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Abstract

This thesis studies theoretical and practical aspects of the computation of planar polyg-
onal Minkowski sums via convolution methods. In particular we prove the “Convolution
Theorem”, which is fundamental to convolution based methods, for the case of simple
polygons. To the best of our knowledge this is the first complete proof for this case.
Moreover, we describe a complete, exact and efficient implementation for the reduced
convolution method for simple polygons based on a method proposed by Lien. As part
of the “Convolution Theorem” we show that the “convolution cycles” exist and provide
an optimal algorithm to extract those. A crucial step of the reduced convolution algo-
rithm is to verify whether a loop of the convolution is on the boundary of the Minkowski
sum. For this purpose we study three methods, namely a sweep-line collision detection, a
bounding volume hierarchy and a novel ray-shooting method. The ray-shooting provides
better theoretical bounds, however in practice, the bounding volume hierarchy proved
to be the most efficient method. The thesis contains comprehensive comparisons of our
reduced convolution implementation with the full convolution method, which are both
implemented in CGAL. Up to pathological cases, our method was more efficient in terms
of runtime and memory consumption. Furthermore, the benchmarks indicate that the
method is competitive with the inexact implementation of Lien.
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1
Introduction

The Minkowski sum (Minkowski addition) of two sets A and B in any Euclidean space
S is defined as:

A⊕B = {x+ y | x ∈ A, y ∈ B}.

The Minkowski sum is a fundamental building block in many application fields of com-
putation geometry. In many “real world” applications, the Euclidean space S is typi-
cally R2 and R3. The Minkowski sum can be used to efficiently answer several types of
proximity queries of two polyhedra, such as collision detection, penetration depth and
minimum separation distance [?]. Answering such queries efficiently has applications in
many fields, including robotic motion planning [?] , assembly planning [?] and computer
aided design [?]. For example, given two polygons A and B in the plane, computing the
Minkowski sum of −A and B results in the set of all points x such that A + x and B
intersects. This gives all the possible locations for robot A where it collides with obstacle
B in the plane, which in turn is useful for planning collision-free paths for a robot A
translating among the obstacles B.

In this thesis we concentrate on the computation of Minkowski sums in the plane.
We focus on closed simple polygons A and B. We assume our polygons have n and m
vertices, respectively. The Minkowski sum is represented by its border, as the plane is
separated into components which are either inside, outside and on the border of the sum.

1.1 Previous Methods and Related Work

During the last four decades many algorithms were introduced to compute the Minkowski
sum for polygons and polyhedra. Some methods give approximate solutions, while other
are geometrically exact. For the approximate methods see, for example, [?] and [?]. For
approximate and exact three-dimensional methods see [?], [?] and [?]. First we review
complexity results for this problem.
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1.1.1 Basic Complexity

The border of the Minkoski sum is formed from the sum of pairs of edges and vertices,
where each summand is from a different polygon. Since there are O(mn) such pairs, the
sum induces an arrangement of O(m2n2) edges. This bound is tight in the worst case [?].
If both A and B are convex, the Minkowski sum has at most m+ n vertices and may be
computed efficiently at O(m+n) time [?]. If only one of the polygons is convex, the sum
has O(mn) vertices [?] and may be computed at O(mn log(mn)) time [?].

Most of the exact methods can be divided into two main categories: decomposition
and convolution. We elaborate on the convolution in more depth below, as the main
topic of this thesis are convolution-based methods, but we start with a short description
of the decomposition approach.

1.1.2 Decomposition Methods

The decomposition approach entails the decomposition of the complex input geometrical
entities into simpler units to start with. Then the pairwise Minkowski sums between them
are computed and unified (union) into the full sum. The approach was first proposed
by Lozano-Pérez [?]. Flato [?] has implemented the first exact and robust version of the
decomposition method, which handles degenerate (low dimensional) features. The non–
convex polygons are decomposed into convex polygons. Then, the pairwise Minkowski
sums are computed. Finally the intermediate pairwise Minkowski sums are unified. Each
step in this process can create various effects on run time efficiency. The choice of the
decomposition method determines how many intermediate polygons and how complex the
decomposed polygons are. The simplicity of this method comes at a price of computing
the decomposition itself. The number of intermediate convex polygons naturally greatly
influences the amount of work required during the union step. Flato tried different
decomposition methods and heuristics, and an incremental method for computing the
union. Hachenberger [?] implemented a robust decomposition method for computing
three-dimensional Minkowski sums of polyhedra using Cgal.

1.1.3 Convolution Methods

In 1983 Guibas et al. [?] presented a framework of operations on polygonal tracing (which
extends the concept of a polygon). In this framework the authors define an operation on
two tracings called “convolution”. They state a theorem, the “Convolution Theorem”,
that implies that the Minkowski sum boundary is a subset of this convolution. However,
all the theorems in this paper are given without proofs.

Convolution methods rely on the computation of a super set of the Minkowski sum
boundary and filtering out the features that are not on it. Wein [?] implemented the
convolution method for planar sums of two simple polygons in Cgal. In order to extract
the Minkowski sum border, he computes the arrangement of the convolution segments
and computes the winding number for each face in the arrangement. According to the
stated (but not explicitly proven) theorem in [?], the Minkowski sum interior regions are
cells with positive winding numbers. This method outperforms the best decomposition
methods in most cases where input polygons cannot be easily decomposed [?]. The
implementation of Wein is also exact and robust and is able to compute all the low
dimensional features.
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Kaul et al. [?] observed that only a subset of the convolution segments, namely “Con-
vex Convolution”, actually contains the Minkowski sum boundary. The convex convolu-
tion does not induce cycles, i.e., it does not induce winding numbers on the faces in the
arrangement induced by the convex convolution. Therefore, in order to filter out edges
which are not on the boundary of the Minkowski sum, collision detection is performed
based on the test described in the beginning of this chapter.

Milenkovic and Sacks [?] define the “Monotonic Convolution”, which is another super-
set of the Minkowski sum boundary. This set defines cycles and induces winding numbers,
which although different from those induced by the original convolution, are positive only
in the interior of the Minkowski sum. This fact is shown in their paper.

Since Guibas et al. [?] did not provide proofs for the theorems in their paper, it is our
belief that a small gap in the theory of the convolution methods exists. In the introduc-
tion of the thesis of Ramkumar [?], there are claims that show the basis for the correct-
ness of the “Convolution Theorem”. However, some of these claims are without proof.
Ramkumar [?] shows how to implement the convolution method for three-dimensional
polyhedra.

Recently, Lien [?] proposed a convex convolution based method, which adds addi-
tional filters before using the collision detection test. It shows faster results that Wein’s
method, but do not compute the degenerate features. Lien extended this method for
three-dimensional polyhedra [?].

Methods based on similar ideas were proposed for two-dimensional and three-dimensional
Minkowski sums. Ghosh [?] introduced “slope diagrams”. Fogel used gaussian maps to
implement robust and exact three-dimensional Minkowski sums for convex polyhedra us-
ing Cgal. There additional more similar works for three-dimensional Minkowski sums,
however there is no robust implantation for general three-dimensional polyhedra [?].

1.2 Contribution and Thesis Outline

This thesis explores both the practical and the theoretical aspects of the convolution
method and discusses two main subjects.

The first topic is partially filling the theory gap alluded before by presenting a proof
for the theorem presented in [?], for the special case of two simple polygons in the plane.
To the best of our knowledge no proof was published to this theorem.

The second is the exact implementation of the reduced algorithm in Cgal and the
provision of a precise proof that the implementation is correct. We chose to implement and
study the reduced convolution algorithm since it is extendable for the three-dimensional
case [?].

First we organize and review the basic definitions and terms that are used throughout
this thesis and explain in a rigorous way why different convolution sets are all super sets
of the Minkowski sum boundary. This can be found in Chapter ??. We then define and
prove the existence of “convolution cycles”—a concept which is found in the literature
but was not rigorously defined, and give an optimal algorithm to trace them (in the first
part of Chapter ??). Afterwards, we prove the “convolution theorem” itself, which gives
theoretical justification for the convolution method implemented by Ron Wein and for
part of the correctness proof given in [?] for his method (in the second part of Chapter ??).

We discuss our robust implementation of the reduced convolution algorithm in Cgal,
which handles degenerate cases. This algorithm is based on the fact that the Minkowski
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sum boundary does not contain segments that are the sum of a reflex vertex and an
edge. This reduces the number of segments that need to be inserted in an arrangement,
thus improving runtime and memory consumption. We present the algorithm and its
correctness in Chapter ??. We performed extensive benchmarks of our implementation
of the reduced convolution algorithm in Cgal, measured it against the full convolution
algorithm implemented in Cgal by Ron Wein and found it to be faster in most cases.
We present various benchmarks to show the strength and weaknesses of each algorithm in
Chapter ??. Convolution based methods require a method to decide whether a hole loop
is on the boundary of the Minkowski sum. We discuss several options for implementing
this predicate based on either collision detection or winding numbers. We present a ray-
shooting method as an alternative to the traditional collision-detection methods. The
ray-shooting method has better theoretical bounds for the test, but its implementation
is complex and outside the scope of this thesis. The method that proved to be the
fastest in practice is collision detection by a bounding volume hierarchy approach. This
discussion can be found in Chapter ??. We further investigate the programming aspects
of the implementation of the reduced convolution algorithm in Cgal and briefly describe
which methods and optimization were done in order to make this implementation more
efficient, in Chapter ??.

Finally, we add some concluding remarks and propose further work that can be pursed
in Chapter ??.



2
Terminology and Initial Analysis

Definition 2.0.1 (Minkowski sum). The Minkowski sum of two sets A and B in the
plane1 is defined as:

A⊕B = {x+ y | x ∈ A, y ∈ B}.
The main focus of this thesis is computing the Minkowski sum of two polygons in the

plane via convolution-based approaches. The Minkowski sum is defined by its boundary
features, and whether the faces of the planar subdivision induced by those features are
interior or exterior to the sum. In Section ??, we define polygons as they are represented
in this thesis. Section ?? describes three sets of segments for which the Minkowski sum
boundary is contained within. In addition, the first set is a superset of the second set,
while the second set is a superset of the third set.

2.1 Polygon Representations

Definition 2.1.1 ( Polygonal Chain). A polygonal chain of length n is specified by a
sequence of vertices (v1, ..., vn+1) such that each two consecutive vertices are connected
by a segment.

Definition 2.1.2 (Simple Polygonal Chain). A simple polygonal chain is a polygonal
chain where the segments composing the chain intersects only at consecutive vertices.
Moreover, each vertex is unique.

Definition 2.1.3 (Closed Polygonal Chain). A closed polygonal chain is a polygonal
chain where v1 = vn+1.

Definition 2.1.4 (Simple Closed Polygonal Chain). A simple closed polygonal chain
is a simple polygonal chain where all vertices are unique with the exception of v1 = vn+1.

Definition 2.1.5 (Interior Disjoint Segments). A set of segments is called interior
disjoint if the intersection of the interiors of any pair of segments is empty.

1This definition applies to any Euclidian space but our discussion in the thesis focuses on the planar
case.

5
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Definition 2.1.6 (Weakly Simple Polygonal Chain). A weakly simple polygonal
chain is a polygonal chain where the segments are interior disjoint and if a vertex vi lies
on the interior of a segment s, the incoming and outgoing segments to vi must be on the
same side (half–plane) of the segment s.

Definition 2.1.7 (Segment Direction). The direction for a segment s = (vi, vi+1) in

a polygonal chain is defined as
−→
d = vi+1 − vi. Notice that this direction is retained even

if the segment undergoes translations, or is split into sub–segments. We consider two
directions d1 and d2 equal if and only if there exists α > 0 such that d1 = αd2.

We refer to vi as source(s) and vi+1 as target(s).

Definition 2.1.8 (Segment Normal). We denote the normal to a segment s by ns.
The normal is orthogonal to the direction of s namely, by convention, to the right of s.

Assume we place an observer at a vertex v1 of the polygonal chain facing the next
vertex in the chain. When the observer moves from v1 to v2 the observer turns (by
the minimal angle) to face v3. We define this angle to be positive for a right turn and
negative for a left turn. By taking a series of such moves from one vertex to the next the
observer performs a series of turns that could be summed up. This summation is related
to the orientation of closed polygonal loops. By taking the directions of the segments the
observer traverses as vectors, we can define the following expression that measures the
angle the observer turns while moving from one segment to the next coupled with a sign
stating whether the observer makes a left or right turn.

Definition 2.1.9 (Signed angle). Let the skew product of two vectors u and w in the
plane be : [u,w] = ux · wy − uy · wx. The signed angle between two vectors u and w is
6 (u,w) = min(α, 2π − α) · sign([u,w]), where α is the angle between the vectors.

This expression assigns positive values to vectors that are on the right-hand side of u
and negative values to vectors on the left-hand side. Note that for close polygonal chains
summing this value over all vertices equals a multiplication of 2π by some integer. For
closed weakly simple polygonal chains this number is ±1 and the sign corresponds with
the chain’s orientation (i.e. negative for counterclockwise chains and positive for clockwise
chains).

Definition 2.1.10 (Counterclockwise between). We say that the direction d is coun-
terclockwise (ccw) between directions d1 and d2, if d 6= d1 and while rotating from d1 to
d2 in counterclockwise fashion, d is encountered before reaching d2.

Definition 2.1.11 (CCW predicate). For directions d1, d2 and d3, which have di-
rection associated with them, we write CCW (d1, d2, d3) to denote that the direction d1
is counterclockwise between the direction d2 and the direction d3. If the predicate is
written without a value, the value is assumed to be true. Otherwise, we may write
CCW (d1, d2, d3) =true or CCW (d1, d2, d3) =false.

Note that we may sometimes write the predicate with the edges themselves, in which
case we mean to take the direction of the edges, as illustrated in Figure ??.

We represent polygons as a collection of closed polygonal chains, which are oriented
such that the interior of the polygon is to the left of the segments of the chains. For a
polygon edge e, the normal is pointing outwards of the polygon, namely to the right.
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e2
e3

e1

Figure 2.1: Illustration of CCW (e1, e2, e3).

Definition 2.1.12 (Simple Polygon). A simple polygon is a single simple closed polyg-
onal chain.

We next define the tangent set for a boundary point of a polygonal chain.

Definition 2.1.13 (Tangent Set). The tangent set Tvi of a chain vertex vi is the set
of directions, which are counterclockwise between −−−→vi−1vi and −−−→vivi+1. The tangent set of a
point on a segment contains the direction of the segment only.

Note that for a reflex vertex, that is, a vertex where the angle from the predecessor
edge to the successor edge through the polygon’s interior is greater than π, the set contains
directions which are not tangent in the standard geometrical meaning.

Definition 2.1.14 (Weakly Simple Polygon). A weakly simple polygon is a single
weakly simple closed polygonal chain.

Definition 2.1.15 (Planar Subdivision). Given a set C of n planar curves, the ar-
rangement A(C) is the subdivision of the plane induced by the curves in C into maximally
connected cells. The cells can be 0-dimensional (vertices), 1-dimensional (edges) or 2-
dimensional (faces).

In the planar subdivision induced by a collection of closed polygonal chains, where no
two chains have edges crossing each other, we define the following relationship between
the chains:

Definition 2.1.16 (Polygonal Chains Relationship). A polygonal chain PC is a
child of polygonal chain PC ′ if it is interior to the face that is enclosed by PC ′ and PC ′’s
boundary touches the same face as the boundary of PC.

Definition 2.1.17 (General Polygonal Set). A collection of weakly simple closed
polygonal chains defines a non-simple polygon when all chains are interior disjoint and
do not cross each other. Furthermore, any polygonal chain PC which touches the outer
face is oriented counterclockwise and any child loop of PC is clockwise oriented. This
rule is applied recursively for every child with the orientation flipped.

We say that a polygon is open when we consider the interior of the polygon only, i.e.,
without its boundary, as opposed to a closed polygon, where both the interior and the
boundary of the polygon are considered.

2.2 Minkowski Sum Boundary Supersets

2.2.1 Vertex Edge Sum

Let P and Q be polygons. We consider the sum of a vertex of one polygon with an edge
of the other as the translation of the edge by the radius vector to the vertex. We now
define the set of all those sums for P and Q:
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Definition 2.2.1 (Vertex-Edge Sum). Let P and Q be two polygons, each composed
of a collection of polygonal chains. We take all pairs of polygonal chains from P and Q
with vertices (p0, ..., pn−1) and (q0, ..., qm−1), respectively. The Vertex-Edge Sum, denoted

by S contains all segments of the form
−−−−−−−−−−−−−→
(pi + qj)(pi+1 + qj) and

−−−−−−−−−−−−−→
(pi + qj)(pi + qj+1).

We now show that the set S is a super set of the Minkowski sum boundary. We first
begin by showing that a feature on the boundary of the Minkowski sum must be the sum
of two features on the boundary of the polygons. Then we show that for any interior
point p of an edge in the Minkowski sum boundary there exists a vertex w.l.o.g. from
P and an edge from Q such that their sum contains p. Moreover, the Minkowski sum
interior is to the left of the edge. Since the vertices of the Minkowski sum boundary are
contained in S by definition, we can conclude that ∂(P ⊕Q) ⊆ S.

Lemma 2.2.2 (Boundary feature source). Let p be a point on the boundary of the
Minkowski sum of two closed sets A and B. For every point a ∈ A and point b ∈ B such
that a+ b = p, a is on the boundary of A and b is on the boundary of B.

a

b
⊕ =

Na + bProof. Assume by contradiction that (w.l.o.g.) a
is not on the boundary of A. Then we can find an
ε > 0 environment around a, Na, where the entire
environment is inside A. Thus the entire disk Na+b
is inside the sum, contradicting a + b = p ∈ ∂(A⊕
B).

It immediately follows from Lemma ?? that:

Corollary 2.2.3. Every point on the boundary of the Minkowski sum of two polygons P
and Q is the sum of a point on the boundary of P with a point on the boundary of Q.

Observation 2.2.4 (Edge-Point Neighborhood). Let x = p + q , such that w.l.o.g.
p is edge-interior to the edge ep. Around x there is an ε–neighborhood, where half of it,
namely a half–disk is interior to the Minkowski sum. The disk is oriented such that its
base is aligned with ep, and the disk interior lies to the left of ep.

Proof. Around p there is an ε–neighborhood such that the half–disk oriented in the
manner described is interior to P . By definition the sum of each point in the half disk
with q is interior to the Minkowski sum. Therefore, the same half–disk neighborhood is
found around x.

The Minkowski Sum of Two Segments
We now discuss the Minkowski sum of two segments, as it will help us show the next

property of Minkowski sums. Let s1 =
−→
a, b and s2 =

−→
c, d. Let −→v1 = b− a and −→v2 = d− c.

By the definition of the Minkowski sum every point x in s1 ⊕ s2 must satisfy:

x = a+ λ1
−→v1 + c+ λ2

−→v2 , for some λ1, λ2 ∈ [0, 1]. (2.1)

Now we assume w.l.o.g. that a + c is at the origin. Thus x = λ1
−→v1 + λ2

−→v2 . Let M be
the matrix whose columns are −→v1 and −→v2 . We can write the previous expression as:

(−→v1 −→v2
)(λ1

λ2

)
= x.
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From this expression we see that the image of the Minkowski sum of two points on
s1 and s2 is equal to the image of the transformation matrix M applied on the vector
~v = (λ1, λ2)

t. Since for all x in s1 ⊕ s2 λ1 and λ2 are in the range [0, 1], the set of such
vectors v is exactly the unit square. Therefore, the Minkowski sum of s1 and s2 is the
image of the unit square under M .

M is a linear transformation which can be decomposed using a singular value decom-
position [?] into a series of transformations which change the base into the singular vector
base, perform scaling in the directions of the singular vectors and change the base back
to the original base. If M is full rank the change-of-basis transformations are orthogonal
matrices which represent rotations or reflections. In this case M transforms the bound-
ary of the unit square into the boundary of the image set, since reflections, rotations and
scaling cannot map boundary points to non–boundary points and vice versa. We note
that the boundary of the unit square has an extreme value for at least one of λ1 and λ2.
Consequently, points that are on the boundary of s1⊕ s2 are the image of at least one of
the vertices a, b, c, d.

M is not full rank if and only if −→v1 and −→v2 are linearly dependent. Note that this
case occurs when s1 and s2 have the same direction up to a sign. By definition −→v1 and
−→v2 are linearly dependent if there exist a scalar s such that s−→v1 = −→v2 . Let v̂1 and v̂2 be
the unit vectors of −→v1 and −→v2 , respectively. We can conclude the following:

−→v1 = v̂1‖v1‖,
−→v2 = v̂2‖v2‖,

sv̂1‖v1‖ = v̂2‖v2‖,

s = ±‖v2‖‖v1‖
.

s is positive if v̂1 and v̂2 are in the same direction and negative otherwise. We can always
flip our choice of direction for one of the segments such that v̂1 = v̂2. By substituting
into Equation ?? we get:

x = a+ c+ (λ1‖v1‖+ λ2‖v2‖)v̂1.

This sum defines a segment that begins at a+ c and reaches a+ c+ (‖v1‖+ ‖v2‖)v̂1. Any
intermediate point is in the sum by the correct choice of λ1 and λ2. Thus, the sum is a
segment with length ‖v1‖+ ‖v2‖.

Lemma 2.2.5 (Sum of two points on edges). Let P and Q be polygons. Let ep and
eq be edges of P and Q, respectively. Let p ∈ ep and q ∈ eq be edge-interior points (i.e.
not vertices). If x = p+ q is on ∂(P ⊕Q) then Tp = Tq, where these are the tangent sets
of p and q, respectively.

Proof. By the discussion above if the slope of ep is different from the slope of eq, p + q
lies interior to the Minkowski sum. It is left then that either Tp = Tq or Tp = −Tq.

p

ε

q

q′p′ ε

The case Tp = −Tq occurs when two segments with opposite
directions one from each polygon, are summed up. We assume
w.l.o.g. that ep and eq are horizontal as depicted in the figure
to the right. Let ε > 0 be chosen such that there is a half disk
neighborhood around p and q which is contained inside P and
Q, respectively. Let p′ = p + (0, ε

2
), q′ = q − (0, ε

2
). Around p′ and q′ there are an
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ε
2
–neighborhoods that are contained in P and Q respectively. However, p′ + q′ = x, that

is x is contained in the sum of the ε
2
–neighborhoods around p′ and q′, thus interior to the

Minkowski sum and not on the boundary. In conclusion, for x to be on the boundary of
the Minkowski sum, it is necessary that Tp = Tq.

Now we can show that ∂(P ⊕Q) ⊆ S:

Theorem 2.2.6 (S is a Superset of the Minkowski Sum Boundary). Let P and
Q be polygons. Any point x which belongs to ∂(P ⊕Q) is contained in the sum of a vertex
of P and an edge of Q or the sum of vertex of Q and an edge of P .

Proof. From Lemma ?? we know that all the sources of x lie on the boundary of P and
Q. Let x = p+ q , p ∈ P and q ∈ Q. Denote by ep and eq the edges on which p and q lie,
respectively. If either p or q is already a vertex then x ∈ p+ eq or x ∈ ep+ q, respectively,
and we are done.

Thus assume that p and q are edge interior. By Lemma ?? we have that Tp = Tq.
We saw in the discussion above that the Minkowski sum of two collinear segments is a
segment with the length of their sum. We assume w.l.o.g. that ep is longer than eq. The
union of the sum of ep with both the source vertex of eq and the target vertex of eq is
exactly ep ⊕ eq, thus one of these sums in the union contains x. That is, x is contained
in either source(eq) + ep or target(eq) + ep.

2.2.2 The Convolution Set

We now define a subset of S that contains only the segments of S each of which direction
is contained in the tangent set of the vertex which was used to create it. This set is called
the convolution and was proposed by Guibes et al [?].

In the following definition we have two input polygons P and Q. We treat the direc-
tions of Q as being infinitesimally rotated counterclockwise such that none of them equals
any direction of P . In particular, for originally equal directions dp and dq from P and Q,
respectively, dq is more counterclockwise to dp with respect to the CCW predicate.

Note that this treatment only defines an order on the directions and does not change
the resulting convolution set. The choice to make dp more counterclockwise than dq
will result in the same convolution set, with a different set of original segments (see the
discussion about Minkowski sum of two segments above especially for the case of two
segments with equal directions).

Definition 2.2.7 (Convolution of two polygons in the plane). Let P and Q be
two polygons, each composed of a collection of polygonal chains. We take all pairs of
polygonal chains from P and Q with vertices (p0, ..., pn−1) and (q0, ..., qm−1), respectively.
The convolution is the set of segments that agree with the following rule: Any segment

of the form
−−−−−−−−−−−−−→
(pi + qj)(pi+1 + qj) if the direction d of the vector −−−→pipi+1 lies counterclockwise

between the directions d1 and d2 of the vectors −−−→qj−1qj and −−−→qjqj+1, respectively. Such a
segment is the matching of an edge from P and a vertex of Q. Analogously, matches of
this fashion between edges from Q and vertices from P are included in the collection. We
denote this set as C = P ⊗Q. Obviously, C ⊆ S.

Definition 2.2.8 (Alternative definition for convolution). Let A and B be polyg-
onal curves in the plane:

A⊗B = {x+ y | x ∈ ∂A, y ∈ ∂B, Tx ∩ Ty 6= ∅}.
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Note that the definition for the tangent set of a vertex spans precisely the matching
edges of Definition ??; therefore the segments which are included in the convolution by
Definition ?? include the same set of points as the set defined in Definition ??.

We now show that the convolution is also a superset of the Minkowski sum boundary.
For this purpose we introduce the following lemma which is based on a local criteria that
shows cases where we can immediately conclude that the sum of an edge and a vertex is
interior to the Minkowski sum.

Lemma 2.2.9 (Sliding Lemma). Let ep be an edge w.l.o.g. of P and q a vertex of Q.
Let qout be the outgoing edge of q in the polygonal chain Q. The segment ep+ q is interior
to the Minkowski sum if the the direction dout of qout faces towards the half space to the
right of ep. The same holds for the incoming edge of q, qin and reversed direction d̃in of
qin.

qout + p

ep + q
dout

p + q

qout + p

ep + q dout

p + q

Covered CaseNot Covered Case

Proof. Let p be a point interior to ep. Assume that
the direction dout, points to the half space to the
right of ep. In the figure to the right (Covered Case)
we see that we may “slide” ep in the direction of dout,
which means summing ep with the corresponding
points on qout and obtaining a swept volume which
is interior to the Minkowski sum. However, this
volume contains p + q which is thus interior to the
Minkowski sum. Since this is true for any interior point to ep, ep + q is interior to the

sum. The same argument holds for “sliding” ep in the direction of d̃in.

In the Not Covered Case we see that the sliding does not cover p+ q and therefore it
is not necessarily interior to the Minkowski sum.

Theorem 2.2.10 (Convolution is a superset of the Minkowski sum boundary).
∂(P ⊕Q) ⊆ P ⊗Q.

Proof. By Theorem ??, we know that the boundary of the Minkowski sum is contained
in the segments of the Vertex-Edge Sum S. We examine the segments of S that are not
in the convolution. A segment in S is the sum of an edge ep w.l.o.g. of P and a vertex
q of Q. Let qin and qout be the incoming and outgoing edges to q, respectively. When ep
is not in the tangent set of q, at least one of the edges −qin or qout points to the right
half-space of ep and by Lemma ??, ep + q is interior to the Minkowski sum.

ep + q
q + p qin + p

qout + p

q + p qin + p

qout + p

ep + q

Reflex Convex

In the figure to the right we see the two pos-
sible cases for q which can be either a convex
or reflex vertex. In the Convex example we see
that q is convex and ep is not in the tangent
set of q. In this case it is possible to “slide” ep
along qin as shown by the dashed arrows and all
the swept regions are interior to the Minkowski
sum. When q is a reflex vertex the same argu-
ment holds as seen in the Convex case.

Therefore, edges that are not in the tangent set of their corresponding vertex are not
on the Minkowski sum boundary and by Definition ?? not in the convolution as well.
Thus, the convolution is a superset of the Minkowski sum boundary.



12 CHAPTER 2. TERMINOLOGY AND INITIAL ANALYSIS

2.3 The Reduced Convolution

Kaul et al. [?] observed that only those segments of S whose original boundary features
sum contains a convex vertex are actually on the Minkowski sum boundary. We denote
this set of segments as reduced convolution.

Definition 2.3.1 (Reduced convolution). A subset of the convolution (Definition ??)
where each segment originates from the sum of an edge and a convex vertex.
This convolution is also referred to as convex convolution.

Note that equivalently we may state that the tangent set of a reflex vertex is empty.
Thus the tangent sets now get the intuitive definition while using the convex convolution.

Let us show now that indeed the reduced convolution is also a superset of the Minkowski
sum boundary. We use the same idea seen in the proof of Theorem ??. Although a proof
is given in [?], for the sake of completeness we provide an alternative proof for this ob-
servation, and show specifically why Theorem ?? holds for non-simple polygons as well.

Theorem 2.3.2 (Reduced Convolution is a Superset of the Minkowski Sum
Boundary). Let P and Q be polygons. Given a segment s = eP ⊕ q of an edge (w.l.o.g.)
eP ∈ P and a vertex q ∈ Q, if q is a reflex vertex, s is not on the boundary of the
Minkowski sum of P and Q.

q + p qin + p

qout + p

ep + q

q + p

qin + p

qout + p

ep + q

q + p qin + p

qout + p

ep + q

(a) (b)

(c)

Proof. Let q be a reflex vertex of Q and ep an edge of
P . Let qin and qout be the incoming and outgoing edges
to q, respectively. Let d̃in and dout be the directions
of −qin and qout, respectively. The figure to the right
shows that ep could point either inwards or outwards
of the interior of the Minkowski sum locally defined by
q+ p. Assume that ep is oriented towards the interior of

the Minkowski sum. If either one of the directions d̃in
or dout points to the right of ep we use Lemma ?? (as
seen in the figure to the right(a)). Otherwise, around q
there is an ε-neighborhood where any direction d which
is counterclockwise between dout and d̃in has a segment
of length εd̂ (where d̂ is the unit vector in the direction
d) in the direction of d interior to Q (see the figure to
the right (c)). Since this is a reflex vertex, the angle while rotating counterclockwise

from dout to d̃in is greater than π, which means that there is a direction d interior to Q
that points to the right of ep. “Sliding” ep along d will cover ep and therefore ep + q is
interior to the Minkowski sum. In the same manner, assume that ep is oriented outwards
of the interior of the Minkowski sum. Thus, by sliding ep along qin the resulting sums are
interior to the Minkowski sum and again s is not on the boundary.

q + p
qin + p

qout + p
q′in + p

q′in + p

ep + q
q + p

qin + p

qout + pq′in + p

q′in + pep + q

Now we examine what happens when the neigh-
borhood of p + q (where p is the source vertex of
ep) is locally not a manifold. In the figure to the
right we have two additional edges of Q, q′in and
q′out. Note that in this case Q is not a simple poly-
gon. The pair of edges which decide whether ep
might be on the boundary is the pair that directly encompasses ep. If this pair induces
a reflex vertex then by the same arguments seen above, ep is not on the boundary of the
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Minkowski sum. However, if they induce a convex vertex then ep is a potential boundary
segment.
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3
Reduced Convolution Algorithm

In Chapter ?? we have shown that the Minkowski sum boundary is a subset of the
convolution segments (Theorem ??). This fact allows different methods to extract the
Minkowski sum boundary out of the convolution segments. The difference between the
methods is the manner in which they decide which segments are part of the Minkowski
sum boundary. Behar and Lien [?] proposed an algorithm that extracts the edges of
the Minkowski sum boundary using a collision detection predicate which is discussed
in this chapter. This is opposed to an algorithm proposed by Wein [?] (discussed in
Chapter ??), which uses winding numbers. We implemented a variant of the reduced
convolution algorithm using Cgal. This variant, however limited for the case of two
simple polygons, is robust and handles low dimensional boundary features as we show
in the sequel. In Section ?? we briefly describe the algorithm by Behar and Lien and
provide additional proofs for concepts presented in their paper. Section ?? describes our
variant of this algorithm which is implemented in Cgal, together with proofs verifying
its correctness. In Section ??, we describe how to use capabilities of Cgal’s planar
arrangements in order to improve the efficiency of the algorithm. Finally, when we treat
polygons as open sets, low dimensional features (edges and vertices) may appear on the
boundary of the Minkowski sum. For now we assume that the input polygons are closed
sets. In Section ?? we discuss the polygons as open sets case.

3.1 The Algorithm by Behar and Lien

The algorithm proposed by Behar and Lien [?], uses the fact that a point x is interior to
the Minkowski sum of P and Q if and only if the intersection of P and −Q translated by x
is not empty in its interior; see Chapter 13 [?]. Thus, a point on an edge on the boundary
of the Minkowski sum causes P and −Qx to touch. This is the collision detection predi-
cate. Since only a part of a convolution segment may be on the boundary, the algorithm
splits the convolution segments at their intersection points, say by computing the edges
of the planar subdivision induced by the convolution segments. The collision detection
predicate can then be performed for one point per edge of the refined subdivision to
determine the Minkowski sum boundary edges. Performing a collision detection test for

15
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every edge is costly. However, following the observation summated in Theorem ??, Behar
and Lien noted that they may disregard all those segments that are the sum of a reflex
vertex and an edge, i.e. use the reduced convolution (see Definition ??). Next Behar
and Lien observed that the boundary of the Minkowski sum must be composed of loops
that are manifold and orientable, where orientable means that all the edges of a loop are
directed (see Definition ??) such that the destination vertex of each edge coincides with
the source vertex of the subsequent edge. Moreover, loops that reside on the Minkowski
sum boundary must obey a “nesting order”: loops that have normals pointing outwards
must directly encompass loops that have normals pointing inwards and vice versa. Af-
ter removing all edges which do not satisfy those filters it remains to test for each loop
whether it is on the boundary of the Minkowski sum. Finally, Behar and Lien observed
that a single test for each loop is in fact sufficient.

We now describe the algorithm by Behar and Lien in a formal manner. In the first
stage the algorithm computes the reduced convolution set. After computing the segments
of the reduced convolution, the algorithm computes the edges induced by the planar
subdivision of these segments. We note that each edge retains the direction of the original
segment it is a subset of. The algorithm then proceeds to use the additional filters
mentioned earlier. The filtering is carried out in several steps. Behar and Lien defined
three filters for choosing the correct subset of segments: (i) Orientable loops filter, (ii)
nesting filter and (iii) the boundary filter. We describe these filters next.

Note that the result of the filtering process is an arrangement containing exactly the
Minkowski sum of P and Q. We refer to it as the arrangement of the Minkowski sum.

3.1.1 Orientable Loops

Definition 3.1.1 (Orientable loops). A loop is a closed sequence of interior disjoint
segments. The loop is an orientable loop if all the segments are directed such that for
every segment its target vertex coincides the source vertex of the following only.

Lemma 3.1.2. The boundary of the Minkowski sum of two polygons P and Q is a union
of orientable loops.

p

(a) (b)

e′

L

Proof. By definition boundaries of the Minkowski
sum must be a union of connected segments forming
cycles, since they are the boundary of a face in an
arrangement (which contains only the Minkowski
sum). Each loop splits the face it resides in into
two open sets: inner and outer (Jordan theorem), a
region inside the sum and outside it. Let L ⊂ ∂(P⊕
Q) be such a loop. Assume by contradiction that L
is not an orientable loop. Now assume w.l.o.g. that
the Minkowski sum interior is inside the loop, since L is not orientable there exists at
least one edge e with a normal that points inward. Now consider the ε-neighborhood of
an interior point p on e. e splits the neighborhood into two half-disks. By assumption the
half-disk in the interior of the loop is part of the Minkowski sum. Since p is an interior
point, we can apply Observation ??. Thus, since the normal is pointing inward, the other
part also belongs to the Minkowski sum, which contradicts the fact that the edge is part
of ∂(P ⊕Q).

We can now conclude:
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Corollary 3.1.3. The boundary of each face interior to the Minkowski sum is a weakly
simple polygonal chain.

Proof. Overlapping opposing edges cannot be on the boundary of the Minkowski sum
due to Lemma ??. Since the boundary is an orientable loop surrounding a face, it must
be weakly simple.

Thus, the algorithm extracts those orientable loops that could be a part of the
Minkowski sum boundary by using the following procedure: begin with an arbitrary
segment s which has not yet been visited, trace the loop along the direction of the edges,
and take the largest clockwise turn from s when more than one outgoing edge appears.
Since we are tracing a boundary of the Minkowski sum, we can also see the algorithm as
tracing the boundary of a face which does not belong to the Minkowski sum. Then the
reason for taking the largest clockwise turn is that this is the only candidate to be on
the boundary of the face not containing the Minkowski sum, currently being traced. The
algorithm uses this procedure iteratively until all orientable loops are traced.

Unfortunately, not all of the orientable loops are on the boundary of the Minkowski
sum. The algorithm could use the collision-detection predicate for all edges of the ori-
entable loops. However, further filtering is possible.

3.1.2 Nesting Loops

We note that there are two types of loops. One type has its normals pointing outwards,
thus the Minkowski sum is inside this loop, namely an external loop. The normals of the
other type are pointing inwards, which is the case where the loop encloses a hole in the
sum, namely a hole loop.

If a polygon is not simple it may contain an external loop directly encompassing hole
loops, and so forth. We can consider each loop to be the parent of all the boundary loops
it directly contains, that is, there is a simple connected path between the parent loop
and the child loop which does not intersect any other boundary loop. For a polygon P
it is possible to build a tree containing the relationship for all boundary loops of P . The
depth of this tree is called the nesting level of a polygon P .

The Minkwoski sum boundary conforms to this nesting order as well:

Observation 3.1.4. The loops of the boundary of a Minkowski sum must obey the nesting
property, an external loop must directly enclose all hole loops, and all hole loops must
directly enclose external loops only.

For a proof see [?]. This is a result of Corollary ?? and Lemma ?? which means that
the Minkowski sum boundary is the union of edge-disjoint orientable loops. Moreover,
these loops can be seen as curves, which may touch but do not cross each other. Loops of
the same type cannot directly encompass each other. The orientable loops which cause
this condition to be violated can be discarded using an algorithm which determines the
proper order. A loop that touches the outer face must be an external loop with hole loops
as children, thus all children which are external loops are discarded. Now each hole loop
is the parent of external loops and all children which are hole loops are discarded. The
algorithm can proceed in this manner recursively until it reaches loops without children.
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3.1.3 Boundary Loop Filter

Finally, Behar and Lien noted that only one collision detection test is actually required
per orientable loop:

Observation 3.1.5. All points on a false loop must make −P collide with Q.

For a proof see Behar and Lien [?]. We examine a point interior to the face of the
planar subdivision induced by the convolution segments instead. Note that a face must
be entirely inside or outside the Minokowski sum, since the convolution segments are on
the boundary of the Minkowski sum. If this point does not cause −P translated to collide
with Q, then this face must be outside the Minkowski sum. Similarly, if it does then the
face is interior to the Minkowski sum.

3.1.4 Algorithm Summary

To recap, we give a sketch of the algorithm presented by Behar and Lien [?] for comput-
ing the Minkowski sum boundary of two simple polygons from the reduced convolution
segments.

1. Compute the reduced convolution.

2. Find the intersection points between all reduced convolution segments, and split
them at the intersection points (i.e., by inserting them into an arrangement).

3. Trace all orientable loops.

4. Apply the nesting filter to filter out false loops.

5. Apply the boundary filter to filter out false loops. (Behar and Lien implemented
this using a sweep.)

6. Return the remaining loops as the Minkowski sum boundary.

3.2 Implementation of a Robust Variant Using CGAL

We implemented a variant of the algorithm based on Cgal. It utilizes the exact compu-
tation paradigm for solving degenerate cases and avoiding numerical errors. This section
describes the algorithmic details concerning this implementation. The current Cgal im-
plementation is restricted for the case of two simple polygons. This allows us to simplify
the code in a manner described below. Extending the code for handling the non-simple
case is possible, though beyond the scope of this work. However, unless stated otherwise
the algorithms and proofs presented in this section are for the general case of non-simple
polygons. We follow Behar and Lien steps and describe the details of each step of the
algorithm providing additional proofs which do not rely on the “convolution theorem”,
which is presented in Chapter ??. In Section ?? we describe how to use arrangements
for improving the efficiency of the algorithm. Finally, we describe the definition and
treatment of the degenerate cases.
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3.2.1 Computing the Reduced Convolution

The naive way to compute the segments of the reduced convolution is to iterate over
every pair of a vertex of one polygon and an edge of the other polygon, and check
whether the conditions of Definition ?? hold for them. If so then the sum of the relevant
vertex and edge is added to a list of convolution segments. Wein [?] offered a faster
method for this process, which takes O(n + m + K + nrm + mrn), where K is the
output size and nr and mr are the number of reflex vertices of P and Q, respectively.
In Chapter ??, we implemented an optimal O(n + m + K) algorithm and use it to
compute the (reduced) convolution. An arrangement of segments with history [?]
is constructed from the convolution segments, hence splitting the segments at intersection
points. The arrangement with history records the original segment of each part of the
split segment (so as to keep the direction).

3.2.2 Tracing Orientable Loops

This section shows how to extract the orientable loops from the arrangement that was
computed in the previous step. Recall that we have a direction assigned to each segment
of the convolution, and this direction is kept even if the segment is split into several
edges (by intersection with other segments). The algorithm by Behar and Lien traces
orientable loops by choosing an arbitrary edge as the initial edge. The algorithm traces
edges by moving along the direction of the current edge to the next one until it has no
outgoing edges to continue to or it closes a loop. If during this movement there is more
than one outgoing edge, then the edge that constitutes the largest clockwise turn from
the incoming edge is chosen. Let us define this terms more formally and then prove the
validity of the loop tracing in our variant of Lien’s algorithm. Recall Definition ?? for a
signed angle. By using this expression we can define the “largest clockwise turn” from
one segment to the next.

Definition 3.2.1 (Largest clockwise turn). Let E be the set of outgoing edges from
edge e. An edge e′ is said to make the largest clockwise turn from e if it has the maximal
signed angle 6 (e, e′) of all edges in E.

Tracing Boundary Loops Algorithm

Recall that faces in the planar subdivision induced by the convolution segments, which
are not interior to Minkowski sum have weakly simple polygonal chain boundary as shown
in Lemma ??. The following section discusses an algorithm which traces orientable loops
that are candidates for being boundaries of these faces.

In order to trace a candidate loop for the Minkowski sum boundary, we start with
an arbitrary edge in the convolution arrangement. We traverse the arrangement starting
from that edge e. When there are more than one outgoing edges we choose the largest
clockwise turn as the next edge to move to. We proceed in this manner until we arrive at
the starting edge, at some previously visited edge or we reach a point where there is no
outgoing edge. If a loop is closed, then some of the traversed edges compose a potential
boundary loop. Algorithm ?? uses this method to trace boundary loops. We next present
the algorithm and then prove its correctness.

Algorithm ?? traces all the boundary loops on the arrangement of the convolution.
It does the following: It store all edges of the convolution arrangement in a stack (Line
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Algorithm 1 Trace Orientable Loops

1: Def Stack E
2: Let E ← All convolution segments
3: for all e ∈ E do
4: Let id(e)← −1
5: end for
6: Let current id← 0
7: while Not Empty(E) do
8: Let e← Pop(E)
9: if id(e) == −1 then

10: Let id(e)← current id
11: Let e′ ← Best Direction(e)
12: while e′! = NULL && id(e′) == −1 do
13: Let id(e′)← current id
14: Let e′ ← Best Direction(e′)
15: end while
16: if id(e′) == current id then
17: Record Loop(e′)
18: end if
19: Let current id← current id+ 1
20: end if
21: end while

??). Each edge stores an id. For every edge in the stack, if it has not yet been visited,
the algorithm tries to trace an orientable boundary loop if there exists a path from the
starting edge to it (lines ??–??). The tracing is done by choosing an outgoing incident
edge from the target vertex of the current edge, changing its id to be the id of the current
edge, and moving forth (lines ??–??). If during this move we encounter an edge with the
same id as the current edge, it means a loop was closed. Encountering an edge with a
different id means that it was already examined at an earlier iteration of the algorithm.
This means that if an orientable loop reachable from the starting edge exists, it has
already been traced by a previous iteration, since we would have reached the edge with
the different id. Therefore, we can begin the process from a new edge. When there
are more than one outgoing edges, the algorithm takes the one that makes the largest
clockwise turn from the incoming segment. At the end of this process, when the stack is
empty the algorithm has traced all the orientable loops, i.e., potential boundary loops.

Next we describe two procedures used by the algorithm. Afterwards, the correctness
of the algorithm is proved.

Definition 3.2.2 (Best Direction(e)). Is a predicate which returns the segment of the
arrangement e′ that is outgoing from e and makes the largest clockwise turn from it.

Definition 3.2.3 (Record Loop(e)). Is a method that begins at an edge e of the
arrangement. At each step it moves from e to the Best Direction(e) and outputs the new
edge, until it reaches back to e. This process traces a loop which has the same id assigned
to its edges. Loops that contain two edges precisely are discarded because we treat the
polygons as closed sets thus edges cannot be surrounded by Minkowski sum interior and
still be on the boundary.
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Correctness of Boundary Loops Tracing Algorithm

Now we show that Algorithm ?? traces all candidate loops for the Minkowski sum bound-
ary. We first show that if the algorithm reaches an edge which is on a boundary loop,
it traces that loop. Afterwards, we show that the algorithm traces loops which are edge
disjoint, and do not cross each other (when seen as curves in the plane). We can then
conclude that the output of the algorithm is a collection of edge-disjoint non-crossing
orientable loops, which includes all boundary loops. This property allows for using of
the nesting filter described in Section ?? to filter out orientable loops that are not on the
boundary of the Minkowski sum.

Since the algorithm examines each edge in the arrangement once, we only have to
make sure that once the algorithm reaches an edge on a boundary loop, it traces that
loop. Recall that the only candidates for boundary loops are orientable loops. We observe
next that if the algorithm reaches an edge on a boundary loop, it remains on this loop
until it closes:

Observation 3.2.4. Let e be an edge of the convolution arrangement, which is on the
boundary of the Minkowski sum. The clockwise-most outgoing segment e′ from e is also
on the boundary of the Minkowski sum.

v e

e′

e′′

Proof. By assumption, e is on the boundary of the Minkowski
sum and therefore on the right hand side of e lies a face that is
not in the Minkowski sum. While sweeping directions in coun-
terclockwise order starting from the direction of −e, the first
outgoing edge from e touches that outer face and therefore is on
the boundary of the Minkowski sum as well. By the definition of the signed angle, this
edge is e′.

Observation 3.2.5. The output of Algorithm ?? is a union of edge disjoint non–crossing
orientable loops.

e1
v

e′
L

L′

L′′

e2

Proof. Assume by contradiction that the output of the algorithm
contains two crossing orientable loops L and L′. We show the
analysis for the case that both loops are clockwise oriented; ar-
guments for the other cases are similar. The loops coincide in
a vertex v as shown in the figure to the right. If the algorithm
reaches v from e1 it will take e′ as the next segment and trace the
loop L′′. Consequently, loop L will not be traced since e1 is used
for L′′. Therefore, the algorithm must reach v from e2. Similarly,
L′′ is now traced, and not L′. Therefore in any case one of the loops L or L′ is not traced
in contradiction to the assumption.

By the previous discussion, the output of the algorithm is a collection of orientable
loops which contains all the boundary loops. Note that the algorithm outputs loops
which are edge disjoint and the loops do not cross each other. In order to find the actual
boundary loops from the collection we can now apply the Nesting filter as described in
Section ??, as follows: We begin with the loops that touch the outer face and treat every
such loop, which is the boundary of a connected component in the Minkoswski sum,
separately. For an outer loop L, we iterate the child loops of L and determine which ones
are boundary loops. Each child loop is tested for violating the condition defined in the
nesting filter and if it does not, we use the collision detection predicate to test if it is
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on the boundary of the Minkoswski sum. If one of those conditions fails, the loop is not
on the boundary and all its child loops become the children of L and undergoes similar
tests. For each child loop that is an actual boundary loop, the process is repeated while
having the expected orientation in the Nesting filter reversed.

3.2.3 Using Arrangements

We note that Algorithm ?? traces loops one by one. However, we stated earlier that
Minkowski sum boundaries form non-crossing loops. Consequently, they form faces in
the arrangement induced by the convolution segments. This allows us to replace the
algorithm for tracing loops by traversing boundaries of faces of the arrangement. We can
check for a boundary of a specific face whether it is orientable, by traversing its edges.
During this process we can validate that the loop is a weakly simple polygonal chain,
namely that there are no antennas on the boundary (although we allow loops to touch at
vertices). Later, we use the collision detection predicate and the nesting filter for the faces
that are interior to the previously examined face. The arrangement structure provides
quick access to the faces that are interior to a specific face (face holes), eliminating the
need for additional sweep as required by Lien’s algorithm.

For the simplified case of two simple polygons this method becomes much simpler and
efficient. We first note the following:

Observation 3.2.6. While not considering degeneracies (as defined in section ?? below),
if the input polygons P,Q are each a simple polygon, then the resulting output is connected.
Namely the output is composed of one external loop and any number of holes.

x = p + q

mP +mQ

Cp + Cq

Proof. Let P and Q be two simple polygons. As-
sume by contradiction that we have a region X ⊆
P ⊕ Q, where X resides inside a hole of P ⊕ Q.
Let x ∈ X be a point. According to Definition ??
x = p + q, p ∈ P, q ∈ Q. Let mP and mQ be the
minimal points (in Y and then X coordinates) of P
and Q respectively. Because P and Q are connected
there exist two curves Cp and Cq that connect mP

and mQ to p and q respectively. But the sum Cp+Cq
connects the minimal point of the Minkowski sum
P ⊕Q (which belongs to the outer boundary of the
sum) to the point x, and is contained in it by definition, therefore we have a contradic-
tion.

By Observation ??, the output is composed of an outer loop and zero of more hole
loops. The outer loop is the outer face of the convolution arrangement. This face can be
immediately extracted from the arrangement. Hole loops are clockwise orientable loops
that have no convolution segments in their interior. Thus, there is no need for a nesting
order check—any loop that is not clockwise or has edges in its interior is not on the
boundary.

3.2.4 Degenerate Cases

Low dimensional boundary features are edges or vertices on the boundary of the Minkowski
sum that do not touch faces outside the Minkowski sum (in their interior). They may
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appear when the polygon boundary is not considered a part of the polygon, i.e., when
the input polygons are treated as open sets. By Observation ??, the boundary of the
Minkowski sum is the sum of points on the boundary of P and Q. This means that when
the polygons are considered as closed, the boundary is always part of the Minkowski sum
and no low dimensional boundary features can emerge. These boundary features are also
referred to as degenerate features.

We show that when three or more convolution segments intersect in their interiors
at the same point, an “isolated vertex” may occur which belongs to the boundary of
the Minkowski sum, but its neighborhood is interior to the Minkowski sum. This is the
case where one polygon (reflected through origin) fits at some placement inside the other
polygon. See Figure ??. When two segments of the convolution overlap, we may get
a “dangling edge”, which is an edge that belongs to the Minkowski sum boundary, but
to both its left and right there are regions interior to the Minkowski sum. This is the
case where one polygon can slide along a one-dimensional tight passage across the other
polygon creating an edge of free space between two regions interior to the Minkowski
sum; see Figure ??.

(a)

(b)

(c)

Figure 3.1: Illustration of a degenerate case. (a) and (b) are the two summand polygons.
(c) is their Minkowski sum. The red dot is the isolated vertex.

Algorithm for Handling the Low Dimensional Boundaries

1. dangling edge - In order to find edges in the convolution that are degenerate (i.e.,
there are points inside the sum on both sides of the edge) we do the following: We
check for each edge whether it lies at the overlap of two or more original convolution
segments, whose normals are oriented in opposite directions. Then we perform an
intersection test on a single point on the edge to determine whether the edge is on
the boundary of the Minkowski sum.

2. isolated vertex - In order to find isolated vertices which are on the Minkowski sum
boundary we locate all vertices which lie in the intersection of three or more original
convolution segments, with three or more different normal directions. Then for each
such vertex we perform a collision detection test.

We apply these methods before the step that traces orientable loops. The list of de-
generate edges is kept and such edges are ignored during the stage of tracing orientable
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(a)

(b)

(c)

Figure 3.2: Illustration of a degenerate case. (a) and (b) are the two summand polygons.
(c) is their Minkowski sum. The red segment is the dangling edge.

loops. Both the degenerate vertices and degenerate edges are kept in lists that can be
output once the algorithm finishes. We next prove the correctness of these methods. We
show that our filters are necessary conditions for the formation of a dangling edge or an
isolated vertex. However, they are not sufficient therefore we need a collision detection
test for the remaining vertices and edges.

Definition 3.2.7 (Dangling Edge). A dangling edge is an edge that is on the Minkowski
sum boundary where its interior touches the Minkowski sum interior on both sides.

Theorem 3.2.8. An dangling edge e exists only on the overlap of two or more convolution
segments where at least two segments have opposite normals.

e x

Feature f

Feature g

Proof. Let x be a point interior to e. By Theo-
rem ?? and Theorem ??, e is in the (convex) con-
volution. Let us observe the neighborhood of x.
It touches an area of the Minkowski sum on both
sides. Each side is locally a half-disk. If we choose
one of the sides, By Lemma ?? and Theorem ?? x
is a sum of an edge and a vertex, and the edge has the same tangent to be a boundary
for that half-disk (i.e., the edge is oriented such that the half-disk is to its right). The
same is true for the other side. Therefore, x lies on the sum of two edges with opposing
normals.

Definition 3.2.9 (Isolated Vertex). An isolated vertex is a vertex that is on the
Minkowski sum boundary but has a neighborhood nv that is entirely inside the Minkowski
sum.

Theorem 3.2.10. An isolated vertex exists only on points of intersection of three or
more differently oriented segments of the convolution.

e1
e2

e3

e1

e2
e3

Proof. Let v be an isolated vertex. Since there ex-
ists a neighborhood nv around v, completely inside
the Minkowski-sum interior except v, then v must
be the sum of a vertices and edges of P and Q where
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by Observation ?? each edge induces around v a half
disk neighborhood interior to the Minkowski sum,
such that the union of those neighborhoods cover nv
but does not contain v. Note that each boundary
feature is either an intersection of two segments (vertex) or an edge. From Theorem ??,
it is known that we require at least two segments with opposing normals to create a de-
generate edge. It is also clear that if the segments do not have opposite orientations, no
degeneracy can occur, as discussed in the proof of Theorem ??. Therefore at least three
segments must be incident at a vertex for the creation of an isolated vertex. Another way
to see it, is by noting that the minimal (by number of segments) hole loop is a clockwise
oriented triangle. If we inflate one of the polygons continuously, the loop shrinks until
at some point it is just a single vertex. Thus, this is the minimal number of intersecting
features needed to induce a degenerate vertex.
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4
The Relation between Convolutions and

Minkowski Sums

The kinetic framework [?] presented the notion of planar polygonal tracings and their
convolution. It provides a general framework for performing various operations on polyg-
onal tracings. An important theorem that was stated in that paper is as follows: The
winding number of a particular point x in the plane with respect to the convolution of
two polygonal tracings P and Q, represents the number of connected components of the
intersection of P + (−Q)x. As a result, a new method to compute the Minkowski sum
of two polygons P and Q is made possible. This is due to the fact that all points that
have positive winding number with respect to the convolution of P and Q are interior
to the Minkowski sum. Wein [?] used this property to implement a convolution–based
algorithm, which computes the Minkowski sum of two simple polygons. However the
basic facts and theorems that form the basis for this algorithm are given without proof
in [?].

In this chapter we provide proofs for the theorems mentioned above for a simplified
case, namely for simple polygons. In the first section it is shown that the set of convo-
lution segments can be seen as a directed graph, which can be decomposed into a not
necessarily unique set of disjoint cycles. In particular, this implies that it is possible to
assign a winding number to each face of the planar subdivision induced by the convolu-
tion segments. In the second section it is proved that exactly those faces with positive
winding number are indeed part of the Minkowski sum. We remind the reader that in
the convolution Definition ??, we rotate Q infinitesimally such that no edge of P has the
same direction of an edge of Q.

4.1 Extracting Convolution Cycles

Wein [?] describes an algorithm for tracing a convolution cycle starting from some vertex
on this cycle. However, no proof that this cycle ever closes is given. After a formal
definition of a cycle, in the first part of the section we describe the algorithm for tracing
a cycle. In the second part we show that the algorithm correctly traces a cycle and that

27
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every convolution segment is part of a cycle. Furthermore, we show that repeated invo-
cations of the algorithm decompose the convolution segments into edge-disjoint cycles.
Finally, we describe an algorithm which traces all the convolution cycles at optimal time
O(n + m + K), where K is the total number of convolution segments and m and n are
the number of vertices of P and Q, respectively.

Notice that in the current discussion as opposed to Chapter ??, we refer to the original
convolution segments without splitting them at their intersection points.

4.1.1 Algorithm for Tracing Convolution Cycles

We first formally define the convolution cycle:

Definition 4.1.1 (Convolution Cycle). A convolution cycle
C is a closed sequence of convolution segments s1, s2, . . . , sk, such
that the target vertex of si coincides with the source vertex of
s(i mod k)+1.

This definition does not preclude self–intersections, as demon-
strated in the figure to the right. Next we define the graph in-
duced by the convolution segments:

Definition 4.1.2 (Convolution Graph). The convolution
graph has the convolution segments as directed edges and their vertices as nodes. Vertices
which coincide are considered the same node.

Note that this graph does not consider intersection points that are interior to a seg-
ment.

The general scheme for tracing convolution cycles is tracing them one by one. Al-
gorithm ??, proposed by Wein [?], is used for tracing a single cycle in the convolution.
It receives as an input a vertex on the boundary of the convolution. It then iteratively
adds convolution segments to the cycle and stops when the cycle closes. The algorithm
then returns the segments that belong to that cycle. We can then repeatedly use the
algorithm to find all the cycles in the convolution.

Algorithm ?? keeps a pair of indices one for P and the other for Q. The indices i
and j for polygon P and Q, respectively, are references to the polygon vertices pi and
qj. For each polygon the vertices are ordered in a counterclockwise manner. Each pair
of index values (i, j) is a state of the algorithm. There is a correspondence between a
state (i, j) and the vertex induced by it (pi, qj) = pi + qj. We may refer to (i, j) either
as a state of the algorithm or as a vertex (the induced vertex). The algorithm receives
a vertex that is assumed to have unvisited incoming edge (incoming edge is required for
the correctness proofs), which is in the convolution. In addition, the convolution graph
G stores for each edge whether it was visited by some activation of the algorithm. The
graph persists during the tracing of all convolution cycles.

Lines ?? – ?? contain the main loop of the algorithm. Each iteration adds a segment
to the cycle, until a cycle is closed. The process at each iteration is as follows: Assume the
algorithm is in state (i, j) which corresponds to the vertex v. The two possible successive
states (i + 1, j) and (i, j + 1) correspond to two vertices w and w′, respectively. We

later show that at least one of the two segments −→vw, and
−→
vw′, is in the convolution and

possibly both (see Lemma ??). Lines ?? – ?? check which of those segments are in the
convolution. If both segments are in the convolution, we just pick the unvisited edge by
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inspecting the graph G. For the case that both are unvisited we choose one arbitrarily,
specifically in this case we choose the edge from P . Once a segment is chosen it is added
to the cycle and the algorithm moves to the state that induces the target vertex of the
chosen segment (Lines ?? – ??,?? – ??). The algorithm terminates when it reaches the
starting state. In the next section we show why it is guaranteed to reach the starting
state again. We remind the reader that CCW is the same predicate of Definition ??.

Algorithm 2 Compute Convolution Cycle(P, i0;Q, j0;G)

Input: A state representing a vertex in the convolution.
Output: A cycle of the convolution.

1: Let C ← ∅
2: Let i← i0. Let j ← j0
3: Let v ← (pi + qj)
4: repeat
5: Let inc p = CCW (−−−→pipi+1,

−−−→qj−1qj,
−−−→qjqj+1)

6: Let inc q = CCW (−−−→qjqj+1,
−−−→pi−1pi,

−−−→pipi+1)
7: Let w ← (pi+1, qj)
8: if inc p∧(−→vw not visited) then
9: Insert segment −→vw to C

10: Let v ← w
11: Let i← (i+ 1) mod size(P )
12: continue
13: else
14: Let w ← (pi, qj+1)
15: Insert segment −→vw to C
16: Let v ← w
17: Let j ← (j + 1) mod size(Q)
18: continue
19: end if
20: until i == i0 and j == j0
21: return C

4.1.2 Correctness of Cycle Tracing

We now prove that the convolution cycles exist, and that Algorithm ?? traces them. In
order to show that the algorithm is correct and the cycles exist, we need to prove two
facts:

• For every state (i, j) that the algorithm reaches, which corresponds to a vertex v
and the next two possible states (i + 1, j) and (i, j + 1), which correspond to the

vertices w and w′, respectively, at least one of the segments −→vw and
−→
vw′ is in the

convolution.

• The algorithm reaches its starting state (i0, j0) after a finite number of steps.

The following Lemma shows why the first fact is correct. But first we introduce some
notation that will help formulating the lemma. We say that a state (i, j) is in the
convolution if the corresponding vertex of this state, has an outgoing convolution segment.
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A transition from state (i, j) to state (i+1, j) or (i, j+1) induces the convolution segment−−−−−−−−−−−→
pi + qj, pi+1 + qj or

−−−−−−−−−−−→
pi + qj, pi + qj+1, respectively.

Lemma 4.1.3 (Forward Traversal). While tracing a cycle, for every state (i, j) (with
corresponding vertex v) the algorithm is in, the following holds:

1. The vertex corresponding to state (i, j) has an outgoing convolution segment.

2. The vertex v corresponding to the state (i, j) has two outgoing convolution segments,
if and only if both states (i−1, j), (i, j−1) are in the convolution and have outgoing
convolution segments to (i, j).

qin

pin

qout

Proof. Each step of the algorithm is a result of a transition
between two states representing two vertices of some convolution
segment. We know that the convolution segment is the sum of
a vertex and edge one from P and one from Q. Let us assume
w.l.o.g. that the edge originates from P . By the assumption, the
convolution segment is the sum of ~pin = −−−→pi−1pi and qj. Therefore,
the state (i− 1, j) is in the convolution.

Since the sum of ~pin and qj results in a convolution segment,
by definition the direction of ~pin is in the tangent set of qj. Con-
sequently, it holds for the directions of: ~pin, ~qin = −−−−→qj−1, qj and ~qout = −−−−→qj, qj+1, that
CCW (~pin, ~qin, ~qout)=true, as seen in the figure to the right. Let ~pout = −−−−→pi, pi+1. Note
that qin, pin and qout partition the unit circle into three regions where pout can be placed.
Moving pout within each of those regions does not alter the value of any CCW predicate
operating on any choice of three out of the four edges. In the figure to the right we
observe the three possible positions for ~pout, as depicted in Figure ??:

qin

pin

qout
pout

(a) pout is between pin and
qout.

qin

pin

qout

pout

(b) pout is between qout
and qin.

qin

pin

qout

pout

(c) pout is between qin and
pin.

Figure 4.1: Proof of Lemma ??.

• ??: The direction of ~pout is such that CCW (~pout, ~pin, ~qout)=true. Thus, it immedi-
ately follows that CCW (~pout, ~qin, ~qout)=true therefore, ~pout+qj is in the convolution.

• ??: The direction of ~pout is such that CCW (~pout, ~qout, ~qin)=true. In this case it
follows that CCW (~qout, ~pin, ~pout)=true. Consequently, ~qout+pi is in the convolution.

• ??: The direction of ~pout is such that CCW (~pout, ~qin, ~pin)=true. This imposes that
both CCW (~qout, ~pin, ~pout)=true and CCW (~pout, ~qin, ~qout)=true. Therefore, both ~pout+
qj and ~qout + pi are in the convolution. Note that the directions also satisfy
CCW (~qin, ~pin, ~pout)=true implying that the segment pi + ~qin is in the convolution.
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Consequently the state (i, j−1) is in the convolution since pi+~qin is outgoing from
it.

For all three cases there is at least one outgoing segment in the convolution implying that
the state (i, j) is in the convolution as required by the first part of the Lemma. The third
case is the only case where we have two incoming convolution segments into (i, j), and
the two states (i− 1, j), (i, j − 1) are in the convolution. In this case there are also two
outgoing convolution segments. This verifies the second part of the lemma.

From Lemma ?? we can conclude that for every new state that the algorithm reaches
this state is also in the convolution. As a result, while tracing a cycle the algorithm
always has a subsequent state to move to, without getting “stuck”. The rest of this
section shows why the sequence of moves as dictated by the algorithm actually closes a
cycle.

Using Lemma ?? we now show that the in–degree and out–degree of any vertex in the
convolution graph are equal:

Lemma 4.1.4 (In-Out Degree Equality). Let G be a convolution graph. For any
vertex v, Indegree(v) = Outdegree(v).

Proof. Let v be a vertex in G. Since the convolution graph consists of vertices of convolu-
tion segments, we know there is a finite set S of states of Algorithm ?? which corresponds
to the vertex v. By Lemma ?? for each of these states the number of incoming and out-
going segments is equal. Therefore, Indegree(v) = Outdegree(v).

This property enables us to show that the convolution graph can be decomposed into
edge disjoint directed cycles:

Lemma 4.1.5 (Convolution Graph Decomposition). The convolution graph can be
decomposed into edge disjoint directed cycles.

Proof. Since for each vertex of the convolution graph the in–degree equals the out–degree,
for every connected–component in the graph by Euler’s theorem there is an Euler circuit.
Removing this circuit maintains the equality of the in–degree and out–degree for each
vertex in the graph. Hence, we may iteratively extract cycles until all edges are removed.
Equivalently, the component is decomposable into edge–disjoint cycles.

Note that this decomposition is not unique and depends on choice of circuits to be
extracted in each iteration.

Now we just need to see that Algorithm ?? traces a cycle:

Theorem 4.1.6 (Algorithm ?? Correctness). If the initial state (i0, j0) is in the
convolution and has an outgoing unvisited edge, the algorithm traces a cycle and returns
to the state (i0, j0) after a finite number of steps.

Proof. By Lemma ?? we know that (i0, j0) belongs to some directed cycle. By Lemma ??,
we know that the algorithm does not get stuck. Since the state set is finite, the algorithm
must eventually reach (i0, j0) again.

We note that the algorithm may encounter a sub–cycle (i.e. have some state (i′0, j
′
0)

which is traversed twice) in which case it is returned as part of the bigger cycle.
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Tracing Convolution Cycles

Now we need to describe how to use Algorithm ?? for finding all the cycles. We assume
that P and Q have m and n vertices, respectively. The convolution graph contains the
states of the algorithm (vertices) which have unvisited outgoing convolution segments.
We could try every possible state in the algorithm as a starting point and check whether
the outgoing edges are in the convolution. However this approach generates 2mn starting
points, as each state can transition to two successive states. We will now show that only
n+m starting points need to be examined.

In order to show this we define a tool called the fiber grid:

Definition 4.1.7 (Fiber grid). A fiber grid for polygons P and Q, with m and n
vertices respectively, is a periodic grid where each node (i, j) represents being at state
(i, j) in the algorithm. A directed edge from a state to the next one will mark that there
exists the corresponding edge in the convolution and that this edge is a valid traversal in
the algorithm. Note that the only possible outgoing edges from (i, j) are (i + 1, j) and
(i, j+1) since these are the steps allowed in each iteration of the algorithm. From Lemma
??, at least one of them can be traversed by the algorithm, thus in the grid. Similarly,
for any state in the convolution, there is at least one incoming edge from state (i− 1, j)
or (i, j − 1). The grid is cyclic, the first row is identified with the last, and the first
column is identified with the last column. For a simple example for two convex polygons
see Figure ??.

p1

p2

p3

q1

q2

q3

q4

q1 q2 q3 q4 q1

p1

p2

p3

p1

Figure 4.2: Example of fiber grid of two convex polygons P, Q.

Lemma 4.1.8. For every grid row there is at least one state which is the starting vertex
of an outgoing vertical edge. Similarly, For every grid column there is at least one state
which is the starting vertex of an outgoing horizontal edge.

Proof. Traversing a row in the fiber grid visits all the vertices of the polygon P and
matches them with some edge eq of the polygon Q. However eq must be in the tangent
set of some vertex of P and thus in the convolution, since the union of the tangent spaces
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of a polygon covers the unit disk. Therefore, an edge of Q connects the current row to
the next one on the fiber grid.

The same holds for traversing a column of a fiber grid which visits all the vertices of
Q and matches them with some edge of P .

The reader should observe that a cycle traverses at least an entire row or an entire
column since this is the shortest way to return to the same state twice in order to close
a cycle. Thus, every cycle crosses either all of the rows or all of the columns of the fiber
grid. Furthermore, we can see the following:

Corollary 4.1.9. There is at least one cycle of size m+ n.

Proof. We have at least one convolution cycle, since a convolution segment can always be
found (by taking the minimal points of P and Q as a staring vertex). If the cycle spans
a row of size n for example, using Lemma ?? we know that there is at least one vertical
edge. To close this cycle the algorithm would have to return to the same row, taking m
additional steps. By concatenation we get a cycle of size m+ n.

Since each cycle crosses either all of the rows or all of the columns, it is sufficient to
start Algorithm ?? at any unvisited out–going convolution edges, starting at vertices of
one single row and one single column in the grid. Since all cycles pass trough either a
row or a column in the grid, we are guaranteed to visit all cycles.

Let us compute the runtime complexity of tracing the convolution cycles using this
method. By Corollary ?? there is at least a cycle of size m+n. Denote the total size of the
convolution cycles, by K. By starting from each starting segment mentioned above, we
perform at most 2(m + n) invocations of Algorithm ??. Therefore, the total complexity
of this method is O(n + m + K). This is the optimal complexity because it is output
sensitive, and there is at least one cycle of size m+n. We can thus conclude the following:

Theorem 4.1.10. The complexity of the cycles tracing algorithm is O(n+m+K), which
is optimal.

4.2 The Minkowski–Sum–by–Convolution Theorem

In their paper about the kinetic framework, Guibas et al presented a theorem named the
“convolution theorem” [?]. A result from this theorem is that the Minkowski sum is the
union of regions in R2 where all points interior to a region have positive winding numbers
with respect to the convolution. However, to the best of our knowledge no proof for this
theorem has been published. In this section we present a proof for a simplified version of
this result, i.e., for simple polygons:

Theorem 4.2.1 (The Relation between Minkowski Sum and Convolution). Let
P ,Q be two simple polygons. Let C = P ⊗ Q. Let α ∈ R2, α /∈ C. Then wn(α) > 0 iff
P ∩ (−Qα) 6= ∅.

As Wein implemented a Minkowski-sum convolution algorithm in Cgal [?] for two
simple polygons, this section confirms the correctness of Wein’s implementation.

We begin this section by defining the winding numbers and discussing some of their
properties. The second part of this section discusses the events that occur while sweeping



34 CHAPTER 4. CONVOLUTIONS AND MINKOWSKI SUMS

−Q along a path relative to P . Note that for each point α we have a well defined winding
number with respect to the convolution segments. If we define α as the translation point
of −Q, we see that the winding number of α is related to the topology of P ∩ −Qα.
Apparently, if we were to choose a slightly different set of convolution segments, the
winding number will be exactly the number of connected components of P ∩ −Qα. In
the final part we show that the winding number of α with respect to the convolution
segments is an upper bound for the number of connected components of P ∩ −Qα, and
is zero whenever the number of connected components is zero. This proves Theorem ??.

4.2.1 Winding Numbers

The winding number concept used in many fields of mathematics describes a simple idea.
If we stand at a point p and observe a point that travels along a closed curve from
the beginning to end, the winding number will count how many times we completed a
counterclockwise turn, minus the number of times we completed a clockwise turn. If p is
not on the curve, the winding number must be an integer.

Formal Definition

A curve in the plane can be defined by parametric equations, x = X(t), y = Y (t), t ∈ [0, 1].
We demand that X(t) and Y (t) are continuous in t. Since we deal with closed curves
(cycles), X(0) = X(1), Y (0) = Y (1). We can convert the curve to polar coordinate
system, by translating the observation point p which is not on the curve to the origin.
The parametrization becomes R(t), θ(t).

Definition 4.2.2 (Winding number). The winding number for p will be:

wn(p) =
θ(1)− θ(0)

2π
. (4.1)

Another important fact for winding numbers known from complex analysis [?] is the
following:

Definition 4.2.3 (Crossing rule). Let C be a closed curve. Let α be a point. If we
translate α in some continuous motion, and it crosses C, the winding number is changed
by the following amount. Assume the movement is never tangent to C. Therefore, at the
crossing point, the dot product of the normal to C and the tangent to the motion is not
zero. We take the sign function (who’s value is signed one) of this dot product negated
as the change in the winding number after the crossing.

(0)
(0)

(1)

NC
Tφ

In the figure to the right we see an example of a blue curve C and a
dashed path. The numbers in parenthesis are the winding numbers along
the path. When the path crosses into C, the red arrow denotes the tangent
to the path φ while the green arrow is the normal to C. At that crossing
point the tangent is in opposite direction to the normal which means that
the dot product is negative. By taking the sign and negating the result
we get an increase of the winding number by one.

We use the crossing rule to define a crossing number for a path. This crossing number
is the difference in winding number from the starting point of the path to the target
point.
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Definition 4.2.4 (Signed crossing number for path). Let C be a closed curve in
the plane and α and β two points in the plane. Let ψ be a simple curve from α to β. We
assume general position such that ψ is never tangent to C. Furthermore, α and β are
not on C. The signed crossing number SC(ψ) of ψ is SC(ψ) = wn(β)− wn(α).

We observe that we can compute the crossing number for a path using the crossing
rule:

Observation 4.2.5. We define the multi-set of points

Iψ = {C(t′) ∈ R2|∃t ∈ R, t′ ∈ R s.t. ψ(t) = C(t′)}

as the points in which ψ crosses C. Note that C might overlap itself, thus some points
may appear with multiplicity. The sum of the change in the winding number for all the
points in Iψ is exactly SC(ψ).

Note that for the winding numbers to be well defined the signed crossing number for
every cyclic path must be zero.

4.2.2 Sweep Events Analysis

From now on C is a piecewise linear curve as we deal with polygons and segments. Let
α ∈ R2, α /∈ C. Let r be the horizontal ray from α to +∞. We now assume general
position in the following sense:

Assumption 4.2.6 (General Position).

• The world coordinate system is rotated such that r does not intersect any of C’s
vertices.

• We treat the directions of Q as being infinitesimally rotated counterclockwise such
that none of them equals any direction of P .

Each point on r represents a translation for −Q by that point. Intuitively, traversing
this ray from plus infinity to α is interpreted as translating polygon −Q horizontally,
away from plus infinity until its translation point equals α. Assume we keep P fixed
at its original position. Along this sweep we are interested in events that change the
topology of connected components of the intersection of P and the translated −Q. More
specifically, we are interested to find out when the number of connected components of
the intersection changes. By tracking these changes we note the time (translation point)
during sweeping of −Q that intersection of components appear or disappear. From this
we can conclude the times the intersection of P and −Q is empty and the times it is not.
Let us impose the additional general position requirement that while sweeping −Q there
is only one intersection event between P and the translated −Q at a time.

We define vertex-edge intersection event as:

Definition 4.2.7 (Vertex-Edge Intersection Event). Is an event when a vertex of
P intersects an edge of −Q or vice versa. The event can be associated with a translation
point α which specifies the translation of −Q.
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We now show that specific types of vertex and edge intersections occur when the ray
intersects a convolution segment of C. A coincidence of a vertex and an edge could change
the number of intersecting connected components between−Q and P . We will show below
that the direction of a convolution segment(which is pointing upwards or downwards) is
related to this increase or decrease in the number of intersecting components. Every such
crossing promptly increases or decreases the winding number of the current point on the
ray relative to the previous translation.

First we examine how points on convolution segments relate to events which occur
while sweeping −Q. It appears to be that points on the convolution segments represent
translations where P and −Q have an edge and vertex intersection event:

Observation 4.2.8 (Convolution Segment Event). Let α be a point in the interior
of a convolution segment c ∈ C. Then it follows that P and −Qα have a vertex and an
edge intersection.

Proof. Let pi and qj be vertices of P and Q, respectively. By Definition ??, we know
that convolution segments are the sum of a vertex from P and an edge from Q or vice
versa. By linear interpolation any point, specifically α, on a convolution segment satisfies
at least one of the following two equations, for some λ ∈ [0, 1] :

α = λqj+1 + (1− λ)qj + pi, pi ∈ P, qj, qj+1 ∈ Q. (4.2)

α = λpi+1 + (1− λ)pi + qj, qj ∈ Q, pi, pi+1 ∈ P. (4.3)

It is possible to rewrite these equations as :

α− (λqj+1 + (1− λ)qj) = pi, (4.4)

α− qj = λpi+1 + (1− λ)pi. (4.5)

Thus, from Equation ?? we get that, if we denote by e the edge obtained by reflecting
the segment −−−−→qj, qj+1 through the origin and translating it by α, then at some point along
e lies pi. In the same manner, from Equation ??, if we reflect qj through the origin and
translate it by α, it will reside on the segment −−−−→pi, pi+1. But these two cases are exactly
the cases where vertex-edge intersection event occurs, at point α. Therefore, points that
lie on the convolution represent translations of −Q where a vertex-edge intersection event
occurs.

Let us more formally describe the sweeping and the events that are of interest during
the sweep. While performing the sweep P remains fixed and−Q sweeps along a horizontal
line. At the beginning of the sweep −Q is translated to be apart from P such that there
are no intersecting components between them. Furthermore, we can choose the starting
point of the translation of −Q to be outside of the bounding box of the convolution
segments C, thus the winding number of the initial translation point with respect to C is
zero. Let s be the (horizontal) segment from this starting point to the point α. Figure ??
shows the sweeping process. In this case we have a symmetrical polygon swept along a
segment. The intersection events along this segment are illustrated.

We now examine the events that may occur while sweeping −Q with the translations
defined by the points on s. For exploring this, we require the following definitions.

Definition 4.2.9 (Connected Components Counter). For polygons P ,Q and a point
α let CCC(α) denote the number of connected components of (−Qα) ∩ P .
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P Q

(a) Two polygons (top) and their convolu-
tion cycle(bottom).

(1)(2)
(3)(4)

s

(b) Example of shooting a ray and the translation it
induces on the reflected polygon (in red). The in-
tersection of the ray with the convolution segments
points each correspond to one of the translations of
−Q depicted at the top.

Figure 4.3: The original scenario ?? and the ray-shooting events ??.

Definition 4.2.10 (Active Feature Set). For a connected component cc(α) of (−Qα)∩
P let ACcc(α) be the set of all the features from P and −Q, that lie on the boundary of
cc(α).

b1
b2

b3

b4
r1

r2 r3

Refer to the figure to the right. There is a single intersection
component between the red and the blue polygons. The active feature
set of this component is the set {r2, r3, b4}, as these are the edges that
touch the component.

Now we can define the following events which affect the set of
active feature sets:

• A new connected component appears. This means that a new active feature set is
created.

• An existing connected component disappears. This means that an active feature
set is removed.

• The border of an existing connected component topologically changes. This means
that an existing active features set undergoes a change in its members.

By the general position assumption made so far (Assumption ??), during the sweep there
are only vertex and edge intersection events (contrary to a vertex of P intersecting a
vertex of −Q). These are the only events that could cause one of the events described
above to occur. By our assumptions only a single event occurs at a time, and this set of
events is finite. By Observation ??, some of these events occur when s intersects segments
of the convolution. Each such intersection changes the winding number according to the
direction of the segment.
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Let us analyze the events of intersections of a vertex and an edge from the two
polygons during the traversal of s. The goal is to determine which events cause s to
intersect segments of the convolution and which do not. Answering this question reveals
the relationships between winding numbers, connected components numbers and the
convolution. We divide the events into two sets, event points that are on the intersection
of s with a segment in the convolution and events that are not. We show that the former
events are either events where the number of connected components changes, or they can
be “charged” to such events. Finally we show that there is a correlation between a change
in the number of connected components and a change in the winding number count at
the point where the event occurs.

Events Analysis

We now analyze the different cases that arise when there is a vertex and edge intersection
event while sweeping −Q. We assume that the sweeping of −Q starts at some far point
to the right and proceeds towards the left (i.e. from +∞ to −∞). While examining the
events we would like to consider the changes in the number of connected components and
the winding number before versus after the event. A change in the winding number occurs
when the event is on a convolution segment. The direction of the convolution segment
indicates wether the winding number is increased or decreased by one. A change in the
number of connected components is determined by the kind of connected component
event. Only if a connected component is created, vanishes, splits or is merged, this
number changes. We can partition the set of all vertex–edge intersection events into the
following subsets, whose union composes the entire set of events:

Vertex/Edge Origin P/−Q −Q/P
Edge direction Upwards Downwards

On convolution segment Yes No
Vertex type Convex Reflex

Table 4.1: Case parameters

The purpose of the current section is, for each of the 24 = 16 combinations that appear
in Table ?? to compute the following possible result arguments, as described in Table ??.

Convolution segment direction Upwards Downwards *
Winding–number difference +1 −1 0

Connected components counter difference +1 −1 0

Table 4.2: Output parameters

We discern some symmetries in the scenarios of the input arguments of Table ??.
First we discuss the symmetry based on the polygon contributing the vertex to the event.
Each scenario where the vertex is originated in P is similar to a scenario where the vertex
is originated from −Q. This role reversal flips the direction of the convolution segment
if the event occurs on such segment, but does not change whether the event is on the
convolution or not. Since the roles of P and −Q features are now flipped, the direction of
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the sweep is also reversed (now −Q is translated to the right) and thus the corresponding
change in the intersection number has an opposite sign, namely, every appearance event
is now a disappearance event, every split is now merge, and vice versa. Reversing the
direction of the convolution segment also means that the change in the winding number
has the opposite sign.

The second symmetry we notice is in the edge direction. By rotating the world by
180◦ and reversing the direction of the sweep, we get the following symmetrical scenario.
The property of being on a convolution segment for the event is preserved. Reversing the
direction of the sweep means negating the change in the connected-components counter.
Additionally, since the edge now has an opposite direction, so is the direction of the
convolution segment and thus the change in the winding number. Thus, for the rest
of current section, we assume that the vertex pi originates from P and the downwards
directed edge eQ is from −Q, w.l.o.g..

By using both symmetries we only need to examine the effect of the two remaining
parameters, and deduce the effects for the entire 16 original combinations. So by reducing
to only two parameters, we get four cases to examine.

For the following figures we have a blue polygon P and a red polygon −Q. The blue
polygon induces the vertex v and the red one the edge e. The green area is interior
to the blue polygon. The cyan area is interior to the red polygon. The orange area
belongs to the intersection of the red and the blue polygons. The left figure shows the
state at the intersection event. The right figure shows the neighborhood before/after a
small translation of the polygons relative to each other. For a downwards red edge and a
blue vertex there are four configurations. These cases are defined by the ordering of the
incoming and outgoing edges of the vertex, relative to the downward edge, according to
their angle with the positive x–axis. This ordering defines the tangent space of the vertex
participating in the event relative to the edge. Therefore it may affect whether the event
occurs on a convolution segment.
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Convex Vertex/Convolution Segment The
convolution segment this event is on is facing up-
wards, since the edge originates from −Q. In the
figure it is easy to see that just after the event,
a new component of the intersection of P and
−Q appears. Therefore this event increases the
connected-components counter by one. Crossing
an upwards convolution segment also increases the
winding number by one. By using the two symmetries defined earlier we can deduce the
following cases:

Vertex/
Edge
Origin

Edge
direction

On con-
volution
segment

Vertex
type

Convolution
segment
direction

∆ w.n. ∆ CCC

P/−Q Downwards Yes Convex Upwards +1 +1
−Q/P Downwards Yes Convex Downwards −1 −1
P/−Q Upwards Yes Convex Downwards −1 −1
−Q/P Upwards Yes Convex Upwards +1 +1

Table 4.3: Convex vertex/convolution segment

From Table ?? we can see that whenever the winding number increases or decreases
so does the connected-components counter accordingly.

Convex Vertex/non–Convolution Segment There are
three possible topologies for this case as shown in the diagram
to the right. For all of these cases, the analysis and result
are similar. Note that before and at the time of the event
there is one connected component in a small neighborhood of
the intersection event, at the place of the intersection between
the vertex and the edge. It is easy to see that just after the
event, the border of the connected component of the inter-
section of P and −Q is changed (ACcc changes). However,
no connected components are created or removed, thus the
connected-components counter remains the same. Also the
winding number remains fixed since no convolution segment is
crossed. This is true for all four symmetries of this scenario.

Reflex Vertex/non–Convolution Segment
This event does not occur on a convolution seg-
ment. Since the range of directions where this sit-
uation occurs is smaller than π and the vertex is
reflex, there is only one configuration for this case
as shown to the right. Note that before and at the
time of the event there are two connected compo-
nents in a small neighborhood of the intersection
event, at the place of the intersection between the
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vertex and the edge. It is easy to see that just after the event, the two components have
become connected. This decreases the connected-components counter by one. By using
the two symmetries defined earlier we can deduce the following cases:

Vertex/
Edge
Origin

Edge
direction

On con-
volution
segment

Vertex
type

Convolution
segment
direction

∆ w.n. ∆ CCC

P/−Q Downwards No Reflex ∗ 0 −1
−Q/P Downwards No Reflex ∗ 0 +1
P/−Q Upwards No Reflex ∗ 0 +1
−Q/P Upwards No Reflex ∗ 0 −1

Table 4.4: Reflex vertex/non–convolution segment

From Table ?? we can see that we have a mismatch between the winding number and
the connected components counter.

Reflex Vertex/Convolution Segment This event oc-
curs on a convolution segment and increases the winding
number. Here we have the three complementary (with re-
spect to the Reflex vertex/non–convolution segment event)
cases for the topological order of the edges, as shown in the
figure to the right. Again we see that the three cases have
similar analysis. Note that before and at the time of the
event there is a connected component in a small neighbor-
hood of the intersection event, at the place of the intersection
between the vertex and the edge. Just after the event, the
border of the connected component of the intersection of P
and −Q is changed (ACcc changes); see the figure. How-
ever, no connected components appear or disappear, thus
the connected-components counter remains the same. By
using the two symmetries defined earlier we can deduce the
following cases:

Vertex/
Edge
Origin

Edge
direction

On con-
volution
segment

Vertex
type

Convolution
segment
direction

∆ w.n. ∆ CCC

P/−Q Downwards Yes Reflex Upwards +1 0
−Q/P Downwards Yes Reflex Downwards −1 0
P/−Q Upwards Yes Reflex Downwards −1 0
−Q/P Upwards Yes Reflex Upwards +1 0

Table 4.5: Reflex vertex/convolution segment

Again we have a mismatch between the winding number and the connected-components
counter; see Table ??.
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4.2.3 Winding Numbers and Number of Connected-Components
Relation

We now show how to relate the change in the connected-components counter and the
winding number when encountering events with a reflex vertex. First we see that we
may choose a slightly different set of segments for the convolution, for which the winding
number and the connected-components counter exactly match. Note that this is the
original set of convolution segments as defined in [?] unlike Wein’s definition which we
have used so far. The difference is that in this set of convolution segments, edges that are
added to a reflex vertex are complementary to the tangent set of a reflex vertex defined
in Definition ?? and are summed with their direction flipped.

We then show that it is possible to transform the set of convolution cycles into the
new set by subtracting Q as a cycle from every reflex vertex pi (we define this subtraction
formally as a flip set next). This subtraction is as follows; take Q+pi as a graph embedded
in the plane. By subtracting it we mean taking each edge with reversed orientation and
“add” it to the existing graph of convolution cycles. Edges that overlap but with reversed
directions are canceled out. Those who intersect but have the same direction increase
their multiplicity in the overlapping set. By Definition ?? the winding number for points
in the region inside Q + pi is decreased by one. We show that this substraction still
maintains the directed graph of segments decomposable into cycles.

Now, if begin with the set of segments defined in [?] (where the winding numbers
match the connected-components counter) and add Q as a cycle for every reflex vertex,
we just increase the winding number in certain regions. The resulting set will be our
convolution set in which the winding numbers over count the connected-components
counter. However, we show that this occurs only for regions interior to the Minkowski
sum to begin with. Therefore, the winding numbers for our convolution set are positive
only in points interior to the Minkowski sum. These claims leads to the assertion of
Theorem ??.

Let pi be a reflex vertex (say from P ). Examine the set of segments pi+eQ where eQ is
an edge of Q. These segments are exactly Q translated by pi. According to Observation
??, none of those segments are on the Minkowski sum boundary. That is they are all
interior to the convolution cycles.

Definition 4.2.11 (Reflex Vertex Segment Sets). Let S(pi) be the set of segments
{pi+eQ|eQ ∈ Q}. Let us split these segments into two disjoint sets, the segments that are
in the convolution, denoted by Sc(pi) and the segments that are not in the convolution,
denoted by Snc(pi).

Definition 4.2.12 (Flip Set Directions). For a set of segments S we denote by Ŝ the
set containing the same segments as S, but with flipped directions.

Let Qpi = pi + Q. For a given reflex vertex pi we claim that for every point α inside
Qpi , the winding number induced by the convolution segments, is at least as high as
the connected-components counter. As seen in the analysis of the Reflex vertex/non–
convolution segment case, events that involve a reflex vertex indicate a split or a merge
of components of the intersection of P and −Q. These events occur at exactly these
segments that are not convolution segments, i.e., Snc(pi). Since the convolution contains
the set of segments Sc(pi), we have the “wrong” set of segments which does not have
the events that change the connected-components counter occurring on its points. But,
if we were to replace the set of segments Sc(pi) with the set Snc(pi), we have a set of



4.2. THE MINKOWSKI–SUM–BY–CONVOLUTION THEOREM 43

segments, every point on which represents the event where the connected-components
counter changes. Let us consider the effect of each new segment on the connected-
components counter. We examine the first row of Table ??. When the vertex is from P
and the edge from −Q is directed downward, this means that the original edge is upward.
However, the connected-components counter is decreased by one, so we would like the
winding number, while crossing this edge, to decrease. In order to achieve this, we flip
the segment. By using the two symmetries, we notice that we should flip all edges of the
set Snc(pi). Now for the flipped non-convolution segments we get the following revised
table:

Vertex/
Edge
Origin

Edge
direction

Vertex
type

New con-
volution
segment
direction

∆ w.n ∆ CCC

P/−Q Downwards Reflex Downwards −1 −1
−Q/P Downwards Reflex Upwards +1 +1
P/−Q Upwards Reflex Upwards +1 +1
−Q/P Upwards Reflex Downwards −1 −1

Table 4.6: Reflex vertex/flipped convolution segment

Consider Figure ??. This figure shows how the sweep process along the ray encounters
different events from both sets of segments. The example scene illustrates the “charging”
of events.

Let C ′ be the set of segments that is created by the following process. Take the set C
of convolution segments, iterate over all reflex vertices pi (w.l.o.g. from P ), and replace

the set Sc(pi) with Ŝnc(pi). By the case analysis we performed, the winding numbers of C ′

for each point that is not on C ′ or C, equals the number of connected components. This
holds only if the assumption that C ′ is still composed of cycles is correct. Equivalently,
the winding numbers with respect to C ′ are well defined.

Consequently, in order to complete the proof of the theorem, we need to prove the
following claims:

• The new set of segments C ∪ Ŝnc(pi) \ Sc(pi) is composed of cycles.

• The original winding numbers for all points in R2 \C with respect to C are greater

or equal to the winding numbers for all points in R2 \ (C ∪ Ŝnc(pi) \ Sc(pi)) with

respect to C ∪ Ŝnc(pi) \ Sc(pi) for all pi.

• The winding numbers of areas outside the Minkowski sum are zero before and after
the replacement.

Let us prove that for any reflex vertex pi, by replacing the segments of Sc(pi) with

Ŝnc(pi) the new set of segments C ∪ Ŝnc(pi) \ Sc(pi) is still composed of cycles. We show
this by examining the winding number at all the points α that are not on any of the

segments of either C , Sc(pi) or Ŝnc(pi). It suffices to show that the winding numbers for
all those points are well–defined. The term well–defined here means the following. Fix

α, for any β and β′ (not in C , Sc(pi) or Ŝnc(pi)), let γ and γ′ be the paths from points
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β and β′ to α, respectively. Then by Definition ??, wn(β) + SC(γ) = wn(β′) + SC(γ′).
Alternatively, we require that every simple cycle that begins and ends with α has zero
crossing number.

For the following illustrations, the blue segments represent edges of P , red edges are

convolution edges of Sc(pi), and the green edges are of the set Ŝnc(pi).

Lemma 4.2.13 (Winding number consistency). For every point not on any convo-
lution segment, nor on replaced segments, the winding number is well defined.

γ

α

Proof. Let pi be a reflex vertex of P . We consider what happens

at α ∈ pi + Q while replacing the set Sc(pi) with Ŝnc(pi). Let γ
a closed Jordan curve through α, which leaves the interior of the
Qpi and returns to it once. We now examine how the number of
crossing of edges changes before and after the sets replacement.

Assume the cycle traverses only segments from Sc(pi) while
moving along γ from α back to itself. Accordingly, the cycle
leaves and returns to the interior of Qpi through a segments s1
and s2 of Sc(pi) , respectively. Traversing s1 reduces the crossing
number by one, and traversing s2 increases it by one. The total
change in crossing number while crossing these segments is zero. If we replace the seg-

ments Sc(pi) by Ŝnc(pi), both segments s1 and s2 are removed. By the assumption that γ
leaves and returns to the interior of Qpi only once, the only intersection points of γ and

Sc(pi) ∪ Ŝnc(pi) are on s1 and s2. Therefore, after the removal of s1 and s2 the crossing

number of γ w.r.t. Ŝnc(pi) is zero, thus no change occurs for the crossing number. A
symmetrical argument can be applied for the case that the cycle traverses only segments

from Ŝnc(pi).
If the path crosses one element from each set, when flipping between the sets, we get

the following changes. Assume the path crosses before the flip a segment from Sc(pi),

and departs the region through it. After the flip, it crosses a segment from Ŝnc(pi) and
enters the region through it. Since we have both flip of direction of crossing and direction
of edge, there is no change to the crossing number. The other case is symmetrical.

For a point ξ outside Qpi , there is always a simple path from ξ towards infinity which
does not cross Qpi (since the polygon is simple). The winding number at ξ is determined
by any such path, and is unaffected by the replacement of segments. Any cycle from ξ
that crosses Qpi keeps the consistency of the winding numbers by the first and final part
of the proof, below.

α

ψ1

ψ2

ψ3

β

β

Any simple path that is entirely inside Qpi is unaffected by the
replacement as well. Any simple cycle ψ from α to itself, which
leaves the interior of Qpi , can be decomposed into a series of
simple paths ψ1, .., ψn, where each path leaves and returns to the
interior of Qpi exactly once. Every such ψi can be extended to a
cycle ψ′i that begins and ends with α and has a consistent winding
number. The consistency of the concatenation of paths ψ1, .., ψn
is achieved by traversing the cycles ψ′i. We can decompose the
concatenation of paths ψ1, .., ψn into a movement along each path
ψi. At each endpoint β of ψi, we move to α and then return
to β. Moving back and forth along the same path is obviously
consistent. The described movement for each ψi actually moves along each cycle ψ′i.
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We saw that any cycle that begins and ends with α has a consistent winding number.
Consequently the concatenation of paths ψ1, .., ψn has a consistent winding number.

We can now state the theorem which relates the winding number to connected-
components counter.

Theorem 4.2.14 (Winding Number/Connected-Components Counter Consis-
tency). For every point p in R2 \ (C ∪C ′), the winding number with respect to C ′ equals
the number of connected components in the intersection of P and −Q+ p.

Proof. By Lemma ??, the winding numbers with respect to C ′ are well defined. The con-
sistency between the winding number and the connected-components counter is verified
using the previously shown case analysis. According to it, events which occur on C ′ are
the cases where both the winding number and the connected-components counter change
in the same way.

Lemma 4.2.15 (Winding number inside the polygon). Given convolution segments
C, for every reflex vertex pi (w.l.o.g. from P ), replacing the segments in the set Sc(pi)

with Ŝnc(pi), the winding numbers for all points inside Qpi decreases by one.

1(1)

1(1) 2(2)

1(1)

0(0)

2(2)

2(1) 3(2)

2(2)

2(1)

Proof. This follows trivially by noticing the difference of crossing
numbers in the neighborhood around the changed segments. Points
that belongs to some face of the arrangement which has a convolu-
tion segment that is part of Qpi , after the replacement now share
the arrangement same arrangement face as the points interior to
Qpi , which were they neighbours. Thus, decreasing the winding
number by one for any point inside the new face. The new seg-
ments keep the winding numbers without change for points outside
faces interior to Qpi .

In the figure to the right, the black segments are the convolution segments, the num-
bers are the winding numbers with respect to the convolution, and in parentheses are the
winding numbers after replacing the red segments by the green segments.

From Lemma ??, We can see that for every reflex vertex pi the replacement of segments

sets Ŝnc(pi) with Sc(pi) causes only the winding number of points interior toQpi to increase
by one, leaving the rest unchanged.

By Theorem ??, the winding number equals the connected-components counter for all
points in each cell in the planar subdivision induced by C ′. If we do the reverse process
described earlier to transform C ′ (set of transformed convolution segments) back into
C (by replacing non–convolution edges with convolution ones), we now know that we
increase the winding numbers in some of the cells interior to Qpi by one. This increment
is for all reflex vertices Pi (w.l.o.g. from P ) and the area contained in the respective
Qpi . However, as we noted, by Observation ??, none of the cells whose winding number
increased share a border edge with the Minkowski sum. Therefore areas outside the
Minkowski sum boundary have zero winding number with respect to both C ′ and, by
Theorem ??, C. In conclusion, the winding number of points outside the Minkowski
sum with regard to C is zero, and inside is some number which is at least as high as
the winding number with respect for C ′, which is positive. Following is that the winding
numbers with respect to the convolution segments are positive when there is intersection
between P and translated −Q. This concludes the proof of Theorem ??.
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QP

(a) Two polygons (top) and their convo-
lution (bottom).

(1)(2)(2′)(3)(4)

(i)(ii)

(iii)

s

(b) Example of shooting a ray and the translation it
induces on the reflected polygon (in red). The intersec-
tion of the ray with the convolution segments each cor-
respond to one of the translations of −Q depicted at the
top. The green segment and event are the event of col-
lision with the green non-convolution edge. This event
is “charged” to the red event preceding it to the right.
(i) The red polygon and its reflection. (ii) The convolu-
tion. (iii) The sliding of the reflected red polygon and
the blue polygon from right to left with corresponding
events to the traversal of the ray in the convolution.

Figure 4.4: The original scenario ?? and the ray-shooting events ??

4.2.4 Generalization for Non–Simple Polygons

We can generalize the proof for Theorem ?? for the case of non–simple polygons. We
now provide a sketch for this generalization; the detailed proof is beyond the scope of
this thesis. Recall that non–simple polygons are a collection of loops. Given two input
polygons P and Q, we take all the pairs lp and lq of loops in P and Q, respectively. For
each pair, the connected-components counter and the winding numbers are synchronized
as seen in the previous section. The winding number is additive with regard to cycle ad-
dition. The connected-components counter measures the intersections of each loop pair
independently and thus also additive. Therefore, both counters should remain synchro-
nized and by similar arguments to those in the previous section, Theorem ?? holds for
the non-simple case as well.



5
Minkowski Sum Boundary Verification

As discussed in previous chapters, one important sub–routine of the reduced convolution
algorithm is deciding whether a given orientable loop lies on the Minkowski sum boundary.
In the previous chapters we presented the theoretical basis for two local predicates that
can decide this. The collision detection predicate (CDP) decides that a loop is on the
boundary of the Minkowski sum if for any point p, and thus for all points, on the loop
the polygons P and −Q+ p do not collide, where −Q is the polygon Q reflected through
the origin. The winding number predicate (WNP) decides that an orientable loop is
on the Minkowski sum boundary if the face to the right of the loop (as defined by
the loop’s direction) has zero winding number. The implementation of a convolution-
based algorithm requires to use one of these predicates. In this chapter we show the
algorithmic considerations regarding different implementations of these predicates. This
implementation can have a profound impact on the runtime as it is invoked for every
orientable loop that is suspected to be boundary of the Minkowski sum.

In Section ??, we discuss the implementation options for CDP: We describe two
efficient methods for CDP, the first is based on the sweep-line paradigm and the second
uses bounding volume hierarchies. In Section ??, we describe the implementation of
WNP. We use a ray shooting algorithm to extract the winding number from the full
convolution segments. In Section ??, we briefly compare the results for those methods,
which were tested using our implementation in Cgal.

5.1 Boundary Checking via Collision Detection

Given two simple polygons P and Q in the plane, CDP has to decide whether P and Q
have an intersection point in their interior. To be precise, we do not consider touching
of the boundaries to be an intersection. The Cgal Boolean-set operation intersect,
computes the intersection of two sets in their interior. However, we only need to determine
if there is an intersection and not compute it—possibly a much faster operation. The
naive test for collision of two polygons requires us to go over Θ(mn) edges (where m and
n are the number of edges of the polygons respectively) for pairwise intersection test, and
then perform point-in-polygon test to check if P is contained in Q or vice versa, which

47
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takes O(n + m) time. Thus, the total runtime complexity of this naive intersection-test
operation is Θ(mn), which is not efficient enough for our purpose.

We now describe two methods for implementing CDP. Both these methods detect
intersections between segments of P and Q. Note that if no such intersection is found, we
still need to test whether P is contained in Q or vice versa, which takes O(max{m,n})
time. First we present the sweep line method followed by the bounding volume hierarchy
method.

5.1.1 Collision Detection via Sweep Line

The basic sweep-line algorithm, as described in [?], allows for computing the intersec-
tions between the two polygons in time of O((m + n) log(m + n) + k log(m + n)) where
k is the reported intersection size [?]. Cgal offers an implementation of the sweep-
line algorithm in a generic framework, which allows extending its functionality using
a visitor pattern [?]. Furthermore, it uses the exact and robust computation predi-
cates if instantiated with the appropriate kernel. The current implementation of Cgal
collision-detection test between two polygons uses the sweep-line algorithm to compute
the interior intersection and reports whether it is empty. We optimized this process in
our implementation to stop the sweep when the first interior intersection between two
segments of the two polygons occurs, and then report the found intersection. This strat-
egy reduces the running time to O((m + n) log(m + n)) since we either stop at the first
intersection or k = 0.

Test for Interior Collision

The sweep-line algorithm [?] notifies the user when several events occur. Those events
include the beginning and ending of the sweeping process and changes in the sweep
status line caused by the appearance or disappearance of curves and intersections be-
tween them. In order to determine if the interiors of the polygons overlap, we need to
examine various scenarios where features of the two polygons intersect. We refer to the
intersection event of two edges eP and eQ from polygons P and Q, respectively, as an
edge-edge intersection. We further introduce the notion of weak intersection if the
intersection of the segments results in a point which occurs at a vertex from P or Q. This
case requires special attention since these intersections could cause P and Q to touch,
but not intersect in their interiors. Finally, if the intersection result is a segment by itself
we denote this event as edge-edge overlap.

During the sweep-line algorithm, we are given the type of the specific intersection
event, and have to decide if the polygons intersect in their interior. Since we assume that
the polygons are counter-clockwise oriented, for each edge of the polygon, its interior lies
on the left side.

In the figure to the right, we see the event of edge-edge intersection. In
this case it is trivial to see that the polygons will intersect in their interior as
the intersection of the half-spaces of the two edges is not empty.

The second event is the weak intersection event. The
figure to the right illustrates the case that the intersection
point is a result of intersection of four non overlapping edges,
two from P and two from Q. Notice that each pair of such
edges defines an area incident to the intersection point that is interior to the pair’s poly-
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gon. If the intersection of these areas is not empty then there is an interior intersection.
We can decide whether there is an overlap of the areas by examining their order around
the intersection point. The sweep-line algorithm provides the edges ordered by their
angles, with respect to the positive x-axis, around the intersection point. Using this fact
we can determine whether there is intersection of P and Q induced by the edges ordering.
For an edge of one of the polygons we check if it lies in the area defined as interior by
the pair of edges that belong to the other polygon. We perform this test for each of the
four edges. We remark that this process does not require the evaluation of geometric
predicates. Note for the figure above, the leftmost part shows no intersection, but in the
middle and right there is overlap in the interior areas of the polygons.

To deal with the case of weak intersection where the intersection
point lies in the interior of an edge, we simply split the edge, as shown
in the figure to the right. Since the polygons are simple, no more than
four edges can meet at a single point.

The third case is when we have two edges that are overlapping.
Refer to the figure to the right. If the edges are oriented (with regard
to the counter clockwise order of vertices) in the same manner (as
shown in the right part of the figure), their overlap causes an interior collision. Otherwise,
there is no interior collision, as seen in the left part of the figure. When there are less
than four edges at the intersection point, it holds that two of the edges overlap. This
case is either handled by the edge-edge overlap or by using the test described in the
weak intersection event while testing the non–overlapping edges.

5.1.2 Collision Detection via Bounding Volume Hierarchy

During a single run of the algorithm for computing the Minkowski sum boundary, the
same polygons P and −Q are tested for collision several times but at different relative
positions. The difference in the location of −Q relative to P can be expressed by a single
translation point α, which changes for each query. Thus each collision detection query
performs a collision detection between P and −Q + α, where α is the only parameter
that changes.

This property can be exploited to speed-up collision detection by constructing a
bounding volume hierarchies (BVH) [?] for each polygon, and just by translating one
of the hierarchies for each query.

We now briefly describe the bounding volume hierarchy structure:

Bounding Volume Hierarchy

The bounding volume hierarchy (BVH), see [?], is a tree data structure representing a
set of geometric objects. The root node represents the entire space. Each internal node
in the tree represents a volume in space containing the space covered by its children.
These nodes usually represent bounding volumes whose pairwise intersection is simple to
compute such as boxes or spheres. The leaves of the tree represent geometric primitives
such as triangles, curves, and so forth. The BVH tree is used to answer queries that
report primitives that intersect a given region of space.

For estimating the runtime efficiency for BVH traversal, a general cost function is
defined as TC = Nbv × Cbv, where TC is the total cost of the query, Nbv is number
of bounding volumes traversed by the query and Cbv is the cost of computing a single
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bounding-volume collision-detection operation. Choosing the type of bounding volumes
to use in the hierarchy is a delicate matter. Some bounding volumes have a lower cost
for computing intersections amongst themselves, reducing the Cbv constant. However,
that usually means that they fit the data more loosely, thus increasing the amount of
bounding volumes intersections per query, namely increasing Nbv. There is no known
“recipe” for choosing the correct bounding volume type that works well for all cases.

Our Implementation

We used the axis-aligned bounding box hierarchy provided by Cgal [?] (AABB trees
which are discussed in [?], [?]). The primitives for our case are the polygon segments.
The bounding box being built is an axis-aligned box around each segment. The root of
the hierarchy contains a bounding box of all the segments in a polygon. We build the
tree recursively as follows. In every step, the algorithm divides the primitives into two
equally sized groups. Each segment is represented by its mid point. The set of mid points
(and thus the segments) is partitioned according to the longest axis of the bounding box.
Each newly created set is bounded with a bounding box, and we add the bounding box
as a child of the root node. Now we proceed with this construction recursively for both
child nodes. The recursion ends when the bounding box contains a single segment.

While performing collision detection between two hierarchies, the two trees are tra-
versed simultaneously. Of the options available to traverse the trees simultaneously, our
implementation uses the recursive one: Assume we have two hierarchy trees T1 and T2.
Let c1 and c2 be references for the nodes of the trees T1 and T2, respectively. For each stage
of the traversal, the bounding volumes referenced by c1 and c2 are tested for intersection.
If an intersection occurs, the traversal continues recursively between the following pairs.
Children of c1 are matched with all the children of c2. When there is no intersection, the
traversal stops exploring this branch. If one of c1 or c2 is a leaf, it is matched against the
children of the other. If during the traversal c1 and c2 refer to two leaves in T1 and T2
respectively, and the geometric entities stored therein intersect, then a collision is found.
Consequently, the algorithm stops and returns true. If after exploring all branches no
collision is found then the algorithm returns false.

The algorithm presented above is designed to answer single CDP query between two
stationary objects. For the case of one stationary and one translating polygon, we present
a slightly modified traversal process. In each traversal step, we translate the geometric
entity (bounding box or segment) of the translating polygon, by the current translation
amount, relative to its original location. This is a constant time operation. We build the
two hierarchies only once per run of the algorithm, but perform many queries.

The hope with this hierarchy is that if an intersection exists, and the bounding volumes
are separated well, the hierarchy will cause the traversal to focus on a single search path
for both trees and find the intersection point in logarithmic time for both hierarchies,
performing most queries at O(log n+ logm) time. Our experiments in Chapter ?? shows
that the bounding volume hierarchy is indeed the best performing heuristic in practice,
thus adding merit that this hope is justified.

5.2 Boundary Checking via Winding Numbers

In Chapter ?? we saw that regions in the plane have a non–zero winding number with
respect to the convolution cycles if and only if they are interior to the Minkowski sum.
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Observation ?? states that for determining the winding number of a point p, it is sufficient
to “follow” a simple path from p to a point on the unbounded face, and count the signed
number of edge crossings along this path. These facts give rise to an alternative approach
to computing the winding number of a point. It is possible to shoot a ray and count the
number of convolution segments it intersects with the correct sign. Of course we have to
count the segments of the full convolution rather than of the reduced one. However, this
method stills allows to test faces of the reduced convolution arrangement.

In the first part of this section we describe the choice of data structure that returns
the crossing number for a given query point and analyze the complexity for a query. The
second part discusses how to implement the ray–shooting query and deal with ray queries
that are not in general position, namely when the ray intersects a vertex or overlaps a
segment.

5.2.1 Ray Shooting Data Structures

The test is done by computing the winding number of an arbitrary point which resides
immediately to the right of each edge of an orientable loop. Wein [?], showed a method
to compute this number by using the arrangement of the full convolution. We discuss a
different approach, which stores the full convolution segments without intersecting them,
and uses this information to perform a local query, which computes the winding number
for every suspected boundary loop. As seen in Chapter ??, there are O(mn) segments
both for the full and the reduced convolution, where m and n are the number of segments
in the input polygons. This bound holds as long the intersections between the segments
are not computed. Note that computing the arrangement requires the computation of
the intersection points between all input segments. Computing the segments of both
the reduced and the full convolution has similar running time. The main performance
impact occurs while inserting the segments to the arrangement, where the runtime can
go up as high as Θ((mn)2). Let ρ denote the ratio between the full convolution size
and the reduced convolution size. We expect a saving of a factor of ρ2 in the running
time of the reduced convolution algorithm since this is the reduction in the size of the
arrangement. However, it is possible to store the segments of the full convolution, and
only use them for computing the crossing numbers for specific query points. Note that a
naive implementation that goes over all convolution segments and tests which segments
are crossed by the ray has a runtime complexity of O(mn), which is identical to the time
required for a naive CDP.

For improving the efficiency over the naive implementation a natural approach is to
find a data structure that will hold the segments and prepare them for a ray shooting
query. Since we may choose the ray however we like, we can decide that the ray has to
be axis aligned. In order to choose the appropriate data structure we should first state
the query we wish to answer. Assume, for instance, we shoot the ray horizontally to the
left. For now assume there are no horizontal edges and the ray does not intersect any
vertices. With this assumptions we can split the set of convolution segments into two
sets: those with the lexicographically smaller vertex is below the second vertex (upward
oriented segments), and those with the smaller vertex above the other one (downward
oriented segments). The crossing number for a point p while shooting a horizontal ray
towards the left will be the number of segments it intersects from the latter set minus
the number of segments it intersects from the former set. This is a counting query [?].

The most trivial data structure to use is the arrangement, however as stated, com-
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puting it is too costly. The chosen data structure should not require the computation of
all the intersection points between the full convolution segments. Otherwise, it is at least
as slow as computing the arrangement.

One candidate data structure is the partition tree. This data structure is a bit complex
and its description is given in [?]. Overmars et al. [?] show how to use to the partition tree
to store general segments in the plane and to report or count intersection with a query
segment. It has log linear storage and construction time with regard to the number of
segments, and for any choice of ε > 0 it is capable of answering a counting query in
time O(n0.5+ε). It is also possible to improve this data structure by “blending” it with
another data structure called cutting tree. With this technique it is possible to build a
data structure that for any n ≤ m ≤ n2 takes O(m1+ε) storage, and has a query time of
O(n

1+ε

m0.5 ). Of course here the storage requirement is also a lower bound on the construction
time, and consequently the running time.

Unfortunately, such data structures require the implementation of multi–level trees,
which seem to be slower in practice than heuristic alternatives, despite having better
guarantees on the worst-case asymptotic run time. We tested the ray shooting approach
with the following heuristic instead. We use an interval tree structure, where the intervals
contains the y-axis values of each segment. Given a query point p the tree allows to report
the list of segments which contains the y-coordinate of p in time O(log n + k), where n
are the number of intervals in the tree and k is the number of reported segments. The
heuristic aims to improve runtime for queries where the y–coordinate of p is only contained
in a small number of segments (i.e., k << n).

5.2.2 Ray Shooting Implementation

We now describe the ray shooting algorithm. The algorithm calculates the winding
number for the face inside of a suspected hole loop L.

The algorithm gets as an input the segment s, that is assumed to be non–horizontal,
which belongs to the suspected hole loop L (as long as L is not degenerate we can always
find such a segment). A ray r is shot from the middle of s towards the left. The first
step of the algorithm is to compute the crossing number of r. Recall that for a path ξ
the crossing number SC(ξ), is the sum of signed crossings with respect to the segment’s
direction along ξ. The crossing number of r includes crossing s, i.e., the shot measures
the crossing number a little to the right of s. We now have to figure if this point is inside
L. If not, the crossing number of r is not the same as the winding number of L and
should be corrected to obtain the winding number inside L.

In order to compute the crossing number of r, the algorithm queries the data structure
for the crossing number. As stated, the data structure used in the implementation is the
interval tree.

After calculating the crossing number for r, we need to determine the winding number
inside L. For this purpose, we have to determine if r is shot into or out of L.

Observation 5.2.1. Let ∆WN(r) be the difference between the winding number inside L
and the crossing number of r. We have:

1. If s is upwards oriented then ∆WN(r) = 0

2. If s is downwards oriented then ∆WN(r) = −1
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L

r1

r2

Proof. Since the ray is shot as if it were a little to the right of s,
if s is an upwards segment then r is shot from the interior of the
hole (see r1 in the figure to the right). If s is oriented downwards
then r is shot into the loop, from the outside (see r2 in the figure
to the right). Therefore, the intersection of r with s increases the
crossing number of r by one relative to the winding number inside
L. We thus need to decrease the crossing number by one in order to compensate.

For handling cases where the ray hits a vertex or a horizontal segment we assume a
symbolic translation, which means that the ray is considered to be ε higher then its orig-
inal location. In practice, this means that the ray does not intersect horizontal segments
and whenever it hits a vertex, it is assumed to hit only segments that are above it.

5.3 Performance

Experiments on the Lien data set (the benchmark data set, see Chapter ??) have shown
that the sweep-line collision detection is the slowest method. The best performance is
that of the bounding volume hierarchy which is a widely used method for performing
collision-detection queries. It also reuses most of the information for performing queries
as compared to the other methods, as the hierarchy is built only once. The ray-shooting
method produced intermediate results. We can speculate that the degraded performance
is due to the existence of a larger number of false hole loops than true hole loops. False
loops are detected efficiently by the BVH since once a collision is found the iteration on
the hierarchy stops. The ray-shooting method has no such advantage and always has to
count all the segments that are candidates to hit the ray. Therefore, the method chosen
for performing the experiments is the bounding volume hierarchy.
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6
Experimental results

This chapter describes the experiments that were conducted to assess the validity, ro-
bustness and speed of our new implementation of the reduced convolution algorithm in
Cgal. We denote our implementation of the reduced convolution algorithm by RCA. We
compare the runtime and memory consumption of RCA to the full convolution algorithm
implemented in Cgal by Wein [?], which we refer to as CWEIN. We show an example
of robustness failure in which the original implementation of the reduced convolution [?]
produces incorrect results. We also briefly compare RCA, CWEIN and Lien’s implemen-
tation for the data described in [?]. Note that both RCA and CWEIN currently support
only simple polygons as inputs.

In Section ??, we describe the different data sets of input polygons we are experi-
menting on. Recall that for two input polygons with m and n vertices, the complexity
of the Minkowski sum ranges from O(m + n) to O((mn)2). We should use data which
represents all of these cases. Section ?? compares the performance of RCA and CWEIN
on the data sets described in Section ??. Section ?? shows an example where inexact
geometric computing fails on an input. Finally, Section ?? discusses the memory usage
of RCA compared to that of CWEIN.

We assume throughout this chapter that we have two input simple polygons P and
Q with number of vertices m and n, respectively.

6.1 Test Sets

In this section we describe the input data sets that are used for performing the exper-
iments. We used data from previously tested data sets given by Lien [?] and Wein [?].
Lien’s data set should allow to compare the performance of RCA with Lien’s algorithm.
Both data sets contain pairs of polygons whose Minkowski sums complexity ranges from
O(m + n) to O((mn)2). Lien’s set is described in the first part followed by Wein’s set.
Additional data sets were generated to allow testing of different polygon families with
varying sizes. The polygon families include convex, star shaped and simple polygons.
This data set is generated automatically which allows to examine the effect of scaling up
in the number of vertices for each polygon family, on the performance of the algorithms.

55
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This set is described in the third part of this section. We produced a data set showing the
worst-case behavior for RCA. This set contains a generated “Fork” like polygon matched
with an “L” shaped polygon. The Fork is built with n teeth such that its Minkowski sum
with L contains n2 holes. We can control the number of teeth of the fork directly. Finally,
we mention a small test set which is used to validate the robustness of the algorithm on
degenerate cases.

6.1.1 Lien’s Data Set

The data set used by Lien’s experiments in [?] to compare to Wein’s code spans a set
of geometric models. This set is available on the web1. In Figure ?? we show some of
the polygons in the data set. Figure ??, illustrate a sample of their Minkowski sums.
The samples in this set are used as a base line performance set as they can compare
the performance between RCA, the implementation given by Lien and CWEIN. This set
contains diverse real–world models and includes an example where the Minkowski sum
contains O((mn)2) holes.

(a) Airplane (43) (b) Bird(275) (c) Dog (145) (d) Grate1 (30)

(e) Grate2 (34) (f) Grate4 (43) (g)
Grate3
(24)

(h) Hand1
(57)

(i) Hand2
(84)

(j) Monkey (1204)

Figure 6.1: Lien’s input polygons; number of vertices in parenthesis.

1http://masc.cs.gmu.edu/wiki/ReducedConvolution.
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(a) Airplane+Monkey (b) Grate1+Grate2 (c) Hand1+Airplane

Figure 6.2: Sample Minkowski sum results from Lien’s dataset.

6.1.2 Wein’s Data Set

Wein used the data set from [?]. Unfortunately, only a small number of polygons of this
set, which is described as a representative set in [?], is available on the web and is used
for our benchmarks. Here is the original description of the data set from Chapter 3 of
Flato’s Thesis [?] and Wein’s article [?]:

Input Set Description Figure
comb P is a ‘comb’ with 25 teeth and 53 vertices, Q is a convex

polygon with 22 vertices.
?? (a)

star P and Q are star shaped polygons with 40 vertices each. ?? (g)
fork P and Q are a series of vertical and horizontal ‘teeth’

which together interwind such that their Minkowski sum
contains Θ((mn)2) edges. P and Q have 34 and 31 ver-
tices, respectively.

?? (b)

mixed chains P is a polygon in which one of the poly-line is a com-
bination of approximations of a concave or convex semi
circles with 82 vertices, Q is star shaped with 30 vertices.

?? (e)

knife P is a triangle split into teeth, Q is a comb containing
vertical and horizontal teeth. P and Q have 64 and 12
vertices, respectively.

?? (d)

random P and Q are randomly generated polygons. ?? (c) and ?? (f)

Figure ?? and Figure ?? show the data set polygons and their Minkowski sums.

6.1.3 Randomly Generated Families of Polygons

The randomly generated classes of polygons are convex, star-shaped and simple polygons
(examples are shown in Figure ??). We begin by choosing the number of vertices n for a
polygon. We generate a random convex polygon by sampling n angles uniformly from the
interval [0, 2π] which determines n vertices on the unit circle. We connect the points to
create a convex polygon which is then scaled by a uniformly sampled value of the interval
[0.5,5].
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P (green) has 53 vertices, Q (blue) has 22 vertices
(a)

P (green) has 34 vertices, Q (blue) has 31 vertices
(b)

P (green) has 30 vertices, Q (blue) has 15 vertices
(c)

P (green) has 64 vertices, Q (blue) has 12 vertices
(d)

Figure 6.3: Wien’s input polygons (left) (a) comb, (b) fork, (c) random, (d) knife and
their Minkowski sums (right).



6.1. TEST SETS 59

P (green) has 82 vertices, Q (blue) has 30 vertices.
(e)

P (green) has 40 vertices, Q (blue) has 20 vertices.
(f)

P (green) has 40 vertices, Q (blue) has 40 vertices.
(g)

Figure 6.4: Wien’s input polygons (left) (e) chain, (f) random, (g) stars and their
Minkowski sums (right).
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To form a star shaped polygon, we generate a similar sequence of n sorted angles.
However, we now pair them with n random radii sampled uniformly from the interval
[0, 1]. Each pair defines a point in polar coordinates and the paired sequences defines n
points winding counter clockwise around the origin, which can be connected to compose
a star shaped polygon.

To create a random simple polygon with n−1 edges we uniformly sample k+n points
in the plane (for this set we sample from the square [0, 1] × [0, 1]), where k > 1 is some
constant (we chose k = dn/10e). Then we perform a Delaunay triangulation on the set
of points where the boundary of the triangulation is a convex polygon. However, the
number of edges on the boundary are not n− 1 (almost always). As long as the number
of boundary edges is greater than n− 1, we find a triangle with two boundary edges and
remove it. Consequently, the number of boundary edges decreases by one. If there are
less boundary edges than n − 1, we remove a triangle with one boundary edge. This
increases the number of boundary edges by one. We repeat this process until there are
n − 1 edges on the boundary of the polygon, in case there are no matching triangles to
remove, the process stops and fails.

6.1.4 Fork Data Set

This set contains a Fork polygon created with a variable number of rectangular teeth
see Figure ??. The Fork is summed with a fixed L shaped polygon see Figure ?? with
6 vertices scaled in size to create exactly n2 holes in the sum. This is the worst case for
RCA, since the second polygon is very simple and there are many valid holes in the sum.
The simplicity of the L polygons causes the difference between the reduced and the full
convolution to be small, and the quadratic number of holes causes RCA to perform n2

expensive collision detection test. Recall that for holes the collision detection test is the
most expensive since a point inside the hole is not contained in the Minkowski sum. Thus
P and −Q translated do not intersect, and the collision detection test has no option of
finding an intersection of a segment of P and a segment of −Q translated by the query
point, and stopping the procedure before iterating all options.

(a) (b)

Figure 6.5: Generated fork polygon with 10 teeth ??, generated L-shaped polygon with
6 vertices ??.
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Figure 6.6: The Minkowski sum of the fork and the “L”–shaped polygon.

6.1.5 Degenerate Input

We include some polygons whose Minkowski sum boundary contains one or zero dimen-
sional features. Note that Lien’s code specifies that it does not report such features in
the result.

6.2 Performance

In this section we describe the experiments that were used to evaluate the runtime per-
formance of RCA as compared to CWEIN. In Section ?? we briefly review and compare
the different steps performed in a convolution-based method. In Section ?? we describe
the platform used for the benchmarks. Section ?? shows the results for each experiment.
Finally, we analyze the results of all the experiments.

6.2.1 Performance Stages

Let us review the main time consuming elements of the Minkowski sum computation
using convolution methods:

1. Compute the convolution cycles (Convolution Cycles Stage).

2. Compute the intersection points between the convolution cycles (Arrangement Build
Stage).

3. Deduce the features which compose the boundary of the Minkowski sum (Hole
Verification Stage).

We refer to this list as “stages of computation”. We now discuss this stages for RCA and
CWEIN.

The first stage of computing the convolution cycles is implemented in RCA with an
optimal runtime complexity of O(m+n+K) where K is the complexity of the convolution
cycles (see Section ??).
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(a) (b)

(c)

Figure 6.7: Randomly generated convex polygon ??, randomly generated star-shaped
polygon ?? and randomly generated simple polygon ??.

Wein [?] implemented an output-sensitive algorithm for computing the full convolution
cycles with runtime complexity of O(m+n+min{m+n+nrm+mrn}+K), where nr and
mr are the number of reflex vertices of P and Q respectively. Note that Wein’s method
produces more segments since the reduced convolution is a subset of the full convolution.
However, both methods trace the cycles of the full convolution.

The second stage is implemented in both methods by inserting the convolution seg-
ments into an arrangement. Computing the arrangement of n segments and I intersection
points, involving a sweep which takes O(n log n+ I). This step is sensitive to the output
size, since the number of intersections between convolution segments is at least propor-
tional to the number of output components, which can be as high as Ω((mn)2). However
in this step RCA is usually more efficient than CWEIN since the size of the reduced
convolution can be much smaller than the full convolution [?].

The final stage must decide which features are actually on the boundary of the
Minkowski sum. This is the stage where the two methods differ. CWEIN computes
the winding numbers of each face by traversing the arrangement in a breath first manner.
This approach’s runtime complexity is linear in the number of faces, which is as complex
as the output size, denoted by η.

For RCA, this stage induces two additional stages. The first is creation of the bounding
volume hierarchy performed once per run of the algorithm, which we refer to as AABB
Tree Stage. The second is reporting the low-dimensional boundary features, which we
refer to as Degenerate Handling Stage. The latter stage is optional and can be disabled
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when the polygons are treated as closed sets (in such case there are no low-dimensional
boundary features). Since CWEIN reports low-dimensional features, in order to conduct
accurate experiments we enabled this option for RCA as well.

For computing Hole Verification Stage, RCA goes over all faces in the arrangement
of the reduced convolution, filters out some faces with the orientation check and the
nesting filter and finally uses the collision detection predicate for the remaining loops.
The first two filters take amortized time proportional to the output size η as they involve
iterating the arrangement features once. In contrast, the collision-detection predicate is
more expensive, even though it uses the bounding volume hierarchy it still has worst-
case runtime complexity of O(mn) per test. Since this test is performed for every actual
Minkowski sum boundary feature, the worst time complexity is O(mn · η). However, in
practice η is usually less than O((mn)2), and this worst-case scenario is uncommon.

6.2.2 Platform

All the tests but the fork test were performed on Intel core i7 model 870 at clock speed of
2.93Ghz. The machine has 8GB of RAM and operates on Microsoft Windows 7 64–bit.
The binaries were compiled with visual studio 2010 64–bit and Cgal version 3.7.

The fork test was run on Intel core i5 model 750 at clock speed of 2.66Ghz. The
machine has 4GB of RAM and operates on Microsoft Windows 7 64–bit. The binaries
were compiled with visual studio 2010 64–bit and Cgal version 3.7. This second plat-
form was used out of technical reasons and does not carry weight on the quality of the
experiments.

6.2.3 Results

Lien’s Data Set

In this test we excluded inputs where the number of segments in the convolution arrange-
ment is less than 2000. Below this number there is no preference to either one of the
methods since the overhead for different stages of the algorithms dominates the runtime.

Consider Figure ??. The x-axis is the convolution arrangement size. The y-axis which
measures the time, is limited to ten seconds for the smaller times to be visible. The last
two examples took for CWEIN over thirty seconds. In the figure we see that RCA is
faster than CWEIN for all but two examples. Those examples are the cases where the
input is the monkey (1204 vertices) and a small polygon (triangle and rectangle). For
this case the stage for building the BVH of the monkey, even though done only once,
takes a significant time of the computation causing a delay for RCA. We see that for the
smaller examples, Lien’s implementation is faster than RCA and CWEIN. However, in
some cases, when the input is large, RCA is faster then Lien’s implementation. Further
investigation is required but is however, beyond the scope of current work.

Wein’s Data Set

In Table ??, we provide results for the pairs of polygons used by Wein [?]. Since the input
is relatively small for most pairs the computation time is very small. Therefore, we provide
the actual time each implementation takes. For inputs with convolution arrangement size
of at least 2000, there is one pair where RCA takes longer than CWEIN, the fork example.
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Figure 6.8: Benchmark for Lien’s data set. The x-axis is the convolution arrangement
size. The y-axis is limited to the range [0, 10] seconds.

This is the case where the Minkowski sum has quadratic number of holes in the number
of input vertices, each requires a collision detection test in RCA.

P Q m n TW TRC AW ARC
cavity part1.dat cavity part2.dat 22 8 0.001 0.002 161 81
chain part1.dat chain part2.dat 82 30 0.025 0.013 2868 801
comb part1.dat comb part2.dat 53 22 0.006 0.009 651 579
conc chain part1.dat conc chain part2.dat 22 22 0.017 0.004 3543 74
fork part1.dat fork part2.dat 34 31 0.185 0.322 22063 6154
knife part1.dat knife part2.dat 64 12 0.066 0.028 9749 2946
rand3015 part1.dat rand3015 part2.dat 30 15 0.01 0.005 2309 426
random part1.dat random part2.dat 40 20 0.02 0.01 4698 831
stars part1.dat stars part2.dat 40 40 0.031 0.014 5482 791

Table 6.1: Wein’s data set results, TW and TRC is the runtime of CWEIN and RCA,
respectively. AW and ARC is the arrangement size of CWEIN and RCA, respectively.

6.2.4 Random Data Set

The random data set is given to show how increasing the complexity of P for various
polygon families affect the runtime of RCA and CWEIN. Recall that computing the
Minkowski sum of two convex polygons has an efficient O(m+ n) algorithm, which does
not involve the computation of an arrangement. Consequently, for this case this algorithm
is preferable over both methods. Thus, we do not consider this case for our benchmarks.

We now describe the various benchmarks that we performed on the randomly gener-
ated polygons.
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Convex and Star Fixed

For this test P is a convex polygon and Q is a star shaped polygon. We vary the number
of vertices of P from 50 to 980 with a step size of 30, each step has 20 tests. Q remains
with a fixed size of 100 vertices. Refer to Figure ??. This is the plot of the runtime of
both algorithms as a function of the convolution arrangement size. We fit a line using
linear regression to RCA and CWEIN runtime obtaining high R2 scores (above 0.95,
which is considered a good fit), which means that the runtime of both algorithms is a
linear function of the number of segments in the convolution arrangement. Since both
lines approximately touch the origin we can compare the slopes of the two lines to see
that for this case RCA is about twice as fast as CWEIN for any input size.
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Figure 6.9: Benchmark for Convex and Star Fixed Test.

Star and Star Fixed

For this test both P and Q are star shaped polygons. We vary the number of vertices
of P from 25 to 340 with a step size of 3, each step has a single test. Q remains with
a fixed size of 100 vertices. Refer to Figure ??. This is the plot of the runtime of both
algorithms as a function of the number of vertices of P . We fit a quadratic curve using
linear regression to RCA and CWEIN run times obtaining high R2 scores (above 0.95),
which means that the runtime of both algorithms is a quadratic function of the number
of vertices of P . We can see in the plot that both algorithms start close to zero meaning
they have low constant overhead. We can see that for rather large examples, say where P
has 300 vertices, RCA is about four times faster than CWEIN. The time is quadratic in
the number of vertices of P since star–shaped polygons have many reflex vertices which
creates more convolution cycles. These cycles increase the chance for intersections in the
convolution arrangement.
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Figure 6.10: Benchmark for Star and Star Fixed Test.

Simple and Simple Fixed

For this test both P and Q are random simple polygons. We vary the number of vertices
of P from 30 to 200 with a step size of 5, each step has 5 tests. Q remains with a fixed size
of 100 vertices. Refer to Figure ??. This is the plot of the runtime of both algorithms as
a function of the number of vertices of P . We fit a quadratic curve using linear regression
to RCA and CWEIN run times with high R2 scores (above 0.95), which means that the
run time of both algorithms is a quadratic function of the number of vertices of P .

We further add plots showing the runtime for each different stage of computation for
both algorithms:

Figure ?? plots the times spent on each stage of CWEIN. The Convolution Cycles
Stage refers to tracing the convolution cycles, the Arrangement Build Stage measures the
construction time of the convolution arrangement and the Hole Verification Stage is the
calculation time for computing the winding number for each face of the arrangement. We
can see that the Convolution Cycles Stage is linear in the input size as expected. The
Hole Verification Stage seems to be linear in the input size, however we know it to be
quadratic and as complex as the arrangement size. Thus, the Hole Verification Stage
has small quadratic coefficients. We observe that Arrangement Build Stage is quadratic,
as we expected since the example is complex and contain many cycles, thus intersecting
segments.

Figure ?? plots the times taken for each stage of RCA. We can see that the AABB
Tree Stage and the Convolution Cycles Stage consume very little time and depend linearly
with a relatively small slope on the input size. Therefore, these stages become negligible
for complex inputs. The Degenerate Handling Stage again seems linear but we know
that it should be quadratic as we traverse every feature in the arrangement. The two
non–linear factors which contribute to the non-linear curve (quadratic) of the total time
are the Arrangement Build Stage and the Hole Verification Stage. We can see again that
a linear addition to the input causes a quadratic growth in the time required to build
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the arrangement. It also causes the number of suspected hole loops to rise, increasing
the time needed for Hole Verification Stage since each hole with the correct orientation
induces an expensive collision detection test.
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Figure 6.11: Benchmark for Simple and Simple Fixed Test.
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Figure 6.12: Stages of computation of CWEIN for the Simple and Simple Fixed Test.

6.2.5 Fork Data Set

For this test both P is a “fork” and Q is an “L” shaped polygon. We vary the number of
teeth of P from 50 to 250 with a step size of 10, each step has a single test (since none
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Figure 6.13: Stages of computation of RCA for the Simple and Simple Fixed Test.

of the input is random). Q remains with a fixed size of 6 vertices. Note that the number
of vertices of P is about four times the number of teeth.

Figure ?? depicts the runtime of both algorithms as a function of the number of
vertices of P . We can see that the runtime for both algorithms is at least quadratic in
the number of vertices of P (and thus the number of teeth) as expected. Furthermore,
RCA has a steeper curve than CWEIN, as we may expect since this case generates n2 holes
which need to be verified using a collision-detection test. Since the collision test takes
at least Ω(log(n)) (traversing a tree once), the cost for the Hole Verification Stage is at
least Ω(n2 · log n), the result for this test shows that for the worst-case RCA performance
suffers greatly as compared to CWEIN.

We further add plots showing the runtime for each different stage of computation for
both algorithms. Figure ?? plots the times taken for each stage of CWEIN. As in the
Simple and Simple Fixed example, we can see that Convolution Cycles Stage and the
Hole Verification Stage seen linear and relatively small, although Hole Verification Stage
should be quadratic. Not surprisingly, the Arrangement Build Stage runtime is quadratic
in the number of teeth.

Figure ?? plots the times taken for each stage of RCA. As in the Simple and Simple
Fixed example, we can see that Convolution Cycles Stage and the AABB–Tree building
stage consume very little time. The degenerate handling stage seems to have more impact
and have a peak about every other example. This could be explained by some artifact
in the process of generating the fork which causes an increased amount of suspected
degenerate edges (see Section ??). The arrangement build stage is quadratic but very
slow as compared to the Arrangement Build Stage which performs a collision detection
for Θ(n2) holes. The collision-detection test runtime for each hole is between Ω(log n)
and O(n). Thus the Hole Verification Stage runtime complexity is between Ω(n2 · log n)
and O(n3), and the plot in the graph fits this range.
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Figure 6.14: Benchmark for Fork Test.
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Figure 6.15: Stages of computation of CWEIN for the Fork Test.

6.2.6 Discussion

First we note that as a general behavior, for small input size (when the convolution
arrangement has less than 2000 edges), no method is preferable over the other. For larger
and random examples, where there are usually no holes, we see a linear dependency for
both methods on the size of the full convolution arrangement. However, RCA has a lower
slope than CWEIN. If we examine the runtime as a function of the number of vertices of
the variable size polygon, we see a quadratic runtime dependency. This is not surprising
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Figure 6.16: Stages of computation of RCA for the Fork Test.

because the size of the full convolution arrangement is usually quadratic in the number
of vertices of the variable size polygon. Either way for the random cases RCA exhibits
better constants for the runtime. For degenerate cases where we produce holes in the
output, CWEIN is preferable since it does not require the costly collision detection.

The Convolution Cycles Stage is usually a non–dominant stage for both methods,
however RCA is a bit faster for this stage for reasons given in Chapter ??. We have seen
that the AABB Tree Stage is also negligible for large examples and can only hinder the
results of small examples where one polygon is rather large and the other is very simple.
This causes overhead for computing a hierarchy for the larger polygon which is then not
used. The Degenerate Handling Stage is dependant on the topology of the convolution.
Suspected degenerate edges and vertices causes expensive collision detection tests only
for those features which pass the filters mentioned in Chapter ?? (when two edges in
the result overlap, three segments intersects in their interior), but for the random cases,
degeneracies usually do not occur. In this case, this stage is linear in the size of the
arrangement and is not a dominant stage. The Arrangement Build Stage is a dominant
step for both methods, and is proportional to the convolution arrangement size. Since the
reduced-convolution arrangement is smaller than the full convolution, this step is faster
by some factor for RCA over CWEIN. This factor increases as the input gets larger, more
complex and has more reflex vertices, which causes the arrangement size to grow. The
last stage is the Hole Verification Stage. For CWEIN the runtime for this stage is also
linear in the convolution arrangement size. However, for RCA the runtime depends on the
topology of the result, namely the amount of suspected hole loops in the arrangement.
Therefore, for random cases the runtime is also linear in the convolution arrangement
size, but for specific cases such as the fork example the runtime is higher.
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6.3 Software Issues

During the benchmarks we encountered crashes in CWEIN for some of the examples,
which were removed from the reported results. RCA suffered no crashes. Additionally,
different bugs were found in the arrangement package. The first performance bug occurs
when destructing a large arrangement (of size 2GB and up). We measured a quadratic
factor in the runtime of the destruction as a function of the arrangement size. For arrange-
ments that occupy less memory than 2GB there was no notable slowdown. Since the star
shaped test contained large arrangements for CWEIN, we just reported the combined
runtime of Convolution Cycles Stage, Arrangement Build Stage and Hole Verification
Stage, instead of the total time. Note that this report also does not consider the output
build time, which is however small. Another performance bug was found while removing
edges from the arrangement, which caused another quadratic factor in the runtime for
RCA during Hole Verification Stage. To overcome this, instead of removing edges of the
arrangement we just mark the valid ones, and copy them to an output data structure.
This operation is also not expensive and was done in the fork example where this bug
was detected.

6.4 Robustness

In this section we show an example in which exact geometric constructions are mandatory
for providing correct results. In this example we show topological errors that arise even
when using the implementation given by Lien which uses multi precision arithmetic, but
not exact geometric computation as Cgal does.

We compute the Minkowski sum of a diamond shaped polygon with a “U” shaped
polygon; see Figure ?? and Figure ??. The “U” shaped polygon has the “roof” part
extended inwards. This extension is designed such that the diamond width equals the
distance between the two extensions. Consequently, the diamond can “slide” across this
hatch and move along the inside upper edges of the “U”. This results in a degenerate
edge and a hole in the Minkowski sum. We show how slightly perturbing the relevant
vertices of the diamond and the “U” causes topologically incorrect results. Of course, we
do not expect Lien’s implementation to find the degenerate edge.

We perturb the input slightly by the following scheme. Let ε1 and ε2 be very small
numbers ( ε1 << 1 and ε2 << 1) such that ε1 > ε2. In the base polygon we perturb the
vertex in coordinates (3, 6) to be (3− ε1, 6). In the diamond we translate the left vertex
by −ε2 to the left extending the width of the diamond to be 1 + ε2. The result of this
manipulation is that the edges (3, 6), (3, 5) and (4, 6), (4, 5) which were parallel before the
modification are no longer parallel. Furthermore, the distance between vertices (3− ε1, 6)
and (4, 6) is greater then 1 + ε2 by construction. The distance between vertices (3, 5) and
(4, 5) is 1 which is smaller then 1 + ε2. Thus, while “sliding” the diamond across the edge
(3− ε1, 6), (3, 5) downwards, there is a part where it could pass, at some point the width
between the two edges will be exactly 1 + ε2 and below this point sliding the diamond
downwards will result in a collision. This means that in the Minkowski sum there should
be features (two edges) representing the free space where the diamond can still slide. Our
implementation correctly computes these features, but the implementation given by Lien
does not compute them correctly, and they are missing from the output. This is verified
both visually and by counting the number of output features given by the implementation.
See Figure ?? for the resulting Minkowski sums of the two implementations.
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(a) (b)

Figure 6.17: The diamond, with width of size 1 ??, and the “U” shaped polygon ??.

(a) (b)

Figure 6.18: The result of running our implementation. The extra feature is marked
inside the red circle ??, Lien’s implementation output for the same input ??.

Additionally, we increased ε1 by a few orders of magnitude, but still keeping it rel-
atively small (as compared to a length of 1). The result should be similar to the case
described above, but the excluded edge features now grows very long and almost touch the
connection points between the hole and the outer loop. This time Lien’s implementation
mistakenly omitted the hole loop altogether, as seen in Figure ??.

6.5 Memory Usage

We now turn to discuss the memory consumption of RCA and CWEIN. Memory con-
sumption limits the actual size of polygons these algorithms are capable of operating
on, at least while keeping all the work in the computer’s main memory. Exceeding the
computer’s available physical memory causes the operating system to use disk paging
which involves slow input-output operations on the disks. In practice, this usually causes
the system to almost freeze or the process to crash. Therefore, for these two methods,
executing the algorithms on examples where the computation requires more memory than
the available physical memory is not practical.

We measure the memory consumption of the two implementations at the point where
the most memory is required, namely after computing the arrangement of the convo-
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(a) (b)

Figure 6.19: The result of running our implementation. The inside face is a hole. ??,
Lien’s implementation output for the same input. There is no inside face. ??.

lution. Notice that the arrangement complexity (number of segments after performing
intersections) is a lower bound on the memory requirement of the arrangement.

We show the memory consumption for the Convex and Star shaped Fixed benchmark
and the Simple and Simple Fixed benchmark. Refer to Figure ??. This example produces
a relatively simple arrangement for both cases. We could expect that convolution cycles
should appear for some of the reflex vertices of the star shaped polygon. Wein optimized
his code to remove cycles that are precisely the translation of one of the polygons by
some reflex vertex of the other polygon. Because of that, we can see that the memory
consumption is quite similar for both methods, though RCA has a little advantage. For
the Simple with Simple Fixed polygon test refer to Figure ??. In this case we can see
that the memory consumption of RCA increases much more slowly than that of CWEIN.
We could expect the increase of CWEIN to be quadratic in the input size, however this
is hard to determine due to the variations in the data. We can however see that CWEIN
consumes more memory than RCA with a factor that grows with the input complexity.
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Figure 6.20: Memory consumption after building convolution arrangement: ?? the Con-
vex and Star–shaped Fixed test and ?? the Simple and Simple Fixed test.



7
Implementation Details

In this chapter we briefly describe the implementation details of the reduced convolution
algorithm (referred to as RCA) using Cgal. For succinctness, we only provide a survey of
our methods, while providing references for further study. In Section ??, we describe the
concepts that enable the implementation of RCA in Cgal. Section ?? presents several
implementation issues and optimizations.

7.1 Programmatic Background

RCA is implemented in C++ using the Cgal [?] library. Cgal is a library that enables
the exact implementation of geometric algorithms and contains a plethora of algorithms
by itself. It follows the generic programming paradigm [?] allowing the user to customize
different aspects of the algorithms while changing little amount of code. Furthermore,
the user of the algorithms may choose to perform the computation using methods that
are either exact and usually slower or inexact and usually faster. Cgal is developed in
collaboration between several research institutes in Europe and Israel.

Generic programming [?] is a paradigm whose algorithms are described in a general
manner operating on any concrete type which implements them. The set of require-
ments on a specific input type is referred to as concept. A type that implements these
requirements is a model of the concept. Generic programming is achieved in C++ using
the template mechanism. A trait class [?] is a design pattern, which allows to asso-
ciate additional information to a type during compile-time. For more information about
generic programming can be found in [?]. Cgal’s design follows the generic programming
paradigm and uses traits classes to act as a wrapper that defines the implementation for
concrete models. The traits classes are used to separate different aspects of geometrical
algorithms, such as separating the topology from the underlying geometric computation.
For more details about generic programming in Cgal see [?].

Algorithms in computational geometry usually assume general position and the “real
RAM” model of computation [?], where computations always return precise results and
the computation time of an arithmetic operation is constant. In practice however, the
floating point representation is does not produce precise results and the input may not

75
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be in a general position. This could cause topological errors in the results, resulting in
misplaced features, intersections that should not occur and so forth [?]. Of the methods
available in the literature for handling these issues, Cgal uses exact geometric compu-
tation [?]. This means that geometric predicates (such as asking if a point is above or
below a line) are evaluated with the required precision to ensure their correctness. This
operations however do not take constant time. Construction of new geometric objects
is done in a way that enables the verification of the correctness of predicates operating
on them. Cgal uses efficient software libraries such as GMP1 and MPFR2 as building
blocks for this mechanism. Finally, it uses a concept called Kernel to allow the user to de-
cide whether to use exact computing, floating point types and several other optimization
features combining the two. Refer to [?] for additional details.

The implementation of RCA and CWEIN relies heavily on the “2D Arrangements”
package [?], representing planar subdivisions (see Definition ??) in Cgal. The “2D Ar-
rangements” package allows to build the planar subdivision for different types of curves.
The curve type is chosen by using the appropriate traits class. A topology traits class
which models the concept of ArrangementDcel [?] (which is a data structure representing
a planar subdivision) represents the topological relationships between arrangement cells,
thus allowing for example, to embed the arrangement on a surface. The “2D Arrange-
ments” package contains algorithms that operate on arrangements such as sweep-line and
point-location.

7.2 Implementation of RCA

In this section we discuss the main issues of implementing RCA using Cgal. There
are many delicate points affecting the runtime of an algorithm implemented in an exact
manner. We describe some of the decisions taken in our implementation and deal with
some of the finer details. We show the main design issues and data structures, which
allow for an efficient implementation. Specifically, in Section ?? we discuss how we used
the arrangement data structure for RCA. Section ?? shows how we implemented collision
detection using AABBTree.

7.2.1 Using the Cgal Arrangement Data Structure

The most important data structure of RCA is the Arrangement_with_history_2. This
arrangement is extended in several ways, which we describe below, in order to store
additional information, and perform operations more efficiently. This arrangement stores
the history of the curves that the arrangement is built from, for our case the convolution
segments. By this we can detect which convolutions segments created a specific vertex
or edge and the directions of these segments.

We use the arrangement to store the planar subdivision induced by the reduced con-
volution. We then mark the specific edges which are on the boundary of the Minkowski
sum. Isolated vertices are also a feature of the arrangement, which is used to store de-
generate vertices (since degenerate vertices are always isolated). In order to mark the
features of the arrangement that are part of the Minkowski sum boundary, we extend

1http://gmplib.org.
2http://www.mpfr.org.
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the DCEL half–edges with additional information stating whether they are part of the
boundary or a degenerate feature.

In most cases (see Chapter ??) the most time consuming part of RCA is the insertion
of the reduced convolution segments into the arrangement. The arrangement uses the
sweep-line algorithm in order to compute the intersections between the input segments
and build the DCEL. Naively, one would just insert all the input segments into the
sweep algorithm. However, since we deal with segments whose source are translations of
segments of two simple polygons, we know immediately that some intersections are not
possible. We created a custom traits class, which enables us to use prior information to
filter out expensive intersection tests, which we describe next.

In particular recall that a segment of the convolution is represented by a pair of states,
for example the pair (i, j), (i+1, j) describes the segment si that lies between the vertices
pi and pi+1 of p translated by the vector vj from the origin to vertex qj of Q. In this
case, since P is simple no other segment of P translated by vj intersects si. We add
this information to the arrangement traits class by augmenting the state information for
the segments of the arrangement. The traits class checks the state information while
performing intersection tests, and does not check for intersection among such segments.

The exact computation mechanism uses many lazy evaluation tricks to perform exact
computation only when they are necessary. For the segment si and the segment si+1 that
lie between the vertices pi+1 and pi+2 of P , pi+1 is a joint vertex. If both segments are
translated by the same amount t, a naive computation will detect that they intersect at
pi+1 + t, which is a fact we know in advance, triggering expensive exact computations.
Fortunately, the scheme we have just described in solves this issue as well.

7.2.2 Collision Detection via Bounding Volume Hierarchy

In this section we describe the implementation of detecting the interior collision of two
polygons P and Q using Cgal’s AABB_Tree package [?]. For the algorithmic details, and
how to use collision detection for deciding CDP, see Section ??.

Cgal’s AABB_Tree package is originally designed for geometric entities in three-
dimensional space. The AABB_Tree contains bounding boxes and primitives. The primi-
tive types can represent points, segments, triangles and so forth. The AABB_Tree performs
queries on an input primitive such as a segment or triangle and detects intersection, re-
ports the intersection points and computes the distance (i.e., closest primitive to the
query primitive) with respect to the geometric entities stored in the AABB_Tree.

We created a modified version of this package, which can answer whether two polygons’
interiors intersect. Since RCA is implemented for planar polygons, we define the package
types to be planar. For a given AABB_Tree T1 we define a query, which accepts another
AABB_Tree T2 and a translation vector v and decides whether T1 and T2 + v intersect in
their interior.

Class Design of AABB Tree Package

The AABB-tree is represented by a template class AABB_Tree. This class defines the
queries that can be performed on the tree. It has a member class AABB_Tree_Node,
which represents a node in the tree, in this case, the root. The nodes contain references
to their children and methods that allow the user to traverse their subtree. The nodes
hold their bounding boxes as well, which contain the region of space occupied by their
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entire subtree. The AABB_Tree contains a traits class type, AABB_Traits, which is given
as a template parameter. The traits class defines the actual geometric entities the tree is
composed of and implements the geometric predicates as required by the tree.

RCA Modifications of AABB Tree Package

We now describe how we modified the AABB_Tree package to enable it to answer the
query described above. First though, we show how we changed the package to work on
geometric entities in the plane. Then we describe the features that were added in order
to perform our query.

We implemented a primitive class AABB_segment_2_primitive, which defines the
geometrical entities for a point and segment in the plane. The geometric traits, a tem-
plate parameter for AABB_segment_2_primitive, provides the actual types definitions
for those geometrical entities concepts. The class AABB_traits_2 defines the map-
ping between the three-dimensional geometrical entities and predicates as defined by
the original AABB_Tree package to the actual two-dimensional implementation. The
AABB_segment_2_primitive is given to AABB_traits_2 as a template parameter, which
defines the actual primitive type.

For performing a query that detects an interior intersection between two polygons,
one of which is translated, we made the following changes to the package: We introduce
a new method to AABB_Tree, join_traversal. This method accepts a second tree as
a parameter, and traverses both trees recursively as described in Section ??. The class
AABB_Node now includes the actual implementation for this traversal and is invoked when
the join_traversal method is called.

The modified AABB_Tree has to support a query in which one of the polygons is trans-
lated. For each query, an instance of AABB_Traits is constructed with the translation
vector for the query. The second operand to join_traversal is the designated tree to
be translated by the translation vector. The class AABB_Traits is responsible for imple-
menting the intersection tests. It uses the translation vector to translate every geometric
entity which originates from the tree which is designated to be translated. There are two
types of geometric entities stored in the tree, primitives and bounding boxes. Translating
a primitive uses Cgal’s exact computation. A translated bounding box is computed
using interval arithmetic, such that it contains the correct translated original bounding
box.

When computing the intersections of two segments, we may encounter the case of
weak intersection, as described in Section ??. In order to deal with this case, the
information about the neighboring segments with regard to the original polygons has to
be retrieved. We store the original polygons in the traits class and keep references from
the primitives in the tree to the original segments of each polygon.
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Conclusions and Future Work

This thesis discussed different aspects of convolution-based methods for computing the
Minkowski sum of two polygons in the plane. We examined the definition of the convolu-
tion set and convolution cycles. We proved that convolution cycles exist, and provided an
optimal algorithm to trace them. Then, we showed that the winding numbers as defined
by those cycles are positive only in the faces interior to the Minkowski sum. If we chose
a slightly different set of segments for the convolution, the winding number of a point
p represents exactly the number of connected components of the intersection of P and
−Q + p where P and Q are simple polygons. This result is the “Convolution Theorem”
stated in [?], which is the basis for Wein’s convolution-based method correctness.

It is left to generalize our proof for the case of non–simple polygons as we began in the
end of Chapter ??. Another possible continuation of this work is linking it to the general
framework of constructible functions [?], which should provide an alternative proof of the
convolution theorem for higher dimensions.

We implemented a robust algorithm for reduced convolutions, which handles low
dimensional features in the output. The algorithm shows preferable results for larger
polygons cases both in runtime and memory consumption. We used a bounding volume
hierarchy to make multiple queries of collision detection faster, which cause our reduced
convolution implementation to perform better than Lien’s implementation for some cases.
Further investigation that compares our reduced convolution implementation to Lien’s
implementation should be performed to assess how the two methods compare against
each other.

We discussed a different way to check whether a point is interior to the Minkowski sum
by using a ray shooting and a cutting tree data structure (which stores mn convolution
segments). This method guarantees a theoretical sub–linear query time, but hard to
implement in practice. A heuristic approximation which uses an interval tree did not
prove better than the bounding volume hierarchy. Additional tested method was the
sweep–line collision detection, which yielded the worst running time in practice.

We saw that our reduced convolution implementation had problems in the fork exam-
ple where it needs to perform multiple collision detection tests. A parallelization scheme
could be considered as each collision detection test is independent of the other. This
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process may be even parallelized using a GPU.
The monotonic convolution [?] should be implemented in Cgal as well and tested

against our reduced convolution implementation and the implementation given by Lien.
Unfortunately, it is still unknown how to extend the monotonic convolution to three-
dimensional space.


