensional configuration space. The framework combines analytic methods used to exactly
represent sub-parts of the configuration space with PRM-like probabilistic methods used to represent the
configuration space and search in it.

Preprocessing—Constructing the connectivity graph The preprocessing stage constructs a data
structure capturing the connectivity of C using manifolds as samples. The manifolds are decomposed into
cells in Cfree and Cforb in a complete and exact manner; we call a cell of the decomposed manifold that lies
in Cfree a free space cell (FSC) and refer to the data structure G as the connectivity graph. The FSCs serve
as nodes in G while two nodes in G are connected by an edge if their corresponding FSCs intersect. See
Figure 3.1 for an illustration.

Figure 3.1: Three-dimensional configuration space: The left side illustrates two families of manifolds where
the decomposed cells are darkly shaded. The right side illustrates their intersection that induces the con-
nectivity graph G.

We formalize the preprocessing stage by considering manifolds induced by a family of constraints Ψ,
such that ψ ∈ Ψ defines a manifold mψ of the configuration space and FSCmψ is the set of FSCs of mψ.

17



The construction of a manifold mψ and its decomposition into FSCs are carried out via an appropriate
Ψ-primitive, denoted PΨ, applied to an element ψ ∈ Ψ. By a slight abuse of notation we refer to an FSC
both as a cell and as a node in the graph. For example, a family of constraints is obtained by fixing all
but one of the dofs of R, inducing a set of 1-manifolds in C. The primitive in this case will decompose the
1-manifolds into intervals completely in Cfree or completely in Cforb.

Using this notation, Algorithm 4 summarizes the construction of G. In lines 3-4, a new manifold constraint
is generated and added to the collection X of manifold constraints. In lines 5-7, the manifold induced by
the new constraint is decomposed by the appropriate primitive and its free cells are added to the graph.

Query Once the connectivity graph G has been constructed it can be queried for paths between two free
configurations qs and qt in the following manner: A manifold that contains qs (respectively qt) in one of its
FSCs is generated and decomposed. Its FSCs and their appropriate edges are added to G. G is traversed
from the FSC containing qs to the FSC containing qt. The result of this traversal is a list of FSCs LFSC =
fsc1 . . . fscn and not a path in the configuration space. The framework guarantees that each such node fsci
is completely in Cfree and that every two consecutive nodes intersect.

An actual path is then computed by locally computing a path γ1 from qs ∈ fsc1 to a configuration c2 ∈
fsc1 ∩ fsc2. Local paths γi are then computed in fsci from ci ∈ fsci−1 ∩ fsci to ci+1 ∈ fsci∩ fsci+1 for every
i ∈ {2 . . . (n− 1)}. Finally a local path is computed from cn to qt in fscn. Concatenating all the local paths
results in the desired continuous path in Cfree. The methods presented in Chapter 2 may be of use when
computing the local path or any other method depending on the problem at hand.

The rest of the chapter presents the required details to complete the MMS framework. We discuss desir-
able properties of manifolds in Section 3.1 and discuss the strategies that may be used to generate manifold
samples in Section 3.2. The chapter concludes with a brief discussion comparing the MMS framework to the
standard PRM algorithm.

3.1 Manifolds Families and Primitives

Choosing the specific set of manifold families depends on the concrete problem at hand, as detailed in the
next chapter. However, it seems desirable to retain some general properties: (i) Each manifold should be
sufficiently simple such that it is possible to decompose it into free and forbidden cells in a computationally
efficient manner. (ii) The manifold families should cover the configuration space in a dense fashion. (iii) The
manifold families allow for local connections between close-by configurations, a property which we term
spanning. We anticipate that these simple and intuitive properties (perhaps subject to some further tuning)
may lead to a proof of probabilistic completeness of the framework. This conjecture is motivated by the
work presented in Chapter 5 which details a proof of probabilistic completeness of the framework for the
specific instance that we shall discuss in Chapter 4.

Algorithm 4 construct connectivity graph

1: V ← ∅, E ← ∅, X ← ∅
2: repeat
3: ψ ← generate constraint(V ,E,X)
4: X ← X ∪ {ψ}
5: FSCmψ ← PΨ(mψ)
6: V ← V ∪ {fsc| fsc∈FSCmψ}
7: E ← E ∪ {(fsc1, fsc2) | fsc1 ∈ V, fsc2 ∈ FSCmψ ,

fsc1∩fsc2 6= ∅ & fsc1 6=fsc2}
8: until stopping condition
9: return G(V,E)

18



3.2 Constraint Generation and Applying Primitives

Regardless of the specific choice of manifold families, a näıve way to generate constraints that induce mani-
folds is sampling a constraint uniformally from all possible constraints. As primitives may be computationally
complex and should thus be applied sparingly, we suggest a general exploration/connection scheme and ad-
ditional optimization heuristics to be used in concrete implementations of the proposed general scheme.
We describe strategies in general terms, providing conceptual guidelines for concrete implementations, as
demonstrated in Chapter 4.

3.2.1 Exploration and Connection Phases

We propose that constraints should be generated in two phases: exploration and connection. In the explo-
ration phase constraints are generated such that primitives will produce FSCs that introduce new connected
components in Cfree. The aim of the exploration phase is to increase the coverage of the free configuration
space as efficiently as possible. In contrast, in the connection phase constraints are generated such that
primitives will produce FSCs that connect existing connected components in G. Once a constraint is gen-
erated, G is updated as described above. Finally, we note that we can alternate between exploration and
connection, namely we can decide to further explore after some connection work has been performed.

3.2.2 Region of Interest - RoI

Decomposing an entire manifold mψ by a primitive PΨ may be unnecessary. Patches of mψ may intersect
Cfree in highly explored parts or connect already well-connected parts of G while others may intersect Cfree

in sparsely explored areas or less well connected parts of G. Identifying the regions where the manifold is of
good use (depending on the phase) and constructing mψ only in those regions increases the effectiveness of
PΨ while desirably biasing the samples. We refer to a manifold patch that is relevant in a specific phase as
the Region of Interest - RoI of the manifold.

3.2.3 Constraint Filtering

Let ψ ∈ Ψ be a constraint such that applying PΨ to ψ yields the set of FSCs on mψ. If we are in the
connection phase, inserting the associated nodes into G and intersecting them with the existing FSCs should
connect existing connected components of G. Otherwise, the primitive’s contribution is poor. We suggest
applying a filtering predicate immediately after generating a constraint ψ to check if PΨ(ψ) may connect
existing connected components of G. If not, the primitive should not be constructed and ψ should be
discarded.

Algorithm 5, which is the implementation of line 3 in Algorithm 4 describes generating constraints and
filtering. The algorithm is simply a call to two different constraint generation algorithms (lines 2,5) depending
on the current phase (line 1). One should note that the constraint generating algorithm for the exploration
phase takes into account the set of manifolds already sampled (line 2). On the other hand, the constraint
generating algorithm for the connection phase takes into account the current connectivity graph (line 5).

Algorithm 5 generate constraint V,E,X

1: if exploration phase() then
2: ψ ← generate exploration constraint(X)
3: else
4: repeat
5: ψ ← generate connection constraint(V,E)
6: until constraint filtering (ψ 6= filter out)
7: end if
8: return ψ
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3.3 Comparison With PRM - Discussion

The fundamental difference between the PRM algorithm’s approach and ours is the sample types used.
While the PRM uses points as samples, our framework suggests using manifolds as samples. This gives rise
to the question “Which manifolds should be used?” which is an interesting question and further research
should be applied to it. A sampled point in the PRM algorithm is either in Cfree or in Cforb. It is safe to
assume that this can be checked in an efficient manner using a collision detector. In our framework, on
the other hand, the manifolds need to be decomposed into cells in Cfree or Cforb which can be a costly and
difficult-to-implement operation. As opposed to probing a single point in the configuration space, as is done
in the PRM algorithm, using manifolds as samples captures the connectivity of entire sub-portions of C at
once.

Once the collision detector reports that a PRM sample is in Cfree it is added to the roadmap. Thus the
points play a dual role of samples and nodes in the roadmap. In our framework on the other hand, the
nodes of the roadmap are cells in the decomposed manifolds. Valid local paths in the PRM algorithm induce
edges in the roadmap while in our framework intersecting FSCs induce edges. Finally, the data structure
constructed by the PRM algorithm is a roadmap graph while the MMS algorithm constructs a geometric
intersection graph1 of FSCs. The differences mentioned above between the suggested scheme and the PRM
algorithm are summarized in Table 3.1.

We point to another subtle difference between PRM and MMS, which makes it harder to prove proba-
bilistic completeness for MMS. Although a similar property holds for most variants of PRM, we describe it
here for the variant that we have outlined in Section 2.2.3. For a milestone q let r be the distance between
q and its kth nearest neighbor. Then if we know that the clearance of the milestone q is at least ρ for ρ ≤ r
then we are guaranteed that q is connected in the roadmap to any other milestone in the ball of radius ρ
around q. A similar property does not hold for MMS. It is much more difficult to guarantee such a property
for MMS since there is an infinity of free points in the FSCs. It is not impossible to guarantee such a property
for MMS as well, but it will make the algorithm considerably more complicated.

PRM MMS
Sample type Point Manifold
Decomposition Collision detector Analytic primitive
Node type Point FSC
Node connection method Local planner Intersecting FSCs
Data structure Roadmap graph Geometric intersection graph of FSCs

Table 3.1: Comparison between our scheme and PRM algorithm

1A geometric graph has vertices for geometric objects, and edges connect pairs of vertices whose objects fulfil some property;
here the property is intersection.
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4
The Case of Rigid Polygonal Motion

We demonstrate the scheme suggested in Chapter 3 by considering a (not necessarily convex) polygonal
robot R translating and rotating in the plane amidst polygonal obstacles. A configuration of R describes
the position of the (arbitrarily chosen) reference point of R and the orientation of R. As we consider full
rotations, the configuration space C is the three-dimensional space R2 × S1.

Section 4.1 discusses the manifolds used for this instance of MMS, Section 4.2 discusses the means to
generate the constraints by suggesting several heuristics that follow the exploration/connection paradigm
presented in Chapter 3. Section 4.3 elaborates on the local planning applied within the cells in the query
stage. We conclude this chapter with experimental results of an implementation of the presented algorithm.
We remark that the engineering work invested in optimizing MMS yielded an algorithm comparable and
even surpassing a motion planner that is in prevalent use. For example, in a tight passage scenario we
demonstrate a 27-fold speedup in running time.

4.1 Manifold Families and Manifold Decomposition

As described in Chapter 3, we consider manifolds defined by constraints and construct and decompose them
using primitives. We suggest the following constraints restricting the motions of the robot R, and describe
their associated primitives:

• The Angle constraint fixes the orientation of R while it is still free to translate anywhere within the
workspace.

• The Segment constraint restricts the position of the reference point to a segment in the workspace
while R is free to rotate.

• The Point constraint fixes the location of R to a point p while it is still free to rotate around p.

Angle-primitive The Angle-primitive, for a constraining angle θ (denoted PΘ(θ)) is constructed by
computing the Minkowski sum of −Rθ with the obstacles1. We refer to such a decomposed manifold as
a horizontal layer or simply a layer. This induces a two-dimensional horizontal plane where the cells are
polygons as demonstrated in Figure 4.1b.

Segment-primitive Limiting the possible positions of the robot’s reference point r to a given segment s,
results in a two-dimensional configuration space. Each vertex (or edge) of the robot in combination with

1We use −Rθ to denote R rotated by θ and reflected about the origin.
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each edge (or vertex) of an obstacle give rise to a critical curve in this configuration space. Namely the
set of all configurations that put the two features in contact, and thus mark a potential transition between
Cforb and Cfree. Our analysis (Appendix A) shows that these critical curves can be expressed by rational
functions. Rational functions are functions that can be written as a quotient of two polynomials. In our case,
both the numerator and denominator of the functions are of degree two with rational coefficients. These
functions have favorable properties when compared with arbitrary algebraic curves, and consequently can be
handled more efficiently. Thus, the Segment-primitive is the construction of these critical curves and their
arrangement. This induces a two-dimensional vertical slab where the cells are defined by the subdivision
induced by rational curves as demonstrated in Figure 4.1c.

Point-primitive The Point-primitive is a degenerate case of the Segment-primitive where the two-
dimensional arrangement reduces to a vertical line and the cells are intervals on that line as demonstrated
in Figure 4.1a.

We defer the implementation details on how these predicates are decomposed to Appendix A. For now,
notice that the Segment-primitive is computationally far more time consuming than the Angle-primitive,
since it involves arrangements of curves of higher algebraic degree.

(a) Point primitive (b) Angle primitive (c) Segment primitive

Figure 4.1: Manifolds and their decomposition

4.2 Constraint Generation and Applying Primitives

We use manifolds constructed by the Angle-primitive for the exploration phase and manifolds constructed
by the Segment-primitive for the connection phase. Since the Segment-primitive is far more costly than the
Angle-primitive, we focused our efforts on optimizing the former.

Generating a constraint in the exploration phase (line 2 in Algorithm 5, Chapter 3) is generating an
angle θ ∈ [−π . . . π). Several options may be used to generate θ. Our implementation generates angles at
constant intervals according to a predefined parameter. Other options may include sampling angles using a
uniform distribution, or taking into account the topological criticalities in the θ-axis of the three-dimensional
arrangement of the configuration space. It should be noted that generating angles at constant intervals leads
to an algorithm that is resolution complete2 and not probabilistically complete as shown in the next chapter.

Generating a constraint in the connection phase (line 5 in Algorithm 5) is equivalent to generating
a segment in the workspace R2. As suggested in Section 3.2 we may consider the Segment-primitive in
a subset of the range of angles. This results in a somewhat “weaker” yet more efficient primitive than
considering the whole range. If the connectivity of a restricted region of the configuration space is desired,
then using this optimization may suffice while considerably speeding up the algorithm.

2An algorithm is said to be resolution complete if it is guaranteed to find a path if the resolution of a parameter used by the
algorithm is sufficiently fine. If the algorithm uses a grid for example, the resolution of the underlying grid is the parameter
considered.
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Generating segments: Let fsc be a random FSC. Consecutive layers (manifolds of the Angle constraint)
have a similar structure unless topological criticalities occur in C between the layers. Once such a criticality
occurs, an FSC either appears and grows, or shrinks and disappears. We thus suggest a heuristic for
generating a segment in the workspace for the Segment-primitive using the size of fsc as a parameter where we
refer to small and large cells according to pre-defined threshold constants. The RoI used will be proportional
to the size of the FSC.

The segment generated will be chosen with one of the following procedures used in Algorithm 6 which is
an implementation of line 5 in Algorithm 5:

• Random procedure: Return a random segment from the workspace.

• Large cell procedure: Return a random segment from the projection of fsc onto the xy-plane.

• Small cell procedure: Choose an adjacent layer to fsc and project its FSCs onto the xy-plane.
Project fsc onto the xy-plane as well and intersect the two projections. Return a segment connecting
a random point from the projection of fsc and a random point in the intersection.

Algorithm 6 generate segment constraint (V ,E)

1: if random num ([0, 1]) ≥ random threshold then
2: return random segment procedure()
3: else
4: fsc ← random fsc(V)
5: α← [size(fsc) - small cell size] / [large cell size - small cell size]
6: if random num([0, 1]) ≤ α then
7: return small cell procedure(fsc,V )
8: else
9: return large cell procedure(fsc,V )

10: end if
11: end if

Constraint Filtering: As suggested in Section 3.2, we avoid computing unnecessary primitives. All
FSCs that will intersect a “candidate” constraint s, namely all FSCs of layers in its RoI, are tested. If they
are all in the same connected component in G, s can be discarded as demonstrated in Algorithm 7 which is
the implementation of line 6 in Algorithm 5.

Algorithm 7 filter segment (s,RoI,V ,E)

1: ccids ← ∅ //set of connected component ids
2: for all v ∈ V do
3: fsc ← free space cell(v)
4: if constraining angle(fsc)∈ RoI then
5: ccids ← ccids∪ connected component id(v)
6: end if
7: end for
8: if |ccids| ≤ 1 then
9: return filter out

10: end if

4.3 Path planning

A path is planned as described in Chapter 3, namely for a query [(xs, ys, θs), (xt, yt, θt)], a layer at angle θs
and a layer at angle θt are added to G. A list of intersecting FSCs is extracted from G by traversing the
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graph using a breadth-first search (BFS) algorithm. Within each FSC a local planner is used to construct a
path in the configuration space. As the cells of the two primitives differ, the local planners used are different.

An FSC of an Angle-primitive is a polygon. The local planner used within the polygon is the shortest-path
planner discussed in Chapter 1: The visibility graph is computed within the polygon inducing a shortest-path
roadmap.

An FSC of a Segment-primitive is an arrangement cell of the subdivision of a slab induced by the
critical curves. In order to discuss the local planner within the arrangement cell, we briefly describe the
parametrization defining the arrangement; full details are given in Appendix A.

A robotR is a simple polygon with vertices {v1, . . . , vn} where vi = (xi, yi)
T and edges {(v1, v2), . . . (vn, v1)}.

We assume that the reference point of R is located at the origin. The position of R in the workspace is
defined by a configuration q = (rq, θq) where rq = (xq, yq)

T . Thus, q maps the position of a vertex vi as
follows:

vi(q) = M(θq)vi + rq,

where M(θ) =

[
cos θ − sin θ
sin θ cos θ

]
is the rotation matrix.

Given a segment seg = [s, t] where s = (xs, ys)
T and t = (xt, yt)

T we define the parametrization (α, τ) ∈
[0, 1]× R as follows:

rq = (1− α)s+ αt,

θq = 2 arctan τ.

The parametrization fixes the robot’s reference point to the supporting line of seg. The parametrized vertex
is represented as:

vi(α, τ) = M(τ)vi + (1− α)s+ αt,

where M(τ) = 1
1+τ2

[
1− τ2 −2τ

2τ 1− τ2

]
.

Hence the parametrized configuration space is not planar but cylindrical: τ = ±∞ represents the same
point for a fixed α due to the identification of θ at ±π. Hence cells in the planar arrangement at ±∞ with
the same α values are considered as the same cell in the configuration space. The FSC is one such cell, it is
decomposed into trapezoidal cells (see Chapter 1), and a graph data structure holds the decomposed cells as
nodes and adjacent cells as edges. The local planner traverses this graph thus computing a list of adjacent
trapezoidal neighboring cells.

As neighboring cells always share a vertical wall between them, planning a path between two cells is
always planning a path between two vertical walls of a cell. The ceiling and floor of the cell are rational
functions, therefor a straight line may intersect them. The local planner attempts to compute a straight line
between the two vertical walls of the cell. If this fails, it constructs a midpoint of the cell and computes a
path from each vertical wall to the midpoint in a recursive fashion. Figure 4.2 demonstrates this process.

Figure 4.2: A local path planned within one trapezoidal cell of an arrangement of rational functions. The
path is refined twice by the local planner.
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(a) Tunnel scenario (b) Snake scenario (c) Flower scenario

Figure 4.3: Experimental scenarios

4.4 Experimental Results

The algorithm discussed in this chapter is implemented in C++. It is based on Cgal’s arrangement package,
which is used for the geometric primitives, and the Boost graph library [62], which is used to represent the
connectivity graph G.

The implementation of the Angle-primitive is an application of Cgal’s Minkowski sums package [65,
C.24]. We remark that we ensure (using the method of Canny et al. [12]) that the angle θ is chosen such
that sin θ and cos θ are rational. This allows for an exact rotation of the robot and an exact computation of
the Minkowski sum. The implementation of the Segment-primitive attempts to represent the configuration
space explicitly by construction of an arrangement of critical curves (see Chapter 2). As our analysis shows
(Appendix A), the critical curves are rational functions. We provide further details on the construction of
the arrangement in the second part of the thesis.

We demonstrate the performance of our planner using three different scenarios. All scenarios consist of
a workspace, a robot with obstacles and one query (source and target configurations). Figure 4.3 illustrates
the scenarios where the obstacles are drawn in blue and the source and target configurations are drawn
in green and red, respectively. All reported tests were measured on a Dell 1440 with one 2.4GHz P8600
Intel Core 2 Duo CPU processor and 3GB of memory running with a Windows 7 32-bit OS. Preprocessing
times presented (in seconds) are times that yielded at least 80% (minimum of 5 runs) success rate in solving
queries.

4.4.1 Algorithm Parameters and Variants

Our planner has two parameters: the number nθ of layers to be generated and the number ns of segment
constraints to be generated (before filtering). We chose the following values for these parameters: nθ ∈
{10, 20, 40, 80} and ns ∈ {2i|i ∈ N, i ≤ 14}. For a set of parameters (nθ, ns) we report the preprocessing
time t and whether a path was found (marked X) or not found (marked ×) once the query was issued. The
results for the flower scenario are reported in Table 4.1. We show that a considerable increase in parameters
has only a limited effect on the preprocessing time.

In order to test the effectiveness of our optimizations, we ran the planner with and without any heuristic
for choosing segments and with and without segment filtering. We also added a test with all optimizations
using the old traits class. The parameters used for each case are the ones that yielded the fastest preprocessing
time for each case. The results for the flower scenario can be viewed in Table 4.2. We remark that the
engineering work invested in optimizing MMS yielded an algorithm comparable and even surpassing a motion
planner that is in prevalent use as shown next.
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nθ
10 20 40 80

ns

256 (6,×) (11,×) (12,×) (16,×)
512 (7,×) (13,×) (14,×) (25,×)
1024 (16,×) (20,X) (23,X) (35,X)
2048 (30,×) (35,X) (38,X) (51,X)
4096 (46,X) (53,X) (60,X) (82,X)

Table 4.1: Parameter sensitivity

Segment
Traits Generation Filtering nθ ns t

New
random

not used 20 8192 1418
used 20 8192 112

heuristic
not used 40 512 103

used 20 1024 20
Old heuristic used 20 1024 138

Table 4.2: Optimization results

4.4.2 Comparison With PRM

We used an implementation of the PRM algorithm as provided by the OOPSMP package [53]. For fair
comparison, we did not use cycles in the roadmap as cycles increase the preprocessing time significantly.
We manually optimized the parameters of each planner over a concrete set. As with previous tests, the
parameters for MMS are nθ and ns. The PRM variant implemented by the OOPSMP package iterates
between sampling a batch of configurations and attempting to connect the milestones to their neighbors.
The parameters used for this implementation are the number of neighbors (denoted k) to which each milestone
should be connected and the percentage of time used to sample new milestones (denoted % st in Table 4.3).

Furthermore, we ran the flower scenario several times, progressively increasing the robot size. This caused
a “tightening” of the passages containing the desired path. Figure 4.4 demonstrates the preprocessing time
as a function of the tightness of the problem for both planners. A tightness of zero denotes the base scenario
(Figure 4.3c) while a tightness of one denotes the tightest problem solved in these experiments.

The results show a speedup for all scenarios when compared to the PRM implementation. Moreover, our
algorithm has little sensitivity to the tightness of the problem as opposed to the PRM algorithm. In the
tightest experiment, MMS runs 27 times faster than the PRM implementation.

The results shown indicate that the suggested framework, along with algorithmic engineering yields a
carefully implemented algorithm for the case of a polygonal robot translating and rotating in the plane
amidst polygonal obstacles. The optimizations used for this instance, namely a new traits class for rational
curves, powerful segment generation techniques and a filtering scheme may be reused for other instances and
thus, we believe, are interesting by themselves. We have shown that, put together, these optimizations result
in a speed-up in running time that makes this algorithm comparable and even faster than the running time of
a carefully implemented PRM algorithm. While this in itself is promising, what gives further support to the
suggested framework is the behavior shown for narrow passages. Sampling entire manifolds and not isolated
points increases the probability of sampling such a passage. Moreover, as with other computational-geometric
algorithms, the number of curves and not their mutual distance governs the complexity of the algorithm (in
the Real RAM model at least), thus yielding an algorithm with lower sensitivity to tight passages.

Scenario MMS PRM Speedup
nθ ns t k % st t

Tunnel 20 512 100 20 0.0125 180 1.8
Snake 40 256 22 20 0.025 140 6.3
Flower 20 1024 20 24 0.0125 40 2

Table 4.3: Comparison with PRM
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Figure 4.4: Tightness results
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5
Probabilistic Completeness of MMS for a Polygonal

Robot

We analyze the application of MMS to the case of a polygonal robot rotating and translating in the plane.
We show that for any collision-free path γa,b of clearance ρ > 0 between two configurations a and b, it is
possible to construct a path from a to b with distance at most ρ from γa,b on the union of manifolds used.
Moreover the probability of finding such a path by the MMS algorithm increases exponentially with the
number of samples.

Setting: A configuration is defined by a three-dimensional point p = (xp, yp, θp) where xp, yp is the
planar pose of the robot R in the workspace and θp is the amount of counterclockwise rotation of R relative
to its original placement. The configuration space is R2 × S1. We assume that the workspace is bounded
by a box and by scaling both the translational and rotational parts, we consider the configuration space to
be C = [0, 1]2 × [0, 1). As R2 × S1 induces a periodic workspace and not a cube, when we consider angle
differences, it is done modulo one.

MMS Algorithm: We consider two families (types) of manifolds, horizontal layers and vertical lines1.
The MMS algorithm samples np constraints for the lines, these constraints are points sampled uniformally
from the xy-plane [0, 1]2. The MMS algorithm samples nθ constraints for the layers, these constraints are
angles sampled uniformally from the θ-axis [0, 1). For a query (a, b) where a = (xa, ya, θa) and b = (xb, yb, θb),
we assume that the MMS algorithm adds the horizontal layers at angles θa, θb.

5.1 Notation

We introduce the following notation and definitions used in the proof:

• Cfree is a subset of the three-dimensional space C consisting of all collision-free configurations.

• dist(p, q) is the distance between two points p = (px, py, pθ), q = (qx, qy, qθ) in [0, 1]3 such that

dist(p, q) = min{
√

(px − qx)2 + (py − qy)2 + (pθ − qθ)2,
√

(px − qx)2 + (py − qy)2 + (2− pθ − qθ)2}. This
is the periodic Eucledian distance on C where θ = 1 and θ = 0 are identical.

• Br(p) three-dimensional ball of radius r centered at the three-dimensional point p.

1Considering vertical lines and not vertical slabs as discussed in Chapter 4 is done for simplifying the proof. This is obviously
a special case of the same family of manifolds thus the presented proof applies for the case of vertical manifolds.
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Figure 5.1: A ρ
2 -intersecting layer of a point p Figure 5.2: Points of distance ρ apart inscribed

by balls of radii ρ and ρ
2

• Dr(p̃) two-dimensional disk of radius r centered at the two-dimensional point p̃ in the xy-plane.

• Γ = {γp,q | γp,q is a continuous mapping [0, 1]→ C where γ(0) = p and γ(1) = q}.

• Im(γ) = {c ∈ C| ∃α ∈ [0, 1], γ(α) = c} is the image of a path γ.

• mθ′ = {(x, y, θ′) ∈ C |x, y ∈ [0, 1]} is a horizontal layer at a fixed angle θ′ ∈ [0, 1).

• m(x′,y′) = {(x′, y′, θ) ∈ C |θ ∈ [0, 1)} is a vertical line at a fixed point (x′, y′) ∈ [0, 1]2.

• MΘ = {mθ|θ ∈ [0, 1)} is the family of horizontal layers.

• MP = {mx,y|(x, y) ∈ [0, 1]2} is the family of vertical lines.

• ρ
2 -intersecting For a point p in C and a bound ρ, a horizontal layer mθ′ is ρ

2 -intersecting if mθ′ ∩
B ρ

2
(p) 6= ∅. See Figure 5.1 for an illustration.

• ρ-connecting For a point p in C a vertical line mv is ρ-connecting if the projection of p onto the

xy-plane is of distance not greater than r =
√

3
2 ρ from v.

• Pr[(a, b)SUCCESS] Probability of MMS algorithm to return a path from a to b when such a path
exists.

• Pr[(a, b)FAILURE] Probability of MMS algorithm not to return a path from a to b when such a path
exists.

5.2 Probabilistic Completeness Proof

Motivation and outline: In order to construct a path from a source configuration to a target configuration,
we first show that for any two close-by configurations, it is possible to construct a path on the manifolds used
by MMS such that the path starts from the vicinity of the source configuration and terminates at the vicinity
of the target configuration. Two close-by configurations will be formally described as two points with distance
no greater than ρ, while the vicinity of a point p will be formally described as B ρ

2
(p), the points of distance

smaller or equal than ρ
2 from p. Manifolds that may induce a path between two close-by configurations are

a (ρ2 -intersecting) horizontal layer intersecting the vicinity of the first point, a (ρ2 -intersecting) horizontal
layer intersecting the vicinity of the second point and a (ρ-connecting) vertical line intersecting both layers.
Moreover, the properties of the ρ-connecting vertical line will ensure that the path induced by these manifolds
is within distance of at most ρ of either points. These properties will be shown in Lemma 5.2.1, Lemma 5.2.2
and Lemma 5.2.3. Using these lemmas, Theorem 5.2.4 will show the probabilistic completeness of the MMS
algorithm in this case.
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Figure 5.3: Maximal area of intersection between a
ρ
2 -intersecting layer and a vertical line

Figure 5.4: Projection p̃, q̃ of two points p and q
of distance ρ. Center disk is D√3−1

2

( p̃+q̃2 )

In the following we consider points p, q such that dist(p, q) ≤ ρ. For each point we consider the balls
centered at the points with radii ρ and ρ

2 . See Figure 5.2 for an illustration.

Lemma 5.2.1. Let p be a point in [0, 1]3, mθ′p
∈ MΘ be a ρ

2 -intersecting layer of p and mv ∈ MP be a

ρ-connecting vertical line of p. The intersection of the two manifolds is within distance ρ of p. Namely,
mθ′p
∩mv ∈ Bρ(p)

Proof. mθ′p
is ρ

2 -intersecting with p = (xp, yp, θp) thus the distance between p and mθ′p
along the θ-axis is

|θ′p − θp| ≤
ρ
2 . mv is ρ-connecting with p thus the projected distance between p and the two-dimensional

point v, the constraint defining the line mv, on the xy-plane is no more than
√

3
2 ρ. By the Pythagorean

Theorem, the distance of the intersection point p′v = mθ′p
∩mv from p is bounded by

√
(ρ2 )2 + (

√
3

2 ρ)2 = ρ.

For an illustration see Figure 5.3.

Lemma 5.2.2. Let p and q be two points in C such that dist(p, q) ≤ ρ and let p̃ and q̃ denote their projection
onto the xy-plane. Let mv ∈MP be a vertical line induced by a two-dimensional point v on the xy-plane.

If v ∈ D√3−1
2

( p̃+q̃2 ) then mv is ρ-connecting for both p and q.

Proof. Let v be a point on the xy-plane inside the disk of radius
√

3
2 located midway between p̃ and q̃

(Figure 5.4). By the triangle inequality

dist(v, p̃) ≤ dist(v, p̃+ q̃

2
) + dist(

p̃+ q̃

2
, p̃) ≤

√
3− 1

2
ρ+

ρ

2
=

√
3

2
ρ.

Hence v is ρ-intersecting for p. Symmetrically, v is ρ-intersecting for q.

Lemma 5.2.3. Let p, q be two points such that dist(p, q) ≤ ρ, mθ′p
, mθ′q

be two ρ
2 -intersecting layers of p

and q respectively. Let mv be a ρ-connecting vertical line of both p and q as defined in Lemma 5.2.2. Let p′

be the projection of p onto mθ′p
, q′ be the projection of q onto mθ′q

and γp′,q′ be the path between p′ and q′.

Im(γp′,q′) ⊆ (mθ′p
∪mv ∪mθ′q

) ∩ (Bρ(p) ∪Bρ(q)).

Proof. Let γp′,q′ be the concatenation of five paths γ1, γ2, γ3, γ4, γ4 as illustrated in Figure 5.5 where:

• γ1 is the segment connecting p′ and the intersection p′v of the two layers mθ′p
and mv,

• γ2 is the segment connecting p′v and the projection pv of p onto the vertical line mv,

• γ3 is the segment connecting pv and qv, the projection of q onto the vertical line mv,
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Figure 5.5: Illustration of path induced by ρ
2 -intersecting layers of p and q and a ρ-connecting line of p, q.

• γ4 is the path connecting qv and q′v, the intersection of the two layers mv and mθ′q
,

• γ5 is the segment connecting q′v and q′.

We will show that each path is contained within Bρ(p) ∪Bρ(q):
γ1 ⊆ Bρ(p): mθ′p

is ρ
2 -intersecting thus p′ ∈ Bρ(p). p′v ∈ Bρ(p) by Lemma 5.2.1. By the convexity of Bρ(p),

it holds that γ1 ⊆ Bρ(p).
γ2 ⊆ Bρ(p): p′v ∈ Bρ(p) by Lemma 5.2.1. mv is a ρ-connecting vertical line thus pv, the projection of p onto

mv is of maximal distance
√

3
2 ρ from p, hence pv ∈ Bρ(p). Bρ(p) is convex, thus γ2 ⊆ Bρ(p).

γ3 ⊆ Bρ(p) ∪ Bρ(q): Recall that dist(p, q) ≤ ρ thus |θp − θq| ≤ ρ. A point p0 = (xv, yv, θ0) ∈ γ3 is either
closer to p or closer to p, we assume w.l.o.g that it is closer to p. Thus |θ0 − θp| ≤ ρ

2 . mv is ρ-intersecting,

thus the distance on the xy-plane between the projections of p0 and p is at most
√

3
2 ρ. As the segments

(p, pv) and (pv, p0) are perpendicular we apply the Pythagorean Theorem:

dist(p, p0) =
√
dist(p, pv)2 + dist(pv, p0)2 ≤ (

√
3

2
ρ)2 + (

ρ

2
)2 = ρ.

γ4 ⊆ Bρ(q): Symmetric to γ2.
γ5 ⊆ Bρ(q): Symmetric to γ1.

Theorem 5.2.4. Let a, b ∈ Cfree such that there exists a collision-free path γa,b ∈ Γ of length L and
clearance ρ between a and b. Then the probability of the MMS algorithm to return a path between a and b
after generating nθ layers and np vertical lines is:

Pr[(a, b)SUCCESS] = 1− Pr[(a, b)FAILURE] ≥ 1−
⌈
L

ρ

⌉ [(
1− πr2

)np
+ (1− ρ)

nθ
]

where r =
√

3−1
2 ρ.

Proof. Let l =
⌈
L
ρ

⌉
and observe that there are l points on γa,b a = p1, . . . , pl = b such that Bρ(pi) ∈ Cfree

and dist(pi, pi+1) ≤ ρ. MMS adds the manifolds mθa and mθb to the connectivity graph. mθa has an FSC
intersecting B ρ

2
(a) and mθb has an FSC intersecting B ρ

2
(b).

Let M ′P ⊆ MP be the set of np lines sampled at random by the MMS algorithm and M ′Θ ⊆ MΘ be
the set of nθ layers sampled at random by the MMS algorithm. If there is a subset of the sampled lines
{mp̃1 . . .mp̃l−1

} ∈M ′P and a subset of the sampled layers {mθ′2
. . .mθ′l−1

} ∈M ′Θ such that (mθ′i
,mp̃i ,mθ′i+1

)

follow the conditions of Lemma 5.2.3 for i ∈ {1 . . . l − 1}, then a path from B ρ
2
(p1) to B ρ

2
(pl) may be

constructed. This is done by concatenating adjacent paths. Moreover, as mθ′1
= mθa and mθ′l

= mθb , the
path can start at a and terminate at b such that its distance from γa,b is at most ρ hence it is in Cfree.

Let I1 . . . Il be a set of indicator variables such that each Ii witnesses the event that there is a ρ-connecting
vertical line mp̃i of pi and pi+1. Let J2 . . . Jl be a set of indicator variables such that each Ji witnesses the
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event that there is a ρ
2 -intersecting layer of pi. It follows that MMS succeeds in answering the query (a, b)

if Ii = 1 for all 1 ≤ i ≤ l − 1 and Jj = 1 for all 2 ≤ j ≤ l − 1. Therefore,

Pr[(a, b)FAILURE] ≤ Pr
(
∨l−1
i=1(Ii = 0) ∨l−1

i=2 (Jj = 0)
)
≤

l−1∑
i=1

Pr[Ii = 0] +

l−1∑
j=2

Pr[Jj = 0].

The events Ii = 0 are independent since the vertical samples are independent. The events Jj = 0 are

independent since the layer samples are independent. Pr[Ii = 1] = πr2 for r =
√

3−1
2 ρ. Thus the probability

that none of the np uniform independent point samples falls in Dr(
p̃i+1+p̃i

2 ) is Pr[Ii = 0] =
(
1− πr2

)np
for

r =
√

3−1
2 ρ. Pr[Jj = 1] = ρ. Thus the probability that none of the nθ uniform independent angle samples

falls in [pj − ρ
2 , pj + ρ

2 ] is Pr[Jj = 0] = (1− ρ)
nθ . Since the sampling is uniform and independent:

Pr[(a, b)FAILURE] ≤
⌈
L

ρ
− 1

⌉ (
1− πr2

)np
+

⌈
L

ρ
− 2

⌉
(1− ρ)

nθ ≤
⌈
L

ρ

⌉ [(
1− πr2

)np
+ (1− ρ)

nθ
]
.

It follows that as np and nθ tend to ∞, the probability of failing to find a path under the conditions
stated in Theorem 5.2.4 tend to zero.
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Part II

New Generic Arrangement Traits For
Rational Functions

In the first part of the thesis, we suggested a general algorithmic framework and presented a specific
implementation of the motion planner for the case of a polygonal robot translating and rotating in the plane.
As part of the implementation, we construct a set of critical curves to decompose manifolds representing the
motion of the robot free to rotate while translating along a fixed line segment. The curves, which are rational
functions, are passed on to the Cgal arrangement package in order to decompose the space into free and
forbidden cells; thus the implementation requires the arrangement package to handle such curves. This part
of the thesis presents a C++ package that contributes a new traits class to Cgal which was developed to
facilitate the implementation. We include experimental results and comparisons with similar classes which
demonstrate its efficiency and note that it is integrated into Cgal 3.9.





6
Applied Computational Geometry Background

This chapter provides background material and definitions required for the second part of the thesis. Sec-
tion 6.1 provides an introduction to Cgal and its Arrangement 2 package while Section 6.2 provides general
mathematical background on rational functions, their properties, and on algebraic numbers.

6.1 Exact Geometric Computation

Most computational-geometry algorithms assume the so-called real RAM model that allows for infinite pre-
cision arithmetic operations [54], thus discarding any errors that could arise from rounding errors. Numeric
inaccuracies in the context of geometric algorithms may lead to inconsistent results in topological predi-
cates [38]. In addition, the input is assumed to be in general position, namely degenerate positions are
excluded (for example no three points lie on a line or no four points lie on a circle). The two assump-
tions mentioned create a gap between theory and practice. When implementing computational-geometry
algorithms these assumptions need to be revised. Overcoming the real RAM model assumption may be
achieved by using exact computation [73] while handling degeneracies needs to be taken into account when
implementing robust algorithms.

The Computational Geometry Algorithms Library Cgal, is a C++ software library aiming to provide
generic robust implementation of geometric algorithms and data structures. The project was launched in
1996 as a collaborative effort of several research institutes in Europe and Israel. The library provides many
implemented algorithms such as Convex hull algorithms, Delaunay triangulations, Voronoi diagrams, Polygon
manipulation and more. Cgal is used in various fields including computer graphics, Computer Aided Design
(CAD), bioinformatics, motion planning and more.

The C++ library follows the generic programing paradigm as presented in [3] which allows for great
flexibility in designing and implementing algorithms. It is a programming paradigm where algorithms are
described in terms of abstract types. These types (referred to as models) have to follow predefined behaviors
(referred to as concepts) and are provided as parameters at instantiation time of the algorithms. This provides
the ability to write generic code that is not type specific. This is best demonstrated by an example: The
following code illustrates a generic swap() function. When the generic function is compiled it is instantiated
with a data type that must be constructible from another member of the data type and must have an
assignment operator. A data type that fulfills these requirements is a model of the concepts commonly
called Copy Constructible and Assignable [3].
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template <typename T> void swap(T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;
return ;

}

Cgal’s structure consists of three layers, each providing a defined functionality and making use of the
layer beneath it. The top-most layer, consists of the algorithms and data structures. These algorithms
operate on geometric objects such as points and lines, and perform tests on them. These geometric objects
and predicates are grouped into Kernels (the second layer). The third layer consists of fundamental utilities
including extensions of the Stl [64], Boost [10], and Qt [55] libraries. Another part of the third layer
comprises classes representing auxiliary libraries such as special number types and operations on numbers
of these types. Kernels make use of number types to represent the geometric objects, these number types
may be machine provided number types (such as int or double) but may include exact or multi-precision
number types based on packages such as Leda [46], Core [16] or Gmp [24]. Depending on the algorithm
and the input, the different number types and kernels provide a trade-off between efficiency and accuracy.
In particular, a number type may make use of Lazy exact computations: If the floating-point evaluation of a
certain predicate is ensured to give the right answer, it may be used. Otherwise the computation resorts to
exact evaluation. Thus the number type is able to detect when it is sufficient to use floating point arithmetic
and when exact computation is needed [52].

Cgal’s Arrangement 2 package supports various operations on planar arrangements. The package uses
traits classes to achieve flexibility and generality. A traits class unites all data types and operations needed by
a certain algorithm and is passed as an additional template parameter to the algorithm. The Arrangement 2

package is templated with a traits class that wraps geometric predicates needed by the algorithm. This
design enables the user to use the arrangement package with different types of curves.

For a complete survey on the subjects of robust geometric computation, Cgal and the Arrangement 2

package the reader is referred to [20, 19, 22, 27, 70].

6.2 Mathematical Background

6.2.1 Definitions

A rational function is a function that can be written as a quotient of two polynomials [30]. In the context
of our work we will limit ourselves to rational functions of one variable with rational coefficients. For this
specific case a rational function can be written as F (x) = P (x)

Q(x) where x is the variable and P (x) and Q(x)

are polynomial functions of x. The degree of a polynomial is the highest exponent for a term with non-zero
coefficient in a polynomial expressed in canonical form (i.e. as a sum or difference of terms). A root of a
polynomial P is a value x0 such that P (x0) = 0 (thus (x− x0) is a factor of P ). The multiplicity of a root
x0 is the largest integer k such that (x − x0)k is a factor of P . An algebraic number is a number that is a
root of a non-zero polynomial in one variable with rational (or equivalently, integer) coefficients.

6.2.2 Properties of Polynomials

Let P (x) = amx
m + . . . + a0x

0 be a polynomial with rational coefficients. P (x) has the following proper-
ties [42]:

• Right-hand behavior: If the leading coefficient, am, of the polynomial is positive (respectively negative),
then the right-hand side of the graph will rise (respectively fall ) towards +∞ (respectively −∞ ).

• Left-hand behavior: If the degree, m, of the polynomial is even (respectively odd), the left-hand side
will do the same (respectively opposite) as the right-hand side.
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• X-interception behavior: If the multiplicity of a root is odd (respectively even), the graph will change
sides and cross the axis (respectively will stay on the same side and touch the axis).

6.2.3 Properties of Rational Functions

Several properties of rational functions are cited here; see [41] for an elaboration on the properties of rational

functions. The properties that follow are under the assumption that F (x) = P (x)
Q(x) where P (x) = amx

m +

. . .+ a0x
0 and Q(x) = bnx

n + . . .+ b0x
0 have rational coefficients and no common factors.

• X-monotonicity: Every rational function is x-monotone1, since it is a function.

• Coefficient type: Every rational function with rational coefficients can be expressed as an equivalent
rational function with integer coefficient. This may be done by multiplying each coefficient of the
numerator with the LCM2 of the coefficients of the denominator and multiplying each coefficient of
the denominator with the LCM of the coefficients of the numerator.

• Vertical asymptotes: A rational function has vertical asymptotes in all the roots of the denominator.

• Horizontal asymptotes: A rational function has horizontal asymptotes at y = 0 if m < n and at the
line y = am

bn
if m = n.

• Multiplicity and x-interception: If a rational function has a root at F (x) = 0 and the root’s multiplicity
is odd (respectively even), the graph will change sides and cross the axis (respectively stay on the same
side and touch the axis).

• Multiplicity and vertical asymptotes: If a rational function has a root at the denominator and the root’s
multiplicity is odd (respectively even), the graph changes sides and one side of the vertical asymptote
rises to +∞ while the other side falls to −∞ (respectively both sides of the vertical asymptote rise to
+∞ or both sides fall to −∞).

6.2.4 Properties of Algebraic Numbers

Several properties of algebraic numbers are cited here; see [68] for an elaboration on the properties of algebraic
numbers.

• Rational numbers: The set Q of rational numbers is a subset of the algebraic numbers.

• The field of algebraic numbers: The algebraic numbers form a field in particular the sum, difference
and quotient of two algebraic numbers is an algebraic numbers.

An important conclusion derived immediately from the presented properties is:

Corollary 6.2.1. The intersection of two rational functions F (x), G(x) with integer coefficients, is a point
p = (x, y) where x and y are algebraic numbers.

1A continuous planar curve C is x-monotone if every vertical line intersects it at most once.
2LCM—Least Common Multiplier.
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7
The New Arrangement Traits Class

7.1 Background

The Cgal package Arrangement 2 follows the generic programming paradigm [3]. It is designed to create
arrangements of general curves by receiving a traits class as a template argument. This traits class defines
the type of curves in use and the required operations on them. This gives tremendous flexibility in using the
package for a variety of different motion-planning (sub)problems. Here we use it once for line segments via
the Minkowski sums package written on top of the arrangement package, and once with graphs of rational
functions, for which we devised a new and particularly efficient traits class. The following section gives more
details about the latter.

An arrangement traits class is required to provide (and by that define) the curve type in use. For these
curves it must provide a specific set of operations, such as splitting curves into x-monotone sub-curves,
computing the intersections of two curve segments, comparing intersection points, or comparing the y-order
of two curves at a certain x-coordinate. Current implementation of traits classes include support for segments,
rays, lines, circular arcs, polylines, conic arcs and rational arcs.

As mentioned in the first part of the thesis, the critical curves defined for our motion planning problem
are in the form of rational functions. They are used to create motion paths by creating an arrangement
of the curves (see Figure 7.1 for an example of an arrangement of rational functions). Thus, a traits class
supporting rational functions was needed. Such a traits class (CGAL::Arr rational arc traits 2) existed
at the time of writing (see [13]). A second traits class (CGAL::Arr algebraic segment traits 2) that
supports arbitrary algebraic curves was in the process of making at the time this work started. A traits class
is the fundamental building block in creating an arrangement and highly affects running time. Both classes
had drawbacks in supported features and time complexity and a new class was designed and implemented
as part of this work to overcome the drawbacks.

7.2 Existing Traits Classes

7.2.1 CGAL::Arr rational arc traits 2

The traits class CGAL::Arr rational arc traits 2 (deprecated as of Cgal 3.9) supports rational arcs
where the arcs may be bounded over an interval [xmin, xmax] , unbounded, or defined over a “ray”, namely,
defined over (∞, xmax] or [xmin,∞). The following summary of the class is based on the class documenta-
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Figure 7.1: Rational function arrangement example (taken from [65, C.30]).

tion [65, C.30].

The polynomial coefficients of the numerator polynomial and the denominator polynomial are represented
by integral numbers. Thus the x-coordinates of all arrangement vertices (in particular, those representing
intersection points) can be represented as algebraic numbers. The y-coordinates, which can be obtained by
simple arithmetic operations on the x-coordinates, are also algebraic numbers.

The class therefore requires separate representations of the curve coefficients and the point coordi-
nates. Thus, the class is templated with two arguments: The first, NtTraits requires a class that de-
fines the following nested number types Integer, Rational and Algebraic and supports various oper-
ations on them, yielding certified computation results (for example, it can convert rational numbers to
algebraic numbers and can compute roots of polynomials with integer coefficients). The second, AlgKernel
requires a geometric kernel templated with the NtTraits::Algebraic number-type. The recommended
instantiation is using the CGAL::CORE algebraic number traits class as the NtTraits parameter, with
CGAL:: Cartesian<NtTraits::Algebraic> instantiating the kernel. The number types in this case are
provided by the Core [16] library, with its ability to exactly represent algebraic numbers.

The class suffers from two main drawbacks:

• Inefficiency, and

• lack of support for vertical segments.

Efficiency Drawbacks

As the class uses the CGAL::CORE algebraic number traits class as the NtTraits parameter, predicates
supplied by the class are extremely inefficient (timewise). Comparisons of points and intersections require
evaluating algebraic expressions which is a time-consuming task. This is done although every predicate has
a “topological” point of view: It does not requires the exact number or point considered but an evaluation of
the relative position of two features (namely a point and a curve). This is best demonstrated via an example:
In order to consider if a point p is above, below or on a curve, the traits class computes the value of the curve
at the x-coordinate of the point and compares the two numbers. These computations and comparisons are
extremely time consuming and may (as will be showed in 7.4) be done using an alternative approach.
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Lack of Support for Vertical Segments

As vertical segments are not rational functions, the traits class does not support this type of curves. Thus
a vertical decomposition of an arrangement computed with the traits cannot be computed using only the
functionality of the traits class itself.

7.2.2 CGAL::Arr algebraic segment traits 2

At the time of starting this work an additional traits class was underway. This class gave generic support for
algebraic curves, namely the (real) zero locus of a polynomial f(x, y) in two variables. Obviously rational
curves are a special case of algebraic curves; thus the class supports the desired curves. Vertical segments
are also considered as algebraic curves, thus the class overcomes the second drawback mentioned in 7.2.1

The class is designed to exploit the features of an algebraic kernel which is a model of the concept
CGAL::AlgebraicKernel d 2. The algebraic kernel is targeted to provide black-box implementations of
state-of-the-art algorithms to determine, compare and approximate real roots of univariate polynomials.
The package can efficiently represent an algebraic number x0, using a polynomial P which has x0 as its root,
and an isolating interval. The representation of algebraic numbers led to a powerful and efficient traits class
as described in [7, 8]. This internal representation leads to a number type that has the following properties:

• CGAL::AlgebraicKernel d 1::Algebraic real 1 is real embeddable , for instance, it is possible to
compare two algebraic reals, to determine the sign of an algebraic real or to ask for its machine double
approximation.

• The representation is output sensitive in the sense that if no two roots lie close, the isolating interval
can be coarse.

• The numbers do not allow arithmetic operations (such as adding two real numbers). It is however
possible to ask for the sign of a polynomial at an algebraic number.

7.3 General Overview Of The New Traits Class

The traits class CGAL::Arr algebraic segment traits 2 inspired the creation of a new, dedicated traits
class, CGAL::Arr rational function traits 2 supporting rational functions only while using the same
principles as the CGAL::Arr algebraic segment traits 2 class. This new rational-function traits class was
designed to achieve high efficiency surpassing the speed of the general CGAL::Arr algebraic segment -

traits 2 class by exploiting the fact the curves considered may only be rational functions. Initially the class
did not support vertical segments. A support in the form of a class wrapper was later added, suggesting a
generic technique for converting a general traits class that does not support vertical segments into a class
that supports vertical segments.

The new traits class CGAL::Arr rational function traits 2 defines internally a class CGAL::Arr -

rational arc::Rational function representing a rational function providing a representation of the com-
plete topology of one rational function. This class gives the necessary foundation for two other internal
classes that are the key to the efficiency of the new traits class. The first class, CGAL::Arr rational -

arc::Rational function pair represents the analysis of the topology of two rational functions. The
second class, CGAL::Arr rational arc::Algebraic point 2 represents a point internally by storing the
x-coordinate in the form of a real number and a rational function. The y-coordinate is expressed implicitly
as the value of the rational function at the x-coordinate. The internal classes mentioned, combined with an
internal caching, constitute the infrastructure to efficiently providing all the predicates required by the traits
concept.

43



(a) Rational function analysis (b) Rational function pair analysis (c) Point representation

Figure 7.2: Internal data structures

7.4 Traits Class Design

7.4.1 Templated Arguments

The traits class CGAL::Arr rational function traits 2, the rational curves and almost every internal
class are all templated with an Algebraic Kernel which is a model of the concept AlgebraicKernel d 1.
The Kernel is used for all the operations used on data types (integers, rational numbers, non-algebraic
points, algebraic numbers etc.).

7.4.2 Internal Data Structures

Rational Function Implementation For a rational function F = P/Q with P,Q ∈ Z[X] coprime, a näıve
representation would be to simply store the polynomials P and Q. Considering the predicates required by the
traits class reveals that a representation of rational functions should support topological queries efficiently,
namely the x-coordinates where the rational function changes sign.

We therefor subdivide the x-axis into intervals such that the sign of F is invariant within each interval1

(see Figure 7.2a). This is obtained by computing the sorted sequence of the real roots (with multiplicity)
of P and Q. For the right-most interval the sign is determined by the signs of the leading coefficients of P
and Q. The remaining signs are concluded from right to left using the multiplicity of the computed roots as
described in Section 6.2.

Rational-Function Pair Implementation Rational functions serve as the building block used to
represent both algebraic points and rational curves. The traits predicates consist of queries on the relative
position of pairs of points, curves and points and pairs of curves. Thus the relative position of two rational
functions is needed. Namely for a certain x-coordinate, determining whether the first rational function is
above, below or intersecting with the second rational function.

Following the above observation, an internal class was created allowing for fast queries on the topological
relations of two rational functions at a point. For two functions F (x) = fn(x)/fd(x) and G(x) = gn(x)/gd(x),
we similarly subdivide the x-axis into intervals such that the y-order of F and G is invariant within each
interval. Of course, the order may change at intersection points, the x-coordinates of which are given by
the real roots of r = fngd − gnfd ∈ Z[X]. However, the order may also change at vertical asymptotes of f
and g. Thus, the subdivision is given by the sorted sequence of the real roots of fd, gd and r. Again, once
the order is computed for one interval, the others can be concluded via the multiplicities of the roots (see
Figure 7.2b).

Point Implementation A point is internally stored as an x-coordinate and a rational function (see
Figure 7.2c for an example demonstrating this notion) where the y-coordinate is stored implicitly. This allows
for efficiently answering predicates concerning topological interrelation of two points. Comparison is trivial
by comparing the x-coordinates and the rational functions. A more interesting predicate is the compare xy 2

predicate. This predicate receives a second point, and returns an xy-lexicographic comparison result. This

1It should be noted that these intervals are not maximal, e.g., a rational function may have a vertical asymptote at a pole
where both sides of the pole approach ∞ and the function’s sign is equal for both intervals.
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is achieved by first comparing the x-coordinates of the two points. If they are the same, a rational function
pair is constructed from the point’s rational functions. Using the internal analysis of the rational function
pair, it is trivial to determine the interrelations of the two rational functions at the appropriate x-coordinate.

7.4.3 Optimization: Handles & Caches

In order to achieve a higher level of performance, several optimizations have been implemented. Each of
the classes described above is wrapped using a handle. The handle supports reference counting [23], trivial
comparison and rapid copy construction.

A slightly more sophisticated yet much more powerful optimization is the use of caches. The same rational
functions and rational-function pairs may be needed several times throughout the program. An example
for such a case is when dealing with a rational curve: if the curve needs to be subdivided into x-monotone
curves, each of the x-monotone curves will share the same rational function; however, the boundaries of its
domain of definitions will be different. Two internal caches are used to store the created rational functions
and rational-function pairs. Creation of a new instance is carried out via a factory function [23] which first
searches the cache for an existing instance and only upon failure will creates a new instance.

Consider two rational functions F and G, the rational-function pair constructed from F and G is exactly
symmetric to the rational function pair constructed from G and F . This observation suggests a canonical
representation of the rational-function pair2. A wrapper is used to wrap the canonicalized pair and return
the necessary outcome.

7.4.4 Rational Curves and Geometric Traits

A rational curve is defined by a rational function and the x-coordinates of the boundaries (if they exist).
In order to make it x-monotone, one needs to ensure that the rational function has no poles between the
boundaries. Thus both the Curve 2 and X monotone 2 classes share a base class consisting of a rational
function, its boundaries and several predicates. These predicates are quite simple and exploit the power of
the infrastructure created (namely the rational function, the rational-function pairs and the points).

7.4.5 Vertical Segment Support

As with the CGAL::Arr rational arc traits 2 class, the new generic traits class does not support vertical
segments. This support is achieved as follows3: a vertical segment class was added to the traits’ infrastruc-
ture4 and a new construction was introduced, supplying the intersection result of a rational curve with a
vertical segment.

This simple addition facilitates the creation of a new traits class wrapping the old one. The new traits
class tries to represent a curve, either as a rational curve or as a vertical segment. This is implemented using
boost::variant in a straight-forward fashion [10].

One can organize the predicates required by a traits class into the following types:

1. Predicates supporting queries regarding the traits’ point type (e.g. Compare x 2).

2. Predicates supporting queries regarding the traits’ curve type (e.g. Is vertical 2).

3. Predicates supporting queries regarding the interaction between the traits’ curve type and the traits’
point type (e.g. Compare y at x 2).

4. Predicates supporting queries regarding the interaction between two instances of the traits’ curve type
(e.g. Compare y at x left 2).

2Canonical representation is done by always considering the first function as the one with the lower handle ID.
3This technique may be generalized to add vertical segment support to any traits class that does not support vertical

segments.
4A vertical segment is simply represented by an x-coordinate, upper and lower rational functions to implicitly represent the

upper and lower y-coordinates and flags indicating if the segment is bounded or unbounded from above or below.
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A quick glance at the types reveals the necessary work needed to implement each predicate type for the
wrapper traits class, namely the class that adds the handling of vertical segments:

1. This predicate type is not affected by the addition of vertical segments; using the appropriate predicate
of the traits class suffices.

2. For non-vertical segments, a call to the appropriate predicate of the traits class suffices. For vertical
segments these predicates need to be implemented5.

3. As with the case above, for non-vertical segments, a call to the appropriate predicate of the traits class
suffices. For vertical segments these predicates need to be implemented.

4. For the case where the two curve types are the same (both are vertical or both are non-vertical), the
method described in section 3 suffices. For interaction between vertical segments and non-vertical
segments, care should be exercised. One can implement all these predicates using other predicates
already defined in the traits class; hence no new code should be introduced. The only exception is for
the Intersect 2 predicate where actual analysis of the curve is needed.

The quick analysis suggests a generic method for supporting vertical segments in traits classes. A future
writer of a traits class may write a new geometric traits for a new type of curves not supporting vertical
segments. By implementing only the vertical segments class and an intersection construction with the new
type of curves and following the scheme suggested, a wrapper is easily produced, supporting the new curve
type and vertical segments.

5It is worth noting that if the vertical segments are defined generically (e.g. via the traits point type only), these predicates
are generic and not traits dependent.
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7.5 Experimental results

We use random instances of rational functions which were also used in another study [7, 8]. Results can be
found in Table 7.1. The parameters n,m describe the degree of the rational function and the number of
rational functions generated respectively. The parameters V,E, F describe the number of vertices, edges and
faces of the constructed arrangement respectively. The results show an average speedup of 3 with respect
to CGAL::Arr algebraic segment traits 2 and a speedup of at least 10 with respect to CGAL::Arr -

rational arc traits 2.

n,m #(V,E,F) new rational
traits (this
work)

algebraic
traits

speedup

2,10 ( 98, 220, 123) 0.01 0.12 6.25
2,20 ( 360, 766, 407) 0.07 0.35 4.55
2,30 ( 900, 1862, 963) 0.2 0.75 3.85
2,40 ( 1836, 3766, 1931) 0.4 1.47 3.70
2,50 ( 2306, 4724, 2419) 0.55 1.92 3.57
2,60 ( 3676, 7486, 3811) 0.87 2.9 3.33
2,70 ( 5066, 10298, 5233) 1.21 4.05 3.45
2,80 ( 6110, 12394, 6285) 1.5 4.93 3.33
2,90 ( 7828, 15868, 8041) 1.93 6.37 3.33
2,100 ( 8918, 18056, 9139) 2.28 7.19 3.23
6,10 ( 114, 254, 141) 0.05 0.24 4.55
6,20 ( 566, 1188, 623) 0.28 0.97 3.57
6,30 ( 1222, 2526, 1305) 0.63 2.09 3.33
6,40 ( 2074, 4266, 2193) 1.14 3.63 3.23
6,50 ( 3268, 6670, 3403) 1.89 5.7 3.03
6,60 ( 4800, 9764, 4965) 2.8 8.24 3.03
6,70 ( 7020, 14238, 7219) 4.06 11.78 2.94
6,80 ( 8636, 17482, 8847) 5.21 14.59 2.86
6,90 ( 11266, 22790, 11525) 6.87 19.15 2.86
6,100 ( 13124, 26534, 13411) 8.2 22.85 2.86
2,20 ( 360, 766, 407) 0.07 0.35 4.76
3,20 ( 422, 890, 469) 0.11 0.48 4.17
4,20 ( 508, 1066, 559) 0.17 0.64 3.85
5,20 ( 574, 1204, 631) 0.23 0.84 3.70
6,20 ( 566, 1188, 623) 0.28 1.01 3.70
7,20 ( 594, 1242, 649) 0.34 1.16 3.45
8,20 ( 576, 1204, 629) 0.39 1.31 3.45
9,20 ( 622, 1312, 691) 0.47 1.62 3.45
10,20 ( 652, 1368, 717) 0.55 1.81 3.33
11,20 ( 616, 1292, 677) 0.59 1.94 3.33
12,20 ( 630, 1322, 693) 0.67 2.2 3.33
13,20 ( 738, 1536, 799) 0.85 2.65 3.13
14,20 ( 616, 1288, 673) 0.83 2.81 3.45
15,20 ( 676, 1418, 743) 0.99 3.14 3.23

Table 7.1: Comparison of generic traits with our new traits for Cgal revision 57740.
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n,m #(V,E,F) new rational traits
(this work)

old rational traits speedup

2,10 ( 98, 220, 123) 0.01 0.27 15.4
2,20 ( 360, 766, 407) 0.07 0.93 12.9
2,30 ( 900, 1862, 963) 0.2 2.07 11.0
2,40 ( 1836, 3766, 1931) 0.4 4.59 12.1
2,50 ( 2306, 4724, 2419) 0.55 5.38 10.6
2,60 ( 3676, 7486, 3811) 0.87 8.08 9.9
2,70 ( 5066, 10298, 5233) 1.21 12.24 11.0
2,80 ( 6110, 12394, 6285) 1.5 13.39 9.7
2,90 ( 7828, 15868, 8041) 1.93 18.37 10.3
2,100 ( 8918, 18056, 9139) 2.28 19.74 9.4
6,10 ( 114, 254, 141) 0.05 2.17 44.4
6,20 ( 566, 1188, 623) 0.28 12.13 45.2
6,30 ( 1222, 2526, 1305) 0.63 23.84 38.9
6,40 ( 2074, 4266, 2193) 1.14 37.84 34.1
6,50 ( 3268, 6670, 3403) 1.89 58.52 31.5
6,60 ( 4800, 9764, 4965) 2.8 86.13 32.7
6,70 ( 7020, 14238, 7219) 4.06 132.4 34.0
6,80 ( 8636, 17482, 8847) 5.21 152.06 30.7
6,90 ( 11266, 22790, 11525) 6.87 212.23 32.4
6,100 ( 13124, 26534, 13411) 8.2 240.09 30.4
2,20 ( 360, 766, 407) 0.07 0.94 13.5
3,20 ( 422, 890, 469) 0.11 1.77 16.9
4,20 ( 508, 1066, 559) 0.17 4.61 28.3
5,20 ( 574, 1204, 631) 0.23 8.91 39.9
6,20 ( 566, 1188, 623) 0.28 12.22 46.8
7,20 ( 594, 1242, 649) 0.34 18.1 54.3
8,20 ( 576, 1204, 629) 0.39 22.79 61.9
9,20 ( 622, 1312, 691) 0.47 36.89 79.2
10,20 ( 652, 1368, 717) 0.55 52.22 97.4
11,20 ( 616, 1292, 677) 0.59 50.49 86.1
12,20 ( 630, 1322, 693) 0.67 66.07 98.6
13,20 ( 738, 1536, 799) 0.85 108.82 128
14,20 ( 616, 1288, 673) 0.83 93.1 118
15,20 ( 676, 1418, 743) 0.99 140.72 149

Table 7.2: Comparison of old traits with our new traits for Cgal revision 57740.
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8
Conclusions and Future Work

We presented a general and modular algorithmic framework for path planning of robots. The framework
combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, to-
gether with sampling-based approaches that are appropriate for higher dimensions. The framework suggests
sampling entire low-dimensional manifolds of the configuration space. These samples capture the connectiv-
ity of the configuration space much better than isolated point samples. In addition, the framework includes
several general heuristics and optimizations that may be used for different motion-planning instances.

We have implemented our framework for one such instance, namely a polygonal robot translating and
rotating in the plane amidst polygonal obstacles. We present a significant speedup of our implementation
over the PRM sampling-based algorithm. The implementation included developing a new traits class for the
arrangement package of Cgal which has been integrated into Cgal 3.9.

We present a proof of probabilistic completeness for our scheme for this specific instance. We believe
that this is an intermediate step towards a general proof of probabilistic completeness for the entire scheme.

To conclude, we outline directions for extending and enhancing the current work. Our primary goal is to
use the MMS framework to solve progressively more complicated motion-planning problems. As suggested
earlier, we see the framework as a platform for convenient transfer of strong geometric primitives into motion-
planning algorithms. For example, among the recently developed tools are efficient and exact solutions for
computing the Minkowski sums of polytopes in R3 [21, 26, 69] as well as for exact update of the sum
when the polytopes rotate [50]. These could be combined into an MMS for full planning of rigid motion
of a polytope among polytopes, which, extrapolating from the current experiments, could outperform more
simplistic solutions in existence.

Looking at more intricate problems, we anticipate some difficulty in turning constraints into manifolds
that can be exactly decomposed. In these cases, we propose to have manifolds where the decomposition
yields some approximation of the FSCs, using, for example, recent advanced meshing tools. We can endow
the connectivity-graph nodes with an attribute describing their approximation quality. One can then decide
to only look for paths all whose nodes are above a certain approximation quality. Alternatively, one can
extract any solution path and then refine only those portions of the path that are below a certain quality.

We foresee an extension of the framework to other problems that involve high-dimensional arrangements
of critical hypersurfaces such as assembly planning or loop closure in molecular modeling. It is difficult to
describe the entire arrangement analytically, but there are often situations where constraint manifolds could
be computed analytically. Hence, it may be possible to shed light using manifold samples on the problems
at hand to analytically capture pertinent information of high-dimensional arrangements of hypersurfaces.
Notice that although in Chapter 4 we used only planar manifolds, there are recently developed tools to
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construct two-dimensional arrangements of curves on curved surfaces [6] which give further flexibility in
choosing the manifold families.
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A
Critical Curves of a Rotating Robot Along a Translation

Segment

A.1 Background

We consider a polygonal robot translating along a fixed segment while rotating amidst polygonal obstacles.
This means that the reference point of the robot moves along a fixed line segment, and the robot can rotate
around this reference point. A critical curve is a curve representing a motion of the robot while a feature
of the robot boundary is in contact with a feature of a boundary of an obstacle: Either a robot’s edge is in
contact with an obstacle’s vertex or a robot’s vertex is in contact with an obstacle’s edge. These cases will
be referred to as vertex-edge and edge-vertex, respectively. Figure A.1 demonstrates part of an arrangement
of critical curves constructed for the Tunnel scenario (Figure 4.3a) for a segment connecting the source and
target configurations. The green and red crosses mark the source and target configurations respectively and
the blue poly-line is a path constructed within an FSC.

We define the critical curves by first assuming that both the segment and the edge at hand (either the
robot’s or the obstacle’s) are full lines (containing the segment and the edge). We then introduce “critical
endpoints” taking into account the fact that the robot’s translation is restricted to a segment and that the
edge considered is not a line. This is done by identifying the geometric locus where a vertex and an edge’s
endpoint are in contact. The rest of this section introduces the necessary notions to analyze the problem.
We develop the general equations in Section A.2 and describe the critical endpoints in Section A.3.

Figure A.1: Arrangement of critical curves
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A robotR is a simple polygon with vertices {v1, . . . , vn} where vi = (xi, yi)
T and edges {(v1, v2), . . . (vn, v1)}.

We assume that the reference point of R is located at the origin. The position of R in the workspace is
defined by a configuration q = (rq, θq) where rq = (xq, yq)

T .

Thus, q maps the position of a vertex vi as follows:

vi(q) = M(θq)vi + rq,

where M(θ) =

[
cos θ − sin θ
sin θ cos θ

]
is a rotation matrix.

Given a segment seg = [s, t] where s = (xs, ys)
T and t = (xt, yt)

T we define the parametrization (α, τ) ∈
[0, 1]× R in Equations A.1, A.2

rq = (1− α)s+ αt, (A.1)

θq = 2 arctan τ. (A.2)

The parametrization fixes the robot’s reference point to the supporting line of seg. The parametrized
vertex is represented in Equation A.3

vi(α, τ) = M(τ)vi + (1− α)s+ αt, (A.3)

where M(τ) = 1
1+τ2

[
1− τ2 −2τ

2τ 1− τ2

]
.

A.2 Critical Curves

A.2.1 Robot’s Vertex - Obstacle’s Edge

Let vi be a robot’s vertex and e = (vo1 , vo2) be an obstacle’s edge that is supported by the line l : ax+by+c =
0. The critical curve in this case is defined by adding the constraint that vi(q) ∈ l thus:

axi(q) + byi(q) + c = 0. (A.4)

Plugging Equation A.3 into Equation A.4 yields:
a[(1− τ2)xi − 2τyi] + a(1 + τ2)(1− α)xs + a(1 + τ2)αxt+

b[(2τ)xi + (1− τ2)yi] + b(1 + τ2)(1− α)ys + b(1 + τ2)αyt+

c(1 + τ2) = 0,

when simplified:
τ2 · [−axi + axs − byi + bys + c]+

τ · [−2ayi + 2bxi]+ 1 · [axi + axs + byi + bys + c]+

αT 2 · [−axs + axt − bys + byt]+ α · [−axs + axt − bys + byt] = 0.

Hence:

α =
p2τ

2 + p1τ + p0

q2τ2 + q0
, (A.5)

where

p2 = a(xi − xs) + b(yi − ys)− c ,
p1 = 2(ayi − bxi) ,
p0 = −a(xi+xs)−b(yi+ys)−c ,

q2 = a(xt − xs) + b(yt − ys) ,

q0 = q2 ,

a = yo1 − yo2 ,
b = xo2 − xo1 ,
c = xo1yo2 − xo2yo1 .
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A.2.2 Robot’s Edge - Obstacle’s Vertex

Let e = (v1, v2) be a robot’s edge and v0 be an obstacle’s vertex. The critical curve in this case is
defined by adding the constraint that v0 lies on the line l : ax + by + c = 0 supporting e. To sim-
plify the notation we will consider l : (1 + τ2)ax + (1 + τ2)by + (1 + τ2)c = 0. This line has the
following coefficients: (1 + τ2)a = (1 + τ2)(y2(q) − y1(q)), (1 + τ2)b = (1 + τ2)(x1(q) − x2(q)) and
(1 + τ2)c = (1 + τ2)(x2(q)y1(q)− x1(q)y2(q)). Let us denote ∆x = (x2 − x1) and ∆y = (y2 − y1).

Simplifying a, b, c yields:

(1 + τ2)a = (1 + τ2)(y2(q)− y1(q))
= [(2τ)x2 + (1− τ2)y2] + (1 + τ2)[(1− α)ys + αyt]

−[(2τ)x1 + (1− τ2)y1]− (1 + τ2)[(1− α)ys + αyt]

= [∆y + (2∆x)τ −∆yτ
2],

(1 + τ2)b = (1 + τ2)(x1(q)− x2(q))
= [(1− τ2)x1 − 2τy1] + (1 + τ2)[(1− α)xs + αxt]

−[(1− τ2)x2 − 2τy2]− (1 + τ2)[(1− α)xs + αxt]

= [−∆x + ∆y2τ + ∆xτ
2],

(1 + τ2)c = (1 + τ2)(x2(q)y1(q)− x1(q)y2(q))
= (1 + τ2)[ 1

1+τ2 [(1− τ2)x2 − 2τy2] + (1− α)xs + αxt]

[ 1
1+τ2 [(2τ)x1 + (1− τ2)y1] + (1− α)ys + αyt]

−(1 + τ2)[ 1
1+τ2 [(1− τ2)x1 − 2τy1] + (1− α)xs + αxt]

[ 1
1+τ2 [(2τ)x2 + (1− τ2)y2] + (1− α)ys + αyt]

= 1
(1+τ2) [−4(x1y2 − x2y1)τ2 − (x1y2 − x2y1)(1− τ2)2]

+[(1− τ2)∆x − 2τ∆y][ys + (yt − ys)α]

+[−2τ∆x − (1− τ2)∆y][xs + (xt − xs)α]

= −(1 + τ2)(x1y2 − x2y1)

+(∆x − 2∆yτ −∆xτ
2)(ys + (yt − ys)α)

+(−∆y − 2∆xτ + ∆yτ
2)(xs + (xt − xs)α).

Denoting k = x1y2 − x2y1 and inserting v0 into the line equation yields:

[∆y + (2∆x)τ −∆yτ
2]x0 +[−∆x + ∆y2τ + ∆xτ

2]y0 −k(1 + τ2)
+[∆x − 2∆yτ −∆xτ

2][ys + (yt − ys)α] +[−∆y − 2∆xτ + ∆yτ
2][xs + (xt − xs)α] = 0.
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Now,
τ2 · [∆x(y0 − ys)−∆y(x0 − xs)− k]+

τ · [2∆x(x0 − xs) + 2∆y(y0 − ys)]+ 1 · [−∆x(y0 − ys) + ∆y(x0 − xs)− k]+

ατ2 · [−∆x(yt − ys) + ∆y(xt − xs)]+

ατ · [−2∆y(yt − ys)− 2∆x(xt − xs)]+ α · [∆x(yt − ys)−∆y(xt − xs)] = 0.

Finally:

α =
m2τ

2 +m1τ +m0

n2τ2 + n1τ + n0
, (A.6)

where

m2 = ∆y(x0 − xs)−∆x(y0 − ys) + k,
m1 = −2∆x(x0 − xs)− 2∆y(y0 − ys),
m0 = −m2 + 2k,

n2 = ∆y(xt − xs)−∆x(yt − ys),
n1 = −2∆x(xt − xs)− 2∆y(yt − ys),
n0 = −n2 and

∆x = (x2 − x1) , ∆y = (y2 − y1) , k = x1y2 − x2y1.

A.3 Critical Endpoints

We consider two types of critical endpoints: The first, denoted Type 1 results from the fact the edge (either
of the obstacle or of the robot) is not a line. The second, denoted Type 2 results from the fact that the
translation segment is not a line.

Type 1 endpoints

Type 1 endpoints represent the (α, τ) values such that a robot’s vertex coincides with an obstacle’s vertex.
For the case of a robot’s vertex vi and an obstacle’s edge e = (vo1 , vo2) (vertex-edge case) the robot’s vertex
is vi and the obstacle’s vertex is either vo1 or vo2 . For the case of a robot’s edge e = (v1, v2) and an obstacle’s
vertex vo the robot’s vertex is either v1 or v2 and the obstacle’s vertex is vo. As the cases are analyzed in
the same manner, we will consider a robot’s vertex vi and an obstacle’s vertex vo.

xo = xi(α, τ)
= 1

1+τ2 [(1− τ2)xi − 2τyi] + (1− α)xs + αxt

(xs − xt)α = 1
1+τ2 [(1− τ2)xi − 2τyi] + xs − xo

(xt − xs)α = 1
1+τ2 [(xi)τ

2 + (2yi)τ − xi] + (xo − xs)

α = (xi)τ
2+(2yi)τ−xi

(1+τ2)(xt−xs) + (xo−xs)
(xt−xs)

α = (xi)τ
2+(2yi)τ−xi

(1+τ2)(xt−xs) + (xo−xs)τ2+(xo−xs)
(1+τ2)(xt−xs)

α = (xo−xs+xi)τ2+(2yi)τ+xo−xs−xi
(1+τ2)(xt−xs) .

And,
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yo = yj(α, τ)
= 1

1+τ2 [(2τ)xi + (1− τ2)yi] + (1− α)ys + αyt

(ys − yt)α = 1
1+τ2 [(−yi)τ2 + (2xi)τ + (yi)] + ys − yo

(yt − ys)α = 1
1+τ2 [(yi)τ

2 − (2xi)τ − (yi)] + yo − ys

α = 1
(1+τ2)(yt−ys) [(yi)τ

2 − (2xi)τ − (yi)] + yo−ys
yt−ys

α = 1
(1+τ2)(yt−ys) [(yi)τ

2 − (2xi)τ − (yi)] + (yo−ys)(1+τ2)
(yt−ys)(1+τ2)

α = [(yi)τ
2−(2xi)τ−(yi)]+[(yo−ys)τ2+(yo−ys)]

(1+τ2)(yt−ys)

α = (yo−ys+yi)τ2−(2xi)τ+(yo−ys−yi)
(1+τ2)(yt−ys) .

Hence,

(xo−xs+xi)τ2+(2yi)τ+xo−xs−xi
(1+τ2)(xt−xs) = (yo−ys+yi)τ2−(2xi)τ+(yo−ys−yi)

(1+τ2)(yt−ys)
[(yt − ys)(xo − xs + xi)− (xt − xs)(yo − ys + yi)]τ

2

+2[(yt − ys)(yi) + (xt − xs)(xi)]τ

+[(yt − ys)(xo − xs − xi)− (xt − xs)(yo − ys − yi)] = 0

Type 2 Endpoints

The robot’s refernce point coincides with the translation segments’s endpoints when α = 0 or α = 1. Thus
for the vertex-edge case, for α = 0 the endpoints are located at the roots of Equation A.7 and for α = 1 the
endpoints are located at the roots of Equation A.8. For the edge-vertex case, for α = 0 the endpoints are
located at the roots of Equation A.9 and for α = 1 the endpoints are located at the roots of Equation A.10.

p2τ
2 + p1τ + p0 = 0 (A.7)

(p2 − q2)τ2 + (p1 − q1)τ + (p0 − q0) = 0 (A.8)

where pi, i ∈ {1 . . . 3}, qj , j ∈ {1, 3} are defined in Equation A.5.

m2τ
2 +m1τ +m0 = 0 (A.9)

(m2 − n2)τ2 + (m1 − n1)τ + (m0 − n0) = 0 (A.10)

where mi, i ∈ {1 . . . 3}, nj , j ∈ {1, 3} are defined in Equation A.6.
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