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Riddle

Given two Roomba’s, each has to move from given start
to goal positions, in a room without obstacles. What are
the joint shortest paths (minimum total length)?
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Talk overview

* The Piano Movers
* My favorite Micha paper

* CGAL arrangements and Micha

* CG and Robotics: a tale of two cultures
 Sampling based planners: a parallel universe
* Optimizing fleet motion

* Final notes



The Piano Movers
by Schwartz and Sharir

1983-1986



Motion planning:
the basic problem

Let B be a system (the robot/s) with
k degrees of freedom moving in a
known environment cluttered with
obstacles. Given free start and goal
placements for B decide whether
there is a collision free motion for
B from start to goal and if so plan
such a motion.

Two key terms:
(i) degrees of freedom (dof), and
(ii) configuration space




Configuration space
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[Lozano-Perez, late 70s]




Complete solutions |

* the problem is hard when the number of
degrees of freedom (# dofs) is part of the input
[Reif 79], [Hopcroft-Schwartz-Sharir 84], ...

e cell decomposition the Piano movers series
[Schwartz-Sharir 83]: a doubly-exponential solution

[LaValle]

To be continued soon



Piano Movers |:
A rod translating and rotating amidst oo i 0
polygonal obstacles in the plane
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Piano Movers I, IV, V

* General framework for solving almost any motion planning problem with
arbitrary number of degrees of freedom

e Tarski ‘51: Theoretical guarantee that problems defined by real polynomial
constraints (semi-algebraic sets) are decidable

<the first-order theory of real closed fields is decidable>

* Collins 75: Cylindrical Algebraic Decomposition (CAD), a constructive
realization of Tarski’s theory

* Put together:

e Tarski’s result implies that motion planning problems are decidable — since
configuration space obstacles can be described by semi-algebraic sets

* They use Collins” CAD as a practical method to construct decompositions of the
configuration space, which allows for path connectivity and decision procedures in
configuration spaces



Impact of the Piano Movers papers

e Robotics: Mathematical and algorithmic foundations for robot motion
planning and more generally for algorithmic robotics

e Computational Geometry: Opens up to the real, curved world
(previously almost exclusively linear), arrangements of curves and
surfaces



Complete solutions |l

* the problem is hard when the number of
degrees of freedom (# dofs) is part of the input
[Reif 79], [Hopcroft-Schwartz-Sharir 84], ...

* cell decomposition the Piano movers series
[Schwartz-Sharir 83]: a doubly-exponential solution

e roadmap [Canny 87], [Basu-Pollack-Roy]:
a singly-exponential solution

* few dofs, the Sharir school: very efficient, near-optimal, solutions (mid 80s
— mid 90s)



Few degrees of freedom:
The piano movers school, mid 1980s — mid 1990s

* The robot has fixed descriptive complexity

* The obstacles have complexity n (e.g., # of vertices of the polygons)

2 degrees of freedom

* The configuration space is a 2D arrangement of well-behaved curves
* Hence the complexity of the full C-space is O(n?)



2 dofs, optimal combinatorial results

* If the robot is convex (translation), the complexity of the entire C-
space is 0(n)
Klara Kedem, Ron Livne, Janos Pach, Micha Sharir: On the Union of Jordan

Regions and Collision-Free Translational Motion Amidst Polygonal Obstacles.
Discret. Comput. Geom. 1: 59-70 (1986)

e Otherwise (general), the complexity of a single free cell in C-space is
near-linear <Davenport-Schinzel related functions>, e.g. O (na(n))

Leonidas J. Guibas, Micha Sharir, Shmuel Sifrony: On the General Motion-
Planning Problem with Two Degrees of Freedom. Discret. Comput. Geom. 4:
491-521 (1989)



My tfavorite Micha paper



3 dofs, combinatorics

* The configuration space is a 3D arrangement of well-behaved surfaces
* Hence the complexity of the full C-space is 0(n>)

Expectations

* If the robot is convex, the complexity of the entire C-space would be
near-quadratic

e Otherwise, the complexity of a single free cell in C-space would be
near-quadratic



Discrete Comput Geom 2:255-270 (1987)

Geometry

i©) 1987 Springer-Verlag New York

On the Number of Critical Free Contacts of a Convex Polygonal
Object Moving in Two-Dimensional Polygonal Space*

Daniel Leven' and Micha Sharir'**

! School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

? Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012, USA

Abstract. We show that the number of critical positions of a convex polygonal

object B moving amidst polygonal barriers in two-dimensional space, at which it .
makes three simultaneous contacts with the obstacles but does not penetrate into * %2
any obstacle is O(knA,(kn)) for some s=6, where k is the number of boundary i .
segments of B, n is the number of wall segments, and A,(q) is an almost linear , Fo, 05
function of g yielding the maximal number of “breakpoints” along the lower i :

envelope (i.e., pointwise minimum) of a set of g continucus functions each pair of 6 ¢

which intersect in at most s points (here a breakpoint is a point at which two of (a) (b}

the functions simultaneously attain the minimum). We also present an example

where the number of such critical contacts is (}(k*n?), showing that in the worst Type (iv) Critical Contacts

case our upper bound is almost optimal.



How about 3D work space?

s 4 |
 What is the combinatorial complexity of the free C-space for a convex
polyhedron translation among polyhedral in 3-space?

e Orjust a box?

* Box: 0(n“a(n))
Dan Halperin, Chee-Keng Yap: Combinatorial Complexity of Translating a Box in
Polyhedral 3-Space. SoCG 1993: 29-37 applying Leven-Sharir ‘87 as above

* Convex polyhedron among k convex polydedra (n is tricky): O(nk logk)

Boris Aronov, Micha Sharir: On Translational Motion Planning of a Convex Polyhedron
in 3-Space. SIAM J. Comput. 26(6): 1785-1803 (1997)



CGAL arrangements and Micha
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e Computational Geometry Algorithms Library

* A collection of software packages written in C++
* Adheres the generic programming paradigm

* Development started in 1995

* Funded by a succession of EU projects

* An open source library




The arrangement package and its relatives

* Arrgs of curves on
2D surfaces

* Boolean operations S
on curved objects

Ron Wein

* Minkowski sums (GAL
| Arrangements
* Lower envelopes in and Their

3D Applications

A Step-by-Step Guide

_@_ Springer



Lessons from Micha

* Arrangements
e Separate the topology (combinatorics) from the algebra

* Vertical decomposition

In practice:
general CG algorithms and data structures for well-behaved curves

together with
Computational algebra toolbox for curves, Exacus (Mehlhorn et al) then CGAL



we two _cultures
scientific rgglution

CG and robotics:
A tale of two cultures

and the rise of SB planners



A meeting at ADEPT in 1993

* Silicon valley
* Jean-Claude Latombe, Ken Goldberg, Brian Carlisle, ...

* The topic: The future of robotics

 Crisis, robotics winter

 Computational geometry summer (gliding toward autumn)
* 12 problems to work on in robotics

[CASE 2015] P [Omron offices 2018]



Two events in 1994

e Bernard Chazelle’s speech of admonishment (SoCG)

Does Computational Geometry Have A Future?

BERNARD CHAZELLE

Department of Computer Science
Princeton University
Princeton, NJ 08544, USA
chazelle@cs.princeton.edu

impressed that CG has something to teach them.
There’s still no comprehensive geometric software
library. Evety programming effort must start from

I believe that we, CG’ers, need to initiate a serious
debate regarding the future of our field, in general, and

the ACM CG conference, in particular.

The last few years have witnessed impressive ad- scratch. Most geometric codes are still intended
vances in CG on the theoretical front. There are smarter as existence proofs, with little or no follow-up on
people working in CG today than at any time before. the user end. There are, as you well know, several

first-rate projects going on now to turn this around,

The community can take collective credit for its sus-
tained focus and its success in providing CG with solid
foundations. In the area of algorithms and data struc-

but these are still by and large individual, scattered
efforts. ’

 The first WAFR



WAFR: Algorithmic Foundations of Robotics, 1994

. f * Micha Sharir e Jean-Claude Latombe
b e Mark Overmars * Ken Goldberg
* Richard Pollack * John Canny
* Leo Guibas * Matt Mason
e Jean-Daniel * Lydia Kavraki
Boissonnat .

computational robotics

geometry
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From the mid 1990s, a dramatic change

» Sampling-base planners appear/catch on (PRM, RRT, ...)
Roughly:

* They

e Easy to implement

* Work well for a variety of real-life problems

* Roboticists did not need complex CG algorithms anymore
* CGers did not find interest in the new simplistic’ techniques



scientific reyolution

A tale of two cultures

* The thesis of Snow’s lecture and book,1959 (ruthlessly
snipped to suit the current setting): [...] had become split
into "two cultures" and that this division was a major
handicap to both in solving the [...] problems




Very brief intro to SB planners

and their theoretical guarantees



Sampling-based planning

* Probabilistic Roadmaps illustrated






Milestones

* Probabilistic roadmaps for path planning in high-dimensional

configuration spaces [Kavraki-Svestka-Latombe-Overmars. IEEE Trans.
Robotics Autom 1996] PRM

=) « RRT-Connect: An efficient approach to single-query path planning
[Kuffner-LaValle. ICRA 2000] RRT

e Sampling-based algorithms for optimal motion planning [Karaman-
Frazzoli IJRR 2011] RRT*



Type of guarantees

* A motion planner is said to be complete if the planner in finite time
either produces a solution or correctly reports that there is none

* Probabilistic completeness is the property that as more "work" is
performed, the probability that the planner fails to find a path, if one
exists, asymptotically approaches zero

* Asymptotic optimality is the property of almost-sure convergence to
optimal solutions with increasing number of samples



Type of guarantees

complete

* Probabilistic completeness

* PC of RRT [Kleinbort-Solovey-Littlefield-Bekris-H, IEEE RA-L 2019]
* Non-optimality of bi-RRT [Nechushtan-Raveh-H, WAFR 2010]

* Asymptotic optimality

* The critical radius [Solovey-Kleinbort, RSS 2018, 1JRR 2020]
* Asymptotically near-optimal (LBT) RRT [Salzman-H, ICRA 2015, IEEE TOR 2016]



Near-optimality for MRMP with finite sampling

e Optimality criteria: the total length travelled by the robots from start to
goal, or max length travelled by a robot

* Given 0 and g, if a multi-robot motion planning has a d-clear solution then
we have a finite-sampling scheme that guarantees to find a solution that is
at most (1+ €) longer than the optimal solution

e Guarantee to find a solution within bounded time using A*, dRRT, dRRT¥,
Conflict Based Search, M* or any other tensor-product based algorithm

[Dayan-Solovey-Pavone-H, ICRA 2021,
IEEE TOR 2023]




In the d-dimensional unit cube C-space

Th(iurem 4 (Sufficient  conditions for MRMP
(¢,0)-completeness). Let ¢ > (0 be a stretch factor, let

— . E‘

0 be a clearance vector (d1, ..., 53),#311(1 denote w = )
Define the sampling distributions X = (A;,...,Xy) and
radii vector ¥ = (ry,...,TR), as

ri = 0i(e +1)/(e +2),

—

for every robot 1 < ¢ < R. Then (ﬂ? :F’) 18 (E, 5) -complete.



Underlying sampling per robot:
g-cover with staggered grids

ERRRR
Coseuy




Surprise and news
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Optimizing the coordination of
fleets of robots
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e How about 2 robots?



Riddle: MinSum

Given two Roomba’s, each has to move from given start
to goal positions, in a room without obstacles. What are
the joint shortest paths (minimum total length)?
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Riddle: MinSum

Given two Roomba’s, each has to move from given start
to goal positions, in a room without obstacles. What are

the joint shortest paths (minimum total length)?

Answer:

B

[Kirkpatrick-Liu, CCCG 2016]
2 squares: [Esteban-H-Silveira, Autonomous Robots 2025]



Open problem: MinTime

Given two Roomba’s, each has to move from given start
to goal positions, in a room without obstacles moving in
unit speed. What is the shortest time plan (makespan)?
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Open problem: MinSum with obstacles

If we add obstacles we not know how to efficiently
compute the joint length (NP-hard?)

oo
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Motion planning for (2) discs without optimization

e Jacob T. Schwartz and Micha Sharir: On the Piano Movers' Problem:
Ill. Coordinating the Motion of Several Independent Bodies: The
Special Case of Circular Bodies Moving Amidst Polygonal Barriers. The
International Journal of Robotics Research, 1983

* Micha Sharir, Shmuel Sifrony: Coordinated Motion Planning for Two
Independent Robots. Ann. Math. Artif. Intell. 3(1): 107-130 (1991)



Algorithm for optimal motion of 2 squares among
obstacles

Pankaj K. Agarwal, Dan Halperin, Micha Sharir, Alex Steiger: Near-Optimal Min-Sum Motion Planning
for Two Square Robots in a Polygonal Environment. SODA 2024: 4942-4962

* Ann%e~ %W Jogn-time (1 + &)-approximation algorithm for this
problem

* The first polynomial-time (1 + &)-approximation algorithm for an
optimal motion-planning problem involving two robots moving in a
polygonal environment




Final notes



A little history from the 1950s

* Grey Walter's tortoises

e “Codebreaker — Alan
Turing's life and legacy”
at the Science Museum
2012

* Turing’s visit to the
Science Museum 1951




1994 (WAFR established) - 2024, 2026

* Winds of change

The 16th International W

 WAFR 2026: Oulu Finland, June 15-17, 2026
e Deadline: January 15, 2026



More hard problems

*

Ten Problems in Geobotics

Mikkel Abrahamsen Dan Halperin
August 2024

Abstract

Robots sense, move and act in the physical world. It is therefore natural that
algorithmic problems in robotics and automation have a geometric component, often
central to the problem. Below we review ten challenging problems at the intersection
of robotics and computational geometry—Ilet’s call this intersection Geobotics. What is
common to most of these problems is that the prevalent algorithmic techniques used
in robotics do not seem suitable for solving them, or at least do not suggest quality
guarantees for the solution. Solving some of them, even partially, can shed light on
less well-understood aspects of computation in robotics.

0 Introduction

Robotics has persistently raised interesting problems for computational geometry. A
pioneering and exemplary case in point is the 1980s series of papers “On the Piano Movers



From a website by Nina Amenta

me = Nina Amenta:

“Here | am at a workshop
with a lot of Computational
Geometers who are taller
than | am. You can just see
my eye peeking out behind
Micha Sharir.”




Thank you Michal!

[Art by Al. Jeb Gaither using CGAL arrangements]
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