
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler

Faculty of Exact Sciences
The Blavatnik School of Computer Science

Snap Rounding

on the Sphere

Thesis submitted in partial fulfillment of the requirements for the M.Sc.

degree in the School of Computer Science, Tel-Aviv University

by

Boris Kozorovitzky

This work has been carried out at Tel-Aviv University
under the supervision of Prof. Dan Halperin

September 2010

i

Acknowledgements

I deeply thank my advisor, Prof. Dan Halperin, for his help in guidance, support, and
encouragement, and for introducing me to the field of applied computational geometry.

I wish to thank Ophir Setter, Efi Fogel, and Eric Berberich for sharing priceless knowledge
and helping me at the expense of their own free time. I would also like to thank all other
members of the applied computational geometry lab at the computer science school of Tel-
Aviv University who provided support, useful suggestions and interesting conversations.

I wish to thank all the people involved in the development of the great open source and
free tools I used throughout the making of this thesis. Tools such as Inkscape, WinShell,
MiKTeX, and many more that saved me a lot of time and effort.

Finally, I wish to thank my family and coworkers for allowing me spend so much time working
on this thesis and for their help and support.

ii

Memoriam

In memoriam of Eshed Zachevsky, a dear friend whom I miss so much.

iii

iv

Abstract

Snap rounding (SR for short) is a well known method for transforming a planar arrangement
of segments given in some arbitrary-precision coordinates into a fixed-precision representa-
tion. We extend the method to transforming an arrangement of geodesic arcs on the sphere.
We present two approaches for solving the problem. A simple approach of enclosing the
sphere in an isocube and projecting the arrangement onto its faces and a more complex
approach that makes use of tools from Discrete Global Grid Systems (DGGS) to create a
better approximation to the sphere. We also generalize the Guibas-Marimont proof of the
topological properties preserved by the standard SR for segments in the plane; the gen-
eralization is needed for the DGGS approach. We present in detail the implementation
of both approaches and give rounding results for both methods, obtained with our Cgal
(Computational Geometry Algorithms Library) based implementation.

Contents

1 Introduction 1

1.1 Related Work . 4

1.2 Introduction to Spherical Geometry . 5

2 The Isocube Approach 9

2.1 Preliminaries and Notation . 11

2.2 The Spherical SR Process . 12

2.3 The Topological and Geometric Properties of Isocubical SSR 13

3 The DGGS Approach 17

3.1 The Subdivision Process . 18

3.2 Grid Types for which SR Preserves Topology 19

3.3 Defining Pixels . 21

3.4 Additional Notation . 23

3.5 The Spherical SR Process . 24

3.6 The Topological and Geometric Properties of DGGS SSR 24

4 SSR With Labeled Pixels 27

4.1 Labeling the Pixels . 27

4.2 Labeled Spherical SR Process . 28

4.3 Conclusion . 29

5 Implementation 31

5.1 Cgal Packages Used by the Implementation 31

5.1.1 2D Arrangement . 31

5.1.2 2D Snap Rounding . 32

5.1.3 Arrangement of Geodesic Arcs on the Sphere 32

5.2 Implementation Details . 32

5.2.1 Input . 33

5.2.2 Distribution to Faces . 33

v

vi CONTENTS

5.2.3 Snap Rounding on Faces . 34

5.2.4 Adding Connection Arcs . 35

5.2.5 Output . 35

5.3 Measuring the Directed Hausdorff Distance on the Sphere 36

6 Experimental Results 37

6.1 Robustness . 39

6.2 Rounding Distance . 41

6.3 Random Input . 42

6.4 Real World Input . 43

7 Conclusion and Future Work 49

A Appendix 51

A.1 Convex Sets on a Sphere . 51

A.2 Circumcenter Bit Length . 51

A.3 Input Files Example . 53

List of Figures

1.1 Geometric rounding compared to regular rounding 2

1.2 SR illustration . 3

1.3 An illustration of grids on the sphere . 7

2.1 A unit sphere enclosed by an isocube . 10

2.2 The 2D coordinate system on each face . 11

2.3 The forbidden region of a square face . 14

2.4 Possible connection arcs between four pixels. 15

2.5 Possible connection arcs between three pixels. 16

3.1 The octahedron . 17

3.2 Triangular face subdivision . 18

3.3 Shrinking edge during deformation . 21

3.4 The 2D coordinate system on each face . 22

3.5 Creating parallelogram p-pixels . 23

3.6 Forbidden region of a triangular face . 25

4.1 Assigning labels to new pixels after a subdivision step 28

4.2 Icosahedral net . 28

6.1 Spherical snap rounding of real world inputs 46

6.2 Spherical snap rounding of real world inputs 2 47

6.3 Spherical snap rounding of real world inputs 3 48

A.1 The bit length of circumcenter . 52

vii

viii LIST OF FIGURES

List of Tables

2.1 Isocube 2D coordinate axes . 10

3.1 Octahedron 2D coordinate axes . 22

6.1 Examples of spherical grids . 38

6.2 Examples of how degeneracies are handled 39

6.3 Abbreviations. 41

6.4 Rounding results of a single arc with respect to its distance from the spherical
face boundary on a face of the isocube . 42

6.5 Rounding results of a single arc with respect to its distance from the spherical
face boundary on a face of the octahedron 42

6.6 200 random arcs results 1 . 43

6.7 200 random arcs results 2 . 43

6.8 Increasing number of arcs results . 44

6.9 Rounding the border of USA 1 . 44

6.10 Rounding the border of USA 2 . 44

6.11 Rounding the map of major roads in North America 1 45

6.12 Rounding the map of major roads in North America 2 45

ix

x LIST OF TABLES

1
Introduction

In computational geometry, geometric objects and algorithms are often described using in-
finite precision arithmetic (the so-called real RAM model [PS85]) for exact calculation of
predicates and new geometric objects. In general assuming infinite precision and exact
arithmetic is possible, yet it is often too slow and space consuming to run on real world
inputs. In some cases the input is represented by low precision coordinates but after some
manipulations (e.g., building Voronoi Diagrams [OBSC00,AK00]) the coordinates may grow
substantially in their bit length making further calculations cumbersome and time consum-
ing. Furthermore, sometimes the calculated data is to be transfered to a different system
that does not support exact calculations and may even receive its input in single-precision
or in integer arithmetics (graphical frameworks often work this way).

To produce finite-precision approximation of geometric objects several methods of geo-
metric rounding can be used. Geometric rounding for planar straight edge graphs can be
defined as follows: We have a set of line segments on the plane that may intersect only at
their endpoints. The goal is to round the vertices to integer coordinates while maintaining
the topology as much as possible. There are several definitions on what it means to preserve
the topology. In general, the geometric rounding process creates a polygonal chain, polyseg-
ment in place of every original input segment and we expect crossings of these polysegments
to correspond to vertices in the original input.

We review common methods for geometric rounding of an arrangement (see definition
in Section 1) of segments in the plane. (i) The Greene and Yao [GY86] method. Consider
the grid with pegs at all the integer points and the segments as rubber bands on the plane.
Move the vertices of the segments to the closest peg and keep the rubber band tight. The
result is a polysegment through integer points. This method clearly maintains topology
but also introduces many unnecessary vertices in the output. (ii) The Milenkovic shortest
path geometric rounding [Mil00] method. Milenkovic gives his own definition to topological
consistency preservation and gives a general rounding algorithm. The algorithm requires the

1

2 Chapter 1. Introduction

(a) (b) (c)

Figure 1.1: An example of an arrangement (a) whose vertices are rounded to integer coordinates with
regular rounding (b) and with snap rounding (c). Regular rounding does not preserve topology, as shown
in the figure a rounded vertex “jumps” over a segment. Furthermore, two new unrounded intersections
are created. These issues are not present in the snap rounded arrangement1.

definition of a lattice of reference points. Each reference point defines a simply connected
cell such that every point in the plane is in one and only one cell. In the algorithm each
vertex in the input is rounded to the reference point of the cell that contains this vertex.
The algorithm is hard to implement because it requires the vertices to “move” within the cell
and “push” the segments in its path until it reaches its final position. Finally, (iii) the Snap
Rounding method which is the focus of this thesis and is described in detail below. Figure 1.1
shows why geometric rounding is needed over trivial rounding of vertex coordinates in cases
where it is important to preserve the topology of the subdivision induced by the segments.

Snap Rounding

Snap Rounding (SR for short) is a method for finite-precision approximation of arrange-
ments of segments in the plane: It transforms the arrangement whose segment endpoints’
coordinates are given in some arbitrary-precision, into a low precision representation.

Given a finite set of segments S, the arrangement A(S) is the subdivision of the plane
into vertices, edges, and faces induced by S. The vertices of A(S) are either endpoints or
intersection points of segments in S. For a given arrangement whose vertices are specified
in arbitrary precision snap rounding is the following process:

1. Tile the plane with a grid of unit squares centered at integer coordinates. We
refer to each square as a pixel.

2. Define a pixel to be hot if it contains a vertex of the given arrangement.

3. Replace each vertex by the center of the hot pixel containing it.

4. Replace each original input segment e by a polygonal chain e′ going through the
centers of the hot pixels intersected by e in the same order the pixels are met by
e.

1Figure based on [Hob99]

3

See Figure 1.2 for an illustration.

(a) (b)

Figure 1.2: An arrangement of segments before (a) and after (b) snap rounding.

We refer to an original (unrounded) segment and to a resulting polygonal chain as urseg-
ment and polysegment, respectively [GM98]. Note that in the process, vertices, edges, and
faces of the original arrangement may collapse. At the end of the process all the vertices in
the snap rounded arrangement are at integer coordinates. The snap rounded arrangement
preserves topological and geometric properties with respect to the original arrangement.
Geometric similarity— the rounded polysegment e′ is within the Minkowski sum of the
original ursegment e and a unit square centered at the origin. Topological similarity—
there is a continuous deformation of the segments in S to their snap-rounded counterparts
such that no segment ever crosses over a vertex of the arrangement.

In the thesis we consider a variation of the rounding problem. In our case the input is an
arrangement of geodesics (arcs of great circles) on a sphere with vertices given in arbitrary
precision. Our spherical snap rounding (SSR for short) transforms this arrangement into
low precision representation, while preserving topological and geometric properties similar
to those preserved by the original SR scheme for segments in the plane. The properties of
the SSR process and the rounded arrangement are as follows:

1. The rounded arcs drift such that the directed Hausdorff distance on the sphere
(see formal definition in Section 1.2) between the rounded polyarc and the original
arc is no larger than the diameter of the circumcircle of the largest spherical pixel
in the defined grid.

2. The original and the rounded arrangement are topologically equivalent up to the
collapsing of features [GM98].

3. The centers of the spherical pixels can be represented using small (with respect
to bit length) rational values.

4. We also require that: The spherical pixels should have similar shape and area
and should be as regular as possible.

5. The grid should be refinable (to allow for increasing the approximation quality).

4 Chapter 1. Introduction

1.1 Related Work

SR was independently introduced by Hobby [Hob99] and by Greene (unpublished manuscript)
as an alternative to the works of Greene and Yao [GY86] and of Victor Milenkovic [Mil89,
Mil90]. Hobby relies on the Bentley-Ottmann sweep [BO79] and his approach is the basis
for the SR work that followed. This basic scheme was then generalized by Guibas and Mari-
mont [GM98] to a dynamic SR algorithm where the authors also introduce some elementary
proofs regarding the topological and geometric properties of the snap rounded arrangement.
Two additional algorithms by Goodrich et al. [GGHT97] and by de Berg et al. [dBHO07]
give two versions of the SR algorithm. The first algorithm takes advantage of the fact that
a hot pixel can be discovered by finding only one intersection or endpoint within the pixel.
All other intersections and endpoints can be ignored within this pixel. The second algorithm
takes special care with multiplicity of rounded arcs (namely, many ursegments collapsing
to the same rounded segment) and uses “bundles” and a special sweep technique to handle
multiple arcs emanating from the same hot pixel. Hershberger [Her08] presents an improve-
ment to both algorithms by introducing the is(h) factor. is(h) is the number of segments
that have an intersection or an endpoint within the hot pixel h and it is clearly less or equal
to the number of segments incident to h. Hershberger’s SR algorithm performs well in all
the cases. Bhattacharya and Samber [BS07] modify the definition of a hot pixel slightly and
produce an algorithm which works on columns instead of single pixels.

Another approach to SR comes in the form of iterated SR presented by Packer and
Halperin [HP02]. In their paper the authors notice that after SR a segment can still be very
close to a vertex in the rounded arrangement. They show that if the input arrangement
is contained in a 2b × 2b grid of unit pixels the distance between a rounded segment and
a vertex can be almost 2−b. To alleviate this problem they suggest running SR iteratively
until no change is made in the rounded arrangement and show an efficient way of doing so
using oriented kd-trees. In a later paper [Pac08], Packer deals with the fact that in iterative
SR a rounded segment might drift up to Θ(n2) units from the original segment. He suggests
introducing an additional parameter to the original algorithm which bounds the drift of the
rounded segment by artificially heating specific pixels around the unrounded segment.

The subdivision of the sphere that we use is based on known methods in the fields of
Geodesy and Cartography. In these fields there is a requirement for a discrete representation
of the sphere. Such a representation allows classification of discrete areas (forests, rivers,
wheat field, etc.) and the coloring of pixels for display. We concentrate on the Discrete
Global Grid Systems (DGGS) surveyed by Sahr et al. [SWK03]. They show several ways to
build a discretization of the sphere and show the favorable properties of such subdivisions.

Contribution of the Thesis

In this work we describe two approaches of discretizing the sphere and dividing it to spherical
pixels. Chapter 2 describes a discretization based on an isocube which creates six identi-
cal spherical faces and present a method of snap rounding geodesic arcs on the sphere by
subdividing these faces into spherical pixels. We prove the topological and the geometric

1.2. Introduction to Spherical Geometry 5

properties of this method with respect to the list of properties given above. Chapter 3
presents a more elaborate method based on DGGS that uses the octahedron to divide the
sphere into eight identical spherical faces which results in smaller spherical pixels and there-
fore a better approximation of the sphere. We present insights regarding the grids that can
be used for planar SR and still preserve the topological property. We continue and prove the
topological and geometric properties for the DGGS-based method. In Chapter 4 we show
how the DGGS method can be extended to provide an even better approximation of the
sphere but only when the limit on the bit length of the coordinates is dropped. Chapter 5
describes in some detail our implementation of both approaches. We use Cgal [2] to build
an arrangement of geodesic arcs and then round it using the underlying construction of each
approach. In Chapter 6 we report on experimental results obtained with our implementation
on various types of synthetic and real world inputs. Finally, in Chapter 7 we present our
conclusions and suggestions for future work.

In recent years more and more services and applications use data represented on the
sphere. The best known examples of this trend are utilities such as NASA World Wind [9],
ESRI Arc GIS Explorer [3] and Google Earth [6] that represent all the data on the sphere.
Traditionally running geometric algorithms on this data requires projecting it onto the plane
and running the planar algorithm, a method that introduces deformations and other unde-
sired artifacts to the data. Sometimes, such projections require complex calculation which
at times create incorrect and unusable results. For example, convex shapes become concave
or new intersections which do not exist in the original input are introduced. We present
a spherical variation on a widely used method of planar snap rounding that can be run
directly on spherical input and result in rounded spherical output. Much like in the planar
version, the spherical algorithm can be run with grids of various pixel sizes that increase the
geometric quality of the output but has a negative effect on the bit length of the coordinates
in the output.
Our discussion on possible grids for planar SR provides the groundwork needed for imple-
menting variations of the basic algorithm which can include different pixels shapes.

1.2 Introduction to Spherical Geometry

Spherical geometry differs from the Euclidean geometry in several ways, most notably the
sphere is a finite closed surface while the plane is an infinite surface. A geodesic is the
shortest curve between two points on a given surface. On the plane a geodesic is simply a
line segment, on the sphere it is the section between two points supported by a great circle
containing the two points. This arc is made unique by selecting the shorter arc, unless, the
points are antipodal in which case there are infinitely many such geodesics with equal length.
Throughout this thesis we use the unit sphere centered at the origin, we consider the length
of a geodesic between the points A and B on the sphere as the angle ∠AOB (in radians)
where O is the origin. This is the standard definition for a geodesic arc on a unit sphere.

A spherical triangle is an area enclosed by three pairwise intersecting geodesics. The sum
of angles in such a triangle is between π and 3π radians (A nice anecdote is that a right
spherical triangle is one with three π

2
angles). The perimeter of a spherical triangle is the

6 Chapter 1. Introduction

sum of lengths of the geodesics inducing it and therefore can be easily calculated once the
vertices of the triangle are known. The area of a spherical triangle can be derived from its
angles and is given by Girard’s “spherical excess” formula [Cox69] as 4 = α + β + γ − π
where α, β, and γ are the spherical angles of the triangle. Throughout this thesis we will
use the spherical coordinate system (θ, φ), 0 ≤ θ < 2π, 0 ≤ φ ≤ π to represent coordinates
on the unit sphere given by two angles.

A Note on Spherical Grids

Spherical grids were the subject of research along the years (and still are) but perhaps the
best known grid is the one induced by the geographic coordinate system (φ, λ),−π

2
≤ φ <

π
2
,−π ≤ λ ≤ π and commonly known as the Latitude-Longitude grid [4]. The grid lines

are formed by keeping the radius and one of the angles constant while changing the other
angle in fixed interval. The main advantage of this grid is that every cell is a square in the
parameter space, making it easy to use. But such a grid has several critical disadvantages.
The grid cells have inconsistent size and shape on the sphere and the pole cannot be uniquely
represented in the coordinate system. A slightly different approach generates a grid using
Voronoi partitioning of the sphere. First we select points on the sphere with some predefined
distribution and define the grid cells as the Voronoi partitioning of the sphere with the points
as sites [JDG02, DJ05]. Recent research created yet another kind of grid with beneficial
qualities, the HEALPix grid [GHB+05]. The HEALPix grid satisfies three criteria. It is
hierarchical (can be easily refined to produce a grid with smaller cells), it has equal area
cells and the cell centers are distributed on an isolatitude grid (a grid with equal latitude for
each row of pixels).

Sometimes it is important for the cells on the grid to be of equal area. This means that
the cells will be very distorted as in the Snyder Equal Area grid [Sny92] or the grid can be
constructed using small circle arcs [SKS02].

A completely different way to define a spherical grid is by projecting the facets of a
polytope inscribed in the sphere onto the sphere. An example of this method, which is
commonly used, is the DGGS [SWK03]. To build a DGGS, five parameters are selected:
the base regular polytope, the orientation of the polytope with respect to the sphere, the
transformation method of points on the unit sphere to and from the polytope, the subdivision
method of the faces of the polytope and the selection of the final grid cells. More information
on DGGS is given in Chapter 3.
Figure 1.2 shows four examples of grids on the sphere.2

Hausdorff Distance on the Sphere

We define the distance d(A,B) between the points A and B on the sphere as the length of
the geodesic between these points. On the unit sphere 0 ≤ d(A,B) ≤ π. This allows us to

2This figure and other 3D figures in this thesis were created using an interactive viewer for an extended
Vrml format called “Player” (see footnote in Section 5.2.5)

1.2. Introduction to Spherical Geometry 7

(a) (b)

(c) (d)

Figure 1.3: An illustration of grids on the sphere: (a) the lat-lon geographic grid (b) Voronoi cells of
points (c) DGGS with triangular pixel selection (d) DGGS with hexagonal pixel selection.

use the directed Hausdorff distance on the sphere as dH(X, Y) = max
x∈X

(
min
y∈Y

(d (x, y))

)
.

In the plane, calculating the Hausdorff distance between two segments with Euclidean
metrics can be done by considering only the endpoints of the two segments. To calculate
the Hausdorff distance for two geodesic arcs χ and ψ on the unit sphere, dH(χ, ψ) we must
determine which points on the two arcs are candidates to determine this distance. The
basic block of the calculation is finding the minimal distance between two points. We know
that this distance is the length of the geodesic arc between the points (by definition). The
next step is to determine the minimum distance from a point to an arc. For simplicity and
w.l.o.g., we assume that ψ is on the equator. We calculate the minimum distance between two
points on the unit sphere centered at the origin. A general point (a, b, c) (given in Cartesian
coordinates) and a point on the equator, (x,±

√
1− x2, 0). Consider the first point as the

vector ~p originating at the origin and the second point as the vector ~q also originating at
the origin. The angle between the vectors can be expressed as ~p · ~q = cos(α), or f(x) =
ax ± b

√
1− x2 = cos(α). To find the minimum we find the derivative f ′(x) = a ± b

2
−2x√
1−x2

which equals 0 when a
b

= ± x√
1−x2 . This means that the point (a, b, c) is on the same longitude

as the point on the equator.

Definition 1.1. Let α = ((θ1, π/2), (θ2, π/2)) be a geodesic arc on the unit sphere (assume
w.l.o.g. that θ1 < θ2) which coincides with the equator. The vertical lune of α, V L(α) is the
set of all points (θ, ϕ) such that θ1 ≤ θ ≤ θ2 and 0 ≤ ϕ ≤ π

Since ψ coincides with the equator then we can divide the arc χ into two parts. The first

8 Chapter 1. Introduction

part is χ̀ = χ∩ V L(ψ) where we consider only the point with the greatest absolute latitude.
Note that this does not have to be an endpoint of χ̀, if the apogee of the underlying great
circle of χ is in V L(ψ) then it has the greatest absolute latitude. The second part is χ \ χ̀,
the remainder of χ where we can calculate the required distance by using only the endpoints
(the distance is between two endpoints).

2
The Isocube Approach

We wish to adapt the planar snap rounding algorithm for the sphere, but there is no known
way of generating recursive tiling of the sphere with convex identical cells [SWK03,WKSS98]
(see Appendix A.1 for a definition of spherical convexity) which are required by the rounding
properties we suggested above. Instead, we adapt the input by projecting it on several planes
and get a planar arrangement on each plane. Then we apply an augmented version of the
standard planar SR algorithm. We start by enclosing the unit sphere with an isocube (the
facets of which are oriented parallel to the axes). We introduce a label for each face of
the isocube: The coordinates of the centroid of that face. The coordinates of the centroids
in IR3 are (±1, 0, 0),(0,±1, 0), and (0, 0,±1). To maintain consistency we assign each face
its inclusive and exclusive boundary. This is important in order to make the SR process
well defined: Each point on the cube (and therefore each point on the sphere) will be thus
eventually assigned to a unique pixel. The following list is the assignment of the inclusive
boundary for each face:

• The face labeled (1, 0, 0) is associated with the open edges ((1, 1,−1), (1, 1, 1)) ,
((1,−1, 1), (1, 1, 1)) and the vertex (1, 1, 1).

• The face labeled (0,−1, 0) is associated with the open edges ((1,−1,−1), (1,−1, 1)) ,
((−1,−1, 1), (1,−1, 1)) and the vertex (1,−1, 1).

• The face labeled (−1, 0, 0) is associated with the open edges ((−1,−1,−1), (−1,−1, 1)) ,
((−1, 1,−1), (−1,−1, 1)) and the vertex (−1,−1,−1).

• The face labeled (0, 1, 0) is associated with the open edges ((−1, 1, 1), (−1, 1,−1)) ,
((1, 1,−1), (−1, 1,−1)) and the vertex (−1, 1,−1).

• The face labeled (0, 0,−1) is associated with the open edges ((−1,−1,−1), (1,−1,−1)) ,
((1, 1,−1), (1,−1,−1)) and the vertices (1,−1,−1), (1, 1,−1).

9

10 Chapter 2. The Isocube Approach

Face X Y

(1,0,0) -Y -Z
(0,1,0) X Z
(0,0,1) -Y X
(-1,0,0) Y Z
(0,-1,0) -X -Z
(0,0,-1) Y -X

Table 2.1: The definition of 2D coordinate axes on each face of the isocube.

• The face labeled (0, 0, 1) is associated with the open edges ((1, 1, 1), (−1, 1, 1)) ,
((−1,−1, 1), (−1, 1, 1)) and the vertices (−1, 1, 1), (−1,−1, 1).

Figure 2.1: A unit sphere
enclosed by an isocube
whose edges are pro-
jected onto the sphere.

The selection of the open edges and vertices is arbitrary with
respect to the 3D axes. The only guideline it follows is that every
face must be associated with two edges whose closure share a vertex,
and that vertex. Since there are six faces and eight vertices, two
vertices were assigned to faces without specific consideration.

We can increase the precision of the output by subdividing the
face of the isocube. Actually, we perform the subdivision on each
face of the enclosing isocube by extending perpendicular bisectors
from its edges. Each face is subdivided by performing ρ iterations
creating 4ρ square cells on every initial face. We refer to each cell as
a planar pixel (p-pixel). Every p-pixel is defined to include only the
top and left edges and their incident vertex, this is consistent with
the planar snap rounding scheme.

We define a new 2D coordinate system on every face of the
isocube relative to the 3D coordinate system of the isocube and the sphere. The 2D co-
ordinate system of each face is presented in Figure 2.2 and is summarized in Table 2.1.

We choose a point in IR3 and shoot a ray from the origin through the point. The
coordinate on the sphere in this representation is the intersection of the ray and the sphere
surface. It is clear that in this representation each point on the sphere has infinitely many
coordinates but this fact does not pose a problem in our discussion. With this convention
we can represent the initial coordinates of the face centers on the sphere with small rational
numbers (in terms of bit length). Our initial face centers are represented using the numbers
−1, 0, 1, which requires only 2 bits per axis and 6 bits per coordinate. In each subdivision
the denominator is a power of 2 with bit length ρ and the numerator is in the range of
(−2ρ, 2ρ); thus having the bit length of ρ+ 1. This means that the bit length of the centroid
coordinates is in the order of O(ρ).

2.1. Preliminaries and Notation 11

(a) (b)

Figure 2.2: An illustration of the 2D coordinate axes on each face relative to the 3D axes of the isocube.

2.1 Preliminaries and Notation

The input to Spherical Snap Rounding (SSR) is a set C of geodesic arcs on a sphere. For
convenience we use the term arc to refer to a great circle arc; when we use a more general
definition of arc, we explicitly say so. The input arc-endpoints are given in some arbitrary
precision by specifying their start and end vertices. The coordinates of the vertices are given
in our coordinate scheme described above. We define an additional vector to determine the
direction of the arc (two non antipodal points on the sphere can be connected with two
arcs, while two antipodal points can be connected with an infinite number of arcs). The
arrangement of arcs on the sphere is denoted by A(C) and it comprises the vertices, edges
and faces induced by the arcs on the sphere. The goal of our algorithm is to round all
the vertices of the arrangement (arc endpoints and arc intersection-points) into some fixed
coarser precision: In our case the vertices of the arrangement will be rounded to the centers
of the pixels that we define on the faces of the isocube and project onto the sphere. For
the rest of the thesis we will refer to these points as the reference points of the pixels as in
further discussion they are not at the geometric center of the pixels. We use the term urarc
for an original unrounded input arc, and the term polyarc for the rounded version, which is
a series of arcs concatenated at the endpoints. The input to the algorithm is a collection of
urarcs C and a parameter ρ, and the output is the arrangement, which is the spherical snap
rounded version of A(C).

The following is the notation that we will use hereafter:

• A(C) - The arrangement of urarcs on the sphere.

• ρ - The number of subdivision steps on each face of the isocube.

• fi - A face of the isocube.

• GP - The Gnomonic projection from the unit sphere onto the faces of the isocube. For

12 Chapter 2. The Isocube Approach

some point p on the sphere, the intersection point of the ray ~op from the center o of
the sphere with a face of the cube is the Gnomonic projection of p, denoted GP (p).

• G−1P - The inverse transformation of GP : the Gnomonic projection from the faces of the
isocube onto the sphere.

• φi - G−1(fi), the spherical face corresponding to the face fi.

• pi - A planar pixel i (also referred to as a p-pixel) on a face of the isocube.

• ξi - G−1(pi), a spherical pixel (also referred to as an s-pixel). The reference point of
the s-pixel is the inverse projection of the reference point of the corresponding p-pixel
and it is represented with the exact same coordinate in our coordinates scheme.

• SR(s) - The polysegment induced by the ursegment s after applying the standard
version of planar snap-rounding algorithm.

• SSR(σ) - The polyarc induced by the urarc σ after applying the isocubical version of
spherical snap-rounding.

2.2 The Spherical SR Process

The following steps give an overview of the SSR process:

1. Project the arrangement A(C) onto the faces of the isocube using GP .

2. Run planar SR on each face of the isocube with consideration to the boundary
conditions of that face.

3. Project the resulting arrangement back onto the sphere using G−1P .

4. Connect the projected arrangements using connecting arcs (see below).

In more detail, given an arrangement A(C) of geodesic arcs on the unit sphere centered
at the origin and the integer ρ, the spherical snap rounding proceeds as follows: We enclose
the unit sphere with an isocube aligned to the coordinate axes. On every face of the isocube
we perform ρ steps of the previously mentioned subdivision creating a total of 6× 4ρ square
p-pixels. Now, we project the arrangement A(C) onto the faces of the isocube using GP .
We define a p-pixel to be hot if it contains a vertex in the projected arrangement or it has
a segment crossing its boundary into a different face of the isocube. We call a segment
on the face of the cube that intersects the face boundary and extends to another face a
“broken” segment. In this case we create two vertices infinitesimally close to the boundary
edge intersected by the segment, one in each p-pixel, each p-pixel on a different face, and
register each of these p-pixels as boundary-connected and hot. We refer to the intersection
point itself as the planar connection point of the two p-pixels and its projection onto the
unit sphere as the spherical connection point. Note that if a projected segment ends exactly
on the boundary we use the inclusion rules previously defined to decide to which pixel(s) it

2.3. The Topological and Geometric Properties of Isocubical SSR 13

belongs. Each vertex of the projected arrangement is replaced by the reference point of the
hot p-pixel containing it and each projected segment s is replaced by a polygonal chain going
through the hot p-pixels in the same order they are met by s on a single face. In other words,
we run the planar SR on every face. After the rounding process, all the rounded segments
are projected back onto the sphere using G−1P . For each registered pair of connected p-pixels,
their corresponding s-pixels reference points are connected with a small geodesic arc.

2.3 The Topological and Geometric Properties of Isocu-

bical SSR

We show that in SSR each polyarc is close to its inducing urarc and that we satisfy Property 1
presented in the Introduction.

Observation 2.1. On a single face of the isocube the geometric property of the planar SR
holds. Each segment is rounded within the Minkowski sum of the segment and a p-pixel
centered at the origin.

This follows from the properties of the standard planar SR.

Lemma 2.2. Given a spherical face φi and an urarc σ that is contained entirely within φi.
Let ξj ⊆ φi be the largest s-pixel crossed by σ and let σ̂ be the spherically snap rounded polyarc
induced by σ. The directed Hausdorff distance dH(σ̂, σ) is no larger than the diameter of the
circumcircle of ξj.

Proof. Let s = GP (σ) be the projection of an urarc to a face of the isocube. From the
properties of the projection, s is a line segment on the face fi. The polysegment ŝ = SR(s) is
contained in the Minkowski sum s⊕pk for any p-pixel on fi as this is one of the properties of
planar SR. It is also known that the Gnomonic projection preserves topology for features on
a single hemisphere so σ̂ ∈ G−1P (s⊕ pk). For any point p1 ∈ ŝ there exist a point p2 ∈ s such
that p1 ∈ p2⊕pk so G−1P (p1) ∈ G−1P (p2⊕pk) and G−1P (p2⊕pk) is contained in the circumcircle
of ξj centered at G−1P (p1)

Lemma 2.3. Let ξk and ξj be two registered boundary-connected s-pixels that were registered
due to the arc σ. Let σ̂c be the small geodesic arc connecting the reference points of ξk
and ξj with respect to the arc σ. Let ψk and ψj be the circumcircles of the s-pixels ξk and
ξj respectively and let ψ = max(ψk, ψj), the circumcircle with the maximal diameter. The
directed Hausdorff distance dH(σ̂c, σ) is no larger than the diameter of ψ.

Proof. By contradiction, assume that there is a point p on σ̂c from which we measure
dH(σ̂c, σ) and this distance is larger than the diameter of ψ. Place ψ on the sphere such
that its center coincides with the spherical connection point for which we created σ̂c. The
reference points of ξk and ξj are contained within the placed ψ and it is convex (see Ap-
pendix A.1) therefore ψ contains σ̂c. Place ψ such that its center coincides with p, it still
contains the spherical connection point. When we calculated the directed Hausdorff distance
between p and σ we found the shortest distance between them and it was larger than the

14 Chapter 2. The Isocube Approach

diameter of ψ but there is a point within ψ which is on σ (the spherical connection point)
leading to a contradiction.

Theorem 2.4. Let σ be an urarc and σ̂ = SSR(σ) and let ξi be the s-pixel with the largest
circumcircle crossed by σ. The directed Hausdorff distance dH(σ̂, σ) is no larger than the
diameter of the circumcircle of ξi.

Proof. In lemma 2.2 we show this for an urarc that is contained entirely inside a face.
Lemma 2.3 shows this for a connection arc. A snap rounded arc can be described as alter-
nating concatenation of polyarcs that are contained entirely within a face and connection
arcs. The faces are disjoint except at the edges or vertices of the isocube, therefore we get a
simple polyarc within the asserted directed Hausdorff distance from the given urarc.

It remains to show that this scheme preserves the topological property as it was defined in
the Introduction. On each face we apply the planar SR so all that remain to show is that the
connection arcs do not intersect the rounded arcs or themselves (except at the endpoints).

Let fi be a square face of the isocube and gi be the closed square whose corners are the
reference points of the corner pixels (pixels that touch at least two edges) of that face. We
define the forbidden region of the face as f forb

i = fi \gi (see Figure 2.3, gi is the white portion
of the grid).

Lemma 2.5. After SR on the face fi the forbidden region f forb
i does not contain vertices or

segments of the rounded arrangement on fi.

Proof. By contradiction. It is impossible for f forb
i to contain a segment without at least one

of its endpoints due to the way we project the arrangement to fi. If the forbidden region
contains an endpoint, during SR this boundary p-pixel was heated and the endpoint was
moved to the reference point of the pixel which is outside the forbidden region.

Figure 2.3: The forbidden region of a square face (marked in gray).

Lemma 2.6. No two connection arcs intersect except at the endpoints.

2.3. The Topological and Geometric Properties of Isocubical SSR 15

Proof. By contradiction, assume that there are two connection arcs that intersect at their
interiors. The grid on the sphere within the forbidden region (can be considered as G−1P
of f forb

i) has two types of vertices. Degree 3 vertices which form an intersection point of
three s-pixels, each from a different face of the isocube and degree 4 vertices which form
an intersection point between two s-pixels on one spherical face and two s-pixels on another
spherical face. In the case of a degree 4 vertex v, there are four possible connection arcs that
can be created between the s-pixels. Only two of the possible connection arcs intersect in
the interior. Those connection arcs are induced by an urarc that intersects v. It is sufficient
to show that both intersecting arcs cannot exist simultaneously. We define v in the inclusive
boundary of one of the four s-pixels therefore every connection arc that is created due to an
urarc passing through v must start at the containing pixel. Therefore it is impossible to have
two such connection arcs simultaneously. Figure 2.4 illustrates the planar view of this case.
The degree 3 vertex is relevant only when an urarc intersects the vertex v (see Figure 2.5 for
an illustration). In this case a connection arc is created between the s-pixel that contains
the vertex and the s-pixels that the urarc intersects around the vertex. There are two such
connection arcs that intersect only at the endpoint.

Figure 2.4: An illustration of possible connection arcs between four pixels. The diagonal connection
arcs are valid only when an inducing urarc passes through v but because the inclusion rules for v only
one of the diagonal connection arcs may exist.

Theorem 2.7. The original and the rounded arrangement are topologically equivalent up to
the collapsing of features.

Proof. From the properties of planar SR the theorem holds inside a face. The Gnomonic
projection does not change topology of features on a single face, thus the projected arrange-
ments of arcs conform as well. The projected arrangements are disjoint. From lemma 2.6
we know that connection arcs are disjoint except at the endpoints and are disjoint from the
projected arrangement because the connection arcs are all contained in the forbidden regions.
Since the connection arcs do not introduce new intersections, the theorem holds.

16 Chapter 2. The Isocube Approach

Figure 2.5: An illustration of possible connection arcs between three pixels.

3
The DGGS Approach

Figure 3.1: The octahedron

We extend the ideas presented in the simple approach by em-
ploying an approach used in DGGS. Typically, in practical usage
of grids defined on the sphere a Platonic Solid 1 is used as an
initial representation of the sphere. The best representation of
the unit sphere by a Platonic Solid is achieved when an icosa-
hedron is inscribed in it. This is because the icosahedron has
the smallest face area of all the Platonic Solids (when inscribed
in the unit sphere) yet its vertices are hard to represent using
small bit-length numbers. In fact, the next best Platonic Solid
to use, in terms of coordinate bit length and face size, after the
isocube would be the octahedron (see Figure 3.1). We base our
new construction on an octahedron inscribed in a unit sphere. An
octahedron inscribed in a unit sphere has all its vertices on the
sphere and their coordinates can be represented by small integer values. The tiling that we
use employs the triangular faces of the octahedron as the basis for the pixels.

The rest of the chapter is organized as follows: First, we describe the subdivision of
the octahedron. Next we provide an in-depth analysis of the grid types in the plane that
preserve the desirable topological property of the standard planar Snap Rounding process.
Finally, we use the conclusions from the analysis to generate a planar grid on the faces of
the octahedron which preserves both the topological and the geometric properties of planar
SR and describe the SSR process with the octahedron as the base Platonic Solid.

1A regular convex polyhedron composed of congruent faces.

17

18 Chapter 3. The DGGS Approach

3.1 The Subdivision Process

We build our tiling using the Class I Aperture 4 triangle hierarchy [SWK03] method. The
construction is recursive. We start with the faces of the octahedron as our cells. At each
step of the recursion we iterate over the cells and create a new vertex at the center of each
edge of a triangular cell. Next, in each cell we connect the three new vertices creating four
congruent triangular cells.

Figure 3.2: Triangular face subdivision

After ρ iterations of the subdivision of the initial faces we are left with 8× 4ρ triangular
cells overall. We start with an axis-aligned octahedron namely, an octahedron with vertices
at (±1, 0, 0), (0,±1, 0), (0, 0,±1). We define the reference point of a triangular face as the
center of its circumcircle. The bit length of the circumcenter equals the bit length of the
longest coordinate plus O(1) (see Appendix A.2 for a proof). Therefore, such a subdivision
has a similar effect in terms of the bit length of the pixels as in the subdivision of the square
faces of an isocube.

We introduce a label for each face of the octahedron: The coordinates of the centroid of
that face, namely (±1

3
,±1

3
,±1

3
). We assign each face its inclusive and exclusive boundary.

The following list is the assignment of the inclusive boundary for each face:

• The face labeled (1
3
, 1
3
, 1
3
) is associated with the open edges ((0, 1, 0), (0, 0, 1)) , ((0, 1, 0), (1, 0, 0))

and the vertices (0, 0, 1),(0, 1, 0).

• The face labeled (1
3
,−1

3
, 1
3
) is associated with the open edges ((1, 0, 0), (0, 0, 1)) , ((1, 0, 0), (0,−1, 0))

and the vertex (1, 0, 0).

• The face labeled (−1
3
,−1

3
, 1
3
) is associated with the open edges ((0,−1, 0), (0, 0, 1)) ,

((0,−1, 0), (−1, 0, 0)) and the vertex (0,−1, 0).

• The face labeled (−1
3
, 1
3
, 1
3
) is associated with the open edges ((−1, 0, 0), (0, 0, 1)) ,

((−1, 0, 0), (0, 1, 0)) and the vertex (−1, 0, 0).

• The face labeled (1
3
, 1
3
,−1

3
) is associated with the open edge ((0, 1, 0), (0, 0,−1)) and

the vertex (0, 0,−1).

• The face labeled (1
3
,−1

3
,−1

3
) is associated with the open edge ((1, 0, 0), (0, 0,−1)).

• The face labeled (−1
3
,−1

3
,−1

3
) is associated with the open edge ((0,−1, 0), (0, 0,−1)).

• The face labeled (−1
3
, 1
3
,−1

3
) is associated with the open edges ((−1, 0, 0), (0, 0,−1)).

3.2. Grid Types for which SR Preserves Topology 19

There are two limitations for the selection of the associated edges and vertices (the reason
for these limitation is explained in the next sections). Each face of the octahedron must be
associated with at least one edge and the association must be done in such a way that no
degree 6 vertices will be created when we subdivide the faces to create the grid.

3.2 Grid Types for which SR Preserves Topology

At this point we ask a general question (a concrete answer for which is needed here). Which
types of planar pixels (p-pixels) would preserve the topological properties of planar SR?
(The geometric properties are easier to maintain and prove.) Furthermore, we show that for
certain grids the choice of reference point, namely the point through which the polysegments
will snap to in each pixel is immaterial. It has to be, however, the same point inside each
pixel. These properties are needed for our usage of the DGGS scheme. For example, Ben-
Moshe et al. [BMBS09] show why the standard SR scheme would not work in the case of
triangular tessellations of the plane.

The Deformation

Guibas and Marimont [GM98] look at the SR process as a continuous deformation of the
segments from the ursegments to the polysegments. First, the ursegments are divided into
fragments by adding vertices (nodes) at their intersection points with the boundaries of the
hot pixels. A fragment is external if it does not intersect the interior of a hot pixel and
internal otherwise. When an ursegment intersects two adjacent hot pixels, a zero-length
external fragment is created on the boundary of the two hot pixels at the intersection point.
During the first stage, each hot pixel is contracted in the x-direction toward its center
dragging the nodes with the boundary of the pixel until the pixel becomes a hot “stick”.
After the first stage the internal fragments become nodes on the hot stick and the external
fragments connect the hot sticks. In the second stage, each hot stick is contracted in the
y-direction to the center of the original pixel. Once the second stage is complete, the external
fragments constitute the snap rounded arrangement. Guibas and Marimont show that during
the deformation, no external fragment crosses into a contracting hot pixel and thus a vertex
never crosses over the interior of a (deforming) segment.

We extend this observation to a more general setting as we aim to use DGGS grids.
Consider a single pixel of a general grid as a convex polygon P . We shrink the hot pixels
in a single stage from time t = 0 to t = 1 by moving the vertices of the pixel at a constant
speed (per vertex) toward the reference point. During this deformation process, the pixel is
always a homothetic copy of the original pixel and at time t = 1 it is reduced to the reference
point. We start the analysis of this process with two auxiliary lemmas.

Lemma 3.1. Let Q be a convex polygon in the plane. If p is a point in the plane not
contained in Q then for every t ∈ [0, 1] it holds that (p⊕−tQ) ∩ (1− t)Q = ∅.

Proof. Given two polygons A,B in the plane, where A contains the origin, it is well known
that A ∩ B 6= ∅ if and only if the Minkowski sum B ⊕ −A contains the origin. (See,

20 Chapter 3. The DGGS Approach

e.g., [dBvKOS00, Chapter 13].)

This, for example, immediately shows that the lemma holds for t = 1: As Q does not
contain p, p⊕−Q does not contain the origin.

Assume that for some value t′ ∈ [0, 1] the assertion of the lemma does not hold. Namely
the polygons A := (1− t′)Q and B := p⊕−t′Q intersect. Notice that A contains the origin,
and hence B⊕−A contains the origin. However, B⊕−A = p⊕−t′Q⊕ (t′− 1)Q = p⊕−Q,
which we already know does not contain the origin. A contradiction, which proves the
assertion of the lemma.

Lemma 3.2. Let h1 and h2 be two shrinking hot pixels and let sfrag(t) be an external fragment
with endpoints on the boundaries of h1 and h2 at time 0 ≤ t ≤ 1. The external fragment
sfrag(t) ⊂ sfrag(0) ⊕ (t · (−P)), where P is the pixel-polygon with its reference point at the
origin.

Proof. Without loss of generality, let s1(t) be the endpoint of sfrag(t) on the boundary of h1
at time t. Consider some time frame [0, t′], during which s1(t) moves with a constant speed
toward the the reference point of h1. Assume that the reference point of h1 coincides with

the origin O. The position of s1(t) is therefore t ·
−−−−−−→
(s1(0), O). Take the set of such vectors

over all possible positions of s1(0) on the boundary of P and move them such that they
emanate from the origin. The result is the boundary of the polygon (t · (−P)) (Figure 3.3
illustrates the vectors induced by one edge of P) and thus s1(t) ∈ s1(0)⊕ (t · (−P)). During
the deformation the endpoints of sfrag(t) move with the greatest speed therefore we can
generalize the observation for any internal point of sfrag(t) which means that sfrag(t) ⊂
sfrag(0)⊕ (t · (−P)).

Theorem 3.3. Snap rounding applied to an arrangement of segments with a grid which
is a tiling of the plane with identical (in terms of shape and orientation) convex polygonal
pixels, maintains the topology preserving property of the SR process for any choice of a fixed
reference point inside the pixel.

Proof. To prove that the topology is maintained we show that during our deformation no
external fragment crosses over into a shrinking hot pixel. Without loss of generality, let
sfrag(t) = s1s2 be an external fragment with endpoints on the boundary of the shrinking
hot pixels s1 ∈ h1 and s2 ∈ h2, and let h3 be another (different) shrinking hot pixel. We
know that sfrag(0) does not intersect h3. Assume to the contrary that sfrag(t

′) crosses into
h3 and let t′ > 0 be the first time when sfrag(t

′) touches its boundary. Assume now, without
loss of generality, that P := h3 contains the origin and that the origin coincides with the
reference point. Since sfrag(0) did not cross h3, it follows from Lemmas 3.1 and 3.2 that
sfrag(0)⊕ (t′ · (−P)) is disjoint from (1− t′) · P , and therefore it is impossible for sfrag(t

′) to
touch the boundary of the shrunk h3.

Corollary 3.4. Every tiling of the plane with either (i) identical parallelograms or (ii) iden-
tical hexagons having parallel opposite edges preserves the topological property of SR , for any
selection of a reference point in the tile.

3.3. Defining Pixels 21

(a) (b)

Figure 3.3: (a) An illustration of an edge of a polygon P during the deformation to the origin O. The
point s1 is an endpoint of an external fragment (dashed line). The sum of the lengths of the thick
(red) sections is equivalent to the length of the corresponding edge in (b). (b) The union of the vectors
induced by considering all the possible initial position of s1 on one edge of P at time t′ when they
originate at s1.

It is well known that it is impossible to tile the plane with a convex n-gon for n ≥ 7
therefore we consider only tilings of triangles, quadrilaterals, pentagons and hexagons. The
plane can be tiled with any triangle or convex quadrilateral but our tiling must consist
of polygons with identical orientation. Clearly such a tiling is impossible for triangles or
pentagons even if we allow a vertex to touch the edge of another polygon as they cannot
be symmetric on both axes. In the case of quadrilaterals and hexagons such a tiling would
work only when the opposite angles and sides are equal.

3.3 Defining Pixels

Back to SSR with a grid induced by the octahedron, we use Corollary 3.4 to define a new
type of pixels on a triangular face. On every face of the octahedron we define new x and y
axes with respect to the axes of our setup, the octahedron and the sphere. The new axes of
each face are presented in Figure 3.4 and summarized in Table 3.1.

We now define the pixels on each face of the octahedron as follows (see Figure 3.5 for
an illustration). We start from a boundary edge of the triangular face which is included in
that face. There are triangles with two possible orientations os— similar to the orientation
of the face and oo— opposite orientation. We merge each triangular pixel with orientation
os with its left-hand side neighbor(with orientation oo) thus creating a parallelogram pixel.
For triangles in the last column that do not have a neighbor we create a phantom triangle
(outside the boundary of the face) with orientation oo and merge the two triangles. We define

22 Chapter 3. The DGGS Approach

Face X Y

(1
3
, 1
3
, 1
3
) X - Y -X - Y + Z

(1
3
, 1
3
,−1

3
) X - Y -X - Y - Z

(−1
3
, 1
3
, 1
3
) X + Y X - Y + Z

(−1
3
, 1
3
,−1

3
) X + Y X - Y - Z

(1
3
,−1

3
, 1
3
) X - Y X + Y + Z

(1
3
,−1

3
,−1

3
) X - Y X + Y + Z

(−1
3
,−1

3
, 1
3
) X + Y X + Y + Z

(−1
3
,−1

3
,−1

3
) -X + Y X + Y - Z

Table 3.1: The definition of 2D coordinate axes on each face of the octahedron.

(a) (b)

Figure 3.4: An illustration of the 2D coordinate axes on each face relative to the 3D coordinate axes of
the octahedron.

3.4. Additional Notation 23

the reference point of each parallelogram pixel to be the circumcenter of the triangle with
orientation os. This selection guarantees that all the reference points of the parallelogram
pixels are in the interior of the face of the octahedron and not in the phantom regions.
The inclusive region of such a pixel is the part of the parallelogram boundary that was the
boundary of the triangle with orientation os. Consider the vertices which are in the closure of
two adjacent p-pixels (marked with a dashed circle in Figure 3.5). In the planar SR scheme
they are in the inclusive boundary of the p-pixels left to the to the leftmost p-pixels of the
face, which do not exist in our setting. We map these vertices to be in the inclusive boundary
of the top p-pixel with phantom region which is incident to the vertex. We map the topmost
vertex to its only incident p-pixel. This selection is arbitrary as no segment extends outside
the original face. We define the s-pixels by projecting the non phantom parts of the p-pixels
onto the sphere using inverse Gnomonic projection.

Figure 3.5: Merging the triangular cells into parallelogram p-pixels on a face. The phantom boundary
parts are denoted in a dashed gray line. The vertices marked with a dashed circle are in the closure of
two adjacent p-pixels with phantom region.

3.4 Additional Notation

To show that the properties of SSR still hold for our new selection of pixels and their reference
point we use additional notation. Some previous notation is adapted to suit the new scheme.

• P - The axis-aligned octahedron.

• fi - A face of P .

• GP - The central Gnomonic projection from the unit sphere onto the faces of P .

• G−1P - The inverse transformation of GP : the central Gnomonic projection
from the faces of P onto the sphere.

• C(pi) - The smallest circle bounding a p-pixel pi whose center coincides with the
reference point of the p-pixel.

• SR(s) - The polysegment induced by the ursegment s after applying
the augmented version of the planar snap-rounding algorithm.

• SSR(σ) - The polyarc induced by the urarc σ after applying
the DGGS version of spherical snap-rounding.

24 Chapter 3. The DGGS Approach

3.5 The Spherical SR Process

The spherical snap rounding process in the DGGS approach is quite similar to the isocube
case presented in Chapter 2. As before, the input is an arrangement A(C) of geodesic arcs on
a unit sphere centered at the origin and an integer ρ. We inscribe an axis-aligned octahedron
inside the sphere. On every face of the octahedron we perform ρ steps of Class I Aperture 4
subdivision and merge each triangle with its left neighbor as described in section 3.3 creating
p-pixels. We project the arrangement A(C) onto the faces of the octahedron using central
projection. A single arc may create a segment over several faces, in this case we consider the
segment to be broken and the point of the intersection between a segment and an edge of
the octahedron as the break-point of the segment (a segment can have more than one break-
point). Note that if a projected segment ends exactly on the boundary we use the inclusion
rules that were previously defined to determine whether this is a break-point. We define a
p-pixel to be hot if it contains a vertex in the projected arrangement or a break-point. For
every break-point we create two vertices infinitesimally close to it, one in each p-pixel on a
different face, and register the two p-pixels as boundary-connected and hot. Each vertex of
the projected arrangement is replaced by a reference point of the hot p-pixel containing it
and each projected segment s is replaced by a polygonal chain going through the hot p-pixels
in the same order they are met by s on a single face. After the rounding process, all the
rounded segments are projected back onto the sphere using G−1P . For each registered pair of
connected p-pixels, their corresponding s-pixels reference points are connected with a small
geodesic arc.

3.6 The Topological and Geometric Properties of DGGS

SSR

Lemma 3.5. Let r be the radius of the circle C(pi) on a face of P and s a segment contained
in fi. Let D be a disc of radius r centered at the origin. After SR on the face fi the
polysegment ŝ corresponding to the ursegment s is contained within the Minkowski sum of s
and D.

Proof. We consider the hot pixels met by s in the order they are met by it. Now consider the
segment part between two consecutive hot p-pixels. The reference points of the two p-pixels
are within the Minkowski sum of s and a disc with radius r because this disc envelopes any
p-pixel on fi. The Minkowski sum is convex and therefore it contains the entire segment part
between the two p-pixels. Repeating on all fragments of the segment shows that ŝ ∈ s⊕D

Observation 3.6. Lemma 2.2 and Lemma 2.3 hold for the DGGS version of SSR.

Theorem 3.7. Let σ be an urarc and σ̂ = SSR(σ) (the spherically snap rounded version of
σ) and let ξi be the s-pixel with the largest circumcircle crossed by σ. The directed Hausdorff
distance dH(σ̂, σ) is no larger than the diameter Di of the circumcircle of ξi.

Proof. We show this for an urarc that is contained entirely inside a face and a connection
arc separately. A snap rounded arc can be described as a concatenation of polyarcs that

3.6. The Topological and Geometric Properties of DGGS SSR 25

are contained entirely within a face and connection arcs. Therefore for every point α ∈ σ̂,
dH(α, σ) ≤ Di thus dH(σ̂, σ) ≤ Di.

It remains to show that this scheme preserves the topological property as it is defined
in the Introduction. The next theorems show that: (a) During the SR process on a face no
vertex crosses over an edge and no new vertices are created. (b) The connection arcs do not
intersect the rounded arcs or themselves (except at the endpoints).

Theorem 3.8. Let fi be a triangular face tiled with parallelograms and let A(S) be an
arrangement of segments contained completely in fi. Then during the SR process on fi no
vertex crosses over an edge and no new vertices are created.

Proof. We define the pixels on the face fi as parallelograms (as described above) and select
the reference point of the pixel to be within each such pixel. Because the arrangement A(S)
is contained within fi we can apply Theorem 3.3 directly to the planar SR scheme.

Let fi be a triangular face of the octahedron and gi the triangle whose corners are the
reference points of the corner pixels (pixels that touch at least two edges) of that face. We
define the forbidden region of the face as f forb

i = fi \ gi (see Figure 3.6).

Observation 3.9. After SR on the face fi the forbidden region f forb
i does not contain vertices

or segments in the rounded arrangement on fi.

The proof is identical to the proof of Lemma 2.5

Figure 3.6: The forbidden region of a triangular face (shaded).

Lemma 3.10. No two connection arcs intersect except at the endpoints

Proof. By contradiction, assume that there are two connection arcs that intersect at the
interior. We examine all the possible configurations of the boundary pixels. There are three
types of vertices on the face boundary: A vertex on the boundary of two faces with the
same sign in z-coordinate are adjacent, a vertex on the boundary of two faces with different
sign in the z-coordinate and a vertex incident to four different faces. A connecting arc
created between s-pixels that share an edge cannot intersect another connection arc because
connection arcs are always extended between the reference points of the pixels in the interior

26 Chapter 3. The DGGS Approach

of the connected s-pixels. The remaining case is when two connection arcs extend between
pixels that share only the vertex. In this case an original urarc that caused the registration
had to pass through the vertex but the vertex belongs to only one s-pixel therefore any
connection arc that is created in this case will end up in a single s-pixel and will not intersect
any other connection arc.

Theorem 3.11. The original and the rounded arrangement are topologically equivalent up
to the collapsing of features.

Proof. The proof of Theorem 2.7 applies here verbatim.

4
SSR With Labeled Pixels

In the previous sections we have concentrated on rounding the coordinates of the vertices
of the arrangement to coordinates of small bit length. In this section we explore a different
approach of rounding to labeled pixels. More formally, we assign a unique label to every pixel
and represent the rounded polyarc as a series of labels — the labels of the hot pixels the
polyarc intersects in the order it intersects them. By taking this approach we are no longer
restricted to pixels with center coordinate of small bit length. The goal here is to overcome
the problem that the initial faces are quite large and therefore the distance between the
face and the sphere varies a lot. In the isocubical SSR the faces would touch the sphere in
the center while the distance of the face corners to the sphere was

√
2 − 1 ≈ 0.414. In the

DGGS SSR the corners of the face touch the sphere but the distance between the center of

the face and the sphere is 1 −
√

1
3
≈ 0.423. The platonic solid inscribed in a unit sphere

with the smallest faces (in terms of area and perimeter) is the icosahedron. The main reason
not to use the icosahedron in the DGGS approach is that the centers of the faces cannot be
represented using small bit length coordinates. Once we free ourselves from the restriction on
the bit length we can adapt the algorithm to work with the icosahedron. A similar approach
was presented by Ben-Moshe et al. [BMBS09] by enumerating the hexagonal pixels instead
of using the coordinates of their centers. The disadvantage of this approach is that the
output of the algorithm is no longer an arrangement of rounded arcs but also a map of the
enumerated pixel centers to their coordinates. This output is non-standard and it cannot be
passed directly to subsequent algorithms.

4.1 Labeling the Pixels

We use the quaternary base to label the pixels. Each initial face of the polytope is assigned
a value with a fixed number of digits (sufficient to be unique among all the faces). For

27

28 Chapter 4. SSR With Labeled Pixels

the icosahedron we label the initial faces with unique three-digit labels (i.e 000, 001, ..., 103).
When we subdivide a triangular face, the labels of the four newly created subfaces are
a concatenation of the digits 0,1,2,3 to the end of the label of the subdivided face (see
Figure 4.1). The decision which subface gets which label does not affect the algorithm,
therefore any order is sufficient. This labeling scheme generates a unique label for each
triangular subface.

Figure 4.1: An example of assigning labels to new pixels after a subdivision step.

4.2 Labeled Spherical SR Process

The SSR process is slightly different from the SSR in the DGGS case. The input to the new
algorithm is the set of arcs C, the subdivision parameter ρ, and η — the orientation of the
icosahedron with respect to the Cartesian axes. The output is a list of polyarcs described
as a series of labels. We assign each edge of the icosahedron to a face such that each face
contains at least one edge on its inclusive boundary. This can be done in various ways, an
example is presented in Figure 4.2. The rest of the process remains the same as in the DGGS
case, the arcs are projected onto the faces, augmented SR is run on each face and the result
is projected back onto the sphere. Next, the connection arcs are created and the final result
is reported as mentioned above.

Figure 4.2: An illustration of an icosahedral net with a partial assignment of edges to faces such that
each face includes at least one edge on its boundary. An arrow from an edge points toward the face
that includes this edge on the boundary. The unassigned edges can be arbitrarily assigned.

We omit the proofs of the topological and geometric properties of the snap rounded
arrangement of arcs, which hold in this case with minor adjustments.

4.3. Conclusion 29

4.3 Conclusion

The labeling approach allows the use of wide variety of polytopes with triangular faces as
the base polytope for the SSR algorithm. During our discussion we did not assume anything
on the base polytope except that it has triangular faces and that in the resulting spherical
grid there are no degree 6 vertices. Using a base polytope inscribed in a unit sphere which
has more faces means that it is possible to move the faces closer to the unit sphere. This
allows a better initial approximation of the unit sphere thus reducing the inherent distortion
of the spherical pixels caused by the projection which in turn creates better rounding results
(in terms of distortion).

The aforementioned disadvantage of the labeling approach (the lack of specific numerical
coordinates) makes it unpractical for real world uses. In many cases the rounded arrangement
is an input for another algorithm. With the labeling approach, any algorithm using the
rounded arrangement would have to make adjustments to be able to process the output
(and the additional mapping between pixel centers and coordinates). This in mind, the
labeling approach can still be used in algorithms where the coordinates of the pixel reference
point are not important and the required output is the “hot” pixels and the edges between
them (e.g., for graphical display). In these cases the labeling approach can be quite useful.

30 Chapter 4. SSR With Labeled Pixels

5
Implementation

In this chapter we present our implementation of both the isocube and the DGGS SSR
schemes. We have implemented both algorithms using Cgal with emphasis on using the 2D
Arrangement [WFZH07], the 2D Snap Rounding [Pac09], and the prototypical Arrangement-
on-Sphere traits class. Before we dive into the details of the implementation itself we describe
the aforementioned building blocks in some detail.

5.1 Cgal Packages Used by the Implementation

We use several packages that come out-of-the-box when installing Cgal. The following
sections give an overview of the packages and their contribution to our implementation.

5.1.1 2D Arrangement

The 2D Arrangement package (Arrangement on surface 2) supports the construction, manip-
ulation, querying, and traversal of an arrangement of curves. The package includes generic
implementations of two algorithmic frameworks, which give the ability to compute the zone
of an arrangement, and line-sweep the plane, the arrangement is embedded on. The main
construct of the package is the Arrangement 2 class, which is parameterized by a traits class
(modeling the ArrangementBasicTraits 2 concept) and the Dcel (modeling the Arrangement-
Dcel concept). The arrangement supports various types of curves such as line segments,
rays, lines, Bézier curves, algebraic curves, and more. The Dcel can be extended to contain
additional data within the vertices, edges and face records.

31

32 Chapter 5. Implementation

5.1.2 2D Snap Rounding

The 2D Snap Rounding package provides the function snap rounding 2 that is templated by
the SnapRoundingTraits 2 and input and output iterator types. This function is an imple-
mentation of the ISR algorithm described in [HP02] for snap rounding planar arrangement
of segments (but it essentially allows us to run the standard SR by setting the number of
iterations to 1). The snap rounding 2 function accepts the pixel size as an argument allowing
the user to specify non-integer pixel sizes and a list of segments as the main input. It outputs
a list containing a polygonal chain for each input segment. Each chain is represented by a
list of points; each point is the center of a hot pixel, retaining the incidence order of the
original segment with the hot pixels.

5.1.3 Arrangement of Geodesic Arcs on the Sphere

The prototypical Arrangement-on-Sphere traits class [FSH08a,FSH08b]1 enables using geodesic
arcs on a sphere as the inducing curves for the Arrangement 2 class. The traits class
Arr geodesic arc on sphere traits 2 models the ArrangementBasicTraits 2 concept as fol-
lows: The sphere is parameterized as Φ = [−π + α, π + α]× [−π

2
, π
2
], φS(u, v) =

(cosu cos v, sinu cos v, sin v). The contraction points are: ps = (0, 0,−1) = φS(u,−π
2
) is the

south pole and pn = (0, 0, 1) = φS(u, π
2
) is the north pole, where α is set such that the,

identification curve (the curve that represents both the smallest and the largest u value in
the parameter space) passes through the poles and the point (−0.8, 0.6, 0), which is both
on the unit sphere and has rational coordinates. An x-monotone curve is defined to be a
geodesic arc that does not intersect the identification curve.

The geometry-traits class defines the Point 2 type as an unnormalized vector in R3, rep-
resenting the intersection point of a ray emanating from the origin in the relevant direction
with the sphere. An arc is represented by its two endpoints, and by the plane that con-
tains the endpoint directions and the origin. The orientation of the plane and the source
and target points determine which one of the two possible arcs is the represented one. This
representation enables an exact and efficient implementation of all the required geometric op-
erations, defined by the geometry-traits concept, using exact rational arithmetic. Efficiency
is achieved by avoiding normalizing vectors and plane normals.

5.2 Implementation Details

We implement both SSR algorithms using Gmp, the Gnu Multi-Precision bignum library [5]
that provides us with an implementation of rational numbers with unlimited precision.
Throughout our implementation all the traits classes are parameterized using the Cgal
Cartesian geometric kernel [BFG+09,HHK+07]. The implemented algorithm is divided into
several phases. The following sections provide details on the implementation of each phase.

1Arrangements embedded on parametric surfaces are supported as of version 3.4 albeit only partially
documented.

5.2. Implementation Details 33

5.2.1 Input

The input to the algorithm is a set of initial arcs, the parameter ρ, and a description of the
underlying polytope. The initial arcs are provided via a text file that contains the coordinates
of the initial input arcs. The full path to the input files and ρ is provided in the command
line arguments. Throughout our implementation, the pixels are not actually constructed,
instead the pixel size is calculated and later passed to the snap rounding 2 function.

There are two types of input files. The type is denoted by the first line in the file and
can be either “0” or “1”. When the file type is “0” the coordinates of the arcs are given in
spherical form as a four-tuple of real numbers (in floating-point representation) separated by
comma (i.e. θ1, φ1, θ2, φ2). Each subsequent line must contain a single four-tuple and an end
of line character. When a tuple is read, the coordinates are converted into the corresponding
direction by using φS. For this conversion we use inexact arithmetic (this is the only place
in the implementation where we use inexact arithmetics; all the following computation are
carried out with exact rational numbers). When the file type is “1” the coordinates are given
as two directions separated by a comma. Each direction contains the x,y, and z coordinates
separated by a single space. Each line must contain only a single pair of such directions
representing an arc. When type “1” input is processed the directions are read directly into
Point 2 and the smaller geodesic arc is created between the two directions. We will refer to
such a direction simply as a point on the unit sphere. An example of each input file type
can be found in Appendix A.3

The algorithm reads the underlying polytope from the provided OFF file [8]. For the
isocube approach we use an isocube with side length 2 centered at the origin and for the
DGGS approach we use an octahedron with vertices at (±1, 0, 0), (0,±1, 0), (0, 0,±1). The
polytope is read into the Polyhedron 3 class [Ket09] directly from the input OFF file using
a specialized reader.

5.2.2 Distribution to Faces

In this phase we distribute the input arcs among the faces of the polytope and register the
connection points using tools provided by the Arrangement on surface 2 package and two
additional classes.

• The face data class — Represents a single face of the polytope and holds all the data
and functionality needed to perform SSR within this face and its spherical equivalent.
More precisely, the face data class stores the arc parts that fall within the represented
face, the supporting plane and two functions that can transform a point in 3D to and
from its 2D representation on the supporting plane.

• The face distribution class — Represents the array of face data instances associated
with a specific polytope. The size of the array is the number of faces in the polytope
(denoted below by #Faces). This class provides the functionality of answering queries
regarding the inclusion rules of the edges and vertices of the polytope with respect to
the faces.

34 Chapter 5. Implementation

After reading the coordinates of the arcs from the input file, we insert the arcs into a
spherical arrangement A(C) and create an additional spherical arrangement APolytope from
the input polytope. APolytope is created by projecting each edge of the polytope onto the
unit sphere using GP and inserting the resulting arc into the arrangement. Next, we assign
a unique ID to every face of APolytope from the range 0 . . .#Faces − 1, we use these IDs
as an index for the face distribution class and for any future reference to the faces. We
overlay A(C) (red) with APolytope (blue) and provide a custom traits class to the overlay
function. This custom traits class tracks the intersections created during the overlay process
and stores the vertices created due to an intersections between red and blue features as a
list of connection points. Special care is needed when a connection point is incident to a
vertex of APolytope, as there is some ambiguity regarding which connection arc it represents.
To avoid this ambiguity we record all the red edges that induce this connection point and
use this data when we construct the connection arcs. More details on building connection
arcs are given in section 5.2.4.

Finally, we remove all the edges and vertices that were created from a red face and a blue
edge or vertex. We are left with an arrangement where each edge (arc) can be projected
onto a single face of the polytope using GP . We add the arcs from this arrangement to the
face distribution class. Each arc is added to the face data that represents the face that this
arc projects to. At the end of this phase we have a list containing all the connection points
and a face distribution data structure containing all the arcs split into their respective
faces.

5.2.3 Snap Rounding on Faces

In this phase we run the planar Snap Rounding algorithm on each face of the underlying
polytope by using the associated face data structure. The snap rounding 2 function works
on the xy-plane with square pixels therefore we adapt the data to this requirement. There
are several differences between the two approaches. Therefore, we discuss the isocube and
the octahedron separately.

Isocube: In the isocube algorithm the adaptation of the input is trivial as each face of
the isocube is orthogonal to one of the axes. The 3D coordinates on the faces of the isocube
are generated by intersecting the spherical direction with the respective plane. We project
each coordinate on to the xy-plane by eliminating one dimension as described in Table 2.1.
The snap rounding 2 function accepts the pixel size as one of its arguments. We supply the
number 2

2ρ
to reflect the subdivision of the grid. Note that when ρ = 0 we do not subdivide

the faces and the pixel is a square with side length of 2.

Octahedron: In the DGGS approach some additional preprocessing is needed to
be able to use the snap rounding 2, function as the underlying polytope is an octahedron.
We generate the initial 3D coordinates as in the isocube approach. Next, we project each
coordinate to the xy-plane by removing the z-coordinate (and sometimes changing the sign
of the x or y-coordinates as described in Table 3.1). This projection projects a face of
the octahedron (which is an equilateral triangle in 3D) to a 2D right triangle in the xy-
plane, with legs of unit length, such that the vertex between them coincides with the origin.
In this projection the parallelogram pixels become squares in the xy-plane. We run the

5.2. Implementation Details 35

snap rounding 2 function on the projected arrangement with some care, as the vertices and
segments are snapped to the square pixels centers. The adjustment is performed after the
completion of the snap rounding 2 function with pixel size of 1

2ρ
by translating the vertices

in the resulting arrangement. Each vertex is translated by 1
6·2ρ along both axes toward the

origin.

The snap rounded arrangements (from each face) are projected back onto the unit sphere
and inserted into a single output arrangement, which is passed to the next phase.

5.2.4 Adding Connection Arcs

To complete the spherical snap rounding process we insert the connection arcs into the output
arrangement from the previous phase. We do this by going over the connection points we
collected during the distribution phase described in section 5.2.2 and creating connection
arcs as needed. Note that when all the arcs that induced a connection point are contained in
a single face, and this connection point was created on an edge included in the boundary of
that face, there is no need to create a connection arc. A connection point can be mapped to
a single connection arc by examining the s-pixels incident to it except when it coincides with
a vertex that is on the boundary of more than two faces. When such a connection point is
encountered the inducing arcs are examined and the correct connection arcs are constructed.
Table 6.2 illustrates this special case. The created connection arcs are added to the output
arrangement. At the end of this phase the output arrangement contains the spherically snap
rounded version of A(C).

5.2.5 Output

The input of this phase is the spherically snap rounded version of A(C), which we obtain
from the previous phase and can be used in subsequent calculations. We provide two meth-
ods of visualizing the resulting array. By default the result is exported to a Vrml file2.
The resulting Vrml contains a representation of the unit sphere and three arrangements.
The default settings are: Red for the input arrangement A(C), blue for the arrangement
representing the partitioning of the sphere into spherical faces by the underlying polytope,
and green for the spherically snap rounded version of A(C). It is also possible to export both
the input and the output to a KML [7] file by providing the full path for the respective files
as a command line argument.

2We are using an extended Vrml format that contains a special element, which represents an arrangement
on the sphere. A standard Vrml reader cannot display this file. Currently, the only program that can open
the output file is the “Player” developed by Efi Fogel in the Applied Computational Geometry Lab [1]. The
Player is based on a Scene Graph Algorithm Library (SGAL).

36 Chapter 5. Implementation

5.3 Measuring the Directed Hausdorff Distance on the

Sphere

We have implemented additional helper functions to help us gather statistics on the quality
of the output. The most notable helper function measures the directed Hausdorff distance
between two arcs on the sphere. Some of the distance calculations are done using floating-
point arithmetic, this is sufficiently accurate for our purposes as it is not part of the actual
result for the algorithm. The distance between two points on the sphere can be easily
measured in spherical-coordinates representation by calculating the length of the arc between
them on a unit sphere. Our method of measuring the directed Hausdorff distance between
two arcs assumes that one of the arcs lies on the equator (it lies on the xy-plane). We start
with two general arcs, a source arc σs and a target arc σt. We measure the directed Hausdorff
distance dH(σs, σt). We use the affine transformation class Aff transformation 3 provided
by Cgal and rotate the sphere to make σt coincide with the xy-plane.

With this setting, the directed Hausdorff distance can be one of the following:

• The distance between an endpoint of σs to the equator, if this endpoint is in V L(σt)
(see Definition 1.1).

• The distance between an endpoint of σs and an endpoint of σt, if the respective endpoint
of σs is not in V L(σt).

• The distance between the point with the largest absolute z value on the underlying
great circle of σs if this point is on σs and in V L(σt).

We subdivide σs into (possibly three) parts by intersecting it with the two geodesics that
make V L(σt). For each part we perform the required calculation (as described above) and
obtain the directed spherical Hausdorff distance between the part and σt. Next, we compare
the distances and output the longest one.

6
Experimental Results

We present experimental results to show how both methods perform for various inputs. For
each example we give a statistical summery of the result in a table and provide some drawings
to illustrate the result. In general, an unrounded coordinate on the sphere is represented by
two double precision [IEE08] values (for example, in the Latitude-Longitude grid these are
two angles) of 64 bits each with a total of 128 bits per coordinate. In our implementation
each coordinate is composed of three rational values which allows some flexibility in the bit
length as both the numerator and the denominator are integers and can be represented using
the exact number of bits needed for the rational number. The maximum and average bit
length of the coordinates in the arrangement are presented in all the examples.

We present Table 6.1 to give a feeling for how the spherical grids look on the sphere.
Note how irregular the grids become near the vertices of the original projected faces.

37

38 Chapter 6. Experimental Results

ρ Isocube DGGS
1

2

3

4

5

Table 6.1: Examples of spherical grids.

6.1. Robustness 39

6.1 Robustness

Before we give the details of the example inputs we remark about the robustness of our
implementation. One of the biggest problems in implementing algorithms in computational
geometry is their robustness. Many implementations cannot be robust because they use
inexact number types and non-rigorous approximations. Our implementation uses generic
components from Cgal, which are parameterized with exact numbers. This parametrization
together with special care of degenerate cases makes our implementation robust. Table 6.2
illustrates some cases of degenerate inputs and the way they are handled in both our rounding
algorithms.

Description Isocube DGGS
An arc ending on an edge
of a face that owns that
edge. The resulting connec-
tion point does not create a
connection arc because the
arc is contained entirely in
the face.

An arc ending on an edge
of a face that does not own
that edge. The resulting
connection point creates a
connection arc into the own-
ing face.

An arc overlapping an edge
of a face is rounded toward
the owning face.

Table 6.2: Examples of how degeneracies are handled.

40 Chapter 6. Experimental Results

Description Isocube DGGS
Two arcs intersecting on a
connection point. The re-
sulting connection arc is be-
tween the pixels that in-
clude the connection point
on their boundary.

Several arcs intersecting on
a vertex of several (three
for the isocube and four for
the DGGS) spherical faces.
All the connection arcs orig-
inate in the s-pixel that
includes the vertex on its
boundary.

Table 6.2: Examples of how degeneracies are handled
(continued).

6.2. Rounding Distance 41

Abbreviation Explanation

ρ The number of subdivision iterations to perform on a
face of the underlying polytope.

mhd The maximum directed spherical Hausdorff distance be-
tween a rounded polyarc to the original urarc.

ahd The average directed spherical Hausdorff distance be-
tween a rounded polyarc to the original urarc.

nsv The number of urarcs that were contained entirely
within a single hot pixels and reduced to a vertex in
the rounded arrangement.

nca The number of connection arcs created in the rounded
arrangement.

mcl The maximum number of bits needed to represent a sin-
gle coordinate of a vertex in the rounded arrangement.

acl The average number of bits needed to represent a single
coordinate of a vertex in the rounded arrangement.

rtf The running time in seconds of the full rounding algo-
rithm.

rtsr The relative part of the planar snap rounding algorithm
within the full algorithm.

nvi The number of vertices in the input arrangement.
nei The number of edges in the input arrangement.
rdd The relative difference between the mhd and the mini-

mum mhd. (mhd−Min(mhd))/mhd.

Table 6.3: Abbreviations.

6.2 Rounding Distance

In SSR the spherical pixels are not identical, which causes some distortion when rounding
identical arcs located at different positions on a face. To illustrate this fact, we ran the
following examples: On each run, we take a single input arc and place it in such a way that
when projected onto the face of the underlying polytope its rounded version moves a constant
distance from the projected arc. We do this separately for the two algorithms using ρ = 4.
In the isocube algorithm, in each run, we move the arc further from the boundary toward
the center of the face. As expected, the directed spherical Hausdorff distance is increasing as
the input arc moves toward the center of the face (see Table 6.4). The maximum distortion
in the distance is around 35% at the edge of the face. In the DGGS algorithm we move the
input arc across the face such that the projected segment is parallel to an edge of the face.
The result in this case is opposite to the result of the isocube algorithm. When the arc is
closer to the center of the face (Recall that the isocube contains the unit sphere while the
icosahedron is inscribed in the unit sphere) the distortion is greater (see Table 6.5). This
result is expected because a face of the isocube is closest to the sphere at its center while a

42 Chapter 6. Experimental Results

ahd rdd
0.0215396 0.0000000 %
0.0234622 8.1944575 %
0.0254236 15.2771441 %
0.0273571 21.2650464 %
0.029176 26.1735673 %
0.0307783 30.0169275 %
0.0320546 32.8034042 %
0.0329017 34.5334740 %

Table 6.4: Rounding results of a single arc with respect to its distance from the spherical face boundary
on a face of the isocube

ahd rdd
0.0180329 74.6123474%
0.0204952 77.6624283%
0.0188096 75.6606733%
0.0098083 53.3237768%
0.0045781 0.0000000%
0.0165166 72.2816439%
0.0210585 78.2599425%
0.0199949 77.1035114%

Table 6.5: Rounding results of a single arc with respect to its distance from the spherical face boundary
on a face of the octahedron.

face of the octahedron closest at the vertices.

6.3 Random Input

We tested both algorithms with a batch of random inputs in two configurations. In the
first configuration we created an input of 200 random arcs on the sphere. Inserting the arcs
into an arrangement results in 2636 vertices and 4672 edges. We ran the program with an
increasing value of ρ. Tables 6.6 and 6.7 show the results. We started from ρ = 5, lower
values of ρ incur a phenomenon where all (or most) of the pixels become hot and a grid is
created on the sphere between the reference points of the hot s-pixels. This phenomenon
can be observed by looking at the nsv parameter which is quite high for lower values of ρ
but completely diminishes at ρ ≥ 15. We see that the average bit length of the coordinates
remains lower than in the input even when ρ = 25 and the average distance in radians is
around 10−7. In the second configuration we ran the algorithms on inputs with increasing
number of random arcs while keeping ρ = 15. The inputs contain 20,50,100,200 and 300
arcs. The results for this experiment are presented in Table 6.8. The results show that as
the number of arcs grows the relative time it takes to run the planar version of SR increases

6.4. Real World Input 43

Isocube DGGS
ρ mhd ahd nsv nca mhd ahd nsv nca
5 0.0399914 0.0165321 1543 149 0.0788381 0.0283228 1704 145
7 0.0107987 0.00387748 514 194 0.0199101 0.006216 550 192
9 0.00256069 0.000913888 157 208 0.00488705 0.00150039 177 220
12 0.000326569 0.000117932 11 212 0.000638699 0.000182145 16 225
15 3.97099e-005 1.43818e-005 2 213 7.93889e-005 2.36877e-005 4 225
18 6.32156e-006 1.83132e-006 0 213 2.18426e-005 3.09808e-006 0 225
25 4.90098e-006 9.97513e-008 0 213 1.80024e-005 3.54824e-007 0 227

Table 6.6: The results of running both algorithms on an input of 200 random arcs.

Isocube DGGS
ρ mcl acl rtf rtsr mcl acl rtf rtsr
5 29 22.3793 106 63.2075% 45 32.083 97 72.1649%
7 37 27.6663 144 72.2222% 57 39.9651 139 80.5755%
9 45 33.1271 158 75.3165% 69 48.0634 154 82.4675%
12 57 41.3777 164 76.2195% 87 60.0023 159 83.0189%
15 69 49.7107 168 76.1905% 105 72.2336 162 83.3333%
18 81 58.0562 169 76.3314% 123 84.6977 164 83.5366%
25 109 77.5248 169 76.9231% 364 113.672 162 83.3333%

Table 6.7: The results of running both algorithms on an input of 200 random arcs (continued).

(this is also evident in further experiments where the number of input arcs is larger).

6.4 Real World Input

Perhaps the most interesting experiment is the one we carried out on real-world input. We
ran the algorithms on the border of USA (including Alaska and Hawaii). The results are sum-
marized in Tables 6.9 and 6.10. The results show that rounding with 10 ≤ ρ ≤ 15 produce
excellent results. When ρ = 15 there are no visible problems in the rounded arrangements.
An example can be seen in Figure 6.11. The results show that the average bit length in the
isocube algorithm is about 60 bits which is less than half of the bit length of a coordinate
in the original arrangement. When reducing ρ to 10, the results are still good at most areas
but areas with many small faces resemble a grid on the reference points of the hot pixels.
An example of this phenomenon can be seen in the north west of mainland USA (see Fig-
ure 6.2). The next input was the map of major roads in North America. The results were
similar to those obtained by rounding the border. With ρ = 15 there were no significant
distortions in the rounded output while the average bit length was as low as 52.7734 (see Ta-
bles 6.11, 6.12 and Figure 6.3). Furthermore, the results show that the planar SR takes more

1Images in this section are produced using Google Earth.

44 Chapter 6. Experimental Results

Isocube DGGS
#Arcs nvi nei rtf rtsr rtf rtsr

20 48 36 0.344 59.0116% 0.328 61.8902%
50 196 241 2.953 67.7277% 3.281 70.4968%
100 637 974 19.188 73.2906% 19.359 71.7547%
200 2696 4792 178.781 76.6826% 159.500 83.758%
300 4973 9045 466.110 78.7466% 442.844 85.1986%

Table 6.8: The results of running both algorithms on inputs with increasing number of arcs.

Isocube DGGS
ρ mhd ahd nsv nca mhd ahd nsv nca
5 0.0365355 0.0244899 10690 4 0.076651 0.0465627 10738 2
8 0.00510799 0.00267337 9082 4 0.00989853 0.00513007 9356 4
10 0.00125666 0.000564112 5240 4 0.00248137 0.0010695 5792 4
15 3.86343e-005 1.48827e-005 2 4 7.96059e-005 2.61095e-005 7 4
20 2.23644e-006 4.6937e-007 0 4 1.27244e-005 8.04328e-007 0 4

Table 6.9: The results of spherically snap rounding the borders of USA.

than 99% of the processing time which makes by far the most time-consuming component
in the algorithm and hence the natural candidate for further improvement work.

Isocube DGGS
ρ mcl acl rtf rtsr mcl acl rtf rtsr
5 29 24.0811 972 97.5309% 40 34.3837 1150 98.087%
8 41 34.131 177 85.8757% 55 47.8935 187 88.2353%
10 49 41.464 571 95.6217% 65 57.4998 313 92.6518%
15 69 59.936 2189 98.5381% 90 81.8034 1280 97.6563%
20 89 77.4457 2127 98.4955% 115 105.724 1289 97.6726%

Table 6.10: The results of spherically snap rounding the borders of USA (continued).

6.4. Real World Input 45

Isocube DGGS
ρ mhd ahd nsv nca mhd ahd nsv nca
10 0.00126452 0.000596916 92180 45 0.00252517 0.00109385 98903 38
15 3.98691e-005 1.33338e-005 786 47 8.09463e-005 2.33477e-005 1437 39

Table 6.11: The results of spherically snap rounding the map of major roads in North America.

Isocube DGGS
ρ mcl acl rtf rtsr mcl acl rtf rtsr
10 49 37.9866 12331 93.8529% 65 56.5948 9075 94.0716%
15 69 52.7734 108348 99.2543% 90 79.9858 103038 99.473%

Table 6.12: The results of spherically snap rounding the map of major roads in North America (contin-
ued).

46 Chapter 6. Experimental Results

Snap rounded arrangement with ρ = 15. Zoom in on the San Diego bay area. The input,
isocube rounded and DGGS rounded arcs (red,
green and blue respectively) are very close such
that there is no substantial difference between
the three arrangements. On the bottom right,
the USS Midway aircraft carrier.

The input arrangement.

Figure 6.1: Rounding the map of USA with ρ = 15.

6.4. Real World Input 47

Isocube algorithm. DGGS algorithm.

The input arrangement.

Figure 6.2: The north west of continental USA rounded with ρ = 10.

48 Chapter 6. Experimental Results

Zoom in on the Sacramento area with ρ = 10. Zoom in on the Salt Lake City area with ρ = 15.

The input arrangement.

Figure 6.3: Examples from the spherically snap rounded map of North American roads.

7
Conclusion and Future Work

We have devised and implemented two efficient and practical algorithms for snap rounding an
arrangement of geodesic arcs on the sphere. The experimental results show that the isocube
approach produces better results than the DGGS algorithm for the same resolution values of
ρ, yet it cannot be easily extended to be used with different underlying polytopes. The results
demonstrate that even for small values of ρ (namely, coarse rounding) the snap-rounded
arrangement can be made topologically and geometrically similar to the input arrangement
while achieving a reduction of more than 50% in the bit length of the coordinates representing
the vertices of the arrangement. We found out that it is prudent to run the algorithm with
several values of ρ and tune its value until the results fit the required needs in both the bit
length of the coordinates and the quality of the output.

In our implementation it is evident that the most significant part of the algorithm, in
terms of running time, is the snap rounding 2 function which is an implementation of the
algorithm in [HP02]. A more efficient version of the SR algorithm was presented by Her-
shberger [Her08]; we anticipate that its implementation and incorporation within our SSR
algorithms will improve the running time greatly for large inputs. Furthermore, the SSR
algorithms can be easily parallelized. The planar SR is run on each face of the underlying
polytope separately as there are no dependencies on the rounding results from other faces.
After the rounding phase the results are disjoint therefore combining them does not require
complicated overlay procedure but only list concatenation (of faces, edges and vertices) which
can be done in linear time. The connection arcs generation process can be run immediately
after the distribution of the arcs in parallel to running SR on each face.

The DGGS approach is extensible to other underlying polytopes with triangular faces
as we show a general method of building p-pixels that preserve the topological consistency
required by snap rounding. Our insights on the grids that preserve the topological consistency
of the planar snap rounding may be the basis for future work in this area.

49

50 Chapter 7. Conclusion and Future Work

Further work could be carried out to improve the DGGS method by building a polytope
that models the sphere better than a Platonic solid. This can be done by constructing
a polytope that is inscribed in a unit sphere and has many small triangular faces. Some
examples of how such polytopes can be constructed are described in [SWK03, WKSS98]
where a Platonic solid is subdivided and the new vertices are moved to the sphere after each
subdivision phase. A similar approach is also presented in [SGF+07] where the authors build
a triangular mesh to approximate the sphere.

Our observations on the grids that can be used in the planar SR method can be used to
create a new snap rounding scheme. In this new scheme the plane is not tiled completely by
the pixels but instead a set of hot pixels are distributed in the plane with respect to some
criteria. Such a scheme may reduce the number of hot pixels and new intersections while
providing good rounding results. It is also possible to tile the plane with specific pixels in
terms of shape and pattern of the pixels (e.g., a tiling which looks like a brick wall where
the pixels are rectangles and all the vertices are of degree 3). Such tilings may be more
appropriate in some cases and improve the overall rounding results compared to running the
SR algorithm on the standard tiling.

A
Appendix

A.1 Convex Sets on a Sphere

A set C on the sphere is convex iff for any two points in C the small geodesic arc between
the two points is contained in C, e.g., (see [CDGM97]).

Lemma A.1. Let S be the unit sphere and C a small circle1 on S. Let P be the plane whose
intersection with S contains C. Let Cp be a convex set on P that is the interior of C. The

spherical cap Ĉ induced by P is a convex set on S.

Proof. Cp is a convex set on P and Ĉ = G−1P (Cp). From the definition of a convex set, every
segment in Cp is contained entirely in Cp. From the definition of the Gnomonic projection we

know that a segment in Cp is transformed to a geodesic arc on Ĉ and vise versa. Therefore
G−1P (Cp) is a convex set on S.

A.2 Circumcenter Bit Length

Lemma A.2. Let Lc be the bit length of the circumcenter of a triangular cell during the
subdivision of the axis-aligned octahedron (as described in Chapter 3) and let Lv be the
maximum bit length of the coordinates of the vertices of that cell. Then Lc ≤ Lv + 6.

Proof. We show this for one initial face of the octahedron; the same arguments apply to any
subdivided triangular cell. A face of the octahedron creates a 45◦ angle with the xy-plane.
Figure A.1 illustrates one such face denoted by the triangle 4KMN . The point D is the

1A small circle on a sphere is the intersection of a plane and the sphere such that the center of the sphere
is not on the plane.

51

52 Appendix A. Appendix

midpoint of MN . The point C is the circumcenter of 4KMN and therefore DC = 1
3
DK.

The point T is the projection of C on the xy-plane and it lies on DO ⇒ TO = 2
3
DO.

|MN | = Mx

√
2 = Ny

√
2⇒ |MD| = |DO| = |DN | = |MN |

2
(since 4MNO is a right triangle

with hypotenuse MN) ⇒ |TO| = 2
3
|DO| = Mx

√
2

3
= Ny

√
2

3
. We look at the square on the

xy-plane formed between the origin O and T , with the diagonal TO. By examining side
of this square we get the coordinates of the point T on the xy-plane. The coordinates of
T are (Mx

3
, Ny

3
) hence the coordinates of C are (Mx

3
, Ny

3
, Kz

3
) which means Lc ≤ Lv + 6 as

needed.

Figure A.1: The bit length of the circumcenter C is the the maximum bit length of the coordinates of
the vertices in 4KMN + 6.

A.3. Input Files Example 53

A.3 Input Files Example

An example of an input file given in spherical coordinates. The first line defines the file type
as “0”. Next, three arcs are defined using spherical coordinates given in radians.

0

0,1.8,2.1,1.2

1,1.1,0.5,2

0.55,2.01,0.67,1.98

An example of an input file given as rational vectors. The line numbers are added to
indicate lines in the file. They do not exist in the actual file. The first line defines the file
type as “1”. Each subsequent line contains two three-tuples separated by a comma. Within
each three-tuple the numbers are separated by space and the numerator is separated from
the denominator by a forward slash.

1) 1

2) 4184953696439088806209662791635/2535301200456458802993406410752

4184953696439088806209662791635/2535301200456458802993406410752

2928923127738069817745860668949/20282409603651670423947251286016

,548227478442335/562949953421312 0/1

-4092909075990333/18014398509481984

3) -3493578394255567/9007199254740992

7633608056877581/9007199254740992 1631914248035957/4503599627370496,

4184953696439088806209662791635/2535301200456458802993406410752

4184953696439088806209662791634/2535301200456458802993406410752

2928923127738069817745860668949/20282409603651670423947251286016

4) 4184953696439088806209662791635/2535301200456458802993406410752

4184953696439088806209662791635/2535301200456458802993406410752

2928923127738069817745860668949/20282409603651670423947251286016,

548227478442335/562949953421312 0/1

-4292909075990333/18014398509481984

54 Appendix A. Appendix

Bibliography

[AK00] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jörg-Rüdiger Sack
and Jorge B. Urrutia, editors, Handbook of Computational Geometry, chapter 5,
pages 201–290. Elsevier Science Publishers, B.V. North-Holland, 2000.

[BFG+09] Herv Brnnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael
Hoffmann, Lutz Kettner, Stefan Schirra, and Sylvain Pion. 2d and 3d geometry
kernel. In CGAL Editorial Board, editor, CGAL User and Reference Manual.
3.5 edition, 2009.

[BMBS09] Boaz Ben-Moshe, Binay K. Bhattacharya, and Jeff Sember. Efficient snap
rounding in square and hexagonal grids using integer arithmetic. Technical
Report TR-2009-04, The University of British Columbia, 2009.

[BO79] Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and count-
ing geometric intersections. IEEE Transactions on Computers, 28(9):643–647,
1979.

[BS07] Binay K. Bhattacharya and Jeff Sember. Efficient snap rounding with integer
arithmetic. In In Proceedings of the 19th Annual Canadian Conference on
Computational Geometry, CCCG 2007, August 20-22, Carleton University,
Ottawa, Canada, pages 145–148, 2007.

[CDGM97] Francisco Javier Cobos, Juan Carlos Dana, Clara I. Grima, and Alberto
Márquez. The width of a convex set on the sphere. In In Proceedings of
the 9th Canadian Conference on Computational Geometry (CCCG’97), 1997.

[Cox69] H. S. M. Coxeter. Introduction to geometry. John Wiley & sons, inc., second
edition, 1969.

[dBHO07] Mark de Berg, Dan Halperin, and Mark Overmars. An intersection-sensitive
algorithm for snap rounding. Computational Geometry: Theory and Applica-
tions, 36(3):159–165, 2007.

[dBvKOS00] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, Germany, 2nd edition, 2000.

55

56 BIBLIOGRAPHY

[DJ05] Qiang Du and Lili Ju. Finite volume methods on spheres and spherical cen-
troidal Voronoi meshes. SIAM Journal on Numerical Analysis, 43(4):1673–
1692, 2005.

[FSH08a] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrange-
ments of geodesic arcs on the sphere with applications. In Abstracts of 24th
European Workshop on Computational Geometry, pages 83–86, 2008.

[FSH08b] Efi Fogel, Ophir Setter, and Dan Halperin. Movie: Arrangements of geodesic
arcs on the sphere. In Abstracts of 24th European Workshop on Computational
Geometry, pages 218–219. Association for Computing Machine, 2008.

[GGHT97] Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J.
Tanenbaum. Snap rounding line segments efficiently in two and three dimen-
sions. In SCG ’97: Proceedings of the thirteenth annual symposium on Com-
putational geometry, pages 284–293, New York, NY, USA, 1997. Association
for Computing Machinery (ACM) Press.

[GHB+05] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-
necke, and M. Bartelmann. Healpix: A framework for high-resolution dis-
cretization and fast analysis of data distributed on the sphere. Astrophysics
Journal, 622:759–771, April 2005.

[GM98] Leonidas J. Guibas and David H. Marimont. Rounding arrangements dynami-
cally. The International Journal of Computational Geometry and Applications,
8(2):157–176, 1998.

[GY86] Daniel H. Greene and F. Frances Yao. Finite-resolution computational geome-
try. In SFCS ’86: Proceedings of the 27th Annual Symposium on Foundations
of Computer Science, pages 143–152, Washington, DC, USA, 1986. IEEE Com-
puter Society.

[Her08] John Hershberger. Improved output-sensitive snap rounding. Discrete & Com-
putational Geometry, 39(1-3):298–318, 2008.

[HHK+07] Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.
An adaptable and extensible geometry kernel. Computational Geometry: The-
ory and Applications, 38(1-2):16–36, 2007.

[Hob99] John D. Hobby. Practical segment intersection with finite precision output.
Computational Geometry: Theory and Applications, 13(4):199–214, 1999.

[HP02] Dan Halperin and Eli Packer. Iterated snap rounding. Computational Geom-
etry: Theory and Applications, 23(2):209–225, 2002.

[IEE08] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic.
IEEE Computer Society Press, aug 2008.

BIBLIOGRAPHY 57

[JDG02] Lili Ju, Qiang Du, and Max Gunzburger. Probabilistic methods for centroidal
Voronoi tessellations and their parallel implementations. Parallel Computing,
28(10):1477–1500, 2002.

[Ket09] Lutz Kettner. 3d polyhedral surfaces. In CGAL Editorial Board, editor, CGAL
User and Reference Manual. 3.5 edition, 2009.

[Mil89] Victor Milenkovic. Double precision geometry: A general technique for calcu-
lating line and segment intersections using rounded arithmetic. In In Proceed-
ings of the 30th Annual IEEE Annual Symposium on Foundations of Computer
Science, pages 500–505, 1989.

[Mil90] Victor Milenkovic. Rounding face lattices in d dimensions. In In Proceedings of
the 2nd Canadian Conference on Computational Geometry, pages 40–45, 1990.

[Mil00] Victor Milenkovic. Shortest path geometric rounding. Algorithmica, 27(1):57–
86, 2000.

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley &
Sons, NYC, 2nd edition, 2000.

[Pac08] Eli Packer. Iterated snap rounding with bounded drift. Comput. Geom.,
40(3):231–251, 2008.

[Pac09] Eli Packer. 2d snap rounding. In CGAL Editorial Board, editor, CGAL User
and Reference Manual. 3.5 edition, 2009.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational geometry: an
introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[SGF+07] Alexander S. Szalay, Jim Gray, George Fekete, Peter Z. Kunszt, Peter Kukol,
and Ani Thakar. Indexing the sphere with the hierarchical triangular mesh.
The ACM Computing Research Repository, abs/cs/0701164, 2007.

[SKS02] Lian Song, A. Jon Kimerling, and Kevin Sahr. Developing an equal area global
gridby small circle subdivision. In M.Goodchild and A. J. Kimerling, editors,
Discrete Global Grids, chapter 1. National Center for GeographicInformation
and Analysis, 2002.

[Sny92] John P. Snyder. An equal-area map projection for polyhedral globes. Carto-
graphica, 29(1):10–21, 1992.

[SWK03] K. Sahr, D. White, and A.J. Kimmerling. Geodesic discrete global grid systems.
cartography and geographic information science., 2003.

[WFZH07] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements.
In Cgal Editorial Board, editor, Cgal User and Reference. 3.3 edition, 2007.

58 BIBLIOGRAPHY

[WKSS98] Denis White, A. Jon Kimerling, Kevin Sahr, and Lian Song. Comparing area
and shape distortion on polyhedral-based recursive partitions of the sphere. In-
ternational Journal of Geographical Information Science., 12(8):805–827, 1998.

Links

[1] Applied Computational Geometry Lab.
http://acg.cs.tau.ac.il/.

[2] Cgal — Computational Geometry Algorithms Library.
http://www.cgal.org.

[3] ESRI Virtual Globe product page.
http://www.esri.com/software/arcgis/explorer/index.html.

[4] Geographic Coordinate System.
http://geology.isu.edu/geostac/Field_Exercise/topomaps/grid_assign.htm.

[5] Gmp — GNU Multiple Precision Arithmetic Library.
http://gmplib.org.

[6] Google earth.
http://earth.google.com.

[7] KML Reference at Google.
http://code.google.com/apis/kml/documentation/kmlreference.html.

[8] Geomview object file format.
http://people.sc.fsu.edu/~jburkardt/data/off/off.html.

[9] NASA Wold Wind download page.
http://worldwind.arc.nasa.gov/download.html.

59

http://acg.cs.tau.ac.il/
http://www.cgal.org
http://www.esri.com/software/arcgis/explorer/index.html
http://geology.isu.edu/geostac/Field_Exercise/topomaps/grid_assign.htm
http://gmplib.org
http://earth.google.com
http://code.google.com/apis/kml/documentation/kmlreference.html
http://people.sc.fsu.edu/~jburkardt/data/off/off.html
http://worldwind.arc.nasa.gov/download.html

	Introduction
	Related Work
	Introduction to Spherical Geometry

	The Isocube Approach
	Preliminaries and Notation
	The Spherical SR Process
	The Topological and Geometric Properties of Isocubical SSR

	The DGGS Approach
	The Subdivision Process
	Grid Types for which SR Preserves Topology
	Defining Pixels
	Additional Notation
	The Spherical SR Process
	The Topological and Geometric Properties of DGGS SSR

	SSR With Labeled Pixels
	Labeling the Pixels
	Labeled Spherical SR Process
	Conclusion

	Implementation
	Cgal Packages Used by the Implementation
	2D Arrangement
	2D Snap Rounding
	Arrangement of Geodesic Arcs on the Sphere

	Implementation Details
	Input
	Distribution to Faces
	Snap Rounding on Faces
	Adding Connection Arcs
	Output

	Measuring the Directed Hausdorff Distance on the Sphere

	Experimental Results
	Robustness
	Rounding Distance
	Random Input
	Real World Input

	Conclusion and Future Work
	Appendix
	Convex Sets on a Sphere
	Circumcenter Bit Length
	Input Files Example

