
Localization with Two Distance Measurements: Algebraic Analysis

Efi Fogel

Abstract

A robot is placed inside a known polygonal workspace but in an unknown position and orientation.
The robot is equipped with a distance sensor, namely, a device that can measure the distance from the
sensor to the nearest object in a given direction. For simplicity, let’s assume that we only concern ourselves
with the position (x, y) of the sensor (rather than of the whole robot) and the orientation θ of the ray
that measures the distance, namely, the angle between the ray and the positive x-axis. Our goal is to
determine where in the workspace our sensor could be, after carrying out two distance measurements.

1 Introduction

(a) d1 = 1, d2 = 1, α = 90◦ (b) d1 = 1, d2 =
√
2, α = 90◦ (c) d1 = 1, d2 =

√
2, α = 45◦

(d) d1 = 1, d2 =
√
2, α = 180◦ (e) d1 = 1, d2 =

√
2, α = 45◦

Figure 1: Various examples. The free space is filled with a light-gray color. The boundary of the free space
is drawn with blue segments. Orange curves contains all the possible locations of the sensor. A pair of green
segments with a common endpoint shows a witness.

If only a single measurement is carried out at an unknown direction, the possible locations of the robot
comprise two-dimensional regions. Here, we concern ourselves with a variant of the problem where a query
consists of three real numbers d1, α 6= 0, d2 describing the following sequence of events: The sensor at its
original state obtains the distance reading d1, then the sensor is rotated (without translating) by α radians
counterclockwise, and then it obtains a second distance reading d2. The possible locations of the robot in
this case comprise of one-dimensional curves in the general case; see Figure 1. If the query is augmented

1

by a second rotation followed by a third measurement, the possible locations of the robot consist of one or
more isolated points (in the general case).

A more complicated problem allows for a translation of the robot before the second measurement is
taken. In this variant a query consists of four real numbers d1, α, t, d2, where t denotes a translation vector
in the plane. If t 6= 0, the two measurements can be taken simultaneously. This is possible in practice, if two
distinct sensors are at our disposal. We made experiments with a real robot equipped with two sensors.

2 Algebraic Analysis

x
O

y

−1 1 2 3 4 5 6 7

−1

1

2

3

4

5

6

L2

L1

p

p2
d2

p1

d1

α

Figure 2: Local view of the problem.

We start with an algebraic analysis of the problem. Here, we concentrate at a local view of the problem,
where we only consider two walls (edges) of obstacles and ignore everything else; see Figure 2. Let L1 :
a1x+ b1y+ c1 = 0 and L2 : a2x+ b2y+ c2 = 0 denote the two underlying lines of the two edges of obstacles
hit by the two measuring rays, respectively. Let p = (x, y) denote a point in the workspace our sensor
could be located at. Let p1 = (x1, y1) denote the point on L1 hit by the first measuring ray, and similarly,
let p2 = (x2, y2) denote the point on L2 hit by the second measuring ray. Employing the law of cosine
(Equation 5), the following equations must be satisfied:

a1 · x1 + b1 · y1 + c1 = 0 (1)

a2 · x2 + b2 · y2 + c2 = 0 (2)

|p− p1| = d1 (3)

|p− p2| = d2 (4)

d21 + d22 + 2 · cos(α) · d1 · d2 = |p1 − p2|2 (5)

In the degenerate case, where L1 and L2 are parallel (or L1 == L2) the loci of all points that satisfy the above
equations form a line. This line must be trimmed to a segment according to the actual edge lengths and
interiors of the obstacles. In all other cases the loci of points form two ellipses that correspond to clockwise
and counter clockwise rotations. The ellipse that corresponds to the clockwise location is discarded and the
other must be trimmed to obtain that actual possible locations.

Solving the above non-linear equation system is messy. We can add some constraints to the above system
without compromising. First, we translate the scene, by setting c1 = 0, c2 = 0, coercing the intersection

2

point of L1 and L2 to be at the origin. Then, we rotate the scene, setting a1 = 0, coercing L1 to lie on
the x-axis. Once we find the desired elliptic arc in our transformed space, we can apply an inverse rotation
followed by an inverse translation to obtain the elliptic arc in the original space.

First, we handle the simple case, where b2 = 0. Recall that L1 lies on the x-axis. This additional
constraint implies that L2 lies on the y-axis. (L1 and L2 are orthogonal.) Manipulating the system equation
above (see Section 3.1, we obtain the single equation below; see Equation 16

d41 · x4 + (4 · k2 − 2 · d21 · d22) · x2 · y2 − 2 · d21 · k2 · x2 + d42 · y4 − 2 · d22 · k2 · y2 + k4 = 0, (6)

where k = cos(α) · d1 · d2. Let P1 denote the bivariate polynomial on the left hand side of Equation 6.
The zero set of P1 represents the points that sautisfy the equation system above. Employing Matlab to fac-
torize the polynomial P1, we get: P1 : (A1 ·x2+B1 ·y2+C1 ·x ·y+D1) ·(A2 ·x2+B2 ·y2+C2 ·x ·y+D2), where

A1 = d21

B1 = d22

C1 = 2(d21 · d22 − k2)(1/2)

D1 = −k2

A2 = d21

B2 = d22

C2 = −2(d21 · d22 − k2)(1/2)

D2 = −k2
The zero set of the two factors represets two ellipses, respectively. You can visualize the two ellipses and how
they dynamically change as a consequence of changing the parameters d1, cosα, d2 using the GeoGebra1

online tool; download the GeoGebra script https://www.geogebra.org/calculator/rvqwxqcd and upload
in GeoGebra. Second, we denote m2 = a2

b2
, assuming the lines are not parallel. The derivation process (see

Section 3.3) and the obtained polynomial (see Equation 25) in this case are much more complex. Use the
GeoGebra script https://www.geogebra.org/calculator/ferztmgh to visualize the ellipses in this case.

3 Derivation

We repeat the system equation in the general case:

a1x1 + b1y1 + c1 = 0 (7)

a1x2 + b1y2 + c1 = 0 (8)

(x− x1)2 + (y − y1)2 = d21 (9)

(x− x2)2 + (y − y2)2 = d22 (10)

(x2 − x1)2 + (y2 − y1)2 = d21 + d22 − 2cd1d2 = d21 + d22 − 2k (11)

3.1 Constraining the Slopes of Both Lines

We set y1 = 0 and x2 = 0, coercing L1 and L2 to lie on the x- and y-axes, respectively. Equations 9, 10,
and 11 reduce to:

(x− x1)2 + y2 = d21 (12)

x2 + (y − y2)2 = d22 (13)

x21 + y22 = d21 + d22 − 2k (14)

We substitute d1 and d2 in Equation 14 and obtain the single equation:

x2 + y2 − xx1 − yy2 − k = 0 (15)

1https://www.geogebra.org

3

https://www.geogebra.org/calculator/rvqwxqcd
https://www.geogebra.org/calculator/ferztmgh
https://www.geogebra.org

We introduce the symbols s1 and s2, and get

x1 = x±
√
s1

y2 = y ±
√
s2,

where s1 = d21 − y2 and s2 = d22 − x2 based on equations 12 and 13.
We substitute x1 and x2 in Equation 15 and get:

x2 + y2 − x(x±
√
s1)− y(y ±

√
s2)− k = 0

We expand and exchange and get:

±x
√
s1 ± y

√
s2 = k

We raise to the power of two each side and get:

x2s1 + y2s2 + 2xy
√
s1s2 = k2

We exchange and get:

2xy
√
s1s2 = k2 − x2s1 − y2s2

We raise again and get:

4x2y2s1s2 = (k2 − x2s1 − y2s2)2

We expand and get:

4x2y2s1s2 = k4 + x4s21 + y4s22 − 2k2x2s1 − k2y2s2 + 2x2y2s1s2

We exchange and substitute s1 and s2 and get:

k4 + x4(d21 − y2)2 + y4(d22 − x2)2 − 2k2x2(d21 − y2)− k2y2(d22 − x2)− 2x2y2(d21 − y2)(d22 − x2) = 0

We expand and regroup and get:

d41x
4 + y2x2(4k2 − 2d21d

2
2)− 2d21k

2x2 + d42y
4 − 2d22k

2y2 + k4 = 0 (16)

3.2 Constraining the Intersection Point

We set c1 = c2 = 0, coercing the intersection point of L1 and L2 to coincide with the origin, and denote
m1 = a1

b1
and m2 = a2

b2
; we get y1 = m1x1 and y2 = m2x2.

We substitute y1 and y2 in equations 9, 10, and 11 and get:

(x− x1)2 + (y −m1x1)
2 = d21 (17)

(x− x2)2 + (y −m2x2)
2 = d22 (18)

(x2 − x1)2 + (m2x2 −m1x1)
2 = d21 + d22 − 2k (19)

We expand and regroup and get:

(1 +m2
1)x

2
1 − 2(x+m1y)x1 + x2 + y2 = d21 (20)

(1 +m2
2)x

2
2 − 2(x+m2y)x2 + x2 + y2 = d22 (21)

(1 +m2
1)x

2
1 + (1 +m2

2)x
2
2 − 2(1 +m1m2)x1x2 = d21 + d22 − 2k (22)

4

We substitute d1 and d2 in Equation 22 and obtain the single equation:

(1 +m1m2)x1x2 − (x+m1y)x1 − (x+m2y)x2 + x2 + y2 − k = 0 (23)

We introduce the symbols r1, s1, r2, and s2, and get

x1 = r1 ±
√
s1

x2 = r2 ±
√
s2,

where

r1 = ((x+m1y)/(1 +m2
1))

s1 = (((x+m1y)2 − (1 +m2
1)(x

2 + y2 − d21))/(1 +m2
1)

2)

r2 = ((x+m2y)/(1 +m2
2))

s2 = (((x+m2y)2 − (1 +m2
2)(x

2 + y2 − d22))/(1 +m2
2)

2)

We substitute x1 and x2 in Equation 23 and get:

(1 +m1m2)(r1 +
√
s1)(r2 +

√
s2)− (x+m1y)(r1 +

√
s1)− (x+m2y)(r2 +

√
s2) + x2 + y2 − k = 0

We expand and regroup and get:

(1 +m1m2)r1r2 + (1 +m1m2)r1
√
s2 + (1 +m1m2)r2

√
s1 + (1 +m1m2)

√
s1s2)

−
√
s1(x+m1y)−

√
s2(x+m2y)− r1(x+m1y)− r2(x+m2y) + x2 + y2 − k = 0

We exchange and get:

√
s1(r2`− x−m1y) +

√
s2(r1`− x−m2y) = r1(x+m1y) + r2(x+m2y)− x2 − y2 + k − `r1r2 −

√
s1s2`,

where ` = 1 +m1m2.

We raise to the power of two each side and get:

s1(r2`− x−m1y)2 + s2(r1`− x−m2y)2 + 2
√
s1s2(r2`− x−m1y)(r1`− x−m2y) =

(r1(x+m1y) + r2(x+m2y)− x2 − y2 + k − `(r1r2))2 + `2s1s2−
2
√
s1s2`(r1(x + m1y) + r2(x + m2y) − x2 − y2 + k − `(r1r2))

We exchange and get:

2
√
s1s2((r2`− x−m1y)(r1`− x−m2y) + `(r1(x+m1y) + r2(x+m2y)− x2 − y2 + k − `r1r2)) =

(r1(x+m1y) + r2(x+m2y)−x2− y2 +k− `r1r2)2 + `2s1s2− s1(r2`−x−m1y)2− s2(r1`−x−m2y)2

We raise again and get:

4s1s2((r2`− x−m1y)(r1`− x−m2y) + `(r1(x+m1y) + r2(x+m2y)− x2 − y2 + k − `r1r2))2 =

((r1(x+m1y)+r2(x+m2y)−x2−y2+k−`r1r2)2+`2s1s2−s1(r2`−x−m1y)2−s2(r1`−x−m2y)2)2

(24)

5

3.3 Constraining the Slope of One Line

We set m1 = 0, which implies that ` = 1, in Equation 24, coercing L1 to lie on the x-axis, and get:

4s1s2((r2 − x−m1y)(r1 − x−m2y) + (r1(x+m1y) + r2(x+m2y)− x2 − y2 + k − r1r2))2 =

((r1(x+m1y) + r2(x+m2y)− x2− y2 + k− r1r2)2 + s1s2− s1(r2− x−m1y)2− s2(r1− x−m2y)2)2

We simplify the resutimg equation using Matlab. We obtain the bivariate polynomial P2 (see below), the zero
set of which represents the points satisfying the equation. We employ Matlab yet again to factorize the poly-
nomial P2. The Matlab script is available at http://acg.cs.tau.ac.il/projects/in-house-projects/

localization-with-few-distance-measurements/solution.m.

The bivariate polynomial obtained by simplifying the system equation in the case where L1 lies on the
x-axis and and the intersection point of L1 and L2 coincides with the origin follows.

P2 : 4 · k2 · y4 − 4 · k3 · y2 + k4 + d41 · d42 + 2 · k4 ·m2
2 + k4 ·m4

2 + d41 · y4 + d42 · y4−
4 · d21 · k · y4 − 4 · d22 · k · y4 − 2 · d21 · d22 · k2 + 2 · d21 · d22 · y4 − 2 · d21 · d42 · y2−
2 · d41 · d22 · y2 + 2 · d21 · k2 · y2 + 2 · d22 · k2 · y2 + d41 ·m4

2 · x4 + 2 · d42 ·m2
2 · y4+

d42 ·m4
2 · y4 − 4 · k3 ·m2

2 · y2 + 4 · k2 ·m2
2 · y4 + 4 · d21 · d22 · k · y2−

4 · d22 · k ·m2
2 · y4 − 4 · d41 ·m3

2 · x3 · y − 8 · k2 ·m3
2 · x · y3 − 2 · d21 · d22 · k2 ·m2

2+

4 · k3 ·m2 · x · y − 2 · d41 · d22 ·m2
2 · x2 − 2 · d21 · d22 ·m2

2 · y4 − 2 · d21 · d42 ·m2
2 · y2+

2 · d21 · k2 ·m2
2 · x2 − 2 · d21 · k2 ·m4

2 · x2 − 2 · d21 · k2 ·m2
2 · y2 − 2 · d22 · k2 ·m4

2 · y2+
6 · d41 ·m2

2 · x2 · y2 + 4 · k2 ·m2
2 · x2 · y2 + 4 · k2 ·m4

2 · x2 · y2 − 4 · d41 ·m2 · x · y3−
8 · k2 ·m2 · x · y3 + 4 · k3 ·m3

2 · x · y + 4 · d21 · d22 ·m3
2 · x · y3 − 12 · d21 · k ·m2

2 · x2 · y2+
4 · d41 · d22 ·m2 · x · y − 4 · d21 · k2 ·m2 · x · y + 12 · d21 · k ·m2 · x · y3+
4 · d22 · k ·m2 · x · y3 + 2 · d21 · d22 ·m2

2 · x2 · y2 − 2 · d21 · d22 ·m4
2 · x2 · y2−

4 · d21 · d22 ·m2 · x · y3 + 4 · d21 · k2 ·m3
2 · x · y + 4 · d21 · k ·m3

2 · x3 · y+

4 · d22 · k ·m3
2 · x · y3 + 8 · d21 · d22 · k ·m2

2 · y2 − 8 · d21 · d22 · k ·m3
2 · x · y−

4 · d21 · d22 · k ·m2 · x · y
= (A1 · x2 +B1 · y2 + C1 · x · y +D1) · (A2 · x2 +B2 · y2 + C2 · x · y +D2),

(25)

where

A1 = d21 ·m2
2

B1 = d21 + d22 − 2 · k + d22 ·m2
2 + 2 ·m2 · e

C1 = 2 ·m2 · (k − d21 −m2 · e)
D1 = k2 − d21 · d22 − k2 ·m2

2 − 2 · k ·m2 · e

A2 = d21 ·m2
2

B2 = d21 − 2 · k + d22 + d22 ·m2
2 − 2 ·m2 · e

C2 = 2 ·m2 · (k − d21 +m2 · e)
D2 = k2 − d21 · d22 − k2 ·m2

2 + 2 · k ·m2 · e

and e =
√
d21 · d22 − k2.

6

http://acg.cs.tau.ac.il/projects/in-house-projects/localization-with-few-distance-measurements/solution.m
http://acg.cs.tau.ac.il/projects/in-house-projects/localization-with-few-distance-measurements/solution.m

	Introduction
	Algebraic Analysis
	Derivation
	Constraining the Slopes of Both Lines
	Constraining the Intersection Point
	Constraining the Slope of One Line

