The Raymond and
Beverly Sackler Faculty
of Exact Sciences

Tel Aviv University

The School of Computer Sciences

Localization with Single or Antipodal
Distance Measurements

Thesis submitted in partial fulfillment of the requirements for the
M.Sc. degree in the School of Computer Sciences, Tel Aviv
University

By
Barak Ugav

The research work for the thesis has been carried out
under the supervision of

Prof. Dan Halperin

Acknowledgments

I would like to express my heartfelt gratitude to Dan Halperin, my direct adviser, for his
guidance, expertise, and continuous support throughout the research process. Dan’s men-
torship and feedback have been instrumental in shaping the progression of my work and
refining my ideas. It was a pleasure working with you, and I am grateful for the opportunity
to learn from you.

I am also grateful to Efi Fogel for his exceptional coding assistance and technical expertise.
Efi’s contributions were vital in implementing and optimizing the practical aspects of my
research.

Lastly, I am grateful to Steve Lavalle for his invaluable contributions to my research.
Firstly, I would like to thank him for suggesting the research question that formed the foun-
dation of my work. Secondly, I appreciate his collaborative approach, as he provided valuable
ideas and suggestions throughout the research process. Steve’s expertise and dedication have
been instrumental in shaping the direction and methodology of my work, and I am honored
to have had the opportunity to work alongside him.

Abstract

Given a polygon W, a depth sensor placed at point p = (z,y) inside W and oriented
in direction 6 measures the distance d = h(x,y,0) between p and the closest point on
the boundary of W along a ray emanating from p in direction #. We study the following
problem: For a polygon W with n vertices, possibly with holes, preprocess it such that given
a query real value d > 0, one can efficiently compute the preimage h='(d) € W x S!, namely
determine all the possible poses (positions and orientations) of a depth sensor placed in
W that would yield the reading d, in an output-sensitive fashion. We describe such a data
structure requiring O((E+n) log n) preprocessing time, O(E) storage space and O(1+k logn)
query time, where F is the number of edges in the wisibility graph of W (the graph whose
nodes are the vertices of W, and a pair of nodes is connected by an edge if and only if
the open line segment connecting the corresponding vertices is fully contained in W), and
k is the number of vertices and maximal arcs of low degree algebraic curves constituting
the answer. We also obtain analogous results for the more useful case (narrowing down the
set of possible poses), where the sensor performs two antipodal depth measurements from
the same point in W. The query time in the latter structure is O(logn + k), while the
preprocessing time and storage are the same as in the former structure. We then describe
simpler data structures for the same two problems, where we employ a decomposition of
W x S!, which is an extension of the well-known trapezoidal decomposition, and which
we refer to as rotational trapezoidal decomposition. The answers to queries in these data
structures are output-sensitive relative to this decomposition: If k cells of the decomposition
contribute to the final result, we will report them in O(1 + k) (resp., (logn +k)) time for one
measurement (resp., antipodal measurements), after O((E +n) logn) preprocessing time and
using O(FE) storage space. These problems are inspired by localization questions in robotics,
where we are given a map of the environment, a robot is placed in an unknown pose, and we
wish to determine where the robot is. Although localization is often carried out by exploring
the full visibility polygon of a sensor placed at a fixed point of the environment, the approach
that we propose here opens the door to sufficing with only few depth measurements, which
is advantageous as it allows for usage of inexpensive sensors and could also lead to savings
in storage and communication costs.

Contents

B

Introduction

1.1 Related Work,
1.2 Contribution and Outline

Rotational Trapezoidal Decomposition

2.1 Computing the Rotational Trapezoidal Decomposition
2.2 The RTD Opening Function
2.3 The Vertices of a Trapezoid

RTD-Based Single Distance Measurement Localization

3.1 RTD-Based Data Structure Construction
3.2 Sensor Positions in a Single RTD Cell
3.3 Suboptimality of the RTD-Based Solution

Output-Sensitive Data Structure for Single Measurement

4.1 Result Vertices, Edges and Their Changes
4.2 Combinatorial Result Change Handling
4.3 Storing the Result Edges for Efficient Queries
4.4 Computing the Combinatorial Change Tuples

Localization by Antipodal Measurements

5.1 RTD-Based Data Structure for Antipodal Measurements
5.2 Suboptimality of the RTD-Based Solution

5.3 Output-Sensitive Data Structure for Antipodal Measurements
Implementation and Experiments
Discussion and Future Work

Plane Projection of Measurement Results

A.1 Plane Projection Curves of a Single Measurement Result
A.2 Plane Projection curve of Antipodal Measurements Result

Combinatorial Result Change Handling

Bibliography

W

17
18
20
21
22

24
24
25
26

30

34

36
36
38

43

46

Chapter 1

Introduction

A depth sensor that provides a single distance measurement! is placed inside a known polyg-
onal workspace W < R? with n vertices. Consider the depth mapping d = h(z,y,0) in
which (z,y) € W is the position of the sensor and § € S' (namely [0,27)) is the direc-
tion of the ray emanating from the sensor and along which the distance to the workspace
boundary is measured. The set of all sensor poses (z,y,6) forms a three-dimensional
configuration space (C-space for short). We wish to devise a data structure such that,
after preprocessing the workspace, will efficiently answer the following queries: Given a
distance measurement (real number) d > 0, report all the possible sensor configurations
that could yield such a measurement. In other words, we aim to compute h’s preimage

h=1(d) = {(z,y,0) e W x S' | d = h(z,y,0)}.

Determining a sensor’s location is one of the main tasks of sensor fusion systems. Ex-
amples are ubiquitous, including Global Positioning Systems (GPS), celestial navigation,
trilateration, camera pose estimation, and localization of autonomous vehicles. Our prob-
lem is motivated mostly by the last one, in which a mobile robot has a complete map of
its environment and must use sensing to determine its pose (position and orientation) with
respect to the map. This so-called robot localization problem is crucial to robotics and has
been researched for several decades.

1.1 Related Work

Many variants of the robot-localization problem were studied throughout the years, both
where the environment is known and the robot should localize itself in it, or where the
environment is not known in advance and the robot should simultaneously learn and map
the environment, and localize itself.

The simultaneous localization and mapping (SLAM) variant, in which the environment
is not known, is harder in the sense that the robot has less information than the variant
where the environment is known, and therefore methods aiming to solve it often yield im-

!Throughout the thesis we use depth measurement and distance measurement interchangeably.

precise results (see, for example, [12, 30]). The robot is required to move and probe the
environment using its sensor(s) (such as a camera, a distance probe, etc.) multiple times,
acquiring sufficient information to identify its surrounding. Earlier work used find-grained
grids (typically square or hexagonal grids) to discretize the environment and represent free
or occupied regions [13, 14]. A common alternative to the grid discretization, is to represent
the map as a collection of sparse features extracted from the sensors data stream [10]. Since
the 1990s, a variety of probabilistic techniques dominate the field [33]. The SLAM approach
is unavoidably affected by a great deal of uncertainty, and these probabilistic techniques are
crucial in order to be able to overcome this challenge, as they do not commit to possibly
noisy observations, but rather use probability distributions. Sensors commonly used are
GPS, compasses, lasers and radars, which are essential for gathering sufficient data about
the environment where the robot moves, and while they provide the information required
to understand the robot position, all of them yield measurements with errors in real world
use, and the probabilistic techniques deal with the noise of these measurements. While the
robot moves and samples measurements using its sensors, an estimation of the environment
and the current position are maintained, using a distribution over the range of possible val-
ues. Examples of such commonly used probabilistic techniques are SLAM solutions using
(Extended) Kalman Filter [10, 21, 24, 29], which is an algorithm that estimates the state of
the environment and the robot given a series of measurements observed over time, including
statistical noise and other inaccuracies. The classical Kalman Filter assumes that the dy-
namics of the system are linear, while the Extended Kalman Filter is a nonlinear version of
the algorithm.

As part of a SLAM algorithm, a subproblem arises, of incremental localization (also called
relative, or position/pose tracking), in which the configuration estimate was known a moment
ago and must be updated based on recent motions and sensor readings; see for example [26].
In case the robot already mapped the environment, but experiences failures and looses its
current pose, another subproblem is encuntered, the so-called kidnapped robot problem [15]
(also called absolute, relocation or global localization), in which the robot must determine its
configuration “from scratch”. In the latter variant, the environment is assumed to be known
and we are only required to identify where the robot is within it. The kidnapped-robot
version resembles our problem and could correspond to such a robot using SLAM, or to a
freshly deployed or rebooted robot that has a description of the environment in the first
place.

Previous research on the kidnapped-robot problem took different approaches, such as
discretizing the environment into grid-like cells [5, 6]. Then, the robot should be located
in one of these cells, for example by maintaining a real value for each cell that represent
the probability the robot is located in that cell and updating these values when further
measurements are available. A slightly different approach is to use sample random points,
instead of using fixed grids, and estimating for each such random point if it is the current
position of the robot [9].

There are both an active variant [11, 23, 25, 27], in which the robot must determine where
to move next to quickly reduce uncertainty, and a passive variant, in which the sensor fusion
system works with whatever sensing and motion data are available. Passive approaches

mainly address stochastic uncertainties [17] and are typically integrated with mapping to
obtain SLAM [10, 32].

This thesis considers the passive localization case and stands out from previous work in
that it uses much less sensor data. Most robot localization methods are based on imaging
sensors, such as cameras or Lidars, which provide a dense collection of measurements [33].
From a computational geometry viewpoint, these may be considered as providing visibility
polygons (see, e.g., [1, 4, 20, 34]), whereas our sensor analogously provides only a single
visibility ray with each measurement. Localization with only few depth measurements is
advantageous over exploring the full visibility polygon in that it allows for using inexpensive
sensors and requires less storage space and communication. Our current work, which focuses
on one or two measurements, is a step forward in this direction. However, it still falls short
of giving a full localization answer, which in general requires at least three measurements;
see further discussion of this issue in Section 7.

1.2 Contribution and Outline

Let W be a polygon in the plane, possibly with holes, and having n vertices. The wisibility
graph of W is the graph whose nodes are the vertices of W, and a pair of nodes is connected
by an edge if and only if the open line segment connecting the corresponding vertices is fully
contained in W. The contributions described in the thesis are as follows:

(1) We review in Chapter 2 an extension of the planar trapezoidal decomposition (see, e.g.,
8, Chapter 6]) to the three-dimensional space W x S'. The decomposition, which we refer
to as rotational trapezoidal decomposition (RTD, for short), has O(E) cells of constant com-
plexity each, and it can be computed in O((E + n)logn) time, where E is the number of
edges in the visibility graph of W, which is bounded by O(n?) in the worst case. The RTD
is easier to construct than the standard three-dimensional vertical decomposition [7, 22] and
it suits the problem at hand better, as the imaginary walls of the RTD are parallel to the
measurement direction.

(ii) In Chapter 3 we use this decomposition to build a simple data structure to answer the
preimage (see Figure 1.1) queries—given a real value d = 0, determine A~ (d)—in O(1 + k)
time, where k is the number of cells of the RTD that contain part of the answer. The prepro-
cessing time remains O((F + n)logn) and the required storage is O(FE)—this remains true
for the following data structures as well. We analyze (Section 3.2) the precise shape of the
projection of the preimages h™'(d) onto the workspace. These projections could also serve
as an answer to a measurement query as they delineate the regions in the plane (positions
only) where the sensor could be.

(iii) The data structure of contribution (ii) is output sensitive with respect to the (artificial)
RTD. One of the main contribution of the thesis consists of a more elaborate data
structure that is output-sensitive in the sense that the query time is proportional, up to a
logarithmic factor, to the number £ of vertices and maximal arcs of low-degree algebraic
curves that constitute the output. In Chapter 4 we describe such data structure for the
one-measurement case that answer a query in O(1 + klogn).

(iv) In Chapter 5 we discuss the following two-measurement query type: Given two antipo-

dal depth measurements of a sensor from the same (unknown) point in W in the (unknown)
directions 6 and 6 + 7, determine all the poses of the sensor that would yield these mea-
surements. In Section 5.1 we devise a data structure that answers the antipodal queries in
O(logn + k) time where k is the number of cells of the RTD that contain part of the answer.
Similar to contribution (ii), the RTD-based data structure for antipodal measurements is
output sensitive with respect to the RTD, and in Section 5.3 we present one of the main
contribution of the thesis which is an output-sensitive data structure for antipodal mea-
surements that answer a query in O(logn + k) time where k is the number of vertices and
maximal arcs of low-degree algebraic curves that constitute the output.

(v) We implemented the RTD-based data structures, and we demonstrate a few results ob-

tained with the implementation. The code is open source and is available for download; see
Chapter 6.

Throughout the thesis, we assume general position of the input: no three vertices lie on
the same line, no three edges intersect at the same point, no two edges are parallel, etc. (We
give up on the general position assumption in Figure 1.1 for simplicity of demonstration.)

(a)

Figure 1.1: Given a sensor drawn as a gray disc in a unit square workspace (a), and a single
distance measurement d = 0.15 drawn as a dotted line sourced at the sensor and hitting the wall,
the possible locations and configurations of the sensor are shown in the two-dimensional workspace
(b), and in the three-dimensional C-space (c,d), respectively. The gray scale corresponds to the
measurement angle: configurations with greater measurement angle are drawn in darker gray.
The gray shades are projected onto the two-dimensional workspace at (b); note that, as there
are multiple configurations with different measurement angles that are projected onto the same
position p, the shade at p is the darkest shade among all of them.

Chapter 2

Rotational Trapezoidal Decomposition

We will describe a few data structures that are built upon a known decomposition of the
three-dimensional C-space R? x S', which we refer to as rotational trapezoidal decomposition,
or RTD for short. This decomposition has been previously used in other problems involving
three-dimensional configurations spaces involving translation and rotation in the plane; see,
e.g., [28]. Conceptually, the decomposition generalizes the known, planar, vertical decompo-
sition [8, Chapter 6] to any direction. The planar trapezoidal decomposition partitions the
workspace W to a set of trapezoids.! A trapezoid is identified by its ceiling and floor (namely
top and bottom edges, respectively), and the left and right vertices, which define the left and
right artificial vertical edges. See Figure 3.1 for an illustration. We remark that there are
other possible decompositions of arrangements of surfaces in three-dimensional space [22,
Section 28.3], but RTD seems most suitable for our purpose.

We can rotate the scene to any orientation and compute all the trapezoids of any angle.
As we let the orientation € of the decomposition vary a little, we notice that the trapezoids
remain similar (in a sense to be made precise shortly) unless they undergo some combinatorial
change. As the direction of decomposition changes, the trapezoid changes continuously, and
we refer to the union of these trapezoids as a three-dimensional cell, or cell for short. Since
throughout the change of orientation the ceiling and floor edges, as well as the vertices
determining the left and right boundaries of the trapezoid remain the same we use the
following notation: A cell C' is identified by its ceiling (top) and floor (bottom) edges,

e, e and the left and right vertices, v”, v%, which define the left and right artificial edges
(parallel to the direction of the decomposition). The two limiting vertices, vZ, v¢, may be

endpoints of e, e, or other reflex vertices of the workspace.

Now, in addition to describing a cell by its floor, ceiling and the two vertices that define
the two artificial side edges, we also add the first and last orientations where the trapezoid
exists (in the combinatorial sense, namely having the same edges and vertices defining it).
These cells constitute a decomposition of the three-dimensional C-space of the sensor. With
this description, there are at most O(n?) unique cells, and we can compute each cell’s exact
boundary as a function of the orientation # of the rotated workspace. More precisely, there

1Some of the two-dimensional cells in the decomposition may be triangles; for brevity we will also refer
to them in this context as trapezoids.

are O(FE) such unique cells, where F is the number of edges in the visibility graph of W,
which is bounded by O(n?).

2.1 Computing the Rotational Trapezoidal Decompo-
sition

We construct the cells of the RTD by simultaneously performing a radial sweep around all
the vertices of the workspace, where each vertex is the origin of a sweeping ray, all rays
point at the same direction and are rotated together. An event occurs when one of the rays
originating at some vertex u hits another vertex v that is visible from u. We compute all
the events in advance by computing the visibility graph (VG) of W in O(E + nlogn) time
using the algorithm of Ghosh and Mount [18] and creating for each edge (u,v) in the VG
two events (one originating at « with direction wd and the other originating at v with the
opposite direction), and then radially sorting all of them by 6. In addition, each ray stores
at all times (angles) the cells on both its sides, allowing us to keep track of all the existing
trapezoids of the decomposition at the current orientation. During the handling of an event,
where two vertices align along the sweeping ray (its origin and another vertex), we know they
are visible from one another (as the events were created from the visibility graph), namely
the open line segment connecting them lies in the interior of the workspace, and cells should
be created or terminated. There are two types of events along the radial sweep:

Type I Two vertices of the same edge are incident to a rotating ray. See Figure 2.1 for
an illustration. The triangular cell that contained both vertices on its boundary is
“squeezed” and terminated, and a new triangular cell is created. The cell sharing an
artificial edge with the triangular cell also terminates and a new one is created due to
change of one of its limiting vertices. In total, two cells are terminated and two are
created.

Type IT Two vertices of two different edges are incident to a rotating ray. See Figure 2.2
for an illustration. The middle cell is “squeezed” and terminated, and a new middle
cell is created. The cells from both sides of the connecting ray terminate and new ones
are created due to change in the limiting vertices. In total, three cells are terminated
and three are newly created.

In both event types, the top and bottom edges and left and right vertices are known locally
from the information maintained by the rays or the terminated cells. During handling of an
event we terminate or create a constant number of cells. As there are O(E) events, there
are also O(F) cells in total.

To start the process, trapezoidal decomposition in the horizontal direction (namely, with
6 = 0), is performed, requiring O(nlogn) time and starting ©(n) cells. We let # vary in
the range [0, 27). Notice that the trapezoidal decomposition at § = 0 artificially cuts cells
into two; this however does not affect the analysis that follows or the asymptotic resources
required by the algorithm. In total, we construct these O(FE) cells and their angle intervals

6

(a) (b)

Figure 2.1: Type | events: Two vertices of the same edge align along the rotating ray. Rays
are rotating counterclockwise. The event vertices are drawn as small black discs. Each column
depicts one example, before (top) and after (bottom) the event.

in O((E + n))logn) time, while using O(E + n) space. It is easy to see that Q(n?) cells
may be created and so the bound on the maximum number of cells is tight. The process is
summarized in the following lemma.

Lemma 2.1.1. Given a polygonal workspace W with a total of n vertices, the three-dimensional
configuration space W x St is partitioned by the Rotational Trapezoidal Decomposition (RTD)
described above into O(E) cells, each of constant descriptive complexity, where E is the
number of edges in the visibility graph of W. The construction of the decomposition takes
O((E + n)logn) time and requires O(E + n) storage space. The number of edges E can be
O(n?) in the worst case.

2.2 The RTD Opening Function

Each cell C' prevails through an interval of 6 values, calculated during the sweep—we denote
this interval by ©¢ = [0 . 0C). Given a cell C and an angle § € ©Y we can easily

begin’ ¥ end
construct the trapezoid that is the cross-section of C' at 6. The top left and top right
vertices (which are not necessarily vertices of the workspace) of the trapezoid both lie on ef.

We can compute their values as a function of 0, denoted z(6),25.(9). Assume, w.l.o.g.,

that the top and bottom edges are not vertical, and let y = e (z) be the function that maps
an z-coordinate to a y value of a point (z,y) on €, and similarly y = ¢ (z) for the bottom
edge.

Definition 2.2.1. The opening of a cell C' at angle 6 and at a point (x,ef(z)) on the top
edge of the cell, is the length of the intersection of the line with slope 8 through the point

7

Cs

Cy

(a) (0) () (d)

Figure 2.2: Type Il events: Two vertices of two distinct edges align along the rotating ray. Rays
are rotating counterclockwise. The event vertices are drawn as small black discs. Each column
depicts one example, before (top), during (middle), and after (bottom) the event.

(z,e(x)) on the top edge of the cell, with the trapezoidal cross-section of C' at angle §. We

denote this opening by O (0,).
Next, we show a few properties of the opening function:

e The opening function can be analytically described as a function of # and x: Given a
cell C(ef, ef, ve,vE, 09), assume w.l.o.g that the top and bottom edges are not vertical,

let e (z) = 2m,, + b, be the equation for the top edge and analogously for the bottom
edge e (z) = xme, + be, -

For any z, denote by Z the vertical segment at x with one endpoint on ef and the
other endpoint on e, and denote its length by |z|. Consider the triangle whose edges
are O, z and a portion of e’ (see Figure 2.4 for an illustration). The angle opposite e{
is & — 0, the angle opposite of z is # —y and the angle opposite O is 5 + 7. Using the
law of sines:

0(6.2) |2|'sin(g +7) - cos 7y '
sin(f —) sin(@ —) sinfcos~y — cosfsiny
1
Vime, _ _ e (@) — e ()
 sinf——L M cosf) sin @ — m,, cos 0 B sin @ — m,, cos 0

\/1+m§b - \/lergb

— x(met — meb) + bet B beb

sin 0 — m,, cos 0

8

Figure 2.3: (a) The x values of the left and the right vertices of a cell’s ceiling. (b) The opening
size O as a function of x and 6.

Figure 2.4: The opening function of a single cell, for fixed values of x and 0, is drawn along
with the vertical segment Z at z.

e The inverse of the opening function can be analytically described: For each RTD cell
C, solving O(0,z) = f for a specific value f is required by later data structures.
Given a cell C(ef, e, v% vC, 0%), assume w.l.o.g that the top and bottom edges are
not vertical, and denote by e (z) = zm,, + b, the equation for the top edge and

equivalently for the bottom edge e (x) = zm,, + b,,. Using the opening equation:

OC(Q,ZE) =/,
o) - le) _
sin @ — m,, cosf ’
e (x) — ¥ (x)) = f(sinf — my, cosh)

Me, @ + be, — M, — be, = f(sind —my, cosB) |

f(sinf — me, cos @) + be, — be,
Me '

;T Mey

2.3 The Vertices of a Trapezoid

For each RTD cell C, which exists in an angle interval ©¢, an exact trapezoid description
can be calculated analytically for any fixed € ©C. In this section we give an exact formula
for the two top vertices of a trapezoid, z5(0), z5.(0).

The top and bottom edges are fixed, and the two artificial edges are oriented at angle . It
remains to express the vertices created by the intersections of the artificial edges and the top
edge, denoted vy, v, with x values 2§ (6), 25.(0). Given a cell C(ef, e vf, v¢, 0°), assume,
w.l.o.g., that the top and bottom edges are not vertical, and denote by e (x) = xm,, + b,
the equation for the top edge and similarly for the bottom edge e (x) = zm,, + b,,. Let
(Zuy,, Yo,) be the coordinates of the left vertex v® defining the trapezoid, then any point

(x,y) on the left artificial edge can be expressed as (see Figure 2.3a):
y =tanb(x — x,,) + Yo, -
To calculate the intersection with the top edge, we substitute the top edge equation:
Me, & + be, = xtant — x,,, tand + y,,, ,

x(m,, — tanb) = y,,, — x,, tan b — b, ,

_ Yoy — T, tan — b,

x
me, — tan 6

Similar calculation gives the right top vertex. In conclusion:

Yy, — Ty, tand — b, c Yp, — Ty, tand — b,

o wp(0) = -

me, — tan 6

#50) =

Me, — tan é

10

Chapter 3

RTD-Based Single Distance
Measurement Localization

In this chapter we describe a data structure to determine the possible configurations of a
sensor given a single distance measurement d taken from an unknown position in an unknown
direction. The data structure uses RTD, the decomposition described in Chapter 2, and
achieves a query time of O(1 + k), where k is the number of RTD cells that contains part
of the result. Note that such query time is optimal with respect to the RTD, but fails to
achieve real output sensitivity—this requires a more involved data structure, which we will
present in the next chapter, Chapter 4.

3.1 RTD-Based Data Structure Construction

We use the decomposition described in Chapter 2 of the three-dimensional C-space of the
sensor into cells of constant descriptive complexity each, such that within each cell C', the
sub-region Cy = {(z,y,0) € C' | d = h(z,y,0)} has constant descriptive complexity as well.
We then show, how to maintain the cells of the decomposition in a search structure, such that
given a query d we can easily retrieve all the cells C' for which Cy # ¢, in time proportional
to their number.

Suppose for the purpose of exposition that we know that the sensor measures its distance
in the upward vertical direction, namely 0§ = 7/2. We apply trapezoidal (vertical) decompo-
sition to the workspace. Given a measurement d, we can easily compute for each trapezoid
in the decomposition whether there are any points in it that are at vertical distance d from
the top edge of the trapezoid. These points lie along a segment parallel to the top edge, and
the desired answer is the union all such segments over all trapezoids. See Figure 3.1 for an
illustration.

The direction of trapezoidal decomposition is parallel to the direction of measurement,
therefore for us to remove the assumption that the sensor measures its distance in the vertical
direction, instead of considering the result segments within each trapezoid of the vertical

11

Figure 3.1: Example of a vertical decomposition of a polygonal workspace with a single hole
(a) and the line segments (bold, dash-dotted) along which the sensor may be when it reads the
distance d in the upward vertical direction (b).

decomposition, we consider the sub-region C,; within each cell C' in the RTD decomposition.
Each such cell has constant complexity and the result sub-region is easy to compute.

We wish to store the cells of the decomposition of the C-space of the sensor in a data
structure such that given a distance measurement d, we can efficiently retrieve all the cells
that have a non-empty set of candidate poses for this measurement. To this end we define
the maximal opening O¢ _ of a cell C, which is the maximal-length f-oriented segment that
can be placed in a #-cross-section of a cell C, over all possible values § € ©°.

We introduced the opening function in the RTD section (Definition 2.2.1). Now we define
for a cell C' the mazimal opening, which is the maximum value of the opening function for

any valid values of 0, x:

OY =max max 09#,z).
00 ze[z§ (0),2.(0)]

In a preprocessing phase, we calculate O¢ _ for each cell, and keep the cells sorted in
decreasing order by this value in an array. Given a query measurement d, the cells that
contain potential poses for this reading are exactly the cells for which d < OY .. We can find
these cells by traversing the sorted cells in descending maximum opening order, resulting
in O(1 + k) query time," where k is the number of cells that contain workspace points of
the answer. The calculation of the maximum opening takes constant time per cell. Since
there are O(FE) cells overall, the entire preprocessing requires O((E + n)logn) time and

O(E + n) space, which is asymptotically subsumed by the construction of the decomposition
(Chapter 2).

Theorem 3.1.1. Given a polygonal workspace with a total of n vertices, the RTD cells of the
configuration space W x St can be computed and sorted in decreasing order of their maximum
opening in time O((E +n)logn) and O(E +n) space, where E is the number of edges in the
vistbility graph of W. Then, given a query real parameter d > 0, we can report all the cells

IFor k = 0 we still need to check the cell at the top of the list to find out that no relevant cells exist.

12

that contain a possible configuration yielding depth measurement d in time O(1 + k), where
k is the number of the relevant cells.

This structure has a couple of advantages: (i) it is trivial to construct and implement (see
Chapter 6), and (ii) it is worst-case optimal in storage space and query time assuming the
Rotational Trapezoidal Decomposition. However, RTD subdivides the C-space in a way that
may induce large unnecessary overhead for certain queries (see Section 3.3). In Chapter 4 we
provide an improved solution with only a logarithmic factor in query time over the minimum
possible output size.

3.2 Sensor Positions in a Single RTD Cell

Given a single sensor reading d, we concern ourselves in this section with the shape and
complexity of the locus of sensor positions that result in such a reading, namely ignoring
the orientation of the sensor’s ray. We believe that reporting the possible positions only is,
although incomplete, useful feedback that is more intuitive and easy to grasp by the user of
a robot system. This in itself can serve as an answer to a query, in particular, when we wish
to further process the regions using additional information about the potential sensor pose.

For each three-dimensional cell C' of the RTD, let W,4(C') denote the union of positions
where the sensor could be, namely W,(C') is the projection onto the zy-plane of Cy. Fix a
cell C' with top and bottom edges ¢, e, limiting vertices v{, v¢, which exist in an angle
interval ©. Recall that 25 (0),25(0) denote the x value of the left and right top vertices
of the trapezoidal cross-section of C' (which are not necessarily vertices of the workspace),

respectively, at angle 6.

Let pf(0) denote the position of the sensor, where a distance measure d at angle 6 will

hit e at value 5 (), while ignoring other obstacles in the workspace. Specifically, the
point whose z-coordinate is 25 (0) — dcos and y-coordinate is e (2§ (0)) — dsin @, where

e (+) is the equation of the line supporting the top edge. Similarly denote by p¢(6) the

sensor pose that will result in hitting e at 2¢(0). Recall that ¥,(C) denotes the region
{(z,y)|(x,y,0) € C and h(z,y,0) = d}, namely the positions of the sensor in the workspace,
where the sensor configuration is in C' and there is a sensor reading d. We wish to trace the
curves drawn by pf () and p¢ () as 0 varies in the range ©F. These curves are portions of the
boundary of the region ¥4(C). The type of the curve that the function p{’(6) (respectively,
p¢(0)) draws, depends on v¢ (respectively, v¢), the vertex defining the left (respectively,
right) wall of the cell. We describe it here for v“. The description for v¢ is analogous.
Type A The vertex v° defining the left wall of the trapezoid/cell lies on ef. See Fig-
ure 3.2(a) for an illustration. The top left vertex, and therefore z§(0), are fixed
(i.e., independent of §), and the curve is a circular arc of radius d around v{: v& —

(dcosf,dsinb).

Type B The vertex v defining the left wall of the trapezoid/cell does not lie on €. See
Figure 3.2(b,c) for illustrations. The curve traced by p©(#) is a conchoid of Nicomedes;

13

see Appendix A.1 for details.

C
C e
v ¢
o, c
. : vf €t
C c
C
C v,
c ef v
P

Figure 3.2: (a) Type A curve: when the limiting vertex lies on the cell’s ceiling, the curve is a
circular arc. (b)(c) Type B curve: when the limiting vertex does not lie on the cell’s ceiling, the
curve is a conchoid of Nicomedes.

For any angle § € ©F, all points on the line segment (p{(6), p¢(#)) are points the robot
can be at and measure d at ¢ (ignoring other obstacles). Together with the types of the
curves traced by p© (), p¢ (), we have an exact description of the region of the workspace
containing all the points the robot might be at, while its configuration is in the cell C.

If the interval ©¢ contains the angle perpendicular to the top edge, denoted 05 , we divide
it into two sub-intervals, one with angles that are greater than or equal to the perpendicular
angle and the other with smaller angles, [65,,.,,65),[05,65,,). A single shape per sub-
interval will be created. If Hg is not included in ©F, a single interval [Gbcegm, 6 ;) and a single

corresponding shape is used.

We handle each of the two sub-intervals separately. For each sub-interval (or for the
entire interval O when no splitting is required) [6;, 6,), we describe all the points on the line
segments (p¢ (), p¢ (9)) for any 0 € [0y, 0) by a shape defined by the vertices (vy, vo, v3,v4) =
(pf (01), pF (02), p€ (62), p€ (1)) and the edges p, p¢ between (v, v9), (v3, v4) respectively and
straight line edges between (vq,v3), (vg, v1). The union of the two shapes is the desired two-
dimensional region in the workspace the sensor might be in. The only obstacle we need to
consider is the bottom edge € of the trapezoid, and we can simply intersect the result with
the upper half-plane defined by the line through e to get the final result of the cell. See
Figure 3.3 for an illustration.

14

e

(a) (b) (c)

Figure 3.3: Examples of the planar projection of possible configurations of a single cell with a
fixed reading d: (a) Both limiting vertices lie on the top edge, the resulting curves are circular
arcs and do not intersect the bottom edge. (b) The limiting vertices and arcs are similar to (a),
but the result intersects the bottom edge. (c) One limiting vertex lies on the top edge and one
does not, resulting in a circular arc and a conchoid.

3.3 Suboptimality of the RTD-Based Solution

The RTD-based data structure is output sensitive with respect to the RTD decomposition,
and in this section we explain why the data structure is not output sensitive with respect
to an optimal algorithm. In fact the gap from optimality is large: ©(n) as shown in the
following example.

Consider Figure 3.4, where the workspace is a regular (convex) polygon with n edges, and
the sensor reading is a value d, which is small relative to the diameter of the workspace. The
combinatorial complexity of the union of all the possible configurations yielding a reading d
is ©(n), whereas the sorted-list structure will report an output of size ©(n?). The reason is
that all the answers with a fixed ceiling edge e are fragmented by the RT'D decomposition
into O(n) cells each, while d is too small to be affected by the floors of most of these cells,
and an optimal output-sensitive answer to the query would have reported the answer per
fixed ceiling edge in O(1) fragments, each of constant size.

15

dI 6/ (& e

(a) (b)

Figure 3.4: (a) An example of a regular (convex) polygon workspace with n vertices, and a given
distance measurement d. The possible configurations for a sensor’'s measuring ray to hit one of
the edges, denoted e, is shown in green. The complexity of that area is O(1) and therefore the
result for the whole workspace can be described using O(n) space. (b) The RTD cells with top
edge e are shown, there are O(n) of them. Each one of these cells will have a non-empty result.
Therefore the complexity of the result for the whole workspace will be ©(n?), which is greater
than the optimal by a factor n.

16

Chapter 4

Output-Sensitive Data Structure for
Single Measurement

We described a data structure at Chapter 3, which is output sensitive with respect to the
RTD, but as mentioned in Section 3.3, it is far from answering queries optimally. In this
chapter we present a more involved data structure, which provides output-sensitive answers
to single-measurement queries. This data structure is one of the major contributions of this
thesis, along with the output sensitive data structure for antipodal measurements, described
below in Section 5.3.

An edge e of the workspace and a fixed distance d induce a ruled surface (e, d), which
is the locus of all points (p,d) € R? x S! such that there is a segment pg in R? of length
d, with ¢ € e, such that the vector pd makes an angle # with the positive x-axis, and such
that pg is contained in the half-plane defined by the line supporting e and locally near e
facing the interior of the workspace. We consider e to be one-sided—we are only interested
in the side of e facing the interior of the workspace. The union of points on (e, d) for which
pq € W, defines a collection of surface patches, which we denote by o(e,d). For a single
measurement d, and for every edge e on the boundary of W, we need to report o(e, d) unless
o(e,d) = &. The combinatorial complexity of these surface patches is the total number
of vertices, edges (maximal arcs of low degree algebraic curves) and faces that define the
patches. This complexity is a lower bound on the query time of any algorithm for computing
the required preimage.

We will build the data structure by varying d from 0 to D, where D is the diameter of
the workspace, and updating the result o(e, d) only when it changes combinatorially, for any
edge e. The vertices and edges of the result of o(e,d) will be stored in an interval tree [8,
Chapter 10] A(e), where the interval is the set of d values for which the specific result edge
prevails, so it is possible to retrieve the relevant features for any query d value.

17

4.1 Result Vertices, Edges and Their Changes

Fix an edge e. We now embed critical surfaces in R? x S* such that for a given query value d,
they will induce a subdivision on ¥(e, d), some of whose faces and all its vertices and edges,
constitute the desired o(e, d). For each vertex in the locally-free half-plane of e let x.(v) be
the surface which is the union of the following rays: for every 6, the ray emanating from v
in direction 6 + 7. For each edge ¢’ let ¢ (€’) be the surface which is simply the edge e’ for
every #, namely it is a vertical rectangle in R? x S!.

We call the vertices and edges of (e, d) the result vertices and result edges (for edge e
and measurement d) to avoid ambiguity with the workspace features. The result vertices are
created by intersecting (e, d) with two critical surfaces. By the general position assumption,
at most two surfaces x.(v;) intersect in a single point—in fact in a single ray. Similarly, at
most two surfaces 1(e;) intersect at a point (in a vertical line segment). Two surfaces
(er), ¥ (eg) can intersect (e, d) at the same point, but in such case there will be another
surface x.(v) involved where v is the workspace vertex, which is the common endpoint of e;
and e;. Therefore, the result vertices are obtained in two types of intersections:

e Type (i): Two x.(-) surfaces intersect (e, d).

e Type (ii): A single x.(-) surface intersects X(e, d), along with some other v(-) surface.

1

V2

(a) (b)

Figure 4.1: Examples of result vertices of type (i) in (a),(b) and of type (ii) in (c),(d),(e). The
bold segment has length d, and represents a single point in the configuration space, which is a
vertex in the result o (e, d). A result vertex created by surfaces of two vertices of the workspace (a),
where one of them can be an endpoint of e (b).

The overall scheme for preprocessing a single edge e is as follows. We will sweep the
surface (e, d) over the space R? x S, from d = 0 to d = D, where D is the diameter of
the workspace W. (Notice that the sweeping surface itself changes throughout the process;
however, it changes continuously.) At all times during the spatial sweep we will record the
edges that appear on the boundary of o(e,d) in an interval tree A(e). The exact geometric
curve of each edge is not explicitly stored as it changes as d varies, rather the workspace
features that define the curve are stored, which enables us to compute it exactly for a specific
d in O(1) time, together with the attribute on which side of an edge does the result lie. Given
a query measurement d, using simple auxiliary data structures to be described later, we will
efficiently retrieve the k. edges of o(e,d), and in O(k.logk.) time will construct a DCEL
describing the result o(e,d). The events of the sweep are those where the surface patches
o(e,d) change combinatorially. These in turn happen at all the minimum and maximum
values of d in which each result vertex exists. There are five types of such events:

18

(D

The minimum value of d at which a result vertex of type (i) involving two vertices v, vy
exists is the length of the line segment from vy to e which goes through vy, assuming
vy is further away from e than v;. See Figure 4.2(a).

The maximum value of d in which a result vertex of type (i) involving two vertices
vy, U exists is the length of the maximal line segment passing through vy, vo, hitting e
at one end and another edge of the workspace at its other end. See Figure 4.2(b).

The minimum value of d in which a result vertex of type (ii) involving a vertex v
and an edge e; exists. If v is the closer endpoint of e; to e, d is the length of the
segment starting at vz extending e; (along the line supporting e;) and hitting e (see
Figure 4.1(e)). If v3 is a reflex vertex of the workspace that is not an endpoint of e,
then d is the length of the minimum line segment s passing through wvs, hitting e and
e; at its endpoints—this is the unique such segment that makes an equal angle with
both edges, i.e., se = K se; (see Figure 4.2(c)).

The two maximal values of d in which a result vertex of type (ii) involving a vertex
vg and an edge e; exists are the maximal lengths of a line segment passing through

vs, hitting e and e; at its endpoints—there are two such maximal lengths. See Fig-
ure 4.2(d,e).

The distance of a vertex v to e, when the shortest line segment from v to e is contained
in the workspace. See Figure 4.2(f).

e 7 e
U1 U1
() V2
e €2
(a) (b)
e e e
V3 V3 3
U4
€1 €1
. €3 €4
(d) (e) (f)

Figure 4.2: Examples of configurations and values of d in which the result changes combina-
torially. (a)(b) The unique minimum and maximum values of d in which (e, d), x¢(v1), Xe(v2)
create a result vertex. (c)(d)(e) The unique minimum and two maximal values of d in which
Y(e,d), xe(vs), o(eq) create a result vertex. The minimum is achieved when the segment of length
d makes two equal angles with e, e;. (f) The minimum value of d in which (e, d), x(v4), d(e3)
and X(e,d), x.(v4), ¢(es) induce result vertices.

We wish to find all the values of d for which the result o(e, d), Ve is changing combinato-
rially when d is varying from 0 to D, the diameter of W. To that end we carry out a global

19

preprocessing stage, where we collect combinatorial change tuples of the form (e, 0,d,U),
where d is a threshold in which the result of edge e is changing combinatorially, and U is
the set of workspace vertices involved in the change. Collecting all these tuples is done
similarly to computing the RTD, by carrying out radial sweeps through all the vertices of
the workspace, considering only pairs of visible vertices by computing the visibility graph
in O(E + nlogn) time (where E is the number of edges in the visibility graph of W), and
requires O((E+n)logn) time and O(E +n) space. The details of these sweeps are technical,
and we defer their full description to Section 4.4, where it is also shown that at most O(FE)
such tuples are exist and indeed collected at the preprocessing stage.

4.2 Combinatorial Result Change Handling

All the tuples with the same first parameter e, sorted in increasing d value, are the events
of the spatial sweep with the surface (e, d). We compute the result o(e, d) for infinitesimal
values of d, by considering only e and its two adjacent edges. From this point on, result edges
will be inserted or removed only when handling combinatorial change tuples. We handle each
combinatorial change (e, 8, d,U) according to the event type. The details of these handling
is technical, and we focus on the handling of type I changes in the this section. The full
description of the handling of changes is given in Appendix B.

Combinatorial change of type [: d is the minimum value in which a result vertex of
type (i) involving two vertices vy, vy exists (namely an intersection of two x. () surfaces
intersects X(e, d)), where v; is the vertex closer to e. We say that a vertex is a reflex
vertex relative to a line (resp. segment) if both of its incident edges are in the same
half-plane created by the line (resp. the line supporting the segment). We will assume
that vy is a reflex vertex relative to v7vs; otherwise, d is also the maximum value in
which such a result vertex exists, and we will handle it as a change of type II (see
Figure 4.4(a) for such a scenario). v is clearly a reflex vertex relative to v1v3. Let e;
be the edge of vy visible from v;. We say that a result edge n' is defined by e and a
vertex v when 7’ is the union of configurations where a rod of length d is sliding on
e and v. We say that a result edge n” is defined by e and another edge e; when 7"
is the union of configurations where a rod of length d is sliding with one endpoint on
e and another endpoint on e;. The limits a, 8 of the angle range |«, 5] throughout
which a result edge prevails, can be specified by a fixed angle each, or by the labels of
the workspace features that induced these angles for a specific d value. The handling
operations depend on two predicates: whether the edges of both v, v, are in the same
halfplane relative to 7705 or not, and whether a result edge defined by e, e; exists or
not in o(e,d’) for d' is infinitesimally smaller than d. The sub-cases are illustrated in
Figure 4.3. We present here the operations performed in one sub-case: The edges of
both vy, vy are in the left halfplane relative to 7703, and a result edge 7, defined by
e, e1 exists in the angle range [«, 7] for some a, where v depends on d and it is defined
as the angle that the line segment passing through v, with varying length d with its
endpoints on e, e; makes with the x-axis.

20

There must be another result edge 7, defined by e, v; in the angle range [, 5] for some
5. We perform the following operations:
e Find and remove 7; and 7s.

e Add a result edge defined by e, vy in the angle range [6, 0] where § < 6 is the
angle of the line segment with varying length d with its endpoints on vy and e
(there are two such segments and we choose one of them by the constraint 6 <).
Recall that 0 is a parameter of the combinatorial change tuple.

e Add a result edge defined by e, v; in the angle range [0, /].

U1

€1 b2

(d)

Figure 4.3: Examples of the sub-cases arising in the handling of combinatorial changes of type |.
The bold line segments are each of length d. There is a result edge defined by e,e; for d
infinitesimally smaller than d in (a),(c) and there is no such result edge in (b),(d). Edges of both
vy, vy are on the same halfplane relative to T3 in (a),(b) and in opposing sides in (c,d).

It is important to note that we do not maintain face objects of the subdivision (e, d),and
we only maintain the edges of this subdivision. This allows us to handle combinatorial
changes of type V by creating a new hole inside an existing face without locating the enclosing
face. For handling most combinatorial change types, it is required to find an existing edge in
the list of current edges on o (e, d), based on the tuple information. To that end, we maintain
auxiliary balanced search trees for each pair of edge and vertex T'(e;, v;) for all e; and v;, and
T (e, ;) for each pair of edges ey, e,. The search trees T'(e;, v;), T (e, e,) will contain all the
edges currently in o(e, d) that are defined by (e;,v;) and (e, e/), respectively. The key for
the auxiliary trees is the smallest angle in the angle interval in which the edge exists. The
angles are not explicitly stored in the tree (since they change as d varies), rather only the
order of the edges is maintained. This is possible because multiple edges defined by the same
features exist in disjoint ranges of angles, and their order does not change. When handling a
combinatorial change, the result edges can be found using simple O(logn)-time search with
the angle 0 in the relevant trees, and newly created edges are inserted into these auxiliary
data structures, in O(logn) time total.

4.3 Storing the Result Edges for Efficient Queries

For each edge e, the interval tree A(e) is constructed independently using the associated
combinatorial changes. Let v, be the number of combinatorial changes involving the edge e.
Construction of a single data structure A(e) requires O(v.logn). The overall number of

21

events over all edges is O(F) and therefore it takes total O(Elogn) time to construct the
data structures for all the edges altogether. Finally, we also compute for every edge e the
maximum d for which o(e,d) # ¢F; we denote this maximum by m(e). We will then keep
these interval trees maxima sorted in decreasing order in a list L. The preprocessing requires
O((E + n)logn) time and O(E) space in total.

During a query for a single measurement d, we iterate over the data structures in L by
their sorted order as long as m(e) = d, ensuring each data structure we examine will have a
non-empty result, excluding possibly the last one. (Notice that if a structure has non-empty
result for d’ then it also has a non-empty result for any d < d’.) For each data structure
A(e;) that has a non-empty result, we query the interval tree for the result edges, in time
O(logn + k;), where k; is the number of result edges found. For each of result edge, we
compute its exact arc, which depends on the query specific d value. Then using a standard
algorithm,! we construct the complete desired DCEL in O(k log k) time, where k = X7, k; is
the number of result edges in total. The result faces can be identified since, as noted above,
each edge stores which of its sides (halfedges in the DCEL) is contained in the result. The
total running time of the query is O(1 + klogn).

Theorem 4.3.1. Given a polygonal workspace with a total of n vertices, a data structure can
be constructed in time O((E +n)logn) and O(E +n) space, where E is the number of edges
in the wisibility graph of W, such that, given a query real parameter d > 0, we can report all
possible configurations yielding depth measurement d in time O(1 + klogn), where k is the
number of vertices and maximal arcs of low algebraic degree appearing on the boundary of
the surface patches that constitute the result.

4.4 Computing the Combinatorial Change Tuples

We wish to find all the values of d for which the result o(e, d), Ve is changing combinatorially
when d is varying from 0 to D, the diameter of W. To that end we carry out a global
preprocessing stage, where we collect combinatorial change tuples of the form (e, 6,d,U),
where d is a threshold in which the result of edge e is changing combinatorially, and U is
the set of workspace vertices involved in the change.

Collecting all these tuples is done similarly to computing the RTD. First, the visibility
graph of W is computed in O(E + nlogn) time [18], where E is the number of edges in the
visibility graph of W. Let £ denote the set of edges in the visibility graph of W. Then, we
sort the set of ordered pairs | Jy, ,ee {(u,v), (v, u)} by the slope of the line oriented at v,
directed at vy of each ordered pair (vy, v3), and perform from each vertex v of the workspace a
rotational plane sweep, in two antipodal directions simultaneously. The other visible vertices
of the workspace are the events of the sweep, and the first edge intersecting each imaginary
sweep ray is the state of the sweep. (There is no need to store all edges that intersect the
ray, as we already know the visibility graph). Consider an event at a vertex u # v. The

1See [8, Section 2.3] for details; it is described there for completing the overlay of two subdivisions, but
applies equally well here after a preprocessing step where we form boundary cycles of the DCEL.

22

event is handled differently depending on whether v and v are reflex vertices relative to the
line vu. Recall that we say that a vertex is a reflex vertex relative to a line if both of its
edges are in the same halfplane bounded by the line.

We will cover here in details the case where u is a reflex vertex relative to v and v is not;
the other cases are handled in an analogous fashion: Let ey, e be the edges to the right and
left of v, respectively, relative to the direction u?. Let es be the edge of u that is visible from
v and let e4 be the edge that the ray originating at v in the direction v% hits after passing
through u (see Figure 4.4(b)). Let 0 be the angle of the direction v, relative to the x-axis,
let dist(v,u) be the distance between v and w, and let dist(v,u,es) be the length of the
segment originating at v, passing through v and hitting e4. Add the following combinatorial
change tuples:

(e1,0 + 7, dist(v,u),{v,u}), (e1,0+ 7, dist(u,v,es),{v,u}),
(e2,0 + m,dist(v,u),{v,u}), (es, 0+, dist(u,v,eys),{v,u}),
(es,0, dist(v,u), {v,u}), (64,0, dist(u,v,eq),{v,u}).

The above six combinatorial change tuples are the changes of types that include two vertices,
namely changes of types I, II, and IV. To find the changes including only a single vertex,
during the rotational sweep around the vertex v, we consider the vertices wuy,us of two
consecutive events. Let 01,05 be the angles the directed lines vu7, vus; make with the positive
x-axis, respectively. Denote by ey, es the edges that are hit by the two antipodal rays of the
sweep for any angle 6 € (61,605) and 6 + 7 respectively. Denote by Z the line segment that
passes through v and makes equal angles when hitting e, e5. The segment Z is directed from
its endpoint on e; to its endpoint on e;. If the angle £z that the segment z makes with
the positive z-axis, is in the range (6, 6,), add the combinatorial tuple change of type III
(e1, £Z, ||Z||, {v}), where ||Z|| is the length of Z (see Figure 4.2(c) for illustration). Denote by
5 the shortest line segment between v and e;. If the angle x5 that s makes with the z-axis
is in the range (61, 65), add the combinatorial tuple change of type V (e, £3, ||5][, {v}) (see
Figure 4.2(f) for illustration).

(a) (b) (c) (d)

Figure 4.4: Examples of scenarios arising when handling an event of vertex u during a rotational
plane sweep around a vertex v. (a) Both u and v are not reflex vertices relative to wv. (b)(c)
Only one of u, v is a reflex vertex relative to wv. (d) Both u and v are reflex vertices relative to
uv.

We perform such a rotational sweep around each vertex of the workspace and add all
the combinatorial change tuples. Each time an event is handled, a constant number of
combinatorial change tuples are added, therefore the total number of such combinatorial
change tuples is O(E). The time complexity of this preprocessing stage is O((E + n)logn).

23

Chapter 5

Localization by Antipodal
Measurements

An important variant of the problem is a sensor that takes two different distance measure-
ments from the same location, in opposite directions. We obtain one measurement d; in
(unknown) direction #; and a second measurement dy in direction 5 = 0; + m. We seek to
efficiently compute the intersection of the C-space preimages that correspond to each mea-
surement. A nice, mitigating property of this setting is that the two distance measurements
are necessarily taken to two distinct edges of the workspace.

Two data structures are presented in this chapter: (i) a simpler, RTD-based data struc-
ture, which is output sensitive with respect to the RTD, and (ii) an output sensitive data
structure, which uses the RTD cells as intermediate building blocks, but then modifies the
decomposition cells by unions and splits of the cells into a more economical collection. The
second structure (Section 5.3) is the other major contribution of this thesis, along with the
output sensitive data structure for a single measurement, described before in Chapter 4.

5.1 RTD-Based Data Structure for Antipodal Mea-
surements

In this section, a solution based on the decomposition described in Chapter 2 is used, where
the orientation # is the orientation of the first measurement. The data structure achieves
a query time of O(logn + k), where k is the number of RTD cells that contains a result
configuration.

For a fixed orientation 6, the cross-section of an RTD cell C' contains one potential sensor
pose (assuming the top and bottom edges of the cell are not parallel), and we can calculate
it by finding the segment of length d; + d» with its endpoints on the cell’s top and bottom
edges. Which in turn we do by solving O%(0,z) = d; + dy, and extracting the point along
the segment obtaining this opening that is at distance d; from the top edge (and hence
at distance dy from the bottom edge). For each such cell C' we compute the locus I'(C)

24

of potential sensor poses, which is a curve parameterized by the orientation of the first
measurement.

In order to store the cells of the decomposition so as to be able to efficiently retrieve the
cells C' with non-empty loci I'(C'), we now need to also compute the minimum opening of a
cell OY, . which is defined analogously to O (cf. Chapter 3). Given a pair of antipodal
measurements (dy, ds), a cell C' has a non-empty set of loci if and only if 0%, < d; + dy <
OC¢ ... Each cell is associated with an interval [0S, O | and we construct an interval tree
over these O(F) intervals. Given the measurements (di, ds), we extract all the intervals that
contain the value d; 4+ ds, and their corresponding cells contribute potential poses to the final

answer.

The loci I'(C') constitute an arc of an ellipse with its center at the (possibly imaginary)
intersection of the lines supporting the top and bottom edges of the cell; see Appendix A.2
for details. After prepossessing in O((E + n)logn) time and using O(E + n) space, a query
can be answered in O(logn + k) time, where k is the number of cells C' with non-empty

(0).

Theorem 5.1.1. Given a polygonal workspace W with a total of n vertices, an interval tree
containing the RTD cells of the configuration space can be constructed in time O((E+n)logn)
and space O(E), where E is the number of edges in the wvisibility graph of W, which is
bounded by O(n?). Then, given two real numbers dy,ds > 0, we can report all the RTD cells
that contain a possible configuration iyielding antipodal depth measurement di,ds in time
O(logn + k) where k is the number of the relevant cells.

5.2 Suboptimality of the RTD-Based Solution

The data structure presented at Section 5.1 is output sensitive with respect to the RTD
decomposition, and in this section we demonstrate why it is not output sensitive with respect
to an optimal algorithm. In fact the gap from optimality is large: ©(n) as shown in the
following example.

Consider Figure 5.1, where the workspace is a triangle-like workspace with additional
Theta(n) reflex vertices on the left edge. The angle interval in which a sensor can measure
the edges e; and ey with two antipodal measurement is fragmented by the RTD decomposition
into ©(n) cells of the form (ey, es, v;,u,-) where v; is a different reflex vertex as a limiting
left vertex of the cell. Although this fragmentation may be needed for some values of dy, ds,
for smaller such values (as shown in the figure) the change of the left limiting vertex does
not affect the result. There will be ©(n) RTD cells with ey, es as top and bottom edges that
will contribute to the result, while the output can be described using only O(1) space.

25

€1 €1

u u
Ul/
V2 —
€2 €2
dq {
dao

(a) (0)

Figure 5.1: A triangle-like workspace, with additional ©(n) reflex vertices on the left edge.
Given a query of small d; = d,, the possible positions a sensor can measure e, es at distances
dy, dy respectively are drawn as a green arc at the top-right corner of the workspace. RTD will
contain O(n) cells with e, e5 as top and bottom edges, and u as the right limiting vertex, each
with a different left limiting vertex v;, shown in (b). Each of these cells will have a non-empty
result, while the output of these two edges has O(1) descriptive complexity.

5.3 Output-Sensitive Data Structure for Antipodal Mea-
surements

The result of a query of two measurements (dy,ds) can be naturally and economically de-
scribed by a set of angle intervals I, ., = {[a1, 1], [a2, B2],...} for any relevant pair of
workspace edges ej, e, where for each interval the sensor reading will hit e; at any angle
0 € |, B;] and eq at angle 6 + 7, and there is only one such configuration (assuming, as we
do, that there are no parallel edges in the workspace). When considering this representation,
the minimum complexity required is achieved when the intervals are maximal and disjoint.

For a fixed maximal interval [a, 5;] € I, .,, We consider the line segment of length
d = dy + dy at angle a; with its endpoints lying on e; and e;. This line segment must also
intersect a vertex of the workspace, either an endpoint vertex of e; or ey, or some other
reflex vertex of the workspace, as otherwise the angle interval would not be maximal. The
other direction also holds: The existence of a line segment of length d passing through a
vertex with its endpoints lying on two different edges es, e, at angle 6, must imply that the
angle 6 is included in one of the result angle intervals of es, e4, and it must be an extreme
angle in that interval. See Figure 5.2 for an illustration. Therefore the minimum complexity
required to describe a query result for antipodal measurements (dy, ds) is the number of line
segments of length d = d; + dy that can be placed in the interior of the workspace such that
both their endpoints lie on edges of the workspace and additionally they intersect a vertex
of the workspace.

To construct a data structure that will provide such answers, we will use the RTD of the
C-space in a preprocessing stage, after which we will merge results from different cells of the
RTD, wherever possible. For each RTD cell C, we define the minimum left opening O%, as

the minimum opening obtained over all the angles that ' exists in with the xz-coordinate of

26

€1 o v €1

@ o

Figure 5.2: Examples of configurations which are vertices in the minimum-complexity result for
two antipodal measurements, where the bold line segment has length d; + ds.

the top left vertex of C'. Similarly, we define minimum/maximum left /right openings:

OCZ

min

Opin = mingege O(0, 25,(0)) . Oph, = maxgeec O(0, 25(0)) -

min max

= mingeec O(0, 25(0)) , OSL . = maxseec O(0, 25 (0)) ,

max

Based on the relation between d and the minimum/maximum left/right openings, we
classify each RTD cell C' as one of three classes: Empty class Em, Full class F' or Partial
class P:

Em = {C|d<min{0%, , 0 } v d>max{Of!

min? ~ min max)

Ofiat}

F={C|0S <d<O% v O <d<OS:},

max min max min

P={C|0O% <d<OS v O <d<OSr

min max min max } .

The members of the class Em are empty in the sense that each RTD cell in this class does
not contain any valid result, as the opening is either greater or smaller than d for any angle
in the cell’s angle interval. The members of the class F' are full in the sense that each RTD
cell C in this class contributes the full angle interval ©¢ to the result, since the right (resp.
left) opening is always greater than d and the left (resp. right) opening is always smaller
than d, and due to the fact the opening function is linear for a fixed angle (see Section 2.2)
this implies that there is some point between the left and right vertices where the opening
is equal to d, for any angle in ©¢. The members of the class P are partial in the sense that
each RTD cell C' in that class contributes a part of the angle interval ©F to the result, since
there is some angle 6 at which the right or left opening exactly equals d, which means that
at angle 6 + ¢ (or 6 — ¢€) for some small € the opening for any point in the cell is not equal
to d.

Another aspect to consider is that each cell C' in the partial class contains a configuration
which will be a vertex in the result, as a segment of length d can be placed such that its
endpoints lie on e and ef exactly on the vertices v7,v5, and one of these vertices must
be a workspace vertex. For each pair of edges, the angle intervals contributed by the cells
of full and partial classes are pairwise interior disjoint, but may overlap at their endpoints.
By merging the angles intervals of each pair of edges to maximal intervals, the minimum-

complexity output is achieved.

Let D denote the set of all minimum/maximum left/right opening of all the RTD cells,

27

along with oo and 0, sorted in increasing order:

D = [do,dl,... |dz <di+1,diE{O,OO}UU{OCl OCZ

min’ ~ maz)’
C

Orin: Otnaz 1 -

min’

For two values d’, d” the RTD cells classification, and therefore also the result angle intervals,
are combinatorially equivalent if there exists i such that d’,d” € |d;, d;11). We can perform the
classification of the RTD cells and the union of the angle intervals for each range [d;, d;.1)
during preprocessing, which will result in angle intervals with symbolic endpoint values,
which in turn can be made concrete for any fixed value of d. During query with dy, ds, we
select the result corresponding to the range [d;,d;y1) such that dy + dy € [d;, d; 1), which
contains maximal angle intervals and therefore optimal in size, and calculate their exact
values for the specific value d = dy + ds.

Producing and storing the full result for each range [d;, d; 1) is expensive. For efficiency
we will again use an interval tree to store the result maximal angle intervals. The values
stored in the interval tree are the result angle intervals, and the keys of these values are the
ranges of d for which the values (the angle intervals) are present in the result. Although the
values are intervals themselves, they have nothing to do with the interval keys of the tree,
which are, again, ranges of d.

Such an interval tree can be constructed in the following way. We vary d from oo to 0
by iterating over the ranges [d;,d;;1]. The result of the current value of d, which is a set
of maximal angle intervals, is maintained at all times as a balanced search tree R. Each
result angle interval is stored in R using a key (ej, eq,0;), where e, e5 are the two edges
the sensor could have measured, and #; is the minimal angle in the result interval. This
representation of the result set allows us to efficiently find the result angle intervals that
are affected combinatorially when we change d. We iterate over the ranges of d in order,
computing the result intervals of [d;, d; ;1] based on the result intervals of [d; 1, d;2]. We
start with the range [djp|—1, d|p|] = [d|p|-1, 0], in which all RTD cells are classified as empty
and the result contains no intervals, R = ¢§. Assuming we already classified the RTD cells
and calculated the result intervals for the range [d;;1,d; 2], we assume that a single cell C'
changes its class when considering the next range [d;, d;;1]. If multiple cells change their
classes, we repeat the following process multiple times.

e If C' was full or partial relative to the previous range [d; 1, d; 2], we remove the angle
interval it contributes from R. We may have to split a larger interval that was created
from multiple intervals to remove it.

e If C is full or partial relative to the current range [d;. 1, d;|, we add the angle interval
it contributes to R. We may have to merge it with at most two additional intervals
that intersect it at its endpoints.

In both cases, a constant number of insertions, deletions, splits and merges are performed.
For each interval, we store the values of d in which it was added or removed from R, or 0 if
it was not removed after iterating over [dy,d;] = [0,d;]. We insert all such angle intervals
into an interval tree keyed by the range of values of d for which each angle interval was in
R.

28

In total, the number of operations performed to build the data structure is linear in the
number of RTD cells, which is O(E). Each operation on R requires O(logn) time, and
constructing an interval tree with O(E) elements requires O(F logn) time and O(FE) space.
During query, the result intervals are retrieved from the interval tree in time O(logn + k),
where k is the number of maximal angle intervals in the result, and the exact algebraic
description can be computed for each one of them in O(1) time.

Theorem 5.3.1. Given a polygonal workspace W with a total of n vertices, a data structure
can be constructed in time O((E + n)logn) and O(E) space, where E is the number of
edges in the visibility graph of W (which is bounded by O(n?)), such that, given a query of
two measurements (dy, dy), we can report all possible configurations yielding antipodal depth
measurement dy, dy in time O(logn + k) where k is the number of maximal elliptical arcs in
the result.

29

Chapter 6

Implementation and Experiments

We implemented the simpler data structures, which are built upon the rotational trape-
zoidal decomposition, both for single distance-measurement queries and for two-antipodal
measurements queries (see Chapter 3 and Section 5.1). We describe our implementation
details, challenges and report on some experiments that we conducted.

We implemented the structures in C++ using the CGAL library [31] and in particular
the arrangements package [16]. The implementation is open source and available at https:
//github.com/barakugav/FDML. Given a workspace, a preprocessing is performed once,
and multiple queries of both types can be answered with output-sensitive complexity with
respect to the RTD. The implementation assumes general position, namely that the given
workspace does not contain three vertices on the same line, three edges that intersect in a
single point, etc. In addition to the C++ code, we also implemented Python bindings on top
of CGAL’s bindings [19], allowing for an easier use of our data structures. Results of queries
for a single measurement and for two antipodal measurements are shown in Figure 6.1 and
Figure 6.2. Notice that some workspace contains identical subregions, in which case a sensor
located in one of these subregions can not distinguish between them, even if we allow for an
unlimited number of measurements. See Figure 6.3 for an example of such an environment.

(a) (b) (©) (d)

Figure 6.1: The possible positions of a sensor that performs a single measurement in a simple
polygon workspace (a) are shown in blue in (b) for d = 0.3, in (c) for d = 4, and in (d) for d = 5.

Among the challenges we faced during the development of the software, we had to use
exact number types to represent angles and points in the workspace. Although CGAL
supports these number types using the GMP or MPFR libraries, their usage has a tremendous
impact on performance. By using inexact number types such as 64-bit floating point, the

30

M

Y

(2) (b) ()

Figure 6.2: The possible positions of a sensor that performs two antipodal measurements in
simple polygons are shown in blue in (a) for d; = dy = 1, (b) for dy = dy = 1 and (c) for
dy=1,dy = 1.2.

running time presented in Figure 6.5 can be improved by an order of magnitude. Another
challenge was to represent the result curves (projected onto the plane), as these curves are
of high degree (see Appendix A.1 and Appendix A.2). We approximate these curved using
polylines, with parameterized precision.

We conducted a few additional performance experiments, measuring the preprocessing
time and query time for a convex regular polygon with different number of vertices; see
Figure 6.4. The experiments where run on a Windows 10 64-bit machine with 11th Gen
Intel Core i7-1185G7 at 3.00GHz and 16GB memory. The results are shown at Figure 6.5.

31

(a) (h) (c) (d) (e)

Figure 6.3: The workspace at (a) is a symmetric workspace; it comprises a corridor and three
rooms, where the rooms are indistinguishable from one another for a sensor positioned in any
one of them. In (b) and (c) the possible positions of the sensor are drawn, after it measured
a single value of d = 3 and d = 4 respectively. In (d) and (e) the possible positions of the
sensor are drawn, after it measured two antipodal measurements of d; = 0.4,dy, = 0.9 and
d1 = 0.8, dy = 1.6 respectively. It is easy to see that if the robot is indeed located in one of the
identical rooms it can not determine its position uniquely, no matter how many measurements
it will perform. Notice that there is a range of intensity of blue color, where greater intensity
corresponds to more RTD cells contributing a result to the region in question.

32

Figure 6.4: An example of a regular convex polygon with 16 vertices and a radius of 1. The
result of a query of a single distance measurement of 0.1 is a 'margin’ area near the polygon
boundary. The RTD decomposition decomposes the C-space for the regular polygon into O(n?)
cells, each containing part of the result. In our performance experiments we used such polygons
with increasing number of vertices, therefore the preprocessing and query time where proportional
to the squared number of vertices.

Preprocessing Duration Number of Decomposition Cells
16 140000
14 120000
0
12 T 100000
- 3
Bw S so0o0
Q B E
2 2 60000
[] [
4 > 40000
(=
2 20000
] 0
TR ABTELBRERSgINARERARERS] TTRNARYRRIRRESSEIRNREINEEERRY
number of vertices number of vertices
Single Measurement Query time Two Antipod Measurement Query time
8 14
7 12
6
10
w5
= L &
o 4 =4
o Q
K] ® °
w 7]
3 4
1 2
0 [+]
TTSNRYeRERARSE 0N REREERE] TTANABIRGINRANBEORNATENBBERER
number of vertices number of vertices

Figure 6.5: From left to right, top to bottom. (1) The preprocessing time for a convex regular
polygon with a radius of 1.0 and increasing number of vertices. (2) The number of three-
dimensional RTD cells that were computed. The query time in these polygons is shown, both
for a single measurement query of d = 0.1 at (3) and two antipodal measurements query of
dy = dy = 0.5 at (4). The preprocessing time, the number of cells and the running time for both
types of queries are behaving asymptotically as (number of vertices)?, as expected in a perfect
polygon.

33

Chapter 7

Discussion and Future Work

We have presented data structures to retrieve the unknown pose of a sensor in a known
polygonal environment, in an output-sensitive fashion, based on depth measurements. The
data structure for a single depth measurement provides two-dimensional surface patches as
answers, and the data structure for two-antipodal measurements provides elliptical arcs as
answers. The obvious next goal is to add one or more measurements from the same position
in the workspace to reduce the answers to a finite number of poses. Figure 7.1 suggests an
easy way to exploit our antipodal-measurement results to reduce the set of potential poses
to a finite set of points, albeit no longer in an output-sensitive manner.

- .

(a) (b) (c) (d)

Figure 7.1: Given a workspace (a), if a sensor measured two measurements d; = 0.6,dy =
0.8 in antipodal directions, its possible locations are shown in (b). On the other hand, if the
measurements values were d; = 1.4,dy = 2.2, its possible locations are shown at (c). If we
know a sensor measured the first two antipodal measurements, then rotated to some unknown
direction, and then measured the second pair of antipodal measurements, the possible locations
of the sensor are the intersection of (b) and (c), shown in (d). Assuming general position, there
will be a finite set of points the sensor might be in, marked by yellow discs in (d).

Additionally, we wish to allow movement of the sensor (robot) between measurements.
Extending the exact analysis of the type we have applied in this thesis to more measurements
or to allowing movement between measurements seems rather hard. We remark that our
analysis here has already been used in a companion paper [3], which takes a numerical
approach to the problem, in a system that makes three or more measurements, and using
numerical methods well approximates the pose of the sensor, both in simulation and with a
physical robot.

34

The data structures described in the thesis are intended to be computed once and queried
many times, but in other use cases a workspace may be queried only once. What is the best
time complexity required to answer a single query without any preprocessing?” Another
variant to consider is one in which dynamic modifications of the workspace are allowed in
the form of removing a vertex and its edges and inserting a new edge connecting its adjacent
vertices, or adding a new vertex connected with two new edges to an existing edge endpoints
as a replacement for it. Can one construct dynamic data structures that can be updated
efficiently under these modifications, and answer queries in an output-sensitive manner?
Finally a major open issue is to make the algorithm robust to imprecision in the workspace
modelling or the sensor readings.

35

Appendix A

Plane Projection of Measurement
Results

A.1 Plane Projection Curves of a Single Measurement
Result

Given a sensor reading d, in Section 3.2, we discussed the shape of the projection of all the
configurations inside a single cell C' of the RTD that yield the reading d. In this section we
analyze the projected curved pf, p¢, which are circular arcs or conchoids of Nicomedes; see
Section 3.2 for details. Analytical description of the arcs is trivial, therefore we will focus
on the description of the conchoids. Given a cell C(e, ef, vf, v¢, 0%), assume, w.l.o.g., that
the top and bottom edges are not vertical, and denote by e (x) = xm,, + b, the equation

of the line supporting the top edge and analogously for the bottom edge ef' (z) = xm, + be, .

The conchoid of Nicomedes is driven from a fixed point ¢, a straight line ¢ and a length
d, where for every line through ¢ that intersects ¢, the two points on the line which are at
distance d from the intersection are on the conchoid. In our case, ¢ is the limiting vertex, the
straight line is the line supporting the top edge of the cell and d is the query measurement.

The classic equation for a conchoid, assuming that ¢ = (0,0) and the line ¢ is z = a, is
given by:
(x —a)*(2* + y°) = d*?* .

For the more general case, where ¢ = (g, yo) for some g, yo and the line ¢ makes angle
t with the positive x-axis and is at a distance a from ¢, is given by the following:

s =sint, c¢=cost,

((z —zo)e — (y — yo)s — a)*(((x — xo)e — (y — yo)s)*+
((z —20)s + (y —wo)e)?) = d*((x — zo)c — (y — yo)s)”

36

In our case, ¢ supports the top edge, and its angle is defined by its slope:
1

V1+m2 o

t =tan"'(m,,), sintan~'(m,,) = ——=—, costan'(m,,) =

A/ 1+ m2

By using the above identities in Equation (A.1), we get:

((56' — Zo) %1 — (¥ — o) ﬁ)
((:c — Zp) — (¥ — %))
A N \/1—+

+ ((ZE — JCo \/T ?/ yo \/T> =

—(

2
2 JE—
d (((E .',UO \/T Yy — 1/0 1 T mgt>

1 2
ngt <(x — o) \/T — (¥ =) \/W a) ((me, (x = 20) — (y — o))
+ (= = 20) +me, (v = 90))") = 5 +1m2 & (me, (z —w0) — (y — w0))”

(met (‘T - ‘TO) - (y — Yo

A/ 14+ m2

+ (z - $0)2 + 2me, (z — 20) (¥ — vo) + mgt (y — y0)2) = d? (me, (x — x0) — (y — yo))2)

(met ("L‘ B l’o) B (y — yO)

) CL) (m2, (x — 20)* — 2me, (z — z0) (y — o) + (¥ — vo)°

VItme _a> ((x = 20)* + (y = 90)*) (L +mz,) =

&’ (e, (x —20) — (y — yo))2)

(met (x —x0) — (y —yo) a\/@)z ((x — ZL’o)2 + (y — 90)2) =

&’ (e, (x —20) — (y — yo))2

The term with + sign is determined by the relation between ¢ and ¢. If £ is above ¢, we
use the plus sign, and if ¢ is below ¢, we use the minus sign. In summary, the equation that
represent the curve p{’ within a cell is (can be defined analogously for p<):

(e (2 =) = (0=) £ ag/T 42} (2 =)" + (9= 30,))

= d2 (met (l' - xvl) - (y - yvl))2 :

37

The Overall Region of Potential Sensor Positions for a Fixed Reading: Given a
sensor reading d, we retrieve all the cells with non-empty potential poses using the sorted
list of the RTD-based data structure. For each such cell C' we compute the region W,(C).

Alternatively, we may wish to return the (two-dimensional) union of the regions W,(C),
for all the cells that we retrieved. See Figure 6.1 for an illustration. Each region ¥,(C)
has a constant descriptive complexity, and if we retrieved k such regions, their union can be
easily computed in time O((k + m)log(k + m)), where m is the number of pairs of regions
that intersect. In the worst case m = O(k?). It might be the case that special properties of
the regions W,(C) and their juxtaposition could be used to show that the complexity of the
union is o(k?). We leave this as an open problem for further research.

A.2 Plane Projection curve of Antipodal Measurements
Result

Given two measurements di,ds, and a fixed RTD cell, all positions of a sensor that can
measure d; at some angle 6; and dy at angle 6, = 6; + 7w, measuring the distance to the top
and bottom edges of the cell respectively, can be calculated analytically. Consider all the
line segments of length d; + dy with one endpoint on the top and the other on the bottom
edge. Each possible position of the sensor can be expressed as a point placed on one of these
segments, at distance d; from the endpoint that lies on the top edge. The curve that is the
union of all these points, is a Glissette [2], which in our special case is an ellipse.

Glissettes are the curves traced out by a point on a curve v, where ~ slides along two
other fixed curves. In our case specifically, v is a fixed line segment s, sliding while each of
its endpoints is in contact with one line (the two lines are not necessary orthogonal to one
another), and the Glissette is defined as the trace of an arbitrary point on s (not necessarily
the mid-point). A solution for the case where the two fixed lines are at right angle is given
at [2, p. 51]. We solve it here for the general case.

For simplicity, assume that one of the fixed lines is the z-axis, it intersect the other
fixed line at the origin, and the angle between them is «. If the moving line segment has
length d; + ds, and the designated point to be traced is at distance dy, ds from the segment’s
endpoints, the Glissette points satisfy the following, for any angle ¢ in oblique coordinates:

rsina = f(¢), ysina= f(¢+a).
Where f(-) is the tangential polar equation. In our case:

£(6) = {dl coso, if ¢ €[0,7/2], .

dycos ¢, else

Again, these expressions represent the oblique coordinates. When transforming into
Cartesian coordinates, we get:

dy cos
le ¢+y

y =dycos(¢p +) , : .
Sin o tan o

38

The above expressions are correct for any angle ¢, and we would like to express all the
result points in a single equation. Next, we perform angle elimination:

0 = arccos(g) -—a,
2

L dy cos(arccos(L) — a) y
sin v tana ’
. dy (cos arccos L cos o + sinarccos - sin) y
sin v tana ’
ycosa—iw/ 2511104
T = Y
sin v tana
_ dy(yoosa
dg sin av d2 tana '
x = 1—= —l— ,
d2 tana d2 tana
dq
r—(1+— =+dix |1 -,
(dg)tana ! \ d%
d d 2 2
2 1y Y 1o Y 2 Y
x°—2x(1 + — 1+ — 1-%),
(dg)tana (dy” tan? o i dg)
d d1\2
22— 2 +$xy 1+ a) 4 2=
tan « tan? o d3 L
2 1+4 (1+9)2 4
x d d 2
— —2—2ay+ | 57—+ = =1. A2
d? “ditana Y (d% tan’a d3 Y (A.2)

The above equation already expresses all the points in the ellipse, but we would like to
work with standard representation of rotated ellipses. Rotated ellipse equation centered at
(20, Yo) with rotation angle 6:

((z — x0) cos b + (y — yo) sin 0)? N ((z — o) sinf — (y — yo) cos 0)?

s 72 =1.

We assumed that the intersection is at the origin, therefore xy = yo = 0. Denote sinf =
s,cost) = c,tanf = t, then
(zc+ys)* (s —yc)?
a? * b2
2 s 1 5?2 2

1
(+b2)x +2cs(§—§) y+(§+—)y2=1.

39

From Equation (A.2) and the above we can derive three equations with three unknowns:

1 2§

& @
1+ %4 11
—92 do _ 9pg(— — —
d? tan o CS(OL2 bz) ’
(1+ %)2 1 s 7

Ptana B @ B

We can solve these equations to calculate a, b, 6.
From Equation (A.3) it follows that

2 A+ 5%

d_%_a2+b_2_ a??r

a’b? = di(*b* + s%a®)

2 _ d2c*b?
b2 — d?s?
From Equation (A.4) it follows that
1+ %4 11
o B s~
d? tan o a? b
1+4 11

csd?tana b2 a?’

Assigning a? using Equation (A.6), we get

L+3 1 v —ds
csditana b2 dic2h?

L+ B0+ dis?
csd? tan o d3c2b? ’

1+9 2

stan a ch?
c(1+ fil—;) | d
stan o b2’
c(1+% 1 L+ sta[,:noz(l + le_;)

stan a

40

(A.3)

Assigning b? using Equation (A.7) into Equation (A.6), we get:

2 .212 2.2 2.2
i = dic?b _ dic _ dic
st | Ee | @e
b2 d?
1+m(1+%)
d3c? d3c? d2
- 2 _cs diy .2 _ _cs diy _ s diy "’
1 § tana(]' + dz) ¢ tana(l + d2) 1 ctana(]' + d2)
d2
a2:1_ 31(1+d_1)' (A.8)
ctan « do

We can now return to Equation (A.4), and replace a® and b* with the expressions obtained
in Equation (A.8) and Equation (A.7) respectively:

1+2)2 1 &2 N c?
ditan’a di a® b2’

(1—1—2—;)2 I s N c?
Ztan’a d3 di df ’
-2z () s+ 3
L+¢)? @&, s d, dy
AL G T 1+ 2+ (1 + 1+ L)),
tan? o d? s ctana(dg)) e stana(dg))
14+ di1\2 2 ts2 d 2 d
Ura) 2d2) S 1+t —— (142,
tan® o ds tan o do ttan o doy
(1+3)? 4 _ . -t i,
tan?a d3 ttan o dy’’
Ara) & | _1-28 , d
tan?a d3 tc? tan o dy’’
(1+%)2+(d1 1)(d1 +1) = 1—2s? dl)
tan? o d, ds "t tana dy’
U3 d_y_1-28
tan’a d, tc2tana
L+8) dit 122
(d2)—|— 1YY e = i ,
tan o doy tc?
dy +dy +dytan® o — dytan® o 1 — 257
ds tan o ot
di(1+tan®) + dp(1 — tan® o) 1 — 247
ds tan o e

41

1—2s* cos(20)

= 2 2 cot(20) ,
1 — 25sin? 2
1 +tan’a = . 1—tan’a = sma:cos(o)
cos? v cos? v cos? «v
dq da cos(2a)
cos? o cos?
S = 2cot(20
ds tan o cot(20) .
di +d 2
- 2 c05(20) = 2cot(26) ,
dy sin a cos «
di
€L+ cos(2a
dQ.—() = COt(ZQ) ,
sin(2a)
di
1 &+ cos(2a
6 == cot™! dQ_—() . (A.9)
2 sin(2aq)

With 0 calculated, we can go back to Equation (A.8) and Equation (A.7) and easily
calculate their exact value. We have calculate the fixed values a, b, § under the assumption
that the line supporting the bottom edge is the x-axis and it intersects the line supporting
the top edge at the origin. The ellipse is expressed by the equation:

(x cosf + ysin §)? N (xsinf — y cos 0)?

p 72 =1.

In full generality, for any cell, we use 6 = 6 + tan=!(m{), and offset the center of the
ellipse to the intersection of the lines supporting the top and bottom edge of the cell (xq, yo):

((z — mg) cos 0 + (y —yo) sin@')?> ((x — x0)sin b — (y — yo) cos §')?
- + > —1.

42

Appendix B

Combinatorial Result Change
Handling

In this section, we provide more details on the analysis in Section 4.2. All the tuples with the
same first parameter e, sorted in increasing d value, are the events of the spatial sweep with
the surface X(e, d). We compute the result o(e, d) for infinitesimal values of d, by considering
only e and its two adjacent edges. From this points on, result edges will be inserted or
removed only when handling combinatorial change tuples. We handle each combinatorial
change (e, 0,d,U) according to the event type. We fully describe how to handle a change
(e,0,d,U) of type I and V, as types II, IIT and IV are analog to I. Let us first introduce some
definitions and general notes:

(a)

(b)

We say that a result edge 7’ is defined by e and a vertex v when 7’ is the union of
configurations where a rod of length d is sliding on e and v, and we denote this rod by
s(e, v).

We say that a result edge 1" is defined by e and another edge e; when 7" is the union
of configurations where a rod of length d is sliding with one endpoint on e and another
endpoint on e, and we denote this rod by s(e, e1).

The limits «, 8 of the angle range [«, 5] throughout which a result edge prevails, can be
specified by a fixed angle each, or by the labels of the workspace features that induced
these angles for a specific d value.

Note that we refer to 'the’ segment (or 'the’ rod) of length d with its endpoints on some
vertex and e, while there may be two such segments. The uniqueness of the segment is
specified by the constraint on its angle, for example § < 6 in the first sub-case of type
I handling.

For the simplicity of exposition, we assume that e is parallel to the z-axis.

We say that a vertex is a reflex vertex relative to a line (resp. segment) if both of its
incident edges are in the same half-plane induced by the line (resp. the line supporting
the segment).

43

(g) By ’the angle of a segment/rod” we refer to the angle that the line supporting the
segment /rod creates with the positive direction of the x-axis.

Combinatorial change of type I : d is the minimum value in which a result vertex of
type (i) involving two vertices vy, vy exists (namely an intersection of two x.(-) surfaces
intersect (e, d)), where vy is the vertex closer to e. We use the following assumptions
and definitions:

(a) We assume that vy is a reflex vertex relative to v7v3; otherwise, d is also the
maximum value in which such a result vertex exists, and we will handle it as a
change of type II (see Figure 4.4(a) for such a scenario).

(b) The vertex v is clearly a reflex vertex relative to U702, and we will assume that
the edges incident to v, are on the left halfplane relative to the direction v307.

(c) Let e; be the edge of vy visible from v;.

The handling operations depend on two predicates: whether the edges of both vy, vs
are in the same halfplane relative to v7v5 or not, and whether a result edge defined by
e, e1 exists or not in o(e,d') for d' infinitesimally smaller than d. The sub-cases are
illustrated in Figure 4.3.

e A result edge 1, defined by e, e; exists in the angle range [,] for some «, where
depends on d and it is defined as the angle that s(e, e;) (that also passes through
vy at the time of handling the event) makes with the z-axis. There must be
another result edge 7o defined by e, v; in the angle range |7, 8] for some g.

— If the edges of both v, vy are in the same halfplane relative to vyvs:
x Find and remove 7; and 5.

x Add a result edge defined by e, vy in the angle range [d, 0] where § < 6
is the angle of the rod s(e,vy) (there are two such rods and we choose
one of them by the constraint § < 6). Recall that 6 is a parameter of the
combinatorial change tuple.

* Add a result edge defined by e, v; in the angle range [0, /].
— If the edges of vy, v, are not in the same halfplane relative to vyvs:
* Find and remove n; and 7,.

* Add a result edge defined by e, vy in the angle range [, §] where ¢ > 6 is
the angle of the rod s(e, vq).

% Add a result edge defined by e, v; in the angle range [0, /].
e A result edge defined by e, e; does not exists. Therefore, there must be a result
edge n3 defined in the angle range [«, 5] where 0 € («, 5).
— If the edges of both vy, v, are in the same halfplane relative to v70s:
% Find and remove 7.

* Add a result edge defined by e,e; in the angle range [, ¢| where ¢ > «
is the angle of the rod s(e, e;) (that also passes through vy at the time of
handling the event).

44

* Add a result edge defined by e, v, in the angle range [, 0] where 6 < 6 is
the angle of the rod s(e < vs).

* Add a result edge defined by e, v; in the angle range [0, /].
e If the edges of vy, vy are not in the same halfplane relative to v7v5:

— Find and remove 73.

— Add a result edge defined by e, e; in the angle range [, ¢| where ¢ > « is the
angle of the rod s(e, el) (that also passes through v; at the time of handling
the event).

— Add a result edge defined by e, v, in the angle range [0, 0] where § = 0 is the
angle of the rod s(e, vy).

— Add a result edge defined by e, v; in the angle range [0, §].

Combinatorial change of type V : d is the length of the shortest line segment, denoted
s, which is contained in the workspace, from a vertex v to e. We use the following
assumptions and definitions:

(a) Let e, es be the edges incident to v, where e; is met first when we go counter-
clockwise around the vertex v from s.

(b) Let 6 be the angle create by the segment s and the positive x-axis.

(c) We assume that e is in the right halfplane relative to s, where 5 is directed from
v to its endpoint on e. The case where e5 is in the left halfplane can be handled
symmetrically.

(d) Let v < 6 and ¢ = 6 be the angles of the two rods s(e,v) (while typically we refer
to a single rod, as we have some constraint on the rod orientation, in this case we
consider both rods.

The handling operations of the change depend on whether there are already result
edges defined by e; and es:

e There are result edges defined by e, e; and e, ey (Figure B.1(a)), denoted by n;
and 1), respectively:
Let [ag, B1], [z, B2] be the angle ranges 1,72 exist in, respectively.
— Find and remove 7; and ns.
— Add a result edge defined by e, e; in the angle range [aq,7].
— Add a result edge defined by e, e; in the angle range [¢, 5]
— Add a result edge defined by e, e5 in the angle range [ag,7].
— Add a result edge defined by e, e5 in the angle range [¢, 52].
e There is a single result edge defined by either e, e; or e, es:
Assume that only the result edge defined by e, e; exists, and denote it by 7,. The
case where only the result edge defined by e, e; exists is handled symmetrically.
First, ny should be removed from R. The result edges that should be added
depends on these sub cases:

45

— Both ey, e5 are in the right halfplane relative to s (Figure B.1(b)):
* A result edge defined by e, v that exists in the angle range [v, ¢].
x Add a result edge defined by e, es in the angle range [az, 7]
* Add a result edge defined by e, es in the angle range [¢, B2].

— The edges e, es are in different halfplanes relative to § (Figure B.1(c)):
* A result edge defined by e, e; that exists in the angle range |7, ¢].
x Add a result edge defined by e, e5 in the angle range [as, 7]
* Add a result edge defined by e, es in the angle range [¢, B2].

e There are no result edges defined by e, e; or e, es:
A new hole in the result should be added, with edges depending on the following

sub-cases:
— Both eg, ey are in the right halfplane relative to § (Figure B.1(d)):
% A result edge defined by e, v that exists in the angle range [, ¢].
+ A result edge defined by e, e; that exists in the angle range [, ¢].
— The edges e, es are in different halfplanes relative to § (Figure B.1(e)):
* A result edge defined by e, e; that exists in the angle range [v, ¢].
* A result edge defined by e, e that exists in the angle range [v, ¢].

(b) (c) (d) (e)

(a)

Figure B.1: Examples of the sub-cases of handling combinatorial change of type (V). The bold
line is a segment of length d. There is a result edge defined by e, e; fof length < d in (a). There
is a result edge defined by e, 5 of length < d in (a,b,c). Both e; and e; are in the same halfplane
relative to the shortest line between v and e, in (b)(d).

46

Bibliography

1]

Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries
and maintenance in simple polygons. Discret. Comput. Geom., 27(4):461-483, 2002.

William Henry Besant. Notes on Roulettes and Glissettes. Deighton, Bell, Cambridge,
1870.

Michael M. Bilevich, Steven M. LaValle, and Dan Halperin. Sensor localization by few
distance measurements via the intersection of implicit manifolds. In IEEFE International
Conference on Robotics and Automation, ICRA 2023, London, United Kingdom, May
28 - June 3, 2023. IEEE, 2023.

Prosenjit Bose, Anna Lubiw, and J. Ian Munro. Efficient visibility queries in simple
polygons. Comput. Geom., 23(3):313-335, 2002.

Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating the abso-
lute position of a mobile robot using position probability grids. In William J. Clancey
and Daniel S. Weld, editors, Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and Fighth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 2, pages
896-901. AAAI Press / The MIT Press, 1996.

Jinwoo Choi, Minyong Choi, Il Hong Suh, and Wan Kyun Chung. Topological local-
ization using sonar gridmap matching in home environment. In [EEFE International
Conference on Robotics and Automation, I[CRA 2010, Anchorage, Alaska, USA, 3-7
May 2010, pages 4910-4915. IEEE, 2010.

Mark de Berg, Leonidas J. Guibas, and Dan Halperin. Vertical decompositions for
triangles in 3-space. Discret. Comput. Geom., 15(1):35-61, 1996.

Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Compu-
tational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008.

Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo lo-
calization for mobile robots. In 1999 IEEE International Conference on Robotics and
Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan, USA, May 10-15,
1999, Proceedings, pages 1322-1328. IEEE Robotics and Automation Society, 1999.

47

[10]

[16]

[17]

[22]

[23]

Gamini Dissanayake, Paul M. Newman, Steve Clark, Hugh F. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localization and map building (SLAM)
problem. [EEE Trans. Robotics Autom., 17(3):229-241, 2001.

Gregory Dudek, Kathleen Romanik, and Sue Whitesides. Localizing a robot with min-
imum travel. STAM J. Comput., 27(2):583-604, 1998.

Hugh F. Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
Part 1. IEEE Robotics Autom. Mag., 13(2):99-110, 2006.

Alberto Elfes. Using occupancy grids for mobile robot perception and navigation. Com-
puter, 22(6):46-57, 1989.

Alberto Elfes. Sonar-based real-world mapping and navigation. In Ingemar J. Cox
and Gordon T. Wilfong, editors, Autonomous Robot Vehicles, pages 233-249. Springer,
1990.

Sean P. Engelson and Drew V. McDermott. Error correction in mobile robot map
learning. In Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, Nice, France, May 12-14, 1992, pages 2555-2560. IEEE Computer Society,
1992.

Efi Fogel, Dan Halperin, and Ron Wein. CGAL Arrangements and Their Applications
- A Step-by-Step Guide, volume 7 of Geometry and Computing. Springer, 2012.

Dieter Fox, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. Particle filters for
mobile robot localization. In Arnaud Doucet, Nando de Freitas, and Neil J. Gordon,
editors, Sequential Monte Carlo Methods in Practice, Statistics for Engineering and
Information Science, pages 401-428. Springer, 2001.

Subir Kumar Ghosh and David M. Mount. An output-sensitive algorithm for computing
visibility graphs. SIAM J. Comput., 20(5):888-910, 1991.

Nir Goren, Efi Fogel, and Dan Halperin. CGAL made more accessible. CoRR,
abs/2202.13889, 2022.

Leonidas J. Guibas, Rajeev Motwani, and Prabhakar Raghavan. The robot localization
problem. SIAM J. Comput., 26(4):1120-1138, 1997.

José E. Guivant and Eduardo Mario Nebot. Optimization of the simultaneous localiza-

tion and map-building algorithm for real-time implementation. IEEE Trans. Robotics
Autom., 17(3):242-257, 2001.

Dan Halperin and Micha Sharir. Arrangements. In J. E. Goodman, J. O’Rourke, and
Cs. D. Téth, editors, Handbook of Discrete and Computational Geometry, chapter 28,
pages 723-762. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2018.

Patric Jensfelt and Steen Kristensen. Active global localization for a mobile robot using
multiple hypothesis tracking. IEEE Trans. Robotics Autom., 17(5):748-760, 2001.

48

[24]

[25]

[20]

Rudolf E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, 82(1):35-45, 03 1960.

Sven Koenig, Joseph S. B. Mitchell, Apurva Mudgal, and Craig Tovey. A near-tight ap-
proximation algorithm for the robot localization problem. SIAM Journal on Computing,
39(2):461-490, 2009.

Philippe Moutarlier and Raja Chatila. An experimental system for incremental envi-
ronment modelling by an autonomous mobile robot. In Vincent Hayward and Oussama
Khatib, editors, Ezperimental Robotics I, The First International Symposium, Montréal,
Canada, June 19-21, 1989, volume 139 of Lecture Notes in Control and Information Sci-
ences, pages 327-346. Springer, 1989.

Jason M. O’Kane and Steven M. LaValle. Localization with limited sensing. IEEFE
Trans. Robotics, 23(4):704-716, 2007.

Micha Sharir and Shmuel Sifrony. Coordinated motion planning for two independent
robots. Ann. Math. Artif. Intell., 3(1):107-130, 1991.

Randall Smith, Matthew Self, and Peter C. Cheeseman. Estimating uncertain spatial re-
lationships in robotics. In Ingemar J. Cox and Gordon T. Wilfong, editors, Autonomous
Robot Vehicles, pages 167-193. Springer, 1990.

Cyrill Stachniss, John J. Leonard, and Sebastian Thrun. Simultaneous localization
and mapping. In Bruno Siciliano and Oussama Khatib, editors, Springer Handbook of
Robotics, Springer Handbooks, pages 1153-1176. Springer, 2016.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.5.2
edition, 2023.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach to con-
current mapping and localization for mobile robots. Auton. Robots, 5(3-4):1-5, 1998.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. Intelligent
robotics and autonomous agents. MIT Press, 2005.

Alireza Zarei and Mohammad Ghodsi. Query point visibility computation in polygons
with holes. Comput. Geom., 39(2):78-90, 2008.

PN

TN PRI JWMON DY VIY NV ONN BY NI (localization) PPN N»YI1 NP NHNN
TN OONY IN NNN DT TN YIDY

NTIAYN N0 NIX DOXPNOY ONTPNN DIWIN DY 001217 MY DINNI NAT NTIAY NNHWY)
MMM NYTNN N3N INNIY RN PN NN DMINT IN MTIPI DY 27 99012 ININ OINT
NNMYPNN MLPN IN,VIN MY NN NIYARNDI DIDANN DNIY1N OY DIVINT NIY MNIND

.DXADIN VIN NYINY YDNRN NN MDY YT NWINTH

LVONN DY DMIVARD D8N AN DY DM970D Y1120 717179 DY DY0DINN DINN))20 MY
DIPMYY DTPIN TIY I3 DOPWN IUNR,DNIXIN (YN NI DIPI XYY YTHN NON AN NINY
27795 DN OVAIN PITA NNPIRY DY MIYD DMIWARNDI PNNMID NOP 5195 PPN ITND
,DO0IVY9 HON DIMNNIN AN MY .NTIAYN NIXI0 H NI MDW DY ONNIND 190N DY NODINA
YMPPVAN NNDIRY YOI DPWN DINNN M2 NYY MY .CGAL 1190 Ntya 0NN YN
MNYPY DNPTIP DY 9191 19010 DN IDMVNN NNDINY It DMOWN RY DN ,P11aY N
DONPVAIRN NNDIRYN AT NINY ,IRNIND NN INDD DOWITIN

NNY DIPMY DTPIN TIY JOT DOPWNY D120 TN NP DININ) 320 MY DXIOSN PNIX 19N INKRD
9712 YNNI NOLP TY) YIPPVNN NNDINY YOI PYNY DXNOYHNNI ,DXDIWON DINNIN NIAND
JDINSIND NN PXND YT DOWITIN MNP DTIPTIP DY 90000 19015 I ,(NTHAYN N0
TIY 95 MY IRXIND DY DINVIAMPN DINIPWN SINK APIY NNNX NTITH Y DINNIN 1IN
MTTHONY NIY DINN NI .NNDIRYI NPIVARD NMINXIND YD NN NDOW NN I, NN
12Y NINI XY 1PN ONIAYY DIRN TARD NIN TR ,D2T9709 Y2120 P11 DY DINNL wHnwn
.DYIMDN NINT YWY

NYNYIY DD 199 AN DXVIYIN DININ 12N MY DY YININN NN DOPNN NNIN ,NDAY
WWON DY PYTIDIN DY TTINNND TR 1ND XY MNNI MONY 1) DYDYN NNIN .ONITYA
ST, DYTHNN XY NPIMY IN MTTH ONWN INPY NHY MOLIVN NN NINY IWIN DN ,TTHN

D'7'1TN D’'VTNT nUTI79N
T7NO "M TIINM By
1IN 7N NO'DN2NIN

AVNNN Y TND 90N N’

IN DINR PRI DTN DY YN PNOON
NPT 0PNV

ININD NOAPO TMWITIN PIND YN M NN
AN DN NVXOIDVNNA M.SC. — “DOPOIDNN THOW’

*1 Oy
Y 993

SV INOITNA MM NTIAYN
Y7951)T ‘919

