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Abstract. We introduce a new, efficient, and complete algorithm, and
its exact implementation, to compute the Voronoi diagram of lines in R>.
This is a major milestone towards the robust construction of the Voronoi
diagram of polyhedra. As we follow the exact geometric-computation
paradigm, it is guaranteed that we always compute the mathematically
correct result. The algorithm is complete in the sense that it can han-
dle all configurations, in particular all degenerate ones. The algorithm
requires O(n®*T) time and space, where n is the number of lines. The
Voronoi diagram is represented by a data structure that permits answer-
ing point-location queries in O(log2 n) expected time. The implemen-
tation employs the CGAL packages for constructing arrangements and
lower envelopes on parametric surfaces together with advanced algebraic
tools. Supplementary material and in particular the prototypical code of
our implementation can be found in the website: http://acg.cs.tau.
ac.il/projects/internal-projects/3d-lines-vor/project-page.

1 Introduction

The Voronoi diagram (VD) is among the most fundamental structures in Compu-
tational Geometry, and is known to be a useful tool in a variety of domains. For
instance, structural biology [I2] and robot motion planing [BH] apply Voronoi
diagrams to encode point sets keeping maximal distance from atoms or obsta-
cles, respectively. A related concept is the medial-axis transform [B], which is
considered fundamental in solid modeling and applied to problems such as finite
element meshing, shape morphing, and feature recognition. Yet, the adaptation
of complex three-dimensional Voronoi diagrams in professional tools has been
very slow. Their use is hindered by the difficulty of designing and implementing
reliable geometric algorithms for complex structures in three-dimensional space.

Voronoi diagrams have been the subject of a tremendous amount of research.
We refer the reader to the survey by Aurenhammer and Klein [6] of work pub-
lished up till 2000. Voronoi diagrams in R? are well understood in almost all

* This work has been supported in part by the Israel Science Foundation (grant no.
236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann
Minkowski—Minerva Center for Geometry at Tel Aviv University.


http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page
http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page

2 Michael Hemmer, Ophir Setter, and Dan Halperin

aspects, that is, in terms of complexity and optimal algorithms as well as in
terms of robust and efficient implementations. In R? much less is known, even
for simple objects such as lines, segments, or polyhedra. For example, a tight
bound on the combinatorial complexity of the VD of n lines or line segments
in R3 is unknown; it is conjectured that the complexity is near-quadratic; the
known lower bound is £2(n?) [, but the best known upper bound id] O(n3+¢) [g].
In the case of lines with a fixed number ¢ of orientations the upper bound was
improved to O(c*n?*¢) []. A complete analysis of all possible combinatorial
cases for three arbitrary lines is presented by Everett et al. [TOTT].

Today, there are many published results on robust constructions of different
types of Voronoi diagrams in R?. Not only Voronoi diagrams of points are con-
sidered, but also Voronoi diagrams of line segments [12], circles [I3], ellipses [T4],
and more [[5, §2]. In R3, an exact implementation of the Voronoi diagram of
additively-weighted points was analyzed in [I6], but we are not aware of any ex-
act, complete, and implemented algorithm that computes Voronoi diagrams of
lines, line segments, or polyhedra. Nevertheless, progress has been made toward
the exact computation of the arrangement of quadrics [T7/I]]. Each Voronoi
cell of the diagram of lines in space can be represented as the union of cells
of such an arrangement. Other approaches explicitly aim for an exact or ro-
bust computation of the Voronoi diagram (or the medial axis) [T920]. However,
those approaches are not complete. For example, Culver’s algorithm [I9] does
not handle singular trisector-curves.

Finally, Hanniel and Elber [21] provided an algorithm to construct the Voronoi
cell of bounded planes, spheres, and cylinders in R?. Though it is in some aspects
similar to ours, the approach is approximate, does not deal with degeneracies,
and leaves robustness issues aside.

We present an exact and complete (and thus robust) algorithm for computing
the Voronoi diagram of arbitrary lines in three dimensions with respect to the
Euclidean metric. The algorithm requires O(n3¢) time and space, where n is
the number of input lines. The data structure admits answering of point-location
queries in O(log2 n) time. We anticipate that the nature of the algorithm and
the general approach of its implementation constitute a major milestone towards
an exact and robust construction of the Voronoi diagram of polyhedra in R3.

We utilize the fact that in Euclidean space the Voronoi cell can be consid-
ered as a lower envelope since the cell essentially has a certain “star shapedness”
property: For any point p inside the Voronoi cell of a specific line site ¢, the line
segment connecting p to its projection py onto ¢, is fully contained in the cell.
This observation enables us to represent the Voronoi cell of £ as a minimization
diagram, which is (conceptually) embedded on an infinitesimally small cylinder
around ¢. This observation is similar to (but not the same as) the well-known
connection between Voronoi diagrams and lower envelopes [22]. Lower dimen-
sional cells are represented several times, namely as part of the boundary of the

3 A bound of the form O(f(n)-n°) means that the actual upper bound is C. f(n) - n°,
for any € > 0, where C. is a constant that depends on &, and generally tends to
infinity as € goes to 0.
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VC' of each line they are associated with. The implementation is developed in
and based on CGAL, Computational Geometry Algorithms LibraryE

The paper is organized as follows. Section B discusses preliminary subjects,
such as properties of bisectors and trisectors of lines in space and the lower en-
velope algorithm. Section B describes the details of the construction of a Voronoi
cell. Section B discusses the point location algorithm and its analysis. Section H
gives implementation details and presents preliminary experimental results that
were obtained with our software.

2 Preliminaries

Let O = {s1,89,...,5,} be a set of objects in R, also referred to as sites.
We follow the Voronoi diagram definition by Everett et al. [1]: The Voronoi
diagram VD(O) is the subdivision of R? into cells, where each cell VC(S) is
associated with a subset S C O, such that every point in VC(S) is strictly closer
to all sites in .S than to all other sites in O and is equidistant from all sites in .S.
The formal definition is:

VC(S) ={peR?|Vs € S,;t € O\S:d(p,s) <d(p,t) and Vs,t € S : d(p, s) = d(p,t)}.

In the context of this paper, O denotes a set of arbitrary rational lines in R?
and d(-,-) denotes the Euclidean distance function. The set of points that is of
equal distance to two or three sites is called a bisector or trisector, respectively.

where d(-,-) denotes the Euclidean distance function. When the cardinally
of S is two or three it is called bisector or trisector, respectively.

2.1 Properties of Bisectors and Trisectors

We next state some properties of bisectors and trisectors of the Voronoi diagram
of lines in R3 that are used throughout this paper. Proposition[l gives properties
of bisectors; see Figure [ for illustrations.

(b)

Fig. 1: Bisector of: @ two generic lines; two parallel lines; two intersecting
lines. The diagrams were created with our implementation (see Section H), and were
clipped by a sphere for convenience.
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Proposition 1. The bisector of two lines {1 and {5 in three-dimensional space
is either (a) a hyperbolic paraboloid (a surface of algebraic degree 2), if £1 and {2
are skew, (b) a plane, if (1 and ¢y are parallel, or (¢) a pair of orthogonal planes,
if £1 and {5 are concurrent. In the latter case, the singular locus of the bisector
18 a line that is perpendicular to 1 and {s and passes through their intersection
point.

The main theorem of Everett et al. [IOJII] provides a good overview of the
different cases of the trisector:

Theorem 1 (Everett et al.). The trisector of three lines is either (i) a non-
singular quartic, if the three lines are pairwise skew but mot all parallel to a
common plane nor on the surface of a hyperboloid of revolution, (ii) a cubic and
a line that do not intersect, if the three lines are pairwise skew and lie on the
surface of a hyperboloid of revolution, (iii) a nodal quartic, if the three lines are
pairwise skew and all parallel to a common plane, (iv) one parabola or hyperbola,
if there is exactly one pair of coplanar lines which are parallel, (v) two parabolas
or hyperbolas that intersect, if there is exactly one pair of coplanar lines that
intersect, (vi) between 0 and 4 lines, if there are two pairs of coplanar lines,
or (vii) one line, in the case of three coplanar concurrent lines, the common
singular locus of the bisectors.

We use a corollary of the above theorem in Section Bl where we describe the
construction of a Voronoi cell in the diagram of lines.

2.2 Lower Envelope Algorithm

Again, we regard each three-dimensional VC as a lower envelope with respect
to its line site £p. This lover envelope is represented as a minimization diagram
which is conceptually embedded in in the uv-parameter space of the surface of
an infinitesimally small cylinder around ZOE We utilize the divide-and-conquer
algorithm for constructing lower envelopes [7] as it is implemented inCcar 23,
§8.5], which we briefly describe next.

Since the algorithm projects bisectors into the parameter space, all bisectors
are initially split up into wv-monotone surfaces. The algorithm then splits the
resulting set G into two subsets G; and Go of roughly equal size, and recursively
computes their minimization diagrams Mj and Ms. In the conquer step, the two
diagrams are merged into one. First, the overlay of M; and M is computed,
where each feature is labeled with up to two sets of labels L1 and Lo of candidate
surfaces from both diagrams. Thereafter, the arrangement is further refined such
that each feature can either be labeled with L, Lo, or L1ULs. In particular, each
face that is labeled with two bisectors is refined by the corresponding projected
trisector curve. Note that this step can also split up edges. After the comparison
of bisectors the algorithm removes redundant edges and vertices, which yields
the final diagram. The complexity of the above algorithm is O(n?*¢), with the
condition that the bisector surfaces are “well-behaved”.

5 See Section Bl for details on the uv-parameter space setting.
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Note that the algorithm heavily relies on arrangement operations such as
overlay, which are provided by [23l, §8.1] and [24]. Though we treat this as a black
box throughout most of the paper, some more details can be found in Section B
The additional constructions and predicates required by the lower envelope algo-
rithm are: the construction of the projected boundary of uv-monotone surfaces,
the construction of the projected intersection of two wv-monotone surfaces, and
the comparison of two bisectors above a face, edge, or vertex.

3 Computing a Voronoi Cell

This section discusses the computation of the VC' of one line, referred to as the
base line and denoted by .

The two-dimensional package of CGAL has the infrastructure to compute
envelopes over cylinders. However, for the efficiency of the implementation it is
important to keep the algebraic degree of the projected curves as low as possible.
Therefore, we project the curves on two parallel planes that “sandwich” the base
line, while keeping the projection direction normal to the cylinder. This reduces
the maximum degree of a projected trisector curve from sixteen down to eight.

3.1 Parametrization and Projection

—_ = — —
Let F = {by, b2, b3} be an orthogonal basis of R? which is chosen such that b,
is the direction of the base line ¢y. Moreover, let pg be some rational point on ;.
Now, consider the parametrization X (u,v,r) = pg + u - b—f +uv-r- b—; +7r- b_3>
Note that X(u,v,£1) defines two parallel planes (uv-planes) that sandwich £,
which we call the positive and the negative plane, respectively. Thus a point
X (ug, vo, 1) represents a ray that originates from point pgy + g - b—f on ¢y with
direction +(vy - b_2> + b—3>)

Note that the plane H* = {z € R3|(x — po)? - b—3> = 0} is not covered by the
parametrization. However, one can simply glue the arrangements together as
long as the chosen frame is generic, that is, curves are not allowed to touch H*,
intersect in H*, or even be contained in H*. However, curves are allowed to
transversely intersect H*, where each intersection gives rise to a simple vertical
asymptote in the projection.

In order to avoid these critical cases, we generate the local frame by setting
b_2> to some random vector that is orthogonal to b_f Though this frame is generic
with high probability, we also check in all relevant predicates that the frame is
indeed generic. If necessary, we restart the computation choosing another random
frame. We chose the standard strategy that increases the number of random bits
used for each iteration. This way we guarantee termination and a small number
of additional bits due to the randomization.

We highlight below several major issues in the projection of a trisector. The
projection of a bisectors’ boundary and a detailed case analysis is deferred to
Appendix [Al We rely merely on the generic frame and on the following corollary
that directly follows from Theorem [}
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Corollary 1. The set of points where the trisector does not represent a transver-
sal intersection of the bisectors is a 0-dimensional set, namely, the singular
points of the trisector. The only exception is the case of three coplanar con-
current lines; in this case the trisector is the common singular locus (line) of the
three bisectors.

For a trisector To,; let By, Boj, Bij € Q[z1,x2,x3] be the three trivariate
polynomials of the relevant bisectors. Now let By and Bs be the two bisectors
of minimal degree, d; and ds, respectively. The projection is carried out by a
resultant computation [25]. However, since we wish to project towards ¢y we first
substitute X (u,v,r) into By and By and compute the resultant with respect to r.

res(u,v) := resultant(B (X (u, v, 1), B2 (X (u, v,7)),r) € Qlu,v] .

This is at most a bivariate polynomial of

degree 2dids. Thus, in the worst case (the ;re(;;se;(zcl?&ir to 4 B
generic case) this is an irreducible polyno- T,
mial of degreeﬁ only 8. However, due to its  x(uv,+1) el
algebraic nature the approach can not im- °° el / \
mediately distinguish between the positive = LN

. ) X(u,v,—1)
and the negative parameter space. The Fig-

ure to the right illustrates how the resultant
projects Tp;; into the positive and negative
plane. We first split up the projected curve into u-monotone segments using
[24]. In particular, curves are split up at vertical asymptotes.

In order to decide that an arc « is on a certain plain we utilize Corollary [,
namely the observation that in all but one exception (which is handled explicitly)
two bisectors must intersect transversely along the trisector curve, which implies
that they must interchange their order while passing the projected trisector.

This is detected by two ray shoots at rational points right above and below a.
Let p and p be these two points, respectively. To ensure that both points are
chosen sufficiently close, we construct a rational vertical line L that intersects o
in its interior, say at point p,. We choose the points on L such that they isolate
the arc from all other intersections of L with res. Now consider the path on L
from P (or p) to p,. P is sufficiently close to « since this path does not intersect
res until it reaches . In case « is vertical, we choose L to be horizontal.

Further details and in particular how to guarantee that the chosen frame is
generic, can be found in Appendix [Al

3.2 Lower Envelope Predicates

A core part of the envelope algorithm is the representation of minimization
diagrams as labeled arrangements and the overlay of such arrangements. The

6 More precisely, it is a bivariate polynomial of bi-degree at most (4, 4). For a standard
rational parametrization of the cylinder, we would obtain a polynomial of bi-degree
(8,8) or 16 in total.
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required predicates for these operations relate to planar algebraic curves only,
which are provided by [24]. However, it remains to ensure that no intersection
takes place in H*. This boils down to testing that the leading coefficients with
respect to v of two non overlapping (co-prime) curves have no common root.
Thus, we provide a slightly modified set of predicates that additionally ensure
this condition.

The predicates that are additionally required by the envelope algorithm are
the comparison of two bisectors above a face, an edge, or a vertex, respectively;
see also Section For a face, it is sufficient to select a rational point inside it
and compare the surfaces along the corresponding ray. The point is chosen in a
similar way to the approach used when sorting the trisectors to the positive and
negative planes. For an edge we construct a vertex in its interior and compare
along the corresponding ray. For a vertex, which may not have rational coordi-
nates, we first check whether the point is on the projected intersection of the
two bisectors, and report equality if it is indeed the case. Otherwise we compare
bisectors at a rational point sufficiently close to the vertex, where “sufficiently
close” is again determined by a similar strategy as in sorting trisector curves.

3.3 Complexity

For the time complexity and space complexity analysis we ignore additional costs
that may arise due to variable bit-length of various implementations adhering
to the exact computation paradigm [26]. We also ignore the additional run-time
that can result from a poor choice of a generic frame (Section Bl), as it is not
the general case, and has no impact on performance in expectation.

The bisector surfaces are algebraic surfaces of maximum degree of 8 therefore,
the time-complexity of the lower envelope algorithm is O(n?*¢) (which is also
the best known upper bound). Thus the run-time complexity of computing the
cells for all n lines is O(n37¢), which also bounds the space complexity.

4 Fast Point Location

Given a query point p we wish to find the closest line to it. Consider the following
point-location strategy: We start with a random line site ¢. First we project p
on ¢ and locate its image in the minimization diagram of ¢. The image is located
on a feature of the minimization diagram which is labeled with a (in general not
empty) set of line sites S. We then compare the distance d(¢, p) to d(¢', p) for one
line ¢’ € S. If d(¢, p) is less than or equal to d(¢', p) we report £ or S U ¢, respec-
tively. Otherwise we continue in the cell of ¢'. This walk through the Voronoi
diagram terminates since there is only a finite number of cells and the distance
of p to the current line always decreases. We can locate the image of p inside the
minimization diagram in expected O(logn) time by using point-location based
on trapezoidal decomposition [27]. Combining this algorithm with the idea of
landmarks [28] may already have good performance in practice. However, the
algorithm has a worst-time time complexity O(nlogn).
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We turn it into an algorithm with a time-complexity O(log® n) by combining
it with a strategy that is similar to skip lists. We build a hierarchy of Voronoi
diagrams. The lowest layer contains the VD of the full set of lines, while each
other layers contain the VD of only 1/k (random) lines of the preceding layer,
where k > 1 is some constant. The highest layer (the root layer) contains only a
constant number of lines, and the number of layers is O(logn). In order to locate
a point p we first locate it in the root layer using the walk strategy described
above. We then proceed to the next layer starting at the line that was found in
the preceding layer.

The following theorem summarizes the performance of the point-location
structure (see [2980] for similar analysis in 2D):

Theorem 2. The expected running time of the point-location query in the hier-
archical VD structure is O(log®n).

Proof. The number of cells visited at the root layer is obviously at most k. For
all other layers, consider the the path backward, from its target to the source: for
every cell the probability that it is already the source is 1/k. Thus, the expected
length of a path is >, %(%)“1 < k. That is, the expected running-time is
k518 ™ T(k7), where T(m) is the expected time spent on the point location in
the minimization diagram of m lines. Thus we obtain an expected running-time
of O(log”n) in total.

We remark that some special cases are left out in this discussion for brevity
(e.g., points that are contained in H*), but they are completely handled in our
software.

5 Implementation Details

Our implementation is based on CGAL, which follows the generic-programming
paradigm [3T]. Algorithms are formulated and implemented such that they are
abstract from the actual types, constructions, and predicates. Thus, the imple-
mentation of every algorithm and data structure in CGAL is parametrized by a
so-called traits class [82], in which these functionalities are defined. In particular,
a user can employ an algorithm with his own types, constructions, and predi-
cates by providing his own traits class. This way it is possible to achieve a great
amount of flexibility. At the extreme, it is possible to even partially change the
nature of an algorithm, as we do here for the three-dimensional lower envelope
class [23] §8.5].

The core of our implementation is the traits class for the lower envelope al-
gorithm, which also needs to be a valid traits class for CGAL’s arrangement
package. The required functionalities by the arrangement package are provided
by the traits class presented in [24]. The approach reduces all construction and
predicates to cylindrical algebraic decompositions of the plane for one or two
curves. The approach uses additional resultant computation that projects inter-
section points onto the wu-axis, that is, u-coordinates of intersection points are
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represented as real roots of this univariate resultant polynomial. Thereafter, the
fibers above the roots are investigated in order to determine the arc of the curve
on which the intersection takes place.

We essentially wrap the above traits class and add the required functionalities
by the envelope algorithm; see also Section Bl In case we detect that the current
frame is not generic an exception is thrown, which is then caught by our primary
class that computes a new frame and restarts the computation of the cell. For
each Voronoi cell we keep a separate instance of the traits class, which is used
for both planes. This allows caching of relevant results.

Approximation of the three-dimensional coordinates of a vertex, is based on
multi-precision floating-point interval arithmetic (MPFI) [T5, §8]. Since this is
a certified approximation, we obtain a bounding box that contains the vertex.
This could be used to easily establish the adjacency among lower dimensional
cells. For instance, let v denote a vertex in a minimization diagram M. The label
of v points to all other minimization diagrams that contain a representation of
it. Let M’ be one of these diagrams and v’ be the representation that we wish to
find therein. We could use a similar approach to the one used in [I8]: By using
the labels, we identify all possible candidates in M’. This set contains only up
to 8 representations and contains at least v'. We compute progressively more
precise bounding boxes for all candidates until only one (the one of v') overlaps
the bounding box of v.

Our implementation can handle arbitrary rational lines, in particular, it can
handle all possible degenerate cases. Figure Bl depicts degenerate Voronoi dia-
grams. Each mesh was generated using CGAL’s package for labeled mesh do-
mains [B3]. The oracle, which is required by the mesh generation, was written
such that it only utilizes (and thereby tests) our point location structure. Lower
dimensional features were approximated using the approach discussed above.
In order to achieve sharp edges the protecting balls technique introduced by
Boltcheva et al. [34] was applied. medit [35] was used for the final visualization.

Since we aim to eventually incorporate our code into a CGAL package the
software is developed within the revision control system of the project. All ex-
periments within this section where carried out on an internal CGAL release
CGAL-3.7-Ic-27, which already comprises all the necessary algebraic tools [24].
However, the trapezoidal map is currently not available for minimization di-
agrams due to ongoing changes in the arrangement package (it is anticipated
soon), which forces us to resort to a simpler point location strategies for now.

Finally, we present preliminary results obtained with our software. The point
location structure as it is discussed in Section B leaves the ratio k among levels
undetermined. In order to show the impact of k& we created random instance of
parallel lines with coefficients in the range [0, 210]ﬂ For each instance, we created
10 Voronoi diagram hierarchies, which where queried with 1000 random points
in [0,2'°]3 each.

7 Since the trapezoidal map is not yet available for envelopes, we had to resort to
instances that keep the complexity of a cell small.
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(b) ()

Fig. 2: Diagrams are clipped by a sphere for convenience. @ VD of 4 lines, obtained
by rotating one line around the z-axis. All bisectors meet in that axis. VD of 4 lines
intersecting in one point. VD of 4 lines, two lines intersect and the others are parallel
to each of them, respectively.

N\K[[ 2 | 4] 8] 16] 20] 24] 28] +oo
16 |[6.48]4.30] 4.34|N/A|N/A[N/A|N/A[[3.94
36 ||8.09/6.33|5.33| 5.67|N/A|N/A|N/A||5.62
64 |9.77|6.42|5.73| 6.07| 6.00 6.12| 6.83|| 6.63
100 [|9.87|7.22|6.18| 6.45| 6.97| 6.83| 7.13|| 7.43 -

Table 1: Average number of visited cells per query, where k& denotes the ratio of the
hierarchy and N the number of lines. Entries for n < 2k are repesented by the last
column. To the right is depicted a Voronoi diagram of 5 parallel lines.

Table [ shows the average number of visited cells per query depending on
the number of lines and the chosen value for k. The last column shows the pure
walk without a hierarchy, which suggests an average query time in O(y/n), as
one may also expect due to results in [36]. For larger instances, it seems that
choosing k equal to 8 is appropriate.

6 Conclusions

We have presented an exact, complete, and thus robust, algorithm that com-
putes the Voronoi diagram of arbitrary rational lines in R®. The algorithm
requires O(n3*¢) time and space, where n is the number of lines. The intro-
duced data structure permits to answer point location queries in O(log2 n) ex-
pected time. The implemented prototype is exact and can handle all degenerate
cases. We refer to http://acg.cs.tau.ac.il/projects/internal-projects/
3d-lines-vor/project-page for the most recent version and supplemental ma-
terial.

The algorithm is intentionally designed such that it avoids tedious case dis-
tinctions, which makes it implementable, maintainable and, in particular, ex-
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tensible to other primitives such as points, line segments, and triangles. Thus,
we consider our approach as a major milestone towards the computation of the
Voronoi diagram of polyhedra in three dimensions.

Moreover, we expect that it will pave the way to devising a three-dimensional
variant of the visibility-Voronoi complex [H], a structure that enables to trade-
off clearance and path length in robot motion planning, and has proved to be
especially useful in the plane.

Our approach may also be generalized to spheres (see also [21]) which would
open the door for innovative solutions to central problems in Structural Biol-

ogy [M2].

Acknowledgments: The authors thank S. Lazard and M. Yvinec for fruitful
discussions.
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A Projection of Bisectors and Trisectors

Recall, from the discussion in Section Bl that the parametrization X (u,v,r) is
— =T
defined with respect to a local frame F' = {b1, b2, b3} and that the plain H*,

which is orthogonal to b_;;, is not contained in X.

In general this is not a problem since a curve (trisector) that transversely
intersects H* appears as a simple vertical asymptote in the uv-parameter space.
For instance, if a projected curve leaves one plane as a vertical asymptote at plus
infinity, then it reappears at minus infinity on the other plane. If this is the only
case that happens it is clear that there is a one-to-on correspondence among the
vertical asymptote (and thus edges) in the two minimization diagrams, which
makes it possible to glue them together.

We call a frame for which this is possible a “generic frame”, more precisely:

Definition 1 (Generic Frame). We define the frame F' to be generic if (i) no
1-dimensional components of the trisector (a conic or a lmeﬁ are contained
in H*, (i) every intersection of a trisector with H* is a transversal intersection,
(iii) no two curves (trisectors) intersect in H*, and (iv) the intersections of H*
with all bisectors By; are regular.

In this section we analyze the cases that we encounter while projecting bi-
sector boundaries and trisector curves. In particular, we discuss how we detect
a non-generic frame.

A.1 Projection of Bisectors Boundary

The cases here correspond to the case distinction in Proposition [

Generic Case Let By; € Q[z1, 22, x3] be the polynomial representing the bisec-
tor between £y (the base line) and some other line ¢;. In the generic case By;
represents a hyperbolic paraboloid that is define in almost all directions of the
projection. The only exception are rays that are perpendicular to ¢; and point
away from ¢;. These directions are represented by a horizontal (representing rays
in the same direction) line. The line is characterized by the leading coefficient
of Bo;(X(u,v,r)) with respect to r. On each of the wv-plane we interpret this
surface as one or two uv-monotone surfaces. On the plane that contains the
above line, we split the bisector into two uv-monotone surfaces; on the other
plane there is exactly one wv-monotone surface.

Parallel Lines In case {y and ¢; are parallel, By, is of degree 1 since it represents
a plane. The leading coefficient of Bog;(X (u,v,r)) with respect to r is a horizontal
line that represents all rays that do not intersect By;. That is, on each of the
uv-planes we obtain one uv-monotone surface, whose projected boundary is this
line. The proper halfspace can be determined by a simple ray shoot.

8 Note that a cubic can not be contained in H*.
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Intersecting Lines In case ¢y and /¢; intersect, the bisector By; degenerates to
two planes that intersect along a singular rational line /g, which is perpen-
dicular to £y and £;. Let (ug,v9) € @Q? be the parameter values for that line.
All lines X(ug,v,7r),v # vy have a double intersection with Bp;. The lines
X (u,v0,7),u # up do not intersect By, since they are parallel to it. The pa-
rameter space is split up along v = vy and u = ug, which results in uv-monotone
surfaces, 4 one the positive and 4 on the negative side.

Ensuring a Generic Frame For all cases it holds that the construction may
trigger a restart of the computation if one of the horizontal lines is not seen,
that is, if the leading coefficient of By, (X (u, v, r)) with respect to r has degree 0.

A.2 Projection of Trisectors

Besides the exactness of the method described in Section Bl it has the advantage
that it is general and forgoes a huge case distinction. In particular, we do not
factorize the polynomial into its factors that represent the different components
mentioned in Theorem [l

Two bisectors are compared above (below) a u-monotone arc cuE on the pos-
itive (negative) plane as follows. For a sufficiently close rational point p(ug, vo)
above (below) ¢,, the corresponding line is substituted into the two bisectors.
This is at most two quadratic polynomials in r, each having at most one positive
and one negative root. If present, the positive (negative) roots from the two bi-
sectors are compared. In case that no root is present, there is no bisector above
P and the comparison is not required

A special treatment is given for the case of three coplanar concurrent lines.
The trisector in this case is a single perpendicular line to £y. Hence, its projection
is just a rational point that is valid for both sides.

Ensuring a Generic Frame First, it is checked that no 1-dimensional component
is contained in H*, in that case degree(res) is necessarily less than 2d;ds but
the degree may also drop in few other cases. Thus if the degree is “suspicious”,
we simply intersect B; and By with H*. There is no 1-dimensional component
if the degree of the ged of the two resulting bivariate polynomials is constant.
Moreover, we check that the projection has only simple vertical asymptote by
checking that the leading coefficient of the square free part of res is square free.
This ensures that the trisector intersects H* transversely always.

9 “Above” is the area to the left of the curve when going from its lexicographically
smaller to its lexicographically larger end.
10 This happens in case the bisector is just a simple plane.
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