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Chapter 1

Introduction

Computational Geometry algorithms are often designed and proved to be correct
under the assumption of the “real RAM” computation model. This model assumes
that the computation is done using unlimited precision real numbers, on a computer
with random-access memory. Many times, the computation cost of using an exact
number type turns out to be too expensive. Simply exchanging the exact number type
to a finite precision number type (e.g., machine float) could lead to fast, yet unstable
programs. In the next section we will demonstrate how geometric algorithms are
prone to error when implemented using finite precision arithmetic.

Furthermore, Computational Geometry algorithms often assume general position
of the input (e.g., no three lines intersect in a common point, no three points are
collinear, etc.). This assumption simplifies both the theoretical analysis of the algo-
rithm, and its practical implementation. However, one cannot assure that the real
input will always be in general position. Thus, both the analysis and the implemen-
tation of the algorithm, should also take into account the degenerate cases (when the
input is not in general position, it is said to be degenerate). If one wishes to use
finite precision arithmetic (to achieve fast running time), then even if the input is in
general position, round-off errors may cause the algorithm to fail.

In the next section, we give several examples that illustrate the different robust-
ness issues that can arise in geometric algorithms. In Section 1.2 we present our
approach to robust handling of arrangements of circles (namely the subdivision of
the plane into vertices, edges and faces induced by the circles). Our method allows
the construction of the arrangement using finite precision arithmetic. It also elimi-
nates all the degeneracies, thus resulting in a less complicated source code, and faster
programs.

5



6 Chapter 1. Introduction

1.1 Robustness Issues in Computational Geome-

try

We start with a classic example, Ramshaw’s braided lines, in which naively applied
floating-point arithmetic can yield results which contradict elementary geometric ax-
ioms. Consider two lines, l1 : y = 4.3x/8.3 and l2 : y = 1.4x/2.7 (Figure 1.1). Using
floating-point arithmetic with mantissa of two decimal digits causes the two lines to
behave like step functions which intersect more than once, thus contradicting a basic
axiom of planar geometry. Further details on this example are given in [33].

.95.83 .89

.37

.38

.42

.46

.48

x

1.4x/2.7

.73 .75

4.3x/8.3

y

Figure 1.1: Ramshaw’s braided lines.

For the second example (based on the one given in [36]), consider a box and a
plane H (Figure 1.2 (a)). We wish to classify the corners of the box to three groups:
(i) above H , (ii) on H , and (iii) below H .

If the plane H is almost parallel to the top side of the box, and very close to it,
then the use of finite precision arithmetic could lead to false classification, in which
one pair of opposite corners is classified as below H and the other pair is classified as
above H (Figure 1.2 (b)). This is a violation of Euclidean geometry, in which a pair
of distinct planes can intersect in at most one line.

It appears that in the field of Computational Geometry, robustness problems
due to precision issues are somewhat more difficult to handle than in other fields in
computer science. The reason lies in the fact that many Computational Geometry
algorithms rely on data structures that combine both topological and geometric data.
For example, consider a set of line segments in the plane (Figure 1.3 (a)). The
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Figure 1.2: (a) A box and a plane. (b) False classification of the corners.

topological data is the planar graph in which each intersection point becomes a vertex,
and two vertices share an edge, if their underlying intersection points lie on the same
line and there is no other intersection point on that line between them (Figure 1.3
(b)). The geometric data in this case could be the underlying line equations and the
segments end-points. Errors during the computation of the intersection points may
lead to the construction of a graph which is inconsistent with the real input lines,
which in turn could lead to incorrect behavior of algorithms that use this graph.

Computational Geometry algorithms depend on predicates. Predicates are the
building blocks of the algorithm. Every predicate has an underlying mathematical
expression which it evaluates. Usually we are only concerned with the sign the ex-
pression returned by the predicate. Correct predicates are crucial to the correctness
of geometric algorithms and their implementation. In order for the predicate to al-
ways give correct answers, with no assumptions on the input, we have to use exact
computation.

1.2 Our Approach

In our scheme, to avoid the use of exact computation during the evaluation of the
predicates, we will perturb the geometric objects (circles, in our case) such that we can
certify correct results of the predicates even when we use finite precision arithmetic.

A degeneracy occurs when a predicate evaluates to zero. The goal of our perturba-
tion scheme is to cause all the predicates that we use during the algorithm to evaluate



8 Chapter 1. Introduction

a

b

d

e
f

c

a

b

c

d

f

e

(a) (b)

Figure 1.3: (a) An arrangement of line segments. The intersection points are labeled
with letters. (b) The corresponding graph.

sufficiently far away from zero so that our finite precision arithmetic could enable us
to safely determine whether they are positive or negative. Hence, while certifying the
correctness of the predicates, we are also eliminating all the degeneracies.

Arrangements are widely used in Computational Geometry [1, 21]. Throughout
the years, algorithms for building different kind of arrangements have been proposed.
In Chapter 2 we describe several such algorithms (i.e., [13, 24, 38]). Once an ar-
rangement has been constructed, it can be used to perform many operations, such as
point location (Section 6.3), finding the intersection or union of objects whose bound-
aries it represents, and more. Many geometric algorithms use arrangements as a data
structure on which they operate (e.g., motion planning algorithms). Hence, it is an
important tool in Computational Geometry.

In the case of arrangements of circles (namely the subdivision of the plane into
vertices, edges and faces induced by the circles), general position of the input means
that there is no outer or inner tangency between two circles, and that no three circles
intersect at a common point (see Figure 1.4 for a degenerate arrangement).

While building the arrangement in an incremental fashion (that is, adding one
circle at a time), we will check if there is a potential degeneracy induced by the
newly added circle, and if so, we will move that circle, so no degeneracies will occur.
The main idea is to carefully relocate the circle — move the circle enough to avoid
the degeneracies, but not too much. Depending on the precision of the machine
floating-point representation, and some properties of the arrangement to be handled,
we determine a bound δ on the magnitude of the perturbation, namely, we guarantee
that any input circle will not be moved by a distance greater than δ. Since the
perturbed version of the input (on which the algorithm will work) is known, our
scheme achieve the property of backward stability. Figure 1.5 shows a few possible
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Figure 1.4: Arrangement of circles with several degeneracies.

results of our perturbation algorithm, applied to the arrangement shown in Figure 1.4.

Such a perturbation scheme, as was described above, could be useful for the fol-
lowing reasons:

• Floating-point arithmetic is usually supported by hardware, making computa-
tions very fast. If the built-in “double” number type is insufficient, we can use
a number type with greater precision (e.g., Leda’s “Bigfloat” [28]). Notice that
the length of the mantissa is fixed prior to the beginning of the program. This
is different than using a “real” number type (e.g., Leda’s “real” or Core’s
“Expr” [26]) which could require arbitrary precision.

• Degeneracies are eliminated (general position of the input is indeed achieved,
even for the fixed, limited precision), consequently an algorithm is made easier
to analyze and implement. This reduces the need to handle many special cases.
The number of special cases induced by degeneracies can be in the dozens
already for simple algorithms.

• The geometric objects retain their geometric structure. That is, the circles
are not transformed into pseudo-circles (in contrast with, for example, snap
rounding — see below). Thus, all the geometric rules and axioms regarding the
geometric objects (circles, in our case) will still be valid.

• Implementations using exact arithmetic with floating-point filtering (Section 2.2),
can be sped up, since the perturbation will cause the predicates to be evaluated
using the floating-point filters, thus avoiding the use of exact computation.

• Using a multiprecision floating-point arithmetic library, we can set the number
type precision such that the size of the perturbation will be as small as we wish.
That is, if the user of the algorithm requires certain accuracy (no geometric
object shall be moved by a measure greater than a predefined δ), we can deduce
the floating-point precision needed that will satisfy such δ demand.
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(a) (b)
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Figure 1.5: (a) - (c) A few possible results of our perturbation algorithm applied to
the arrangement shown in Figure 1.4. For illustration purposes, the magnitude of the
perturbation is rather large. (d) The real result of our perturbation algorithm (as
was computed using the software that we developed) — the perturbation is too small
to be discernible in the figure.
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The main drawback of our scheme, is that the objects are actually moved from
their original placement. Still, in many situations, the original input data is inaccurate
to begin with (due to, for example, measuring errors or approximate modeling), so
the damage incurred by perturbing slightly is negligible.

It should be noticed that the predicates that arise in the construction of arrange-
ments of circles include expressions that contain division and square-root operations.
Those operation are usually more difficult to handle robustly than addition, sub-
traction and multiplication. Furthermore, implementing such predicates using exact
number types would require the representation of irrational numbers.

1.3 Thesis Outline

Robustness and precision issues in Computational Geometry have been intensively
studied in recent years. In the next chapter, we survey some of the work in this area.
We also explain the new contribution of this work, with respect to previous works
on Controlled Perturbation, namely, obtaining good resolution bound, which is a key
element in Controlled Perturbation.

An overview of the perturbation scheme is given in Chapter 3. There, we establish
the formal terminology that we will use throughout this thesis. In particular, we
define the resolution bound, and the perturbation bound. We also give a sketch of
the perturbation algorithm. We conclude that chapter by summarizing the resources
required by the algorithm.

In Chapter 4 we explain how to compute the perturbation bound, δ. During the
perturbation, we can guarantee that an input circle will not be moved by a distance
greater than δ. We start by defining the relevant degeneracies in an arrangement of
circles, continue by defining the notion of forbidden regions, and finally, we show how
to bound the total area of those forbidden regions. Notice that in this chapter, we
assume that the resolution bound (Chapter 5) is already given.

The main contribution of the thesis is described in Chapter 5. First, we define the
predicates that allow us to verify that no degeneracies exist in the arrangement. Next,
for each predicate, we derive the resolution bound needed to certify the correctness of
the predicate (recall that all the computations are done in fixed precision arithmetic).
We conclude this chapter with a numerical example.

Algorithmic details are given in Chapter 6. We present an efficient perturbation
algorithm, which runs in expected O(n2 log n) time for an arrangement of n circles.
Next, we describe how to construct the doubly-connected edge list structure (DCEL),
which allows us to maintain the topological information of the subdivision and enhance
it with the geometric information (its planar embedding). The DCEL structure is very
useful, as a basic data structure upon which many other geometric algorithm can build
(e.g., we have implemented an algorithm for finding the union of the circles). Finally,
we present a simple point location strategy suitable for our DCEL implementation.
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Experimental results are reported in Chapter 7, along with some implementation
details. The perturbation algorithm and the DCEL construction have been imple-
mented as a set of C++ classes. We have experimented with different types of inputs.
Some data sets are highly degenerate, and others contain a huge number of circles
(several thousands). We report the running times and the perturbation statistics. We
also interpret these results.

In Chapter 8 we discuss and highlight some of the key issues of our work. These
issues are of a special interest for those who wish to further use the controlled per-
turbation scheme. Among the discussed issues, are the importance of the resolution
and perturbation bound, and the number type selection.

Chapter 9 gives a brief summary of this work. We also point out possible future
research directions.

In appendix A we describe a simple generalization of our perturbation scheme, to
the case of arrangements of circular arcs.

In appendix B we further demonstrate our main ideas, by describing how to com-
pute the resolution bound for the incircle predicate, which is used in many algo-
rithms, among them the construction of Delaunay triangulations.



Chapter 2

Related Work

Robustness and precision issues have been intensively studied in Computational Ge-
ometry in recent years [33, 40]. In this chapter we give a brief survey of the different
approaches to dealing with robustness issues. Each approach has its advantages and
disadvantages. We focus on three specific topics: (i) exact computation, (ii) filter-
ing methods, and (iii) finite precision approximation methods. The method that we
present, controlled perturbation, is a finite precision approximation method.

2.1 Exact Computation

A prevailing approach to overcoming robustness problems in Computational Geome-
try is to use exact computation [12, 28, 41]. If all the computation is carried out ex-
actly, it is possible to retrieve the true underlying topological structures, thus avoiding
the robustness problems. Yet, this approach does not eliminate the “general position”
requirement. That is, both the theoretical algorithm and the practical implementa-
tion should take degenerate input into account. On the implementation side, this
could lead to many special cases, which eventually lead to longer and very compli-
cated source code. On the theory side, the designer of the algorithm should verify
that all the geometric theorems and lemmas that he/she is using are also valid in the
degenerate case (sometimes, this can be done by symbolically perturbing the input,
and proving that the result is also valid for the original input).

In order to allow an exact computation of a certain algorithm, there is a need
for a number type that would behave exactly as the mathematical number type that
it represents. For many problems in Computational Geometry, a rational number is
sufficient to allow for exact solutions. Thus, much effort has been invested to devise
an efficient implementation of such a number type (e.g., Leda’s rational number type
[28]). Yet, there are also problems where rational numbers are insufficient (e.g., in
the construction of arrangements of circles, the coordinates of the intersection points
can have irrational values). Hence, the Leda [28] and Core [26] libraries both
provide algebraic number types. Both implementations are based on the theory of

13



14 Chapter 2. Related Work

separation bounds [6] (in Chapter 8 we give a brief description of this number type).
In [5], modular arithmetic is used in combination with single precision floating-point
arithmetic for sign evaluation of determinants. Sign evaluation of determinants is
useful in many algorithms (e.g., the orientation and in sphere predicates use such
sign evaluation).

The main drawback of the exact computation approach is the computation time.
The usage of multiprecision number type can lead to expensive computation cost.
The computation can be accelerated by a lazy evaluation scheme, usually referred to
as filtering. We describe various filtering methods in the next section.

2.2 Filtering

As stated above, when applied naively, exact computation can considerably degrade
the performance of a program. One of the possible solutions to this problem is to
use filtering. In [7, 9, 14, 27, 34], the filtering is done at the level of the number
type. That is, a predicate is evaluated using exact computation only if it cannot be
correctly evaluated using finite precision arithmetic. Thus, for most computations
the algorithm will only use finite precision arithmetic, and in the few occasions that
the finite precision arithmetic is insufficient, exact computation will be employed. In
[38], high level filtering is proposed as a means to speed up exact computation, as
described below.

Karasick et al. [27] present a filtering method to evalute the sign of a predi-
cate. Such signs evaluations (namely, in the in circle and orientation predicates) are
needed to implement the Guibas-Stolfi Delaunay triangulation algorithm [18]. The
initial implementation of that algorithm, turned out to be 10,000 times slower when
exact rational arithmetic was used instead of the standard floating-point arithmetic.
To overcome this huge gap, they use the following method: given a matrix A with in-
teger entries, they create the matrix A′ of integer intervals, that have lower-precision
endpoints. If the interval |A′| does not span zero, then both |A| and |A′| have the
same sign; otherwise — increase the precision of the endpoints of A′ and evaluate the
sign of |A′| again. In the worst case, A′ would have endpoints with the same precision
as A and no advantage is gained.

Fortune and Van Wyk [14] describe static-analysis techniques that reduce the per-
formance cost of exact integer arithmetic used to implement geometric algorithms.
They use double-precision floating-point variables to represent a multiprecision inte-
ger. They have applied their techniques on a number of examples, such as line-segment
intersections in two dimensions, Delaunay triangulations, and a three-dimensional
boundary-based polyhedral modeller. In general, their techniques are appropriate for
algorithms that use primitives of relatively low algebraic total degree. The techniques
have been packaged in a C++ preprocessor. However, adapting a real number RAM
version of an algorithm to an integer version can be a difficult task, since it must be
possible to represent the geometric data using only integers. In order to minimize the
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bit-length required to evaluate the primitives exactly, the programmer must define
the primitives carefully.

Shewchuk [34] presents a fast software-level algorithms for exact addition and mul-
tiplication of arbitrary precision floating-point values. He then proposes a technique
for adaptive-precision arithmetic, that is, speeding those algorithms when multipreci-
sion computation is done only to satisfy some error bounds. He demonstrates this
technique by an implementation of several common geometric predicates whose re-
quired degree of accuracy depends on their inputs. These algorithms are based on
floating-point arithmetic that uses radix two and exact rounding (e.g., the IEEE 754
standard). Publicly available C code is given for the 2D and 3D orientation and
incircle tests.

Burnikel, Funke and Seel [7] present an efficient numerical approach to deal with
precision inaccuracies arising in the implementation of geometric algorithms. They
provide an error analysis strategy for floating-point arithmetic, which divides the
computation of the error bound into a static part and a dynamic part — the static
part can be computed before runtime without any knowledge of the actual values to
be used, and the dynamic part is computed during runtime. They combine their error
analysis method with arbitrary precision packages (namely Leda [28]) to develop an
expression compiler EXPCOMP, which supports all common operations +,−, ·, /,√.
The resulting programs show a good runtime behavior.

Wein [38] describes a method to avoid the use of an exact algebraic number type
when building an arrangement of conic arcs, by high level filtering. When constructing
a geometric object he keeps track of all the steps that led to its construction. That
history is used to answer predicates efficiently. Using this representation most of
the arrangement vertices are only computed approximately at first. Then, only in
the case of ambiguity, the computations are refined using the construction history
of the relevant objects. Since those cases are relatively rare, the resulting algorithm
is efficient. His ideas have been implemented as part of the Cgal library [11]. An
alternative approach for the construction of arrangements of conics is given in [3].

2.3 Finite Precision Approximation

An alternative approach aims to compute robustly with finite precision arithmetic,
often by approximating or perturbing the geometric objects [13, 20, 22, 24, 25, 29,
35, 36, 37].

Fortune and Milenkovic [13] analyze the behavior of two algorithms for construct-
ing line arrangements, a sweep algorithm and an incremental algorithm. Each algo-
rithm produces an arrangement realized by a set of pseudo-lines. A bound on the
difference between the pseudo-lines and the original lines is given.

Guibas et al. [20] give a general framework, called Epsilon Geometry, designed
to build robust geometric algorithms out of imprecise geometric primitives. Their
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method combines the techniques of interval arithmetic and backward error analysis,
along with some geometric reasoning. Their algorithms compute an exact solution
for a perturbed version of the input, and return a bound on the size of this implicit
perturbation (based on the size of the rounding errors observed during the compu-
tation). Notice that in contrast with our perturbation scheme, the actual perturbed
version of the input (for which the solution is correct) is not known, and there is only
a single number which provides a bound on the distance between the exact and the
perturbed version. Also, we use interval arithmetic to bound the floating-point errors,
whereas they use it as a reasoning tool, to combine the results of several predicates
(notice, that they are using a different approach in the estimation of roundoff errors).

Hobby [24] presents the snap rounding paradigm. His algorithm is based on the
Bentley-Ottmann sweep line algorithm for finding the intersection of line segments.
The plane is tiled with a grid of units squares, called pixels (or tolerance squares),
such that each pixel is centered at a point with integers coordinates. Each vertex
in the arrangement is snapped to the center point of the pixel that contains it, thus
potentially transforming the segments of the arrangement into polygonal chains. The
transformed arrangement preserves certain topological properties of the original ar-
rangement: The rounding can be regarded as a continuous process of deforming the
segments into polygonal chains such that no vertex of the arrangement ever crosses
through a segment. A variant of this method, iterated snap rounding, is given in [22].

Sugihara [36] describes a topology-oriented method, for designing numerically ro-
bust geometric algorithms. This method gives higher priority to the consistency of
the topological structures, than to the accuracy of the numerical computations. Thus,
inconsistency never arises, even when large numerical errors occur. An example for
this method is the problem of cutting a convex polyhedron by a plane. Let Π be a
convex polyhedron in three dimensions, and H be a plane. For simplicity, assume
that no vertex of Π is contained in H . Denote by G the planar graph implied by the
vertices and edges of Π. To cut Π by H , we classify the vertices of G in two groups: V1

— the set of vertices that are above H , and V2 — the set of vertices that are below H .
Since Π is a convex polyhedron the following property should hold: the subgraph of
G induced by V1 and the one induced by V2 are each connected. This property is then
conserved during the algorithm. Numerical values are considered only when they do
not contradict this property. In our method, in contrast with the topology-oriented
method, we give a bound on the numerical deviation of our structure from the exact
structure.

More methods for handling imprecise geometric computations are surveyed in
[33]. Controlled perturbation is a method of this type. A general discussion on the
properties of floating-point arithmetic is given in [16].
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2.4 Previous Work on Controlled Perturbation

The perturbation scheme that we follow, controlled perturbation, was first presented
by Halperin and Shelton [23] as a method to speed up molecular surface computation
(where atoms of the molecule are modeled by spheres). The use of exact computation
turned out to be too slow for real time manipulation, so a finite precision method
was needed. Controlled perturbation was devised to handle the robustness issues
caused by the use of finite precision arithmetic, and to remove all the degeneracies.
It should be noticed, that the molecular models are approximate to begin with, thus
the perturbation could be easily justified. The time complexity of their method is
linear in the number of spheres in the input.

Raab [32] applied controlled perturbation to arrangements of polyhedral surfaces
needed for computing swept volumes. A swept volume is defined as the geometric
space occupied by an object moving along a trajectory in a given time interval. The
swept volume application computes the boundary of a collection of polyhedra and
performs its vertical decomposition. Notice that those arrangements require complex
calculations in order to achieve a good perturbation bound (Chapter 4).

In [32] (as in [23]), the resolution bound (Chapter 5) is assumed to be given. The
resolution bound is a key element in the scheme. In this work we describe a method
for obtaining good resolution bounds (Chapter 5), which we anticipate will lead to a
better understanding of the method and will open the way to applying the method
in other settings.

Most recently, controlled perturbation was applied to line segments [31]. Again,
the resolution bound was assumed to be given.
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Chapter 3

Overview of the Scheme

In this chapter, we give an overview of the controlled perturbation scheme. We
describe the main concepts, on which we expand in later chapters. Although the
ideas that we present here could have been described in a more general setting, we
concentrate, for ease of exposition, on arrangements of circles.

3.1 The Main Concepts

For an input circle Ci, our algorithm will output a copy C ′
i with the same radius

but with its center possibly perturbed. We define Cj as the collection of circles
{C1, . . . , Cj}, and C′

j as the collection of circles {C ′
1, . . . , C

′
j}.

The input to our algorithm is the collection C = Cn of n circles, each circle Ci is
given by the coordinates of its center Xi, Yi and its radius Ri; we assume that all the
input parameters are representable as floating-point numbers with the given precision.
The input consists of three additional parameters: (i) the machine precision p, namely
the length of the mantissa in the floating-point representation, (ii) an upper bound on
the absolute value of each input number Xi, Yi and Ri, and (iii) ∆ — the maximum
perturbation size allowed.1 The perturbation scheme transforms the set C into the
set C′ = C′

n.

We build the arrangement in an incremental fashion, and if there is a potential
degeneracy while adding the current circle, we perturb it, so no degeneracies will
occur. Once the j-th step of the procedure is completed, we do not move the circles
in C′

j again. We next describe the two key parameters that govern the perturbation
scheme, the resolution bound and the perturbation bound. A formal definition of
these parameters will be given in the subsequent chapters, together with the way we
derive them.

1The exact size of ∆ depends on the specific application of the perturbed arrangement. Further
details are given below.

19



20 Chapter 3. Overview of the Scheme

Resolution Bound

A degeneracy occurs when a predicate evaluates to zero. The goal of the perturbation
is to cause all the values of all the predicate expressions (that arise during the con-
struction of the arrangement of the circles) to become significantly non-zero, namely
to be sufficiently far away from zero so that our limited precision arithmetic could
enable us to safely determine whether they are positive or negative.

Figure 3.1: Outer tangency — two circles (bounding interior-disjoint disks) intersect
in a single point.

The degeneracies that arise in arrangements of circles have a natural geometric
characterization as incidences. For example, in outer tangency (Figure 3.1), two
circles intersect in a single point. In our scheme we transform the requirement that the
predicates will evaluate to sufficiently-far-from-zero values into a geometric distance
requirement.

Outer tangency between C1 and C2 occurs when

[(X1 − X2)
2 + (Y1 − Y2)

2]
1

2 = R1 + R2 .

We will look for a distance ε > 0 such that when we move one circle relative to the
other ε away from the degenerate configuration, we could safely determine the sign
of the predicate with our limited precision arithmetic, that is we look for a relocation
(X ′

2, Y
′
2) of the center of C2 such that

|[(X1 − X ′
2)

2 + (Y1 − Y ′
2)

2]
1

2 − (R1 + R2)| ≥ ε .

This is a crucial aspect of the scheme: the transformation of the non-degeneracy
requirement into a separation distance. We will call the bound on the minimum
required separation distance, the resolution bound and denote it by ε (it would have
been also suitable to call it a separation bound, but we use resolution bound to avoid
confusion with separation bounds of exact algebraic computing). If the separation
distance is less than ε, then there is a potential degeneracy (we use this term, since
we do not know if the degeneracy really exists). Deriving a good resolution bound
is a central innovation in this work. Previously (e.g., [23]) it was assumed that these
bounds were given, and in the experiments crude (high) bounds were used. The
bound ε depends on the size of the input numbers (center coordinates and radii) and
the machine precision. It is independent of the number n of input circles.
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The only modification to the input that our scheme allows is the relocation of
the center of the currently inserted circle Ci. This is a choice of convenience which
simplifies the analysis and implementation of the scheme. Other choices (in other
settings) are described in [31, 32].

Perturbation Bound

Suppose indeed that ε is the resolution bound for all the possible degeneracies in the
case of an arrangement of circles for a given machine precision. When we consider
the current circle Ci to be added, it could induce many degeneracies with the circles
in C′

i−1. Just moving it by ε away from one degeneracy may cause it to come closer to
other degeneracies. This is why we use a second bound δ, the perturbation bound —
the maximum distance by which we will perturb the center of any of the circles away
from its original placement. The bound δ depends on ε, on the maximum radius of
a circle in C, and on a density parameter k of the input which bounds the number of
circles that are in the neighborhood of any given circle and may effect it during the
process, k ≤ n (a formal definition of k is given below).

We say that a point q is a valid placement for the center of the currently handled
circle Ci, if when moved to q this circle will not induce any degeneracy with the circles
in C′

i−1. The bound δ is computed such that inside the disk Dδ of radius δ centered
at the original center of Ci, at least half the points (constituting half of the area of
Dδ) will be valid placements for the circle (Figure 3.2). This means that if we choose
a point uniformly at random inside Dδ to relocate the center of the current circle, it
will be a valid placement with probability at least 1

2
.

We argue as if the disk from which we sample constitutes a continuous region,
whereas it is in fact a discrete set of points (floating-point values inside the disk).
However, this gap is easily settled by observing that the forbidden regions are regularly
shaped: disks and annuli, whose width (radius in case of a disk) is orders of magnitude
larger than the resolution of the floating-point grid—see Chapter 5 where these values
(εi) are derived. Therefore, the discrepancy between the continuous forbidden regions
and their discrete representation is negligible. In any case it is a small constant
independent of the input size n. In order for the probability of success (finding a
valid placement) to be at least 1

2
we need to fine-tune the computation of δ slightly.

For simplicity of exposition we omit this technical factor. The analysis or results
reported below are unaffected by this omission, since we only rely on the fact that
there is a large constant probability of success (which might be less than 1

2
but very

close to 1
2
).

After the perturbation, the arrangement A(C′) is degeneracy free. Moreover, A(C′)
can be robustly constructed with the given machine precision. The perturbation al-
gorithm should not be confused with the actual construction of the arrangement. It
is only a preprocessing stage. However, it is convenient to combine the perturba-
tion with an incremental construction of the arrangement, as we describe below in
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δ

Dδ Ci

Figure 3.2: The shaded area is the disk Dδ in which at least half the points will be
valid placements for the center of Ci (for clarity, Dδ is shown to be very large).

Section 6.1.

An alternative view of our perturbation scheme is as follows. We look to move
the centers of the input circles slightly from their original placement such that when
constructing the arrangement A(C′) while using a fixed precision (floating-point) filter,
the filter will always succeed and we will never need to resort to higher precision or
exact computation.

The additional parameters used in our analysis are described next.

Density Parameter

As stated above, in order to compute the perturbation bound δ, we use a density
parameter k. Let ∆ be the maximum perturbation that we are willing to allow (the
exact size of ∆ depends on the specific application of the perturbed arrangement and
we assume that it is given to us by the user). If the bound δ that we obtain is greater
than ∆ then we must resort to higher precision. Each Ci ∈ C induces an annulus
(i.e., the region sandwiched between two concentric circles), centered at the center of
Ci, with radii max(0, Ri − ∆) and Ri + ∆. We define k as the maximum number of
such annuli intersecting a single annulus (Figure 3.3). Notice that in the worst case
k = n − 1.
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Figure 3.3: Each Ci ∈ C induces an annulus (the shaded area) bounded by two circles,
centered at the center of Ci, with radii max(0, Ri − ∆), Ri + ∆. We define k as the
maximum number of such annuli intersecting a single annulus, in this example k = 3.

Input Bound

In the computation of the bound ε we assume that there is an upper bound M on
the size of all the parameters of the circles in C (center coordinates or radius).

During the perturbation, the center of a circle may move by an amount of at most
∆ (again, ∆ is the maximum perturbation that we are willing to allow and it is given
as part of the input). Therefore the absolute value of the input coordinates for all
circles can be at most M − ∆.

Minimum Distance Between the Centers of Intersecting Cir-

cles

In Section 5.4 we use the parameter ξ, which defines the minimum distance between
the centers of intersecting circles after the perturbation. This parameter simplifies
the derivation of the resolution bound. Further details are give in Section 5.4.

Exact vs. Approximate Intersection Point

Intersection points play an important role throughout this thesis. We will deal with
circle-circle intersection points and line-circle intersection points. Sometimes, we will
refer to the exact intersection point, and sometimes to the approximate intersection
point. As implied by the name, the exact intersection point, is the point that we would
have computed, if we were to use exact computation. Since we are not using exact
computation, we can only compute the approximate intersection point, which is less
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than some precomputed distance ω (see Chapter 5) away from the corresponding exact
intersection point. Hence, we can inflate a disk of radius ω around the exact (resp.
approximate) intersection point that would contain the corresponding approximate
(resp. exact) intersection point (Figure 3.4).

Figure 3.4: We can inflate a disk of radius ω around the exact (resp. approximate)
intersection point that would contain the corresponding approximate (resp. exact)
intersection point. These disks are illustrated as dashed circles.

3.2 Sketch of the Algorithm

Given a collection C of n circles C1, . . . , Cn, the algorithm for perturbing C proceeds
as follows:

1: compute ε,δ and set C′
1 = {C1}.

2: for all Ci, i = 2 . . . n do
3: set C ′

i = Ci.
4: check C ′

i against all previously handled circles in C′
i−1, and circles’ intersections

points. If there are no potential degeneracies then go to step 7.
5: set C ′

i = Ci (restore the original position).
6: move the center of C ′

i randomly, a distance d ≤ δ and go to step 4.
7: C′

i := C′
i−1 ∪ {C ′

i}.
8: report the circles in C′

n.

Details regarding an efficient implementation of the algorithm are given in Sec-
tion 6.1. We quote the result summarizing the resources required by the algorithm.

Theorem 1 Given a collection C of n circles, the perturbation algorithm which allows
for the robust construction of the degeneracy-free arrangement A(C′) runs in total
expected O(n2 log n) time.

Notice that the worst-case complexity of the arrangement is Θ(n2). In the stan-
dard “Real RAM” model, computing an arrangement of circles, using the incremental
construction algorithm takes O(nλ4(n)) time. We next explain how to compute δ
(Chapter 4) and ε (Chapter 5).
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The Perturbation Bound

In this chapter we compute an upper bound δ on the maximum necessary perturbation
for a single circle. The bound δ depends on the resolution bound ε, the maximum
radius of an input circle and the density parameter k.

The resolution bound ε is the distance that we need to separate two circles by, or
a circle and an intersection point of two other circles, or the centers of two circles, to
avoid a potential degeneracy (Figure 4.1). In the next chapter we will show how to
compute a good bound on the resolution parameter. In this chapter we show how to
determine δ assuming that ε > 0 is given.

Figure 4.1: An ε separation needed to avoid a potential degeneracy.

4.1 Identifying the Degeneracies

A new circle Ci may induce many degeneracies with circles in C′
i−1 = {C ′

1, . . . , C
′
i−1}.

When adding the i-th circle, we wish to resolve all those potential degeneracies at
once. Therefore we may need to perturb Ci by more than ε. We determine an upper
bound δ that guarantees that if Ci is randomly perturbed such that its new center is
within a circle of radius δ around its original center, then with high probability, all
the potential degeneracies involving the i-th circle and the circles in C′

i−1 are resolved.

There are four types of degeneracies in an arrangement of circles:

25
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1. An outer tangency between two circles.

2. An inner tangency between two circles.

3. Three circles intersect in the same point.

4. The centers of two intersecting circles are too close.

Notice that we regard two circles with centers too close as a degeneracy (type 4),
since it makes the resolution parameter for degeneracy of type 3 too big, thus we
regard this case as a degeneracy only when the circles intersect. We can check if they
are intersecting using the outer and inner tangency tests (further explanation is given
in the next chapter). We also require that the size of all the radii will be at least ε
(we need this assumption in order to give a good bound on degeneracy of type 1).

4.2 Estimating the Forbidden Regions

The degeneracies described above define a forbidden space for the center of the newly
inserted circle, that is, the places where we cannot put the center of a new circle, Ci

without incurring a potential degeneracy. Denote the forbidden region induced by
the first, second, third and forth types, by F1, F2, F3 and F4, respectively. Our goal
is to compute a worst-case estimate for the area of the forbidden regions. We denote
by ρij the distance between the centers of Ci and C ′

j , for j < i. In this subsection,
we describe the regions induced by the newly added circle Ci and an existing circle
(or a pair of circles in the case of F3). The forbidden region is the union of all such
regions (e.g., F1 is the union of forbidden regions induced by Ci and a potential outer
tangency with each circle in C′

i−1).

• The region F1 consists of placements of the center of Ci that induce an outer
tangency or near tangency of Ci and another circle. For a circle C ′

j ∈ C′
i−1, an

exact outer tangency is induced by placing the center of Ci at distance exactly
Ri + Rj away from the center of C ′

j , namely, ρij − Ri − Rj = 0. We define
the potential degeneracy of this type when using floating-point with resolution
parameter ε > 0 as the locus of the center of Ci such that −ε ≤ ρij−Ri−Rj ≤ ε,
which is an annulus centered at the center of C ′

j with radii Ri + Rj + ε and
Ri + Rj − ε (Figure 4.2 (a)). Its area is π[(Ri + Rj + ε)2 − (Ri + Rj − ε)2] =
4π(Ri + Rj)ε.

• The region F2 is defined similarly to F1 for the case of inner tangency. As-
suming Ri > Rj , the area is π[(Ri −Rj + ε)2 − (Ri −Rj − ε)2] = 4π(Ri −Rj)ε
(Figure 4.2 (b)).

• The region F3 is defined as follows. Let Pjk denote C ′
j

⋂
C ′

k where C ′
j , C

′
k ∈

C′
i−1. The locus of placements of the center of Ci that will cause Ci to pass
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Ci

C′

j

Ci

C′

j

(a) (b)

Ci

C′

j

C′

k

Ci

C′

j

(c) (d)

Figure 4.2: The shaded areas in (a),(b),(c),(d) are the portions of the forbidden
regions F1, F2, F3 and F4 respectively for Ci and C ′

j (and also C ′
k for F3).

through, or very near to a point in Pjk is an annulus (Figure 4.2 (c)). The total
forbidden area is π[(Ri+ε)2−(Ri−ε)2] ·card(C ′

j

⋂
C ′

k) = 4πRiε ·card(C ′
j

⋂
C ′

k).

• The region F4 consists of placements of the center of Ci such that for an
existing circle C ′

j ∈ C′
i−1, Ci and C ′

j intersect and ρij ≤ ε holds (i.e., the centers
of the circles are less than ε away — Figure 4.2 (d)). Its area is πε2.

4.3 Bounding the Area of F1, F2, F3 and F4

Let C be a collection of circles as defined above. Also, let R := maxn
i=1Ri, and let k

denote the density parameter of C. There are at most k circles defining the regions
of F1 and F2, there are at most (k

2) × 2 points defining the region F3, and at most
k points defining the region F4. Therefore the following bounds on the areas can be
obtained.
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A(F1 ∪ F2) ≤ k[4π(R + R)ε + 4π(R − 0)ε]

= k(8πRε + 4πRε)

= 12πkRε.

A(F3) ≤ 2(k
2)4πRε = (k

2)8πRε

≤ 1

2
k28πRε = 4πk2Rε.

A(F4) ≤ kπε2.

Hence, the bound on the forbidden area AF = A(F1

⋃
F2

⋃
F3

⋃
F4) is:

AF ≤ 12πkRε + 4πk2Rε + kπε2 = πkε(12R + 4kR + ε).

If Ci should be perturbed, then δ will define a disk Dδ in which its center can be
moved (Figure 3.2). We want the area of this disk to be at least twice the area of
the forbidden space. Thus, with probability ≥ 1

2
a point chosen at random inside Dδ

constitutes a valid (i.e., a potential degeneracy free) perturbation for Ci.

Therefore we require that

πδ2 > 2AF

δ2 > 2kε(12R + 4kR + ε)

δ >
√

2kε(12R + 4kR + ε) . (4.1)

It is important to emphasize that at no point of the algorithm, do we compute
the intersection of the disk (implied by the center of the circle to be inserted and δ)
with the forbidden regions. Instead, we randomly choose a point inside that disk and
check that there is no potential degeneracy when setting it as the center of the circle.
This is a key point in the practicality of the method — this is what makes the scheme
fairly easy to implement.

The perturbation bound δ that was described above is rather crude. Furthermore,
in our implementation we do not even use it (Chapter 7). Indeed, the perturbation
bound is less important than the resolution bound. The latter is crucial for certifying
the validity of the arrangement.

Yet, the perturbation bound is interesting for two main reasons:
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• We use δ to establish an upper bound on the running time of the algorithm. It
is good to show that there are no huge constants hidden in it.

• If a certain level of accuracy is required by the application at hand, the pertur-
bation bound could be used to predetermine the length of the mantissa needed
to achieve that accuracy (further details are given in Chapter 8).

In the next chapter we present the predicates, and derive the resolution bound ε,
needed for the computation of δ.
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Chapter 5

The Resolution Bound

In this chapter we examine the four possible degeneracies that can arise in an ar-
rangement of circles (Section 4.1). Given the precision of the underlying arithmetic,
we can find the ε required to remove them. In other words, we determine for each
degeneracy a distance ε such that if one of the circles involved in this degeneracy
is moved by at least ε away from the degenerate configuration, then we can safely
evaluate the corresponding predicate with the given precision. For each degeneracy
we present the appropriate predicate and also compute the worst case ε. Using this ε
we then compute the value of δ, the maximum distance of a perturbed circle Ci from
its original position, as described in Chapter 4. Denote by εi the resolution parameter
needed to compute the forbidden region Fi.

5.1 Preliminaries

To examine the error induced by a floating-point computation we will use the notation
suggested in [7, 15]. The symbols ⊙, ⊕, ⊖, ⊘ and

√
denote the floating-point imple-

mentation of multiplication, addition, subtraction, division and square root respec-
tively. We will abbreviate x⊙ x by x2. Denote a predicate which takes m arguments
and determines the sign of an expression by Prs = sign(E(x1, . . . , xm)). Denote by
Prp the predicate which takes m arguments and returns true iff E(x1, . . . , xm) > 0.
We define a degeneracy when E = 0.

Since we are using floating-point arithmetic, we cannot compute E exactly. In-
stead, we are only computing an approximation Ẽ of E. We also compute a bound
B > 0 on the maximum difference between Ẽ and the exact value E, namely,
|E − Ẽ| ≤ B or Ẽ − B ≤ E ≤ Ẽ + B. Consequently, if Ẽ > B then E > 0,

and if Ẽ < −B then E < 0.

The bound B is computed according to the recursive definitions of the index indE

and the supremum Ẽsup of an expression E in the following way: B = 2−p ⊙ indE ⊙
Ẽsup, where p denotes the length of the mantissa. Ẽsup and indE are computed

31
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E Ẽ Ẽsup indE

A A |A| 0

A + B Ã ⊕ B̃ Ãsup ⊕ B̃sup 1 + max(indA, indB)

A − B Ã ⊖ B̃ Ãsup ⊕ B̃sup 1 + max(indA, indB)

A · B Ã ⊙ B̃ Ãsup ⊙ B̃sup 1 + indA + indB

A/B Ã ⊘ B̃ ( eA⊘ eB)⊕( gAsup⊘ gBsup)

(| eB|⊘|gBsup|)⊖(indB+1)·2−p
1 + max(indA, indB + 1)

A
1

2 , Ã > 0
√

Ã (Ãsup ⊘ Ã) ⊙
√

Ã 1 + indA

A
1

2 , Ã = 0
√

Ã

√
Ãsup ⊙ 2

p

2 1 + indA

Table 5.1: The computation of Ẽsup and indE [15]. In the first row we assume that
A is a floating-point number.

recursively according to Table 1 (taken from [15]). Intuitively, Ẽsup reflects errors
resultings from the operands, and indE reflects errors resultings from the operators.

When we add Ci to the collection C′
i−1, if for all the predicates E involving Ci

(regarding all the circles that were already inserted), |Ẽ| > B, then Ci is in a valid
place, and there is no need to perturb it. If there exists a predicate E, for which
|Ẽ| ≤ B, we define such a configuration as a potential degeneracy, and we need to
perturb Ci. Hence, for each predicate, we need to understand the geometric meaning
of |Ẽ| > B, so it will be reflected in ε and then in δ.

5.2 Outer Tangency

For two circles C1 and C2, an outer tangency occurs when the following holds:

[(X1 − X2)
2 + (Y1 − Y2)

2]
1

2 = R1 + R2 .

We wish to refrain from using the square-root operation whenever possible (as it
leads to coarse bounds on the error). Therefore we take the expression E in the
corresponding predicate Prs to be:

E = (X1 − X2)
2 + (Y1 − Y2)

2 − (R1 + R2)
2 . (5.1)

We use floating-point arithmetic, so we will compute

Ẽ = (X1 ⊖ X2)
2 ⊕ (Y1 ⊖ Y2)

2 ⊖ (R1 ⊕ R2)
2 .

According to Table 5.1 we have:

• Ẽsup = (|X1| ⊕ |X2|)2 ⊕ (|Y1| ⊕ |Y2|)2 ⊕ (|R1| ⊕ |R2|)2

• indE = 5
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• B = 2−p ⊙ indE ⊙ Ẽsup .

Define a potential outer tangency between two circles C1 and C2 when

|Ẽ| ≤ B .

We call it a potential outer tangency because we do not know for certain, if there
is or there is not an outer tangency. Therefore, we require that for all outer tangency
tests |Ẽ| > B will hold.

We notice that, it follows from the basic relation |E − Ẽ| ≤ B, that if |E| > 2B

then |Ẽ| > B. So, we require that, for all outer tangency tests, |E| > 2B. We do so
since it is more convenient to analyze the effect of the perturbation using standard
arithmetic rather than floating-point arithmetic.

If |E| = 0 then the circles are exactly tangent and the distance between their
centers is R1 + R2. Yet, if |E| > 2B (as we wish it to be), then the centers of the
circles are R1 + R2 ± ε distance apart, where ε > 0. The smallest ε > 0 that will
cause |E| > 2B to hold, is the resolution bound that we seek. So we have

[(X1 − X2)
2 + (Y1 − Y2)

2]
1

2 = R1 + R2 ± ε .

After squaring both sides, and rearranging terms we get:

(X1 − X2)
2 + (Y1 − Y2)

2 − (R1 + R2)
2 = ±2(R1 + R2)ε + ε2 .

We notice that the left-hand side is exactly E, so we can rewrite our requirement,
this time in terms of ε, that is

| ± 2(R1 + R2)ε + ε2| > 2B .

We first consider the inequality

| + 2(R1 + R2)ε + ε2| > 2B .

We notice that the term (R1 + R2) can be very small. So for a worst-case estimation
of ε we will suppose that (R1 + R2) = 0. Thus, we rewrite the last inequality as
|ε2| > 2B.

Recall that M is the maximum value for X1, X2, Y1, Y2, R1, R2. By setting all the
parameters in Ẽsup to be M , we can now deduce a worst case ε1 for outer tangency,
needed to estimate F1 (the forbidden region for the placement of the i-th circle,
regarding the outer tangency degeneracy)

ε1 >
√

10 ⊙ 2−p ⊙ 12 ⊙ M2 . (5.2)

Following [15] the computation of B should be done in Round To Nearest mode.
Since we are interested in a worst-case bound, for the square-root operation in In-
equality 5.2, we use UP rounding mode.
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Next, we consider the inequality

| − 2(R1 + R2)ε + ε2| > 2B

We assumed that all the radii are at least ε, so (R1 + R2) ≥ 2ε. Suppose that
(R1 + R2) = 2ε, then we have,

| − 2(R1 + R2)ε + ε2| = | − 2(2ε)ε + ε2| > |ε2| ⇒
| − 2(R1 + R2)ε + ε2| > |ε2| (5.3)

If (R1 + R2) > 2ε, then the left-hand side of Inequality 5.3 only increases. Thus, we
conclude that Inequality 5.2 also holds for the case when | − 2(R1 + R2)ε + ε2| > 2B.

Here is the code segment that computes ε1 (notice that we use the Visual C++
function, controlfp(), for changing the rounding mode; for the gcc compiler, we
use the fesetround() function).

/* NT is the number type (the default is ’double’), machine eps is

the machine epsilon (for ’double’ it is 2−52) and M is the maximal

input size */

NT temp = 10*machine eps*12*M*M;

// set UP rounding mode

controlfp( RC UP, MCW RC);

// epsilon for F 1 and F 2

NT eps1 2=sqrt(temp);

// restore normal rounding mode

controlfp( CW DEFAULT, 0xfffff );

The next code segment illustrates how we implemented the predicate itself.

/* test for outer tangency. temp x, temp y and temp r refer to

an existing circle. new x, new y and new r refer to the newly

added circle. */

NT E1 = fabs((temp x-new x)*(temp x-new x)+

(temp y-new y)*(temp y-new y)-(temp r+new r)*(temp r+new r));

if(E1 <= 5*machine eps*12*M*M)

{
// a potential degeneracy exists

...

}
We conclude this section with a lemma that summarizes the discussion above:

Lemma 1 Given two circles, such that the value of each center coordinate or radius
is at most M , and p is the length of the floating-point mantissa — if the absolute
difference between the sum of the radii of the two circles and the distance between
their centers is greater than

√
10 ⊙ 2−p ⊙ 12 ⊙ M2, then we can safely determine that

no outer tangency exists between the two circles.
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5.3 Inner Tangency

An inner tangency between two circles C1, C2 occurs when the following holds (with-
out loss of generality, assume R2 > R1):

[(X1 − X2)
2 + (Y1 − Y2)

2]
1

2 = R2 − R1 .

By the same arguments raised earlier for outer tangency, we take the expression E in
the predicate Prs to be:

E = (X1 − X2)
2 + (Y1 − Y2)

2 − (R2 − R1)
2 . (5.4)

Following similar arguments, to those in the case of outer tangency, we conclude
that Inequality 5.2 applies also in the case of inner tangency, that is ε2 = ε1 (the
error B is the same for both cases).

Notice that there is a subtle difference between this case and the case of outer
tangency. Recall that in the previous section we obtained the inequality | ± 2(R1 +
R2)ε+ ε2| > 2B. The analogous inequality in this case is | ± 2(R2 −R1)ε+ ε2| > 2B,
where R2 − R1 > 0.

In the case of the plus sign, similar arguments to those of the previous section
hold (recall that R2 − R1 > 0). For the case of the minus sign

| − 2(R2 − R1)ε + ε2| > 2B ,

we notice that if R2 − R1 > ε then

| − 2(R2 − R1)ε + ε2| ≥ |ε2|
and Inequality 5.2 is indeed valid. However, if 0 < R2 − R1 ≤ ε, then we cannot
certify that Inequality 5.2 holds (e.g., if R2 −R1 = 1

2
ε, then no ε is valid). Yet, recall

that our goal in finding ε, is to compute F2. If 0 < R2 −R1 ≤ ε, then for any ε, there
is no valid placement of C1 so that it is completely inside C2, so we do not care what
is the size of ε that the inequality | − 2(R2 −R1)ε + ε2| > 2B will yield (Figure 5.1).
Intuitively, the inequality | − 2(R2 −R1)ε + ε2| > 2B means moving the center of C1

further inside C2 so there will be no potential inner tangency. However, if R2−R1 ≤ ε
then there is no sense in doing so, since there are no valid places to begin with.

In conclusion, Inequality 5.2 gives a valid ε also for F2. Notice, that Inequality 5.2
gives a tight bound on ε2 (e.g., construct two circles C1 and C2, such that X1 = Y1 =
X2 = Y2 = R1 = R2 = M). That is, the bound can be achieved, since the term
multiplied by ε (in | ± 2(R2 − R1)ε + ε2| > 2B) is zero.

5.4 Three Circles Intersecting In a Common Point

In this section we will present an alternative approach to floating-point error analysis,
that we shall employ in conjunction with the one that was already given. Our first
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C2

C1

C2

C1

(a) (b)

Figure 5.1: The shaded area is a part of F2, the forbidden region. (a) The case where
R2 − R1 > ε. Notice that there are valid placements for the center of C1 such that
C1 is completely inside C2. (b) The case where 0 < R2 − R1 ≤ ε. Notice that there
is no valid placement for the center of C1 such that C1 is completely inside C2.

attempt to give a good resolution bound for this type of degeneracy, was to continue
with the same approach as in the previous sections (based on [15]). However, since
this is a more complicated situation, the bound that was achieved was very large.

We will compute the intersection points, and Err — a bound on the worst case
error that can occur during this computation (caused since we are using floating-point
arithmetic). Then, around each intersection point we inflate a disk of radius Err.
We then make sure that none of the disks overlap.1

To compute the intersection point of two circles C1 and C2, we use the following
formulation [10].

s =
1

2

R1

2 − R2

2

(X2 − X1 )2 + (Y2 − Y1 )2 +
1

2
(5.5)

t = [
R1

2

(X2 − X1 )2 + (Y2 − Y1 )2 − s2]
1

2 . (5.6)

The intersection point [x, y] is:

[x, y] = [X1, Y1] + s[X2 − X1, Y2 − Y1]

±t[Y2 − Y1, X1 − X2] . (5.7)

First, we show how to bound the error of an expression that involves only +, · and
square-root operations with positive input operands. Then, we will give a bound for

1Notice that throughout this section, we are only concerned with pairs of intersection points orig-
inating from three different circles. We explain how to handle pairs of intersection points originating
from two circles in Section 6.1.
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the worst-case error for such expressions. Finally, we will convert Eq. 5.7, such that
it will not contain subtraction and division operations, so a bound on the worst case
error could be established.

We rewrite the expression as a straight-line program Ei, i = 1 . . .m such that, each
subexpression Ei involves just one arithmetic operation, and takes as its operands the
results from previous subexpressions or input parameters (i.e., if E = ab + cd, then
E1 = ab, E2 = cd and E3 = E1 + E2). The rewriting should be carried out such
that it preserves the standard priority of arithmetic operations. By a slight abuse of
notation we also denote by Ei the exact value of the subexpression Ei.

To evaluate the bound on the error of an expression E, we compute an interval,
which contains the exact value of E, and its length will be the bound on the error.
The computation of E is done by the following rules of interval arithmetic [4]. Let
[x] denote the interval [x, x], and [y] the interval [y, y], the rules for the +, · and
square-root operations (with positive operands) are:

[x] + [y] = [x + y, x + y]

[x] · [y] = [x · y, x · y]

[x]
1

2 = [x
1

2 , x
1

2 ] x ≥ 0

We evaluate E as follows: When we evaluate the first subexpression E1, all we can
compute is Ẽ1 — the floating-point approximation of E1 (recall that we do all our
computations using floating-point arithmetic). We will create the interval [E1, E1]

where E1 is the next representable floating-point number after Ẽ1 in the direction of

−∞, and E1 is the next representable floating-point number after Ẽ1 in the direction
of +∞. Getting the next representable floating-point number can be done using the
function nextafter(), which is recommended by the IEEE standard, and is available
for most compilers. Thus, the interval [E1, E1] contains Ẽ1 (Figure 5.2 (a)). Next, we

need to compute E2. If E2 takes only input parameters as its operands, then [E2, E2]

is computed similarly to [E1, E1]. If E2 takes E1 as at least one of its operands, then

we will compute [Ẽ2, Ẽ2] according to the rules of interval arithmetic (for an input

parameter a, we take [a, a] = [a, a]), where Ẽ2 and Ẽ2 are the floating-point approxi-

mation of the interval end-points. Since Ẽ2 and Ẽ2 were computed using floating-point

arithmetic and rounding errors may occur, we will create the interval [E2, E2], where

E2 is the next representable floating-point number after Ẽ2 in the direction of −∞,

and E2 is the next representable floating-point number after Ẽ2 in the direction of
+∞ (Figure 5.2 (b)). We continue to compute all the subexpressions E3 . . . Em in a
similar manner (depending on the origin of the operands of each subexpression). The
following two lemmas justify the method and explain how a worst-case error bound
is derived.
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Lemma 2 Evaluating an expression E that involves only +, · and square-root oper-
ations with positive input operands, in the method described above, yields a bound on
the error of the expression, when evaluated using standard floating-point arithmetic.
The bound is the length of the last interval, [Em, Em].

Proof. Our first assumption is that no underflow or overflow occurs, and the rounding
mode is to nearest. We prove by induction that Em ∈ [Em, Em] and Ẽm ∈ [Em, Em].

When we evaluate [Ei, Ei], the induction assumption is that each interval [Ej , Ej ], j <
i contains the exact value of Ej .

For each floating-point operation, the error is bounded according to the following
inequality [2],

|u ∗ v − fl(u ∗ v)| ≤ mach eps|u ∗ v| (5.8)

where mach eps is the machine epsilon (that is mach eps = 2−p), ∗ is one of the
operations +,−, ·, /,√, and fl() is the floating-point result.

It follows from Inequality 5.8, that taking the next representable floating-point
numbers after Ẽ1 (the floating-point approximation of E1) in both directions as end-
points of the interval [E1, E1] assures us that E1 ∈ [E1, E1] (Figure 5.2 (a)). It is

also obvious that Ẽ1 ∈ [E1, E1]. For all subexpressions that rely only on the input
parameters we will use similar arguments to the case of E1.

Assume that Ei is the first subexpression that relies on previous intervals [Ej, Ej ]

and [Ek, Ek] (the case where Ei relies on an input parameter as one of the operands

is easier). According to the induction assumption, Ej ∈ [Ej , Ej] and Ek ∈ [Ek, Ek].
If the i-th interval were computed exactly, since it is computed according to interval
arithmetic, it would contain Ei. Since we are not computing it exactly, we can

only compute [Ẽi, Ẽi]. Again, following Inequality 5.8, taking the next representable

floating-point number after Ẽi in the −∞ direction, as Ei, and the next representable

number after Ẽi in the +∞ direction, as Ei assures us that Ei is indeed in the interval
[Ei, Ei] (Figure 5.2 (b)). Thus, we can conclude that E ∈ [Em, Em]. Again, it is

obvious that also Ẽ ∈ [Em, Em].

Thus, both E and Ẽ are in the final interval [Em, Em], so the distance (hence the

error) between E and Ẽ is at most the length of the interval. �

Lemma 3 Evaluating an expression E, that contains only +, · and square-root opera-
tions with positive input operands, in the method described above, with the maximum
values allowed for all its operands, yields a bound on the worst-case error of the
expression, when evaluated using standard floating-point arithmetic.

Proof. Following Inequality 5.8, for the +, · and
√

operations with positive operands,
the size of the bound on the error is in direct relation to the size of the operands. So
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a a

a

ã

I

I
′

I

ĨI ′ Ĩ

(a) (b)

Figure 5.2: (a) Let a be a real number or the result of an expression involving a single
operation on one or two floating-point operands, and let ã be the nearest floating-
point number to a. Taking the next representable numbers after ã in both directions
as end-points of the interval [a, a] assures us that a ∈ [a, a]. (b) Let I be the interval

[I, I], and let Ĩ and Ĩ be the nearest floating-point number to I and I, respectively.

Denote the next representable number in the −∞ direction after Ĩ as I ′, and the next

representable number in the +∞ direction after Ĩ as I
′
. It follows that [I, I] ⊆ [I ′, I

′
],

thus any number x ∈ [I, I] is also contained in [I ′, I
′
].

in order to get the maximum possible error, we need to evaluate E with the maximum
values allowed for all its operands.

Each time that we create an interval [Ẽi, Ẽi] we shift the end-points to [Ei, Ei].
The fact that the rounding mode is to nearest, and the shifting is done by taking
the next representable floating-point number in the relevant direction, assures us that

the interval [Ei, Ẽi] (resp. [Ẽi, Ei]) is larger than the largest possible error of Ẽi (resp.

Ẽi).

Simply using to zero rounding mode for Ei, and to infinity rounding mode

for Ei would not suffice. Suppose that for specific maximum values (of the operands),
no rounding errors have occurred during the computation of E. In this case, using
to zero and to infinity rounding modes, the final interval [Em, Em] would be
[Em, Em], that is, the interval contains only Em and we would falsely deduce that the
bound on the worst-case error is zero. �

To get a bound on the worst-case error of Eq. 5.7, we will change all the subtraction
operations to addition operations, in order to upper-bound the error of the subtraction
and all the subsequent operations (as in the computation of the supremum of an
expression in Table 5.1). Also, we will only use the absolute value of the operands
(so Lemma 3 would hold).

Yet, in Eq. 5.7 there are also division operations. The term in the denominators
of Eq. 5.7 is (X2 − X1)

2 + (Y2 − Y1)
2, which is the distance between the centers of

the circles. Hence, we will assume that the centers of any two circles are at least
some distance ξ apart. If the centers are less then ξ apart, degeneracy of type 4
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occurs. We do not require from the user to make sure that the centers are ξ apart.
This will be taken care of as part of handling degeneracy of type 4 (Section 5.5). In
Section 5.6, we explain how we choose ξ, that gives fairly good results when using
the IEEE double type. Notice, that choosing a good ξ is a subtle matter, since there
is a trade off between the resolution bound induced by degeneracy of type 3 and the
resolution bound induced by degeneracy of type 4.

Since we assume that the distance between the centers is at least ξ, then

1

(X2 − X1)2 + (Y2 − Y1)2
≤ 1

ξ2
.

As we are looking for a worst-case bound of the error of Eq. 5.7, we can replace
1

(X2−X1)2+(Y2−Y1)2
with 1

ξ2 . Let χ = 1
ξ2 . We replace Eq. 5.5 and Eq. 5.6 by:

ŝ = 0.5(R2
1 − R2

2)χ + 0.5

t̂ = (R2
1χ − ŝ2)

1

2 .

We can now bound the error of the [x, y] values obtained in Eq. 5.7 according to
the method described above (i.e., regard Eq. 5.7 as E, and compute the interval which
gives a bound on the worst-case error). Before we evaluate it, we will determine the
value of ξ, and then compute χ = 1

ξ2 using UP rounding mode.

Let Err denote the bound on the worst-case error for Eq. 5.7, computed using
the method described above and multiplied by

√
2. Err is a positive floating-point

number.

We can imagine that around each approximate intersection point P that we com-
pute, we inflate a disk of radius Err (Figure 5.3) which contains the exact intersection
point (recall that the bound that was computed for Eq. 5.7 applies to only one coor-
dinate, either x or y, hence we need to multiply it by

√
2). To prevent three circles

from intersecting in a common point, we require that no two such disks will overlap.2

In other words, two approximate intersection points P1 and P2 should be at least
2Err apart. Still, in order to be able to apply the efficient perturbation algorithm
(Section 6.1), we would like to separate the exact intersection points even more, thus
we require that two approximate intersection points P1 and P2 should be at least
6Err apart.

Since we are using floating points arithmetic, we will apply the same method that
we used for degeneracies of type 1 and 2, to verify that none of the disks overlap.

Denote by XP and YP the x and y coordinates of the point P . The expression E,
for a predicate Prp that will check that three circles do not intersect in a common
point will be

E = (XP2
− XP1

)2 + (YP2
− YP1

)2 − (6Err)2 , (5.9)

2Again, we are only concerned with pairs of intersection points originating from three different
circles.
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Figure 5.3: Around each approximate intersection point we inflate a disk of radius
Err that contains the exact intersection point.

where P1 and P2 are intersection points, computed by Eq. 5.7. As before, since we
are using floating-point arithmetic we compute,

Ẽ = (XP2
⊖ XP1

)2 ⊕ (YP2
⊖ YP1

)2 ⊖ (6Err)2 .

and according to Table 5.1, we have:

• Ẽsup = (|XP2
| ⊕ |XP1

|)2 ⊕ (|YP2
| ⊕ |YP1

|)2 ⊕ (6Err)2

• indE = 5

• B = 2−p ⊙ indE ⊙ Ẽsup .

To avoid a potential degeneracy, we require that Ẽ > B. Again, it follows that if
|E| > 2B then |Ẽ| > B. So we now require that E > 2B.

If E = 0 then the distance between the points is exactly 6Err. Yet, if E > 2B
(as we wish it to be), then the distance between the points is 6Err +α, where α > 0.
We seek the smallest α > 0 that will cause E > 2B to hold. So we have

[(XP2
− XP1

)2 + (YP2
− YP1

)2]
1

2 = 6Err + α .

After squaring both sides, and rearranging terms we get,

(XP2
− XP1

)2 + (YP2
− YP1

)2 − (6Err)2 = 12Errα + α2 . (5.10)

We notice that the left-hand side of Eq. 5.10 is exactly E, so we can rewrite our
requirement, this time in terms of the right-hand side of Eq. 5.10 (the added distance
α), that is

12Errα + α2 > 2B .

We can extract a bound on α,

α >
√

2B =
√

(10 ⊙ 2−p((|XP2
| ⊕ |XP1

|)2 ⊕ (|YP2
| ⊕ |YP1

|)2 ⊕ (6Err)2)) .
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We must now bound the maximum value of an intersection-point coordinate. Con-
struct two circles, such that both have radius M , their center’s x coordinate is M ,
and one circle is slightly above the other; then, the right intersection point has x coor-
dinate ≈ 2M . Therefore, the bound for the maximum value of an intersection-point
coordinate is 2M , and we can give a worst case bound for α,

α >
√

(10 ⊙ 2−p(32M2 ⊕ 36Err2)) .

So we can now deduce the worst case ε3, needed to estimate F3 (recall that α is
just an added distance to 6Err, to make sure that the predicate will not fail),

ε3 > 6 ⊙ Err ⊕ α = 6 ⊙ Err ⊕
√

(10 ⊙ 2−p(32M2 ⊕ 36Err2)) . (5.11)

Remark. We use UP rounding mode for all the operations except in the computation
of B (recall that according to [15], we compute B in Round To Nearest mode).

Since we wish to allow an efficient point location mechanism (Section 6.3), we shall
add a test, the circle - intersection point test. Around each existing exact intersection
point, we shall inflate a disk of radius Err and we shall verify that the the newly added
circle Ci does not intersect any of these disks. Because we do not know the exact
intersection points, we shall inflate a disk of radius 2Err around the approximate
intersection points, and verify that Ci doest not intersect any of these bigger disks.
Since Err is a bound on the distance between the exact and the approximate point,
the disks with radii 2Err contain the original disks with radii Err (Figure 5.4).

Figure 5.4: Since Err is a bound on the distance between the exact and the approx-
imate point, the disks with radii 2Err (the dashed circle) contain the original disks
with radii Err (the dotted circle).

Denote by ε′3 the resolution bound needed to compute F3 with regard to this test.
For the newly added circle Ci and an existing approximate intersection point P , we
set C1 := Ci and X2 := XP , Y2 := YP , R2 := 2Err. The newly added circle Ci is valid
when the following holds:

(X1−X2)
2 +(Y1−Y2)

2−(R1 +R2)
2 > 0

∨
(X1−X2)

2 +(Y1−Y2)
2−(R1−R2)

2 < 0 .

(5.12)
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If we were to use exact computation, then ε′3 would simply be 2Err (recall how we
estimate F3 — see Section 4.2). Yet, since we are using floating-point arithmetic, we
need to take into account the possible errors in the computation of Expression 5.12.
Expression 5.12 can be regarded as a combination of outer and inner tangency tests
(except that we omitted the absolute value on the left-hand side), so the resolution
bound ε′3 should be,

ε′3 = 2Err + ε1 .

(ε1 is the added distance that allows us to evaluate Expression 5.12 using floating-
point arithmetic). Because ε′3 < ε3, we can still use ε3 in the computation of F3.

Remark. Although ε3 is worse than ε′3, we use it to compute F3, since the predicate
from which it arises, enables us to determine the order of two intersection points along
the x or y axis. This ordering allows us to carry out the efficient algorithm described
below in Section 6.1. Otherwise, we could have used ε′3.

5.5 The Centers of Two Intersecting Circles Are

Too Close

In handling degeneracy of type 3, we assumed that the distance between the centers
of each pair of intersecting circles, is at least ξ, where ξ is a positive floating-point
number. We can check if two circles are intersecting by using the outer and inner
tangency tests.3 For two circles, C1 and C2, the test is

(X1−X2)
2 +(Y1−Y2)

2−(R1 +R2)
2 < 0

∧
(X1−X2)

2 +(Y1−Y2)
2−(R1−R2)

2 > 0 .

. As was mentioned in the previous subsection, the task of finding a ξ that will always
give good results is not simple. See the numerical example in the next section, for a
specific choice of ξ.

We now need a predicate that will assert that the degeneracy does not occur, and
also a value for ε4 (needed for the computation of δ). For two circles, C1 and C2, the
expression E for the predicate is,

E = (X1 − X2)
2 + (Y1 − Y2)

2 − ξ2 . (5.13)

The predicate Prp checks if E > 0. Again, since we are using floating-point
arithmetic we need to compute,

Ẽ = (X1 ⊖ X2)
2 ⊕ (Y1 ⊖ Y2)

2 ⊖ ξ2 .

and according to Table 5.1, we have:

• Ẽsup = (|X1| ⊕ |X2|)2 ⊕ (|Y1| ⊕ |Y2|)2 ⊕ ξ2

3Due to the perturbation scheme, those predicates will yield correct results.
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• indE = 5

• B = 2−p ⊙ indE ⊙ Ẽsup .

To avoid a potential degeneracy, we require that Ẽ > B. Again, if |E| > 2B then

|Ẽ| > B. So we now require that E > 2B.

If E = 0 then the distance between the centers is exactly ξ. Yet, if E > 2B (as
we wish it to be), then the distance between the points is ξ + α, where α > 0. We
seek the smallest α > 0 that will cause E > 2B to hold. So we have

((X1 − X2)
2 + (Y1 − Y2)

2)
1

2 = ξ + α .

After squaring both sides, and rearranging terms we get,

(X1 − X2)
2 + (Y1 − Y2)

2 − ξ2 = 2ξα + α2 . (5.14)

We notice that the left-hand side of Equation 5.14 is exactly E, so we can rewrite our
requirement, this time in terms of the added distance, α, that is

2ξα + α2 > 2B .

We can extract a bound on α,

α >
√

(14 ⊙ 2−p ⊙ (8 · M2 ⊕ ξ2)) .

We can now deduce a worst case ε4 needed to estimate F4,

ε4 > ξ ⊕ α = ξ ⊕
√

(14 ⊙ 2−p ⊙ (8 · M2 ⊕ ξ2)) . (5.15)

Remark. We use UP rounding mode for the square-root operation in α, and the
addition of ξ.

5.6 Numerical Example

In the previous sections, we have presented the predicates that we use in our algo-
rithm, and the worst case ε associated with each forbidden region. Still, when we
compute δ, we do not distinguish between the different ε’s, thus, we will take the
maximal one,

ε = max{εi|i = 1, . . . , 4} . (5.16)

Here is an example of the various ε’s we obtain, when we are using the IEEE
double type, with M = 103 and ξ = 0.03:

• Err ≤ 0.009
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• ε1,2 = 0.00016323404237781946

• ε3 = 0.05426656007499713885

• ε4 = 0.03162279436525219228

• ⇒ ε = 0.05426656007499713885 .

Remarks. (1) There is a strong connection between degeneracies of type 3 and 4.
In fact, we added degeneracy type 4, to be able to give a good resolution bound for
type 3. Yet, we must ensure that degeneracy type 4 by itself will not make ε very
big. So, for different values of M , different minimum distance between the centers is
required.
(2) It should be clear that all we require from the user of the perturbation is to insert
circles such that their coordinates are less than M − ∆ and their radii are less than
M . The user should not worry about whether the centers of the circles are less than
ξ apart. If this is the case, it will be taken care of when we remove degeneracies of
type 4.
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Chapter 6

Algorithmic Details

In Section 6.1 we present an efficient perturbation algorithm, which runs in expected
O(n2 log n) time. A naive implementation of the perturbation scheme presented in
previous chapters would run in O(n3) expected time. In Section 6.2, we describe the
doubly-connected edge list structure (DCEL), which allows us to maintain the topo-
logical information of the subdivision and enhance it with the geometric information
(its planar embedding). Finally, in Section 6.3, we present a point location strategy
suitable for our DCEL structure.

6.1 Efficient Perturbation Algorithm

In order to achieve a good running time, we use two types of data structures: a kd-
tree [8] and binary trees. The kd-tree is used for practical (heuristic) speeding up of
the algorithm, whereas the binary trees are also used to achieve the good theoretical
bound on the running time.

When adding the circle C ′
i, we use a kd-tree to maintain the circles C′

i−1 that were
already inserted. That is, the kd-tree is constructed by the x and y coordinates of
the centers of the circles in C′

i−1. When we add the circle C ′
i to C′

i−1, we check for
degeneracies of C ′

i regarding all the circles in the kd-tree whose centers are in the
range Xi − 3Rmax ≤ X ≤ Xi + 3Rmax and Yi − 3Rmax ≤ Y ≤ Yi + 3Rmax where
Rmax = max(Rj , j = 1 . . . i) (circles whose centers are outside the range cannot be in
a degenerate state with respect to C ′

i).

If done in a naive fashion, testing a circle Ci for degeneracy of type 3 can take
O(n2) time (there are O(n2) intersection points), resulting in an algorithm running
in expected O(n3) time.

In order to make the algorithm efficient, we keep four balanced binary trees for
each circle in C′

i−1 (Figure 6.1). Denote by P j
k , k = 1, . . . , s all the intersection points

of C ′
j with other circles in C′

i−1. We construct the upper binary tree Tupper of C ′
j, such

47
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that it will hold all the points {P j
k , k = 1, . . . , s|Xj − Rj√

2
≤ X

P
j

k
≤ Xj +

Rj√
2
, Y

P
j

k
> Yj},

and use their x coordinate as the key for the binary tree. Similarly, we construct
the lower binary tree Tlower of C ′

j, such that it will hold all the points {P j
k , k =

1, . . . , s|Xj − Rj√
2
≤ X

P
j

k
≤ Xj +

Rj√
2
, Y

P
j

k
< Yj}, and use their x coordinate as the key

for the binary tree. We also construct the left binary tree Tleft of C ′
j , such that it will

hold all the points {P j
k , k = 1, . . . , s|Yj − Rj√

2
< Y

P
j

k
< Yj +

Rj√
2
, X

P
j

k
< Xj}, and use

their y coordinate as the key for the binary tree. And similarly, we construct the right
binary tree Tright of C ′

j, such that it will hold all the points {P j
k , k = 1, . . . , s|Yj− Rj√

2
<

Y
P

j

k
< Yj +

Rj√
2
, X

P
j

k
> Xj}, and use their y coordinate as the key for the binary tree.

C′

j

P
j
5

P
j
4

P
j
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P
j
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P
j
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P
j
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P
j
2

P
j
3

Tupper
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P
j
6

P
j
1

Figure 6.1: The four binary trees associated with a circle C ′
j.

When we come to add the new circle C ′
i, we check which existing circles it inter-

sects. For an intersection point P , which lies on C ′
i and C ′

j, we wish to insert it to the
appropriate trees of C ′

i and C ′
j . We first test on which tree T of the four trees associ-

ated with C ′
j it should be. This test is done using floating-point arithmetic, so errors

could occur, yet, we will show later that this is not a problem. Next, we check which
are the two neighboring intersection points of P along the tree, if P would be inserted
into T . We check if a degeneracy of type 3 occurs with those neighbors. If P would
be a leftmost/rightmost leaf in T , we will check it against the rightmost/leftmost leaf
in the neighboring tree to T adjacent to P . For example, in Figure 6.1, P j

2 will be
checked against P j

1 and P j
3 , and P j

3 will be checked against P j
2 and P j

4 , and so on.

The key observation is that, if the point P is sufficiently far away from of its two
neighbors (degeneracy of type 3 does not occur), then it will be sufficiently far away
from all other intersection points that belong to the tree containing P . So adding P
takes time O(log n) (the addition of P to the appropriate tree of C ′

i is done similarly),
and the algorithm would run in overall expected O(n2 log n) time.

We still need to prove that the structure of all the binary trees is valid. There is
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no ambiguity in the order of two intersection points originating from the same pair of
circles. In Eq. 5.7, we first evaluate [X1, Y1]+s[X2−X1, Y2−Y1] and t[Y2−Y1, X1−X2],
and only then, we perform the addition or subtraction of t[Y2 − Y1, X1 − X2]. Thus,
the ordering of the intersection points along the x axis or the y axis, depends on a
single arithmetic operation. In this case, floating-point arithmetic is reliable (that is,
the points cannot switch their order).

We now need to prove the validity of the binary structure for the case where we
need to compare two intersection points originating from three different circles. We
shall first prove the following lemma:

Lemma 4 Around each exact intersection point we inflate a disk of radius Err (as
was defined in Section 5.4). Denote by D(Pi) such a disk for intersection point Pi.
Between each pair of disks D(Pi) and D(Pj) we can put another disk of radius Err,
with its center on the common circle of Pi and Pj, and no pair of those three disks
will overlap.

Proof. The distance between the approximate intersection points Pi and Pj is at
least 6Err (otherwise degeneracy of type 3 occurs). Denote by seg the line segment
between those approximate intersection points. Without loss of generality, assume
that Pi is to the left of Pj. The disk D(Pi) can cover at most the 1

3
left-hand part

of seg, and the disk D(Pj) can cover at most the 1
3

right-hand part of seg. Thus, in
the middle of seg we can put another disk of radius Err, that will not overlap the
parts of seg covered by D(Pi) or D(Pj) (Figure 6.2 (a)). Moving the center of the
third disk, in a direction perpendicular to seg, we can place it on the circle on which
Pi and Pj lie. Such movement does not cause the third disk to overlap with either
D(Pi) or D(Pj) (Figure 6.2 (b)). If a pair of disks would overlap, then there exists
no direction in which the projection of the disks will not overlap. Yet, in our case,
such a direction does exist (the direction perpendicular to seg).

�

We use Lemma 4 to prove the following lemma:

Lemma 5 Using the predicate for degeneracy of type 3, as was described in Sec-
tion 5.4, the structure of each binary tree of circle C ′

j is valid.

Proof. Without loss of generality we prove it for the upper tree. We show that for
each Pi and Pk, which should be on the upper tree of C ′

j, their order in the tree is
correct. To do so, we must prove that the x-ranges of D(Pi) and D(Pk) do not overlap.
Denote by Γ the portion of C ′

j associated with Tupper. For intersection points, that lie
near the center of Γ, clearly there can be no overlapping (Figure 6.3 (a)). Thus, we
shall check the intersection points that lie near the boundary of Γ (Figure 6.3 (b)).
Near the boundary of Γ, we can approximate the circle with a line l tangent to C ′

j

(Figure 6.3 (c)). The line l has an angle of 135 degrees with the positive direction
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s

DPi DPj

(a)

s

DPi DPj

(b)

Figure 6.2: (a). Between D(Pi) and D(Pj) we can put another disk of radius Err,
and the three disks will not overlap. (b) Moving the center of the third disk, in a
direction perpendicular to seg, we can place it on the circle on which Pi and Pj lie.

of the x axis. The worst case configuration, is when the three disks lie on the line l
(Figure 6.3 (d)). The distance between the centers of D(Pi) and D(Pk) on the x-axis
is 4Err√

2
, which is larger than 2Err, hence, the x-ranges of D(Pi) and D(Pk) do not

overlap. �

Finally, recall that during the creation of the binary trees, floating-point errors
can cause us to put intersection points in wrong trees. Yet, the worst case error
for the term Xj ± Rj/

√
2 (or Yj ± Rj/

√
2) is significantly smaller than Err, so an

intersection point can be mistakenly inserted only as a leftmost/rightmost leaf of a
neighboring tree. So all that was said above is still valid.

Recall that in Section 5.4 we also defined the Circle - Intersection point test, which
verifies that the center of the newly added circle Ci is at least Ri +Err away from all
existing approximate intersection points. This test is required for allowing the point
location mechanism. If the center of Ci is less than Ri+Err away from an intersection
point that lies on Cj, and Ci and Cj do not intersect, then a near tangency will occur
(recall the Err is smaller than ε). Thus, Ci and Cj must intersect. Again, we will
use the four binary trees associated with each circle to perform this test efficiently.

We next prove the following lemma:

Lemma 6 Let C ′
i be the newly added circle and let C ′

j be one of the circles that
C ′

i intersects. Denote by P 1
ij and P 2

ij the two approximate intersection points of C ′
i

and C ′
j. If the center of C ′

i is at least Ri + 2Err away from any of the neighboring
approximate intersection points of P 1

ij and P 2
ij on C ′

j (for brevity we will refer to those
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DPi
DPk

DPk

DPi

(a) (b)

DPk

DPi

l l

DPi

DPk

(c) (d)

Figure 6.3: (a) Pi and Pk lie near the center of Γ. (b) Pi and Pk lie near the boundary
of Γ. (c) Near the boundary of Γ, we can approximate the circle with a line l tangent
to the circle at the boundary of Γ. (d) Pi and Pk lie on the line l.

points as the neighbors of P 1
ij and P 2

ij), then the center of C ′
i is at least Ri + Err

away from all the exact intersection points on C ′
j (except P 1

ij and P 2
ij) — Figure 6.4.

Consequently, it would be sufficient to check C ′
i only against the four neighbors of

P 1
ij and P 2

ij, which could be done in O(1) time (assuming that we already found the
intersection points). Therefore, the Circle - Intersection point test for the circle C ′

i

would take overall O(n) time.

Proof. Since we require the center of C ′
i to be at least Ri + 2Err away from any of

the neighboring approximate intersection points of P 1
ij and P 2

ij, then the center of C ′
i

is at least Ri + Err away from any of the neighboring exact intersection points of P 1
ij

and P 2
ij (this issue is explained in Section 5.4). Thus we can inflate a disk of radius

Err around each of the neighboring exact intersection points of P 1
ij and P 2

ij on C ′
j,

and those disks will not intersect with C ′
i. Denote this set of disks by D.

Next, inflate a disk of radius Err around each other exact intersection points on
C ′

j (except P 1
ij and P 2

ij) and denote this set of disks by D′. Then we need to prove
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P 1
ijP1

P2

P6

P 2
ij

P5

C ′
iC ′

j

P3

P4

P7

P8

P9

Figure 6.4: If the center of C ′
i is at least Ri +2Err away from any of the neighbors of

P 1
ij and P 2

ij (in this case, P1, P2, P5 and P6), then the center of C ′
i is at least Ri + Err

away from all the exact intersection points on C ′
j (except P 1

ij and P 2
ij). Note that

in the figure, we do not distinguish between the exact and approximate intersection
points.

that C ′
i cannot intersect the disks in D′ without intersecting at least one of the disks

in D.

Let us assume that C ′
i intersects a disk Dk ∈ D′. Denote by Q1 and Q2 the

intersection points of C ′
i and Dk, such that Q1 is the intersection point closer to P 1

ij ,
and Q2 is the intersection point closer to P 2

ij . Denote by γ1 the smaller portion of C ′
i

that lies between Q1 and P 1
ij, and by γ2 the smaller portion of C ′

i that lies between
Q2 and P 2

ij (Figure 6.5). At least one of the two following cases must hold: (i) Q1

is the farthest point on γ1 from C ′
j (ii) Q2 is the farthest point on γ2 from C ′

j (by
“farthest” we mean that the shortest distance is the longest). If case (i) (resp. (ii))
holds, then γ1 (resp. γ2) intersects the disk of D whose center lies on γ1 (resp. γ2).
Notice that such a disk must exist. �

Thus, we conclude that the Circle - Intersection point test for the newly added
circle Ci can be done in O(n) time (without searching for the intersection points),
and the asymptotic expected total running time does not change.

6.2 The DCEL Structure

The collection of circles C′ induces a planar subdivision. This subdivision consists of
several type of elements
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γ1
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Dk

P 2
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Q2
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P 1
ij

C ′
j

C ′
i

Figure 6.5: We denote two portions of C ′
i as γ1 and γ2. If C ′

i intersects a disk in D′

then it intersects a disk in D.

• 0-dimensional elements — the intersection points (vertices),

• 1-dimensional elements — the maximal circular arcs belonging to a single circle,
not intersecting other circles (edges), and

• 2-dimensional elements — the maximal connected regions of R2\⋃
C′∈C′ (faces).

We use the doubly-connected edge list structure (DCEL) to maintain the topological
information of the subdivision and enhance it with geometric information (its planar
embedding). An island is a connected set of circles. Every edge is represented by two
half-edges, with opposite orientations. Two half-edges originating from the same edge
are said to be twins. Each half-edge has pointers to its twin half-edge, source vertex,
target vertex and to its incident face. Each face has pointers to its incident half-edge
and to the list of islands which it contain (in the list we store pointers to incident
half-edges of the islands). The DCEL is illustrated in Figure 6.6. See [8, Chapter 2]
for more details.

In our program, there are several stages in the construction of the DCEL:

• half-edge creation,

• half-edge pointers setting,

• face creation, and
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e
source(e) target(e)

twin(e)

f

Figure 6.6: The DCEL structure. The face f contains one island.

• island adjustment.

We give detailed description of each stage:

• Half-edge creation. For each circle, we sort all the intersection points that lie
on it, in clockwise order. For each pair of subsequent intersection points we
create a half-edge and its twin. For each newly created half-edge we set the
twin, source and target pointers. We defer the setting of the next pointer
to the next stage. The overall complexity of this stage is O(n2) (there are O(n2)
halfedges).

• Half-edge pointers setting. In this stage, we set the next pointer of each half-
edge. First, since we performed the perturbation, we know that each vertex
will have a degree 4 exactly, so each vertex involves half-edges originating from
exactly two circles. Thus, we classify the intersection points into two types, as
follows: given two circles C1 and C2, we use Eq. 5.7 to compute the intersection
points. Define the intersection point given by [x, y] = [X1, Y1]+ s[X2 −X1, Y2 −
Y1] + t[Y2 − Y1, X1 −X2] as type 1, and [x, y] = [X1, Y1] + s[X2 −X1, Y2 − Y1]−
t[Y2 − Y1, X1 − X2] as type 2 (Figure 6.7). An intersection point of type 1 is
always to the left of the oriented line l passing through the centers of C1 and C2,
in that order. This classification gives us sufficient information for setting the
next pointers of the edges incident to the vertices induced by those intersection
points. Figure 6.8 shows the next pointers setting for an intersection point of
type 1. The complexity of this stage is O(n2) (there are O(n2) halfedges, and
we handle each half-edge once and in constant time).
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Remark. Notice that the intersection points classification is robust. The classi-
fication is such that, when we add the t[Y2−Y1, X1−X2] term the point is classi-
fied as type 1 and when we subtract it, the point is classified as type 2. A possible
mistake could occur if due to computation errors, the term t[Y2 − Y1, X1 − X2]
would have changed its sign, so the addition would in reality be a subtraction
and vice versa. Yet, the term t[Y2 − Y1, X1 − X2] cannot change it sign, since
t is the result of a square-root operation, hence it is always non-negative. The
terms Y2 − Y1 or X1 − X2 involves a single floating-point operation, thus they
cannot change sign when Round To Nearest rounding mode is used. Therefore,
we can conclude that the floating-point implementation of t[Y2 − Y1, X1 − X2]
is of the same sign as the exact one, and the classification is still valid.

C1

C2

1

2

l

Figure 6.7: The classification to intersection points of type 1 and 2, and the oriented
line l. Intersection point of type 1 is always to the left of l.

C1

a

b

f

C2h

g

c d
e

1

Figure 6.8: next pointers setting for an intersection point of type 1 — a.next:=g,
c.next:=b, e.next:=d, h.next:=f.

• Face creation. We make another pass on all the half-edges, and for every
half-edge h, if h.incident face is NULL, we create a new face f, and set
f.incident half-edge:=h and h.incident face:=f. We traverse the half-
edges, using the next pointer, starting from h.next, and set their h.incident face

pointer to point to f. We do so until we return to h. We repeat this process
until there is no half-edge that has an incident face with a NULL pointer.
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If a face f has the half-edges h1, . . . , hj pointing at it, and they are all in clock-
wise orientation then the connected set of circles that includes the underlying
circles of h1, . . . , hj could be an island. In order to decide if f is an island, we
do the following additional test: find the leftmost vertex p of f, and find its
underlying circles, C1 and C2. Find the second intersection point of C1 and C2,
and check if it is to the left of p, if so, then f is not an island (Figure 6.9).
Following the remark on page 55, this step is robust.

During the face creation stage, we will also create a priority queue Q, that will
hold pointers to all the islands. The key of the queue will be the topmost
point in an island. Finding the topmost point in an island is done by adding
the radius of each circle (in the island) to its center’s y coordinate. Since the
error of a single operation is minimal, and the fact that during the perturbation
we eliminated all near tangencies, lead us to the conclusion that this stage
of the algorithm is robust (the elimination of near tangencies has sufficiently
“separated” the circles from one another). The complexity of this stage is O(n2)
(there are O(n2) halfedges, and we handle each half-edge once).

• Islands adjustment. The final stage of the DCEL construction is to adjust the
island lists. Recall that, at the previous stage, we built an islands priority queue
Q (the island with the topmost point is given the highest priority). For each
island i of Q, we perform point location (Section 6.3) using the topmost point
of i. We find the face which contains the point, and we add the island i into
its islands list. Notice that islands can be nested within other islands. The
islands which are not contained in other islands are called continents and they
are islands of the unbounded face. The point location mechanism is described
below. The complexity of a point location query is O(n), and there are at most
n islands, thus the complexity of this stage is O(n2).

Since the complexity of each stage is O(n2), we conclude that the DCEL construc-
tion is done in O(n2) time which is worst-case optimal since the complexity of the
arrangement can be Ω(n2).

6.3 Point Location

A basic requirement from a subdivision data structure is to support point location.
That is, given a query point p, we wish to locate the face f which contains p.

In [8], an efficient point location strategy is presented, which can answer queries
in expected O(log n) time. However, the implementation of such a point location-
strategy is rather intricate. Here, we use a very simple point location strategy. It is
easy to implement and we bring it here, to point out the robustness-related issues in
answering point location queries.

Given a query point p, we shoot a vertical ray from p. That is, we find the closest
intersection point q of an upward directed vertical ray emanating from p and a circle
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F

q

p

Figure 6.9: We want to check if F is an island. We find the leftmost vertex p and its
underlying circles, and compute the second intersection point q and compare their x
coordinates. Since q lies to the left of p, F is not an island.

C ′
i of C′ (Figure 6.10). The answer to the query, is the incident halfedge of q, which

points to the face that contains p. If there is no circle above p, then p belongs to
the unbounded face. We can find q by computing all the intersection points of the
vertical ray emanating from p with circles in C′, while maintaining the intersection
point with the minimum y coordinate. This step might take O(n) time (recall that n
is the number of circles in C′).

q

p

C ′
i

Figure 6.10: We shoot a vertical ray from p, and find the closest intersection point q.

Since the vertical ray shooting is carried out using floating-point arithmetic, errors
may occur, and we could get a false result. Hence, using the same method that we
applied in the computation of Err (Section 5.4), we will compute the error of the line-
circle intersection point, denoted by Err′ (in this case, there is no need to multiply by
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√
2). We will first check that p is not nearly tangent to any circle in the arrangement,

if this is the case — we will reject this query (because the perturbation eliminates
near tangencies, this could never be the case for the “islands adjustment” stage of the
DCEL construction). In the “islands adjustment” stage, we ignore the circles that
belong to the island being adjusted.

Let q1 . . . qm be the intersection points that we computed during vertical ray shoot-
ing (namely the intersection points of circles in C′ with the upward vertical ray ema-
nating from p), sorted by their y coordinate, such that q1 is the closest point to p. If
the distance between q1 and q2 is at least 2Err′, then we can certify that q1 is indeed
the intersection point that we seek.

If the distance between q1 and q2 is less than 2Err′, and the distance between q1

and q3 is at least 2Err′, then the floating-point errors may cause us to switch the
order of the exact intersection points q1 and q2 (note that q1 and q2 are the only
candidates to be the point q that we seek). We can resolve this possible mis-ordering
of q1 and q2, by the following additional test. Let C ′

j be the circle associated with
q1, and let C ′

k be the circle associated with q2. C ′
j and C ′

k partition the plane into at
most four distinct regions:

• Λ1 — The region which is outside both circles.

• Λ2 — The region which is inside both circles.

• Λ3 — The region which is inside C ′
k and outside C ′

j.

• Λ4 — The region which is inside C ′
j and outside C ′

k.

Hence, we can check to which region the query point p belongs, and verify that
the result is consistent with the ordering of q1 and q2 (recall that, we first check that
p is not nearly tangent to any circle in the arrangement). Figure 6.11 exemplifies this
case.

We shall now describe a method that will allow us to verify that for a specific
floating-point precision and specific M and ξ values (M and ξ were described in
previous chapters), there can be no configuration in which the distance between q1

and q3 is less than 2Err′ (thus, only the case where q1 and q2 switch order may occur,
which we already know how to resolve).

The idea is to transform each circle C ′
i ∈ C′ into an annulus Ai with the same

center as C ′
i and radii max(0, Ri − Err′) and Ri + Err′. We need to prove that

three annuli cannot intersect in a common point. Recall that during the perturbation
process, we make sure that around each exact intersection point, we can inflate a
disk of radius Err, that no other circle is allowed to intersect (this is the Circle -
Intersection point test, Section 5.4).

For two circles, C ′
k and C ′

j , denote by p1 and p2 their two exact intersection
points, and by D1 and D2 the disks of radius Err − Err′ inflated around p1 and p2.
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C ′
kC ′

j

Λ2

Λ4 Λ3

p

q1

q2

Λ1

Figure 6.11: Due to the mis-ordering of q1 and q2, p could be falsely judged to be in
the face that lies in the region Λ3. Yet, testing p would reveal that it is in fact in the
region Λ1, and the ordering of q1 and q2 can be corrected.

We need to prove that the intersection of Ak and Aj lies completely in D1 and D2.
In the following lemma, we shall describe a construction that yields a bound on the
diameter of the circumcircle that contains the intersection of Ak and Aj (around one
of the intersection points of C ′

j and C ′
k).

Lemma 7 For a given floating-point precision and specific M and ξ values, let C1

and C2 be circles with X1 := − ξ

2
, X2 := ξ

2
, Y1 := 0, Y2 := 0, R1 := M, R2 := M . The

diameter of the circumcircle that contains the intersection of A1 and A2 (around one
of the intersection points of C1 and C2) is a bound on all such diameters.

Proof. Given two circles, Cj and Ck, without loss of generality we shall only concern
ourselves with one of their intersection points, denoted by r. Denote by lj (resp. lk)
the tangent line to Cj (resp. Ck) at r (Figure 6.12 (a)). We observe the following:
The diameter of the circumcircle that contains the intersection of Ak and Aj around
r increases as the angle between lk and lj decreases (Figure 6.12 (b)). If the centers
of two equal radii circles are an infinitesimal distance apart, then the angle between
the tangent lines is infinitesimal small. If we move the centers such that they are
ξ apart, then the angle will increase. Any further separation will only increase the
angle. On the contrary, increasing the radii of the circles will decrease the angle. If
the circles are not of equal radii, then increasing the smaller radius will decrease the
angle. Hence, we conclude that the construction given in the lemma, causes the angle
between the tangent lines lk and lj to be the smallest, thus maximizing the diameter
of the circumcircle. �
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Figure 6.12: (a) The dashed circle is the circumcircle that contains the intersection
of Aj and Ak around the point r. (b) The diameter of the circumcircle that contains
the intersection of Aj and Ak increases as the angle between lk and lj decreases (Ck

has been rotated around r).

Thus, after we are given specific values for the floating-point precision and specific
M and ξ values, we can compute the bound Err′′ on the circumcircle’s diameter, and
we check that the following holds:

Err′′ ≤ Err − Err′ (6.1)

(the circumcircle whose diameter we have bounded, must contain r).

If Inequality 6.1 fails to hold, then we should either decrease the value of M , or
increase the floating-point point precision or the value of ξ. If Inequality 6.1 does
hold, then the point-location mechanism that was described above could be used.

Remark. The computation of Err′′ should be done using exact computation (or
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by using one of the floating-point error bounding methods that we have described).
For a specific precision and M and ξ values, this computation needs be done just
once, as an offline processes. Mathematical software (such as Mathematica or Maple)
can be used to perform it.
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Chapter 7

Experimental Results

In this chapter we report on experimental results with our implementation of the
perturbation scheme that was described above. We implemented the perturbation
scheme as a set of C++ classes. We also implemented the DCEL construction (Doubly
Connected Edge List, see [8, Chapter 2] for details on this data structure) with the
simple point-location mechanism described in Chapter 6. After the perturbation, our
program assumes that the circles are in general position, thus it avoids handling the
different special cases, that would have been needed to handle degenerate inputs.

As was already stated in Section 4.2, the bound on δ that we computed in Chap-
ter 4 is crude. As a heuristic, in our implementation, we first set δ to be 2ε. After a
constant number of failed attempts to find a valid placement for the currently inserted
circle, we set δ := 2δ and again, after a constant number of failed attempts, we set
δ := 2δ, until we find a valid location for the current circle. Thus, we may end up at
the bound that was computed in Chapter 4 after ⌈log2

δ
ε
⌉ attempts. So, the running

time may increase by a multiplicative factor of O(log δ) (notice that ε is independent
of the input size n).

We have tested our program on several inputs :

• grid, a grid of 320 circles, which involves many inner and outer tangencies
(Figure 7.1 (a)),

• flower, a “flower” composed of 40 circles, all intersecting in a common point
(Figure 7.1 (b)),

• rand sparse, a collection of 40 random circles (Figure 7.2 (a)),

• rand 100, a collection of 100 random circles (Figure 7.2 (b)),

• rand 1000, a collection of 1000 random circles (Figure 7.3 (a)),

• rand 2000, a collection of 2000 random circles (Figure 7.3 (b)), and

• rand 10000, a collection of 10000 random circles.

63
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The first two data sets, grid and flower are highly degenerate, rand sparse

and rand 100 are two types of random data sets (the parameters of each circle were
chosen randomly). The last three inputs consist of huge (several thousands circles)
random data sets (again, the parameters of each circle were chosen randomly).

For the random data sets, all the input parameters are given as integers (to “pro-
mote” degeneracies). The properties of each input data set are given in Table 7.1. The
results of the perturbation and running times for those inputs are give in Table 7.2,
with the IEEE double number type and the bound ε computed using M = 1000 and
ξ = 0.03. The tests have been performed on an Intel Pentium III 1 GHz machine
with 2 GB RAM, operating under Linux Redhat 7.3 using gcc 2.95.3. Table 7.3 shows
the number of near degeneracies that were handled for each input (in a single run
of the algorithm). Table 7.4 shows the properties of the DCEL structures that were
computed for each input (in a single run of the algorithm).

Notice that for the flower input, the largest perturbation has occurred although
the input contains only 40 circles. The reason lies in the fact that circle Ci adds
2(i−1) new intersection points many of them very close to the center of the “flower”.
For the last circles there are already ≈ 1000 existing intersection points, which forces
the newly added intersection points (induced by those last circles) to be rather far
from the center of the “flower”.

We have also constructed an additional data set, mini example, which contains
four circles (Figure 7.4). The parameters of those circles are given in Table 7.5.
Although the circles are in general position even without the perturbation, the DCEL
construction fails, due to an error in the point-location mechanism (it falsely finds
an intersection point tha lies below the query point). When the perturbation is
applied, the DCEL is constructed correctly. This example illustrates the importance
of handling the robustness issues, that arise from the use of finite precision arithmetic.

Remark. The fifth column of Table 7.3 shows that for all the examples, degeneracy
of type 4 (the centers of two intersecting circles are too close) was not detected. Notice
that this not always the case, as is shown in the simple example, whose data is given
in Table 7.6. However, it appears that in many cases, resolving degeneracy of type 2
(inner tangency) also eliminates degeneracy of type 4.
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Name n R M − ∆
grid 320 10 140
flower 40 100 100

rand sparse 40 20 100
rand 100 100 49 100
rand 1000 1000 100 1000
rand 2000 2000 100 1000
rand 10000 10000 35 1000

Table 7.1: n denotes the number of circles, R denotes the maximum radius and M−∆
is the maximum input size minus ∆.

(a) (b)

Figure 7.1: (a) A grid of 320 circles, which involves many inner and outer tangencies.
(b) A “flower” composed of 40 circles, all intersecting in a common point (the origin).

(a) (b)

Figure 7.2: (a) A collection of 40 random circles. (b) A collection of 100 random
circles.
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(a) (b)

Figure 7.3: (a) A collection of 1000 random circles. (b) A collection of 2000 random
circles.

name avg. max. var. p time t time
grid 0.1122 0.6320 0.0101 0.1060 0.1140
flower 1.0359 4.2529 0.9586 0.1280 0.1360

rand sparse 0.0424 0.0493 0.0000 0.0000 0.0020
rand 100 0.0597 0.4017 0.0044 0.1100 0.1300
rand 1000 0.0497 0.3994 0.0015 0.4000 0.5560
rand 2000 0.1815 1.0856 0.0070 2.1540 2.8040
rand 10000 0.3412 1.4527 0.0172 6.3560 9.4780

Table 7.2: Avg. denotes the average perturbation size, max. denotes the maximum
perturbation size, var. denotes the perturbation variance, p time denotes the time of
the perturbation (in seconds) and t time denotes the total (perturbation and DCEL
construction) time (in seconds). All the given results are from averaging the results
of 5 tests for each input.

Name type 1 type 2 type 3 type 4 total
grid 137 31 94 0 262
flower 0 0 4701 0 4701

rand sparse 2 0 0 0 2
rand 100 1 5 80 0 86
rand 1000 6 2 169 0 177
rand 2000 7 4 2222 0 2233
rand 10000 229 150 14850 0 15229

Table 7.3: The number of near degeneracies that were handled for each input (in a
single run of the algorithm).
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Name #vertices #halfedges #faces
grid 1324 5296 1326
flower 1490 5960 1492

rand sparse 110 458 121
rand 100 3566 14266 3569
rand 1000 28342 113404 28362
rand 2000 110790 443220 110822
rand 10000 346954 1388506 347301

Table 7.4: The properties of the arrangements that were computed for each input (in
a single run of the algorithm).

(a) (b)

Figure 7.4: (a) A collection of four circles, whose parameters are given in Table 7.5.
(b) A similar arrangement, yet with different parameters, such that the structure of
the arrangement is more evident.

i Xi Yi Ri

1 1000.000000 1000.000000 1000
2 1000.000001 1000.000000 1000
3 1000.000000 1000.000001 1000
4 1000.000001 1000.000001 1000

Table 7.5: The parameters of the circles in mini example, the example in Figure 7.4.

i Xi Yi Ri

1 0.0 0.0 1000
2 0.02 0.0 1000

Table 7.6: The parameters of the circles that will cause a degeneracy of type 4 to
arise, when using the IEEE double number type and the bound ε computed using
M = 1000 and ξ = 0.03.
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Chapter 8

Discussion

In this chapter we discuss certain key aspects of the scheme and insights that we
gained throughout the work.

The Resolution Bound. As was already stated, there are two key parameters
that govern the perturbation scheme — the resolution bound and the perturbation
bound. The perturbation bound is important (as described in the next item), yet the
resolution bound is crucial, since it certifies the correctness of the arrangement, thus
allowing us to create a robust algorithm, which is our main goal in this work.

For a given predicate, it should be clear that the resolution bound is not sim-
ply the size of the maximal error when evaluating this predicate with floating-point
arithmetic. In fact, computing the resolution bound requires a careful understanding
of the geometry behind the predicate. In some cases, finding a geometric interpreta-
tion that will suit our perturbation scheme, could force us to use a more complicated
predicate with a possibly larger maximal error.

For example, we could use the following method to devise a predicate for detecting
degeneracy of type 3: Given the circles Ci,Cj and Ck, denote by Lij (resp. Lik) the
radical axis of Ci and Cj (resp. Ci and Ck). If the intersection point p of Lij and
Lik lies on Ci, then the degeneracy occurs (Figure 8.1). The advantage of such a
predicate, is that it is fairly easy to compute the radical axis of two circles, thus the
error of such an expression would be relatively small. Yet, deriving the resolution
bound in this case seems highly non-trivial.

Using the Perturbation Bound. Recall that, in our implementation, we start
by setting δ := 2ε, and increase it until we succeed in finding a valid placement for
the currently inserted circle. Thus, we did not really use the perturbation bound,
as it was described in Chapter 4. Yet, the perturbation bound is important for the
following reasons:

• Since it is a key parameter in the controlled perturbation scheme, it is interesting
from a theoretical point of view.
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p
Cj

Ck

Ci

Lik

Lij

Figure 8.1: If the intersection point p of Lij and Lik lies on Ci, then degeneracy of
type 3 occurs.

• If an application requires a certain level of accuracy, the perturbation bound
can be used to predetermine the length of the mantissa needed to achieve that
accuracy.

• It is used to establish the expected running time of the algorithm.

Number Type Selection. In this work, we have handled arrangements of cir-
cles. The handling of this type of arrangements using finite precision arithmetic is
considered difficult, and no “complete” solution is known. Our algorithm with the
standard IEEE double, still yields reasonable results. If it does not, then given a
required accuracy, we can predetermine the length of the mantissa needed to achieve
that accuracy. There are several available libraries that provide number types with
a specified length of mantissa (for example, Gmp [17], Core [26] and Leda [28]).
Notice, that there is no need to increase the length of the mantissa during run time. It
appears, that for arrangements of more complicated objects (i.e., conics or algebraic
curves) such libraries should be used.

Separation Bounds. A number α ∈ R is called an algebraic number if there exist
integers α0, . . . αd such that α is a root of the polynomial p(x) =

∑d

k=0 αkx
k. The

Leda [28] and Core [26] libraries both allow the use of an algebraic number type.
The number is represented internally using an expression DAG whose inner nodes
represent binary or unary operations, and whose leaves represent constant integers
(the input operands). Each k

√
� node is given a weight of k, and all other nodes are

given a weight of 1 (Figure 8.2).

To devise a robust algorithm using the exact computation paradigm, it is crucial
that all comparisons between two algebraic numbers are carried out accurately. Given
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√

××

+

x y

Figure 8.2: An expression DAG representing the expression
√

x2 + y2. In this DAG
the root has weight 2, whereas all the other nodes have weight 1.

two expressions E1 and E2 we can determine if E1 > E2, E1 < E2 or E1 = E2 by
evaluating the sign of the expression E1 − E2. Hence, we require an accurate sign
evaluating operation. Such accurate sign evaluation of DAG expressions can be done
using the separation bound theory. The separation bound is an easily computable
function such that any non-zero expression E is lower bounded by it. A detailed
explanation of this theory is given in [6].

It is interesting to investigate what would be the separation bound needed in the
construction of arrangements of circles. The most elementary operation, needed in a
naive construction of such arrangements, it to compute the intersection points of two
circles, and perform some comparison operations with those points later on. Using
Eq. 5.7 to compute those intersection points, a comparison operation which involves
such points would yield a separation bound that requires 17 log N bits, where N is the
maximal integer number allowed (log N is the number of bits required to represent
N). In our implementation we use a floating-point number with mantissa of length p,
thus the separation bound would be at least 17p (notice however, that using such a
separation bound will allow us to compute with far greater resolution). As a concrete
example, for the standard double number type, p is 53, so the separation bound would
require 901 bits.
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Chapter 9

Conclusions

Controlled perturbation was presented several years ago, and was already applied
to certain types of arrangements. The main contribution of the current work is the
derivation of a good (small) resolution bound, that is, a bound on the minimum
separation of features of the arrangement that is required to guarantee that the pred-
icates involved in the construction can be safely computed with the given (limited)
precision arithmetic. A smaller resolution bound leads to smaller perturbation of the
original input. We implemented the perturbation scheme and the construction of the
arrangement.

There are still many further research directions, that could shed further light on
the controlled perturbation scheme. Among those directions:

• Optimal insertion ordering. In the controlled perturbation scheme, we insert
the objects (in our case, circles) one by one. Is there an optimal insertion order?
optimal in the sense of minimizing the perturbation size, or in the sense of
reducing the running time.

• Arrangements of unbounded objects. In the work that was done so far
on controlled perturbation (including the current work), the arrangements that
were handled were of bounded objects (i.e., spheres, circles, segments and poly-
hedra). The handling of arrangements of unbounded objects (such as lines),
raises some new difficulties in the computation of the resolution bound and the
perturbation bound. For example, in arrangements of lines, the intersection
points can be arbitrarily far from the origin, hence, their coordinate values can
be very large.

• Arrangements of algebraic curves (Figure 9.1). Some of the ideas pre-
sented in this work, could be a starting point for applying controlled perturba-
tion to arrangements of more complicated algebraic curves. Algebraic curves of
high degree are much more difficult to handle than circles and circular arcs (e.g.,
computing the intersection points), so advanced techniques would be needed in
the computation of the resolution bound and the perturbation bound.
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Figure 9.1: An arrangements of algebraic curves.

• Applying controlled perturbation to other types of geometric algo-
rithm. Thus far, controlled perturbation was applied only for algorithms that
construct arrangements. It appears that controlled perturbation could also be
applied to other types of geometric algorithms such as convex hull computa-
tion, triangulations and Voronoi diagrams construction (see Appendix B for an
example).



Appendix A

Extension I: Arrangements of
Circular Arcs

In this appendix, we describe how our perturbation scheme can be extended to allow
the construction of arrangements of circular arcs (Figure A.1). Such arrangements
are a generalization of the arrangements that we dealt with in the thesis. We propose
an “easy” extension (requiring only minor modifications in the algorithm that was
presented for full circles) which has some drawbacks, that we will mention below.

Figure A.1: An arrangement of circular arcs.

We start by examining the possible degeneracies. There are four1 types of degen-
eracies in an arrangement of circular arcs (the first three also arise in the case of full
circles):

1. An outer tangency between two arcs.

2. An inner tangency between two arcs.

1We are not including the degeneracy that occurs when the centers of the underlying circles are
too close, although we do take it into consideration in our solution (through degeneracy of type 3).
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3. Three arcs intersect in a common point.

4. The endpoint of an arc lies on another arc (Figure A.2).

Figure A.2: An arrangement of circular arcs with degeneracy of type 4.

Define an arc Ai by its underlying circle Ci and its two endpoints P 1
i and P 2

i .
We assume that the arc is oriented clockwise, going from P 1

i to P 2
i . We specify an

endpoint by its x coordinate, and then we compute the y coordinate (similarly, one
can start from the y coordinate). That is, we compute the y coordinates using the x
coordinates.

In order to build the arrangement A′ of the perturbed arcs A′
i, i = 1 . . . n, we

will use the efficient circles perturbation algorithm that was given in Section 6.1 (we
will refer to it as the circles perturbation algorithm), as follows. For each arc Ai

that we add, we first insert its end-points P 1
i to P 2

i to the appropriate binary trees
(the upper/lower/left/right tree) of its underlying circle Ci. We then add Ci to the
arrangement, while keeping the information of the arc Ai. This arrangement can be
regarded as the one that we described for full circles, enhanced with the information
on the arcs (e.g., for each arc we need to know which of the points in its binary trees
indicate the first and second endpoints). If an arc Ai needs to be perturbed, we will
translate it by relocating the center of its underlying circle Ci, and re-computing the
endpoints P 1

i and P 2
i (Figure A.3). Notice however, that when we apply the circles

perturbation algorithm, we also account for the degeneracies that occur, when the
centers of the underlying circles are too close.

After inserting all the arcs, we proceed with the construction of the DCEL struc-
ture, in a similar manner to the one that was describe in Section 6.2. Notice, that the
DCEL construction process should be adjusted, such that it will build the arrange-
ment of arcs (and not the underlying circles). We omit the straightforward details of
this modification here.

Remark. We would also need to slightly modify the computation of δ, to take into
account the forbidden regions implied by the arcs end-points.

We now prove the following lemma:

Lemma 8 Using the perturbation algorithm that was described in Section 6.1, with
the modifications described above, allows us to robustly construct arrangements of
circular arcs.



77

Aj

Ai

Aj

Ai

(a) (b)

Figure A.3: (a) The arcs Ai and Aj are in a state of outer tangency (the underlying
circles are dashed). (b) The arc Aj is perturbed to avoid the degeneracy.

Proof. We shall prove the lemma by showing that each degeneracy is handled cor-
rectly by the circle perturbation algorithm.

For two arcs A′
i and A′

j , outer and inner tangencies would imply that their un-
derlying circles Ci and Cj are in a tangent state. The circle perturbation algorithm
assures us that there will be no such tangencies.

Similarly, if three perturbed arcs A′
i,A

′
j and A′

k intersect in a common point, then
so do their underlying circles Ci,Cj and Ck. Again, The circle perturbation algorithm
assures us that no three circles intersect in a common point.

In order for degeneracy of type 4 to occur (where the endpoint of an arc lies on
another arc) for two arcs A′

i and A′
j , the involved endpoint must lie on the intersection

point of the underlying circles Ci and Cj. The error of the computation of the end-
points P 1

i and P 2
i (also after possible perturbation of the underlying circle) is at a

much smaller scale than that of the circle-circle intersection point error Err that was
computed in Section 5.4 (computing the x coordinates involves just one addition or
subtraction operation, and the extraction of the y coordinate from the circle equation
is also easier than the circle-circle intersection). Thus, we can imagine that we inflate
a disk of radius Err around all the arcs end-points, and the same analysis that we
employed in Section 5.4 could be applied here. In other words, we regard P 1

i and
P 2

i as circle-circle intersection points, so the circles perturbation algorithm will verify
that they will not lie too close to any arc-arc intersection points (their disks will not
overlap). �

There are obvious drawbacks to this simple approach. First, there can be unneces-
sary perturbation. Since we base our tests on the underlying circles, we might falsely
deduce that there is a degeneracy between the arcs. Such a false degeneracy is illus-
trated in Figure A.4. However, the measure of the perturbation is still bounded by
∆. The second drawback is that the arrangement of the underlying circles can have a
larger complexity than the arrangement of arcs (Figure A.5). Yet, both arrangements
have the same worst-case asymptotic complexity.
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Aj

Ai

Figure A.4: Since we base our tests on the underlying circles, we might falsely deduce
that there is a degeneracy between the arcs.

Figure A.5: The arrangement of the underlying circles can have a larger complexity
than the arrangement of the arcs.



Appendix B

Extension II: Delaunay
Triangulation and the Incircle
Predicate

Given a set of points P in the plane, the unique triangulation T that satisfies the
property that for each triangle, its circumcircle contains no other points of P, is called
a Delaunay triangulation (Figure B.1). The Delaunay triangulation satisfies several
important properties:

1. It is the dual of the Voronoi diagram of P.

2. It is related to the three dimensional convex hull of a lifted copy of P.

3. It maximizes the minimum angle among all the possible triangulations of P.

Delaunay triangulations play a fundamental role in many applications in com-
puter graphics, computational geometry, CAD/CAM and more. Much work has been
done to find efficient algorithms to compute the Delaunay triangulation. An experi-
mental comparison of a number of different algorithms for computing the Delaunay
triangulation is given in [39].

In this appendix we will focus on the randomized incremental construction al-
gorithm [19] (the algorithm is also described in [8, Chapter 8]). This algorithm
takes expected O(n log n) time. This algorithm (like numerous other algorithms)
uses the incircle predicate. Given three points p1, p2 and p3 and a query point q,
the incircle predicate tells if the point q is inside of the circle defined by p1, p2 and
p3 (Figure B.2). A degeneracy occurs when q lies on the circumcircle. To avoid such
a degeneracy we shall move q to be at least ε away from the circumcircle. Notice
that applying controlled perturbation to the randomized incremental construction al-
gorithm is not a trivial matter. In fact, doing the perturbation while maintaining the
expected O(n log n) time (without any assumptions on the input) remains an open
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Figure B.1: A Delaunay triangulation.

question for future research. Here we will only show how to derive a resolution bound
for the incircle predicate.

p1

p2

p3

q

Figure B.2: Given three points p1, p2 and p3 and a query point q, the incircle

predicate tells if the point q is inside of the circle defined by p1, p2 and p3 (which is
the circumcircle of the triangle defined by p1, p2 and p3).

The Resolution Bound for the Incircle Predicate

For a point pi, denote by Xi and Yi its x and y coordinates. Given three input points
p1,p2,p3 and a query point pi, the expression E that we use in evaluating the incircle
predicate is defined as follows [30]:
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E =

∣∣∣∣∣∣∣∣

1 Xi Yi X2
i + Y 2

i

1 X1 Y1 X2
1 + Y 2

1

1 X2 Y2 X2
2 + Y 2

2

1 X3 Y3 X2
3 + Y 2

3

∣∣∣∣∣∣∣∣
. (B.1)

We will use the method described in [15] to compute a bound B on the worst case
error of E (the bound on the worst case error is achieved when we use the maximum
size allowed for all the operands). An ε separation is needed when

|Ẽ| ≤ B .

where Ẽ is the floating-point approximation of E.

In that case, we will move the query point by εx on the x axis and by an εy on
the y axis. We define E(εx, εy) as

E(εx, εy) =

∣∣∣∣∣∣∣∣

1 Xi + εx Yi + εy (Xi + εx)
2 + (Yi + εy)

2

1 X1 Y1 X2
1 + Y 2

1

1 X2 Y2 X2
2 + Y 2

2

1 X3 Y3 X2
3 + Y 2

3

∣∣∣∣∣∣∣∣
.

As in the case of the predicates for arrangements of circles, we wish that |E(εx, εy)| >

2B will hold (instead of | ^E(εx, εy) > B|, where ^E(εx, εy) is the floating-point approx-
imation of E(εx, εy)). Expanding E(εx, εy) we can restate the last requirement

|E−εx

∣∣∣∣∣∣

1 Y1 X2
1 + Y 2

1

1 Y2 X2
2 + Y 2

2

1 Y3 X2
3 + Y 2

3

∣∣∣∣∣∣
+εy

∣∣∣∣∣∣

1 X1 X2
1 + Y 2

1

1 X2 X2
2 + Y 2

2

1 X3 X2
3 + Y 2

3

∣∣∣∣∣∣
−(2Xiεx+ε2

x+2Yiεy+ε2
y)

∣∣∣∣∣∣

1 X1 Y1

1 X2 Y2

1 X3 Y3

∣∣∣∣∣∣
| > 2B .

(B.2)

Define D =

∣∣∣∣∣∣

1 X1 Y1

1 X2 Y2

1 X3 Y3

∣∣∣∣∣∣
,G =

∣∣∣∣∣∣

1 Y1 X2
1 + Y 2

1

1 Y2 X2
2 + Y 2

2

1 Y3 X2
3 + Y 2

3

∣∣∣∣∣∣
and G′ =

∣∣∣∣∣∣

1 X1 X2
1 + Y 2

1

1 X2 X2
2 + Y 2

2

1 X3 X2
3 + Y 2

3

∣∣∣∣∣∣
.

After rearranging terms we get

| − (ε2
x + ε2

y)D − εx(G + 2XiD) + εy(G
′ − 2YiD) + E| > 2B . (B.3)

Lemma 9 Let ε =
√

ε2
x + ε2

y. The ε needed so that Inequality B.3 will hold is

ε > (5BD−1)
1

2 . (B.4)

Proof. First, we can assume that D−1 > 0 (if not then we will swap X1 and Y1 with
X2 and Y2). We plug (B.4) into the ε2

x + ε2
y term of (B.3)

| − ((5BD−1)
1

2 )2D − εx(G + 2XiD) + εy(G
′ − 2YiD) + E| > 2B .



82 Appendix B. Extension II: Delaunay Triangulation and the Incircle Predicate

We will now prove that the following holds

| − 5B − εx(G + 2XiD) + εy(G
′ − 2YiD) + E| > 2B .

We can take εx and εy with the appropriate signs such that the following will hold:

| − (5B + C1 + C2) + E| > 2B . (B.5)

where C1 ≥ 0 and C2 ≥ 0. C1 is due to the multiplication involving εx and C2 is due
to the multiplication involving εy. Removing the absolute value from the left-hand
side of Inequality B.5, we get:

−(5B + C1 + C2) + E < −2B . (B.6)

Multiplying both sides of Inequality B.6 by −1, we get:

5B + C1 + C2 − E > 2B . (B.7)

Since we assumed that |E| ≤ 2B, and C1 ≥ 0 and C2 ≥ 0, we conclude that Inequal-
ity B.7 holds, which completes our proof. �

Notice that D is twice the area of the triangle t implied by the points p1,p2 and
p3. The fact that ε depends on D−1 means that we should set a bound on the
minimal area of t. If such a bound is not known in advance, we should certify it using
additional predicates. In fact, there is a resemblance to the case of degeneracy of type
3 in the case of arrangements of circles (three circles intersecting in a common point),
for which we had to define an additional predicate, which assured that degeneracy of
type 4 (the centers of two intersecting circles are too close) does not occur.

Remark. The ε that we found is proved for just one quarter of the disk which δ
defines around the original point p (since we need to take the appropriate signs of εx

and εy). That is, there is just one quarter of the disk in which moving the point by
an amount of ε will indeed cause the predicate to be evaluated correctly.
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