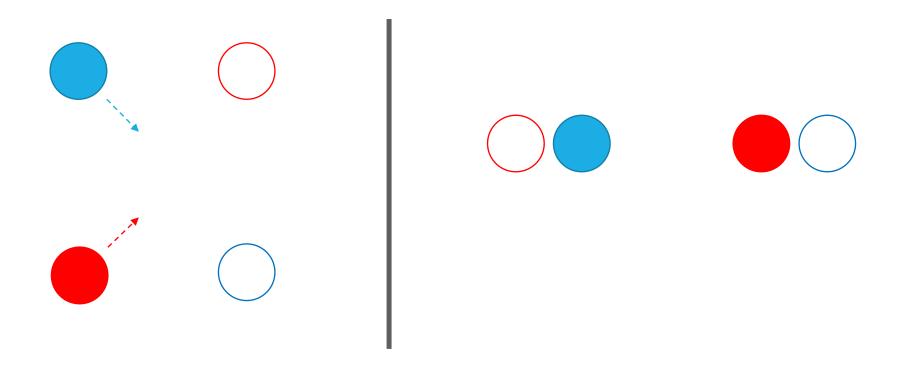


# The Piano Movers @ 40: Geometry for Robotics

Dan Halperin
School of CS and Al
Tel Aviv University

#### Riddle

Given two Roomba's, each has to move from given start to goal positions, in a room without obstacles. What are the joint shortest paths (minimum total length)?



#### Talk overview

- The Piano Movers
- My favorite Micha paper
- CGAL arrangements and Micha
- CG and Robotics: a tale of two cultures
- Sampling based planners: a parallel universe
- Optimizing fleet motion
- Final notes





# The Piano Movers by Schwartz and Sharir

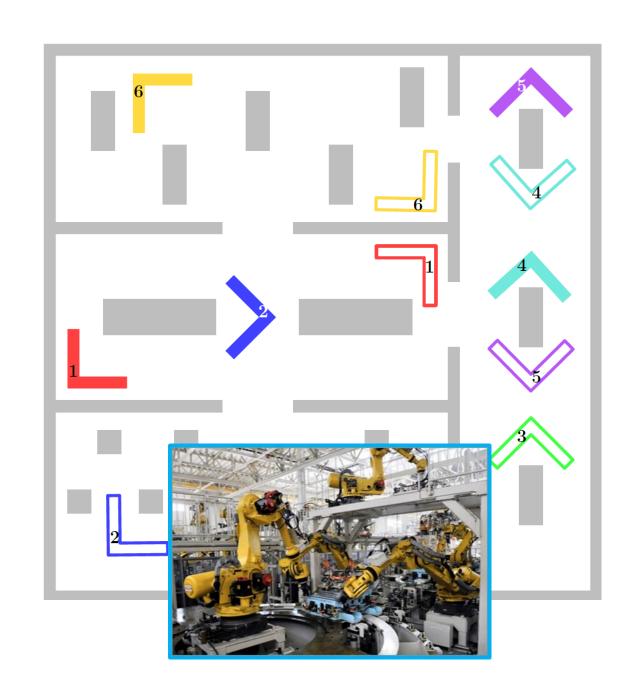
1983-1986

# Motion planning: the basic problem

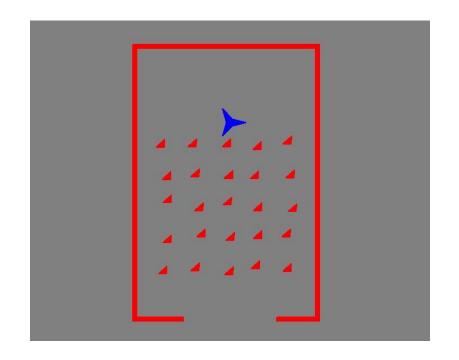
Let B be a system (the robot/s) with k degrees of freedom moving in a known environment cluttered with obstacles. Given free start and goal placements for B decide whether there is a collision free motion for B from start to goal and if so plan such a motion.

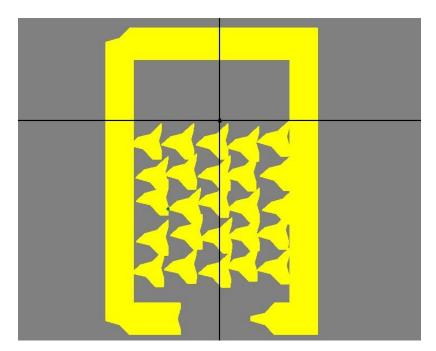
#### Two key terms:

- (i) degrees of freedom (dof), and
- (ii) configuration space



# Configuration space



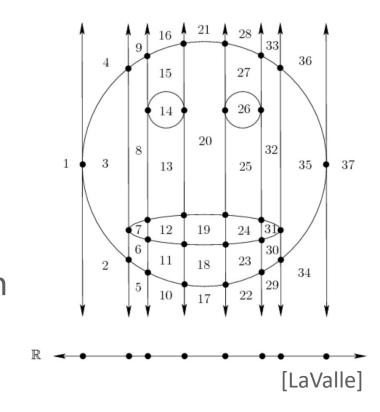


[Lozano-Perez, late 70s]

## Complete solutions I

• the problem is hard when the number of degrees of freedom (# dofs) is part of the input [Reif 79], [Hopcroft-Schwartz-Sharir 84], ...

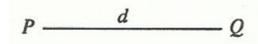
cell decomposition the Piano movers series
 [Schwartz-Sharir 83]: a doubly-exponential solution



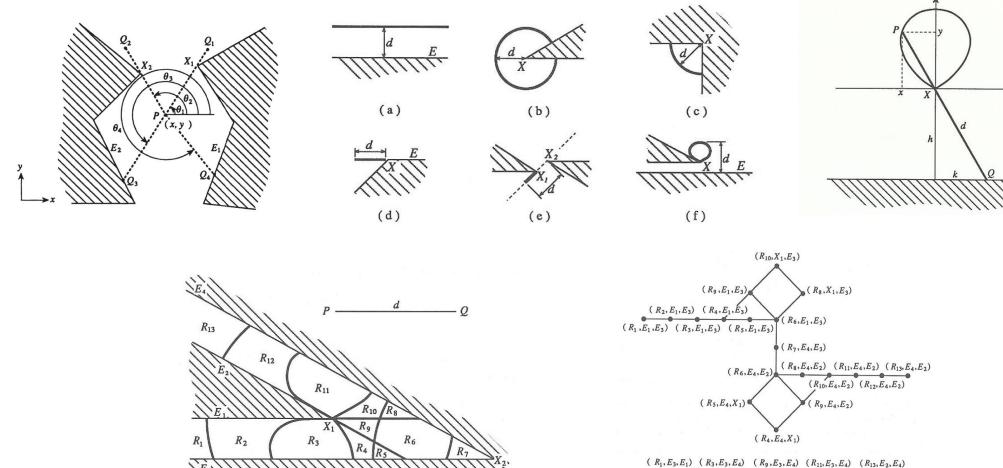
To be continued soon

#### Piano Movers I:

A rod translating and rotating amidst polygonal obstacles in the plane



 $(R_2, E_3, X_1)$   $(R_4, E_3, E_4)$   $(R_{10}, E_3, E_4)$   $(R_{12}, X_1, E_4)$ 



[Drawings: Latombe's Robot Motion book]

#### Piano Movers II, IV, V

- General framework for *solving almost any motion planning problem* with arbitrary number of degrees of freedom
- Tarski '51: Theoretical guarantee that problems defined by real polynomial constraints (semi-algebraic sets) are decidable
   <the first-order theory of real closed fields is decidable>
- Collins '75: Cylindrical Algebraic Decomposition (CAD), a constructive realization of Tarski's theory
- Put together:
  - Tarski's result implies that motion planning problems are decidable since configuration space obstacles can be described by semi-algebraic sets
  - They use Collins' CAD as a practical method to construct decompositions of the configuration space, which allows for path connectivity and decision procedures in configuration spaces

## Impact of the Piano Movers papers

- Robotics: Mathematical and algorithmic foundations for robot motion planning and more generally for algorithmic robotics
- Computational Geometry: Opens up to the real, curved world (previously almost exclusively linear), arrangements of curves and surfaces

## Complete solutions II

- the problem is hard when the number of degrees of freedom (# dofs) is part of the input [Reif 79], [Hopcroft-Schwartz-Sharir 84], ...
- cell decomposition the Piano movers series [Schwartz-Sharir 83]: a doubly-exponential solution
- roadmap [Canny 87], [Basu-Pollack-Roy]: a singly-exponential solution
- few dofs, the Sharir school: very efficient, near-optimal, solutions (mid 80s mid 90s)

# Few degrees of freedom: The piano movers school, mid 1980s – mid 1990s

- The robot has fixed descriptive complexity
- The obstacles have complexity n (e.g., # of vertices of the polygons)

#### 2 degrees of freedom

- The configuration space is a 2D arrangement of well-behaved curves
- Hence the complexity of the full C-space is  $O(n^2)$

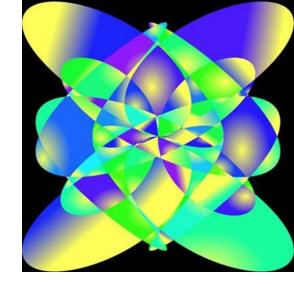
## 2 dofs, optimal combinatorial results

• If the robot is convex (translation), the complexity of the entire C-space is O(n)

Klara Kedem, Ron Livne, János Pach, Micha Sharir: On the Union of Jordan Regions and Collision-Free Translational Motion Amidst Polygonal Obstacles. Discret. Comput. Geom. 1: 59-70 (1986)

• Otherwise (general), the complexity of a single free cell in C-space is near-linear <Davenport-Schinzel related functions>, e.g.  $O(n\alpha(n))$ 

Leonidas J. Guibas, Micha Sharir, Shmuel Sifrony: On the General Motion-Planning Problem with Two Degrees of Freedom. Discret. Comput. Geom. 4: 491-521 (1989)



# My favorite Micha paper

#### 3 dofs, combinatorics

- The configuration space is a 3D arrangement of well-behaved surfaces
- Hence the complexity of the full C-space is  $O(n^3)$

#### Expectations

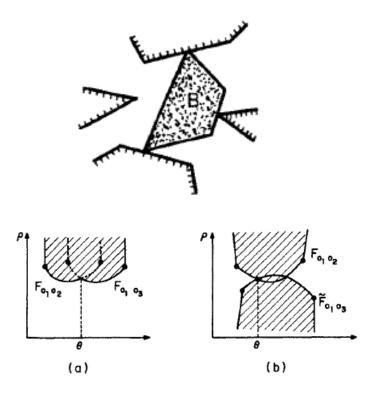
- If the robot is convex, the complexity of the entire C-space would be near-quadratic
- Otherwise, the complexity of a single free cell in C-space would be near-quadratic



## On the Number of Critical Free Contacts of a Convex Polygonal Object Moving in Two-Dimensional Polygonal Space\*

Daniel Leven<sup>1</sup> and Micha Sharir<sup>1,2\*</sup>

Abstract. We show that the number of critical positions of a convex polygonal object B moving amidst polygonal barriers in two-dimensional space, at which it makes three simultaneous contacts with the obstacles but does not penetrate into any obstacle is  $O(kn\lambda_s(kn))$  for some  $s \le 6$ , where k is the number of boundary segments of B, n is the number of wall segments, and  $\lambda_s(q)$  is an almost linear function of q yielding the maximal number of "breakpoints" along the lower envelope (i.e., pointwise minimum) of a set of q continuous functions each pair of which intersect in at most s points (here a breakpoint is a point at which two of the functions simultaneously attain the minimum). We also present an example where the number of such critical contacts is  $\Omega(k^2n^2)$ , showing that in the worst case our upper bound is almost optimal.



Type (iv) Critical Contacts

<sup>&</sup>lt;sup>1</sup> School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

<sup>&</sup>lt;sup>2</sup> Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA



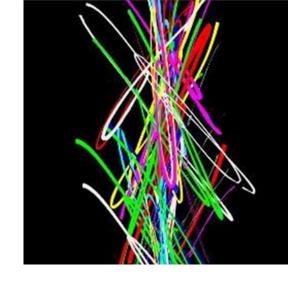
# 3 DIMENSIONS

#### How about 3D work space?

- What is the combinatorial complexity of the free C-space for a convex polyhedron translation among polyhedral in 3-space?
- Or just a box?
- Box:  $O(n^2\alpha(n))$

Dan Halperin, Chee-Keng Yap: Combinatorial Complexity of Translating a Box in Polyhedral 3-Space. SoCG 1993: 29-37 applying Leven-Sharir '87 as above

• Convex polyhedron among k convex polydedra (n is tricky):  $O(nk \log k)$ Boris Aronov, Micha Sharir: On Translational Motion Planning of a Convex Polyhedron in 3-Space. SIAM J. Comput. 26(6): 1785-1803 (1997)



# CGAL arrangements and Micha

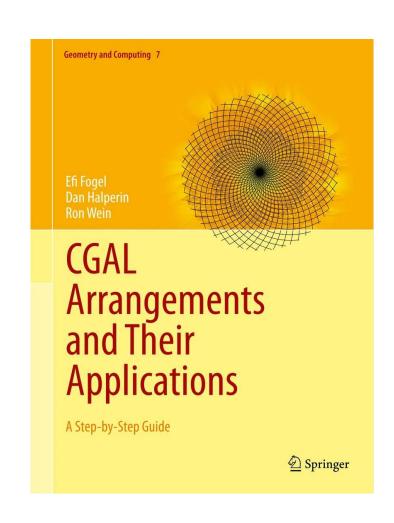


- Computational Geometry Algorithms Library
- A collection of software packages written in C++
- Adheres the generic programming paradigm
- Development started in 1995
- Funded by a succession of EU projects
- An open source library



## The arrangement package and its relatives

- Arrgs of curves on 2D surfaces
- Boolean operations on curved objects
- Minkowski sums
- Lower envelopes in 3D





#### Lessons from Micha

- Arrangements can solve almost everything
- Separate the topology (combinatorics) from the algebra
- Vertical decomposition

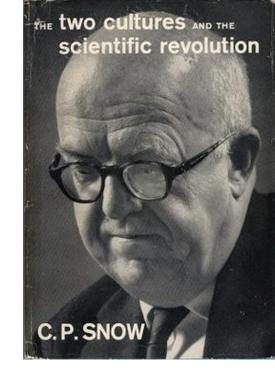
#### In practice:

general CG algorithms and data structures for well-behaved curves together with

Computational algebra toolbox for curves, Exacus (Mehlhorn et al) then CGAL

# CG and robotics: A tale of two cultures

and the rise of SB planners



#### A meeting at ADEPT in 1993

adept court

- Silicon valley
- Jean-Claude Latombe, Ken Goldberg, Brian Carlisle, ...
- The topic: The future of robotics
- Crisis, robotics winter
- Computational geometry summer (gliding toward autumn)
- 12 problems to work on in robotics





#### Two events in 1994

Bernard Chazelle's speech of admonishment (SoCG)

#### Does Computational Geometry Have A Future?

#### BERNARD CHAZELLE

Department of Computer Science Princeton University Princeton, NJ 08544, USA chazelle@cs.princeton.edu

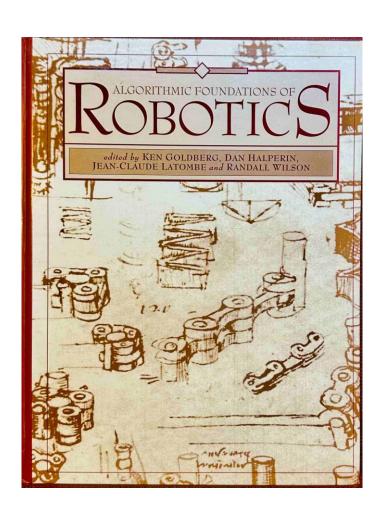
I believe that we, CG'ers, need to initiate a serious debate regarding the future of our field, in general, and the ACM CG conference, in particular.

The last few years have witnessed impressive advances in CG on the theoretical front. There are smarter people working in CG today than at any time before. The community can take collective credit for its sustained focus and its success in providing CG with solid foundations. In the area of algorithms and data struc-

impressed that CG has something to teach them. There's still no comprehensive geometric software library. Every programming effort must start from scratch. Most geometric codes are still intended as existence proofs, with little or no follow-up on the user end. There are, as you well know, several first-rate projects going on now to turn this around, but these are still by and large individual, scattered efforts.

• The first WAFR

# WAFR: Algorithmic Foundations of Robotics, 1994



- Micha Sharir
- Mark Overmars
- Richard Pollack
- Leo Guibas
- Jean-Daniel Boissonnat

•

computational geometry

- Jean-Claude Latombe
- Ken Goldberg
- John Canny
- Matt Mason
- Lydia Kavraki

•



robotics

#### **Participants**

Rachid Alami

Ruzena Bajcsv Saugata Basu Pierre Bessière Jean-Daniel Boissonnat

Randy C. Brost John Canny Raja Chatila

Alan Christiansen Thomas Dean Bruce Donald

Michael Erdmann Ayman O. Farahat

Ken Goldberg Leonidas J. Guibas

Dan Halperin

Seth Hutchinson

Daniel P. Huttenlocher Cornell University

Leo Joskowicz Takeo Kanade

Lydia Kavraki Oussama Khatib

Pradeep K. Khosla Daniel E. Koditschek

Yotto Koga Krasimir Kolarov David J. Kriegman Jean-Claude Latombe

Christian Laugier

Jean-Paul Laumond

Tsai-Yen Li Kevin M. Lynch Matthew T. Mason

Brian Mirtich Rajeev Motwani Balas K. Natarajan

Mark H. Overmars

LAAS-CNRS

University of Pennsylvania New York University

LIFIA

INRIA

Sandia National Laboratories University of California, Berkeley

LAAS-CNRS Tulane University Brown University Cornell University

Carnegie Mellon University Texas A&M University

University of Southern California

Stanford University Stanford University

University of Illinois, Urbana-Champaign

IBM T.J. Watson Research Center

Carnegie Mellon University

Stanford University Stanford University

Carnegie Mellon University University of Michigan Stanford University

Interval Research Yale University Stanford University

LIFIA

LAAS-CNRS Stanford University

Carnegie Mellon University Carnegie Mellon University University of California, Berkeley

Stanford University Hewlett Packard Labs Utrecht University

Christos Papadimitriou University of California, San Diego

Christiaan J. J. Paredis

Richard Pollack Jean Ponce

Anil Rao John H. Reif

Ari Requicha Daniela Rus

Micha Sharir Camillo J. Taylor Marek Teichmann

Bob Tilove Jeffrey C. Trinkle Hongyan Wang

Randall H. Wilson

Carnegie Mellon University New York University

University of Illinois, Urbana-Champaign

Utrecht University Duke University

University of Southern California

Cornell University Tel Aviv University Yale University New York University General Motors

Texas A&M University **Duke University** 

Sandia National Laboratories



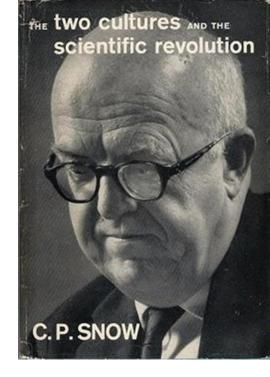
## From the mid 1990s, a dramatic change

- Sampling-base planners appear/catch on (PRM, RRT, ...) Roughly:
- They can solve almost everything
- Easy to implement
- Work well for a variety of real-life problems

- Roboticists did not need complex CG algorithms anymore
- CGers did not find interest in the new `simplistic' techniques

#### A tale of two cultures

• The thesis of Snow's lecture and book,1959 (ruthlessly snipped to suit the current setting): [...] had become split into "two cultures" and that this division was a major handicap to both in solving the [...] problems



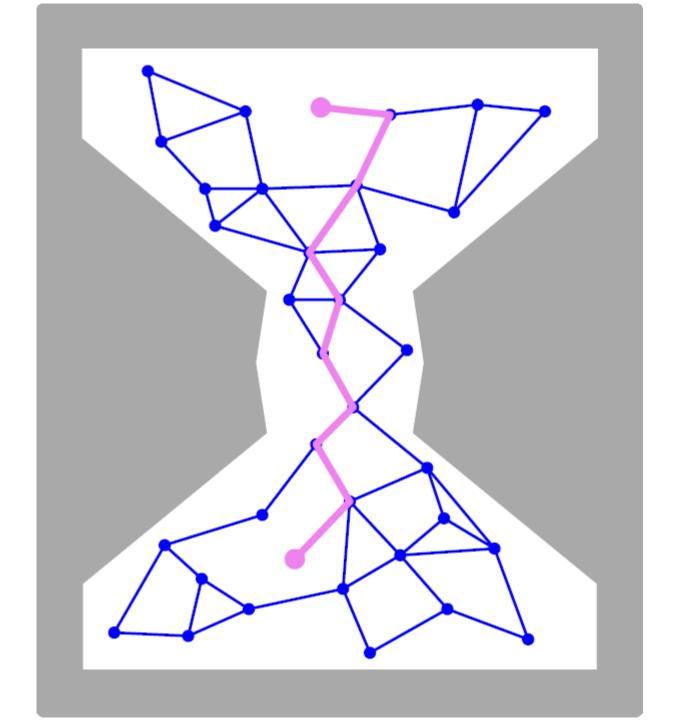


# Very brief intro to SB planners

and their theoretical guarantees

# Sampling-based planning

Probabilistic Roadmaps illustrated



#### Milestones

- Probabilistic roadmaps for path planning in high-dimensional configuration spaces [Kavraki-Svestka-Latombe-Overmars. IEEE Trans. Robotics Autom 1996] PRM
- RRT-Connect: An efficient approach to single-query path planning [Kuffner-LaValle. ICRA 2000] RRT
  - Sampling-based algorithms for optimal motion planning [Karaman-Frazzoli IJRR 2011] RRT\*

## Type of guarantees

- A motion planner is said to be complete if the planner in finite time either produces a solution or correctly reports that there is none
- Probabilistic completeness is the property that as more "work" is performed, the probability that the planner fails to find a path, if one exists, asymptotically approaches zero
- Asymptotic optimality is the property of almost-sure convergence to optimal solutions with increasing number of samples

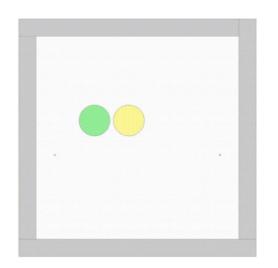
## Type of guarantees

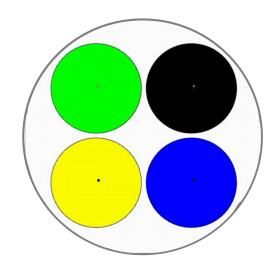
- A motion planner is said to be complete if the planner in finite time either produces a solution or correctly reports that there is none
- Probabilistic completeness is the property that as more "work" is performed, the probability that the planner fails to find a path, if one exists, asymptotically approaches zero
  - PC of RRT [Kleinbort-Solovey-Littlefield-Bekris-H, IEEE RA-L 2019]
  - Non-optimality of bi-RRT [Nechushtan-Raveh-H, WAFR 2010]
- Asymptotic optimality is the property of almost-sure convergence to optimal solutions with increasing number of samples
  - The critical radius [Solovey-Kleinbort, RSS 2018, IJRR 2020]
  - Asymptotically near-optimal (LBT) RRT [Salzman-H, ICRA 2015, IEEE TOR 2016]

# Near-optimality for MRMP with finite sampling

- Optimality criteria: the total length travelled by the robots from start to goal, or max length travelled by a robot
- Given  $\delta$  and  $\varepsilon$ , if a multi-robot motion planning has a  $\delta$ -clear solution then we have a finite-sampling scheme that guarantees to find a solution that is at most  $(1+\varepsilon)$  longer than the optimal solution
- Guarantee to find a solution within bounded time using A\*, dRRT, dRRT\*,
   Conflict Based Search, M\* or any other tensor-product based algorithm

[Dayan-Solovey-Pavone-H, ICRA 2021, IEEE TOR 2023]





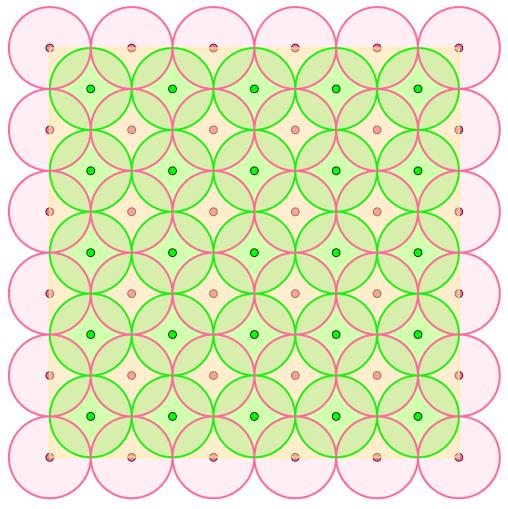
# In the d-dimensional unit cube C-space

**Theorem 4** (Sufficient conditions for MRMP  $(\varepsilon, \vec{\delta})$ -completeness). Let  $\varepsilon > 0$  be a stretch factor, let  $\vec{\delta}$  be a clearance vector  $(\delta_1, \dots, \delta_R)$ , and denote  $\omega = \frac{\varepsilon}{2(\varepsilon+2)}$ . Define the sampling distributions  $\vec{\mathcal{X}} = (\mathcal{X}_1, \dots, \mathcal{X}_R)$  and radii vector  $\vec{r} = (r_1, \dots, r_R)$ , as

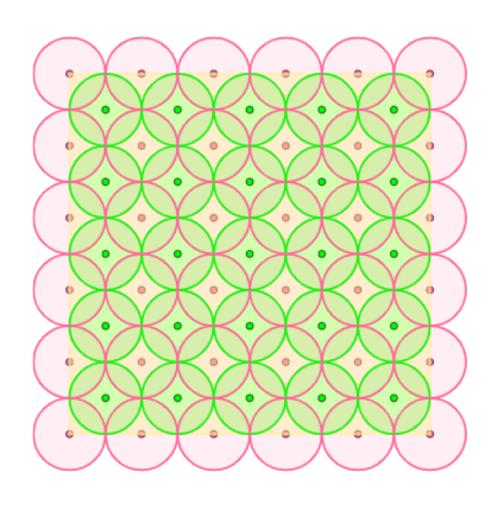
$$\mathcal{X}_i = \mathcal{X}_{\omega \delta_i, \delta_i}, \quad r_i = \delta_i(\varepsilon + 1)/(\varepsilon + 2),$$

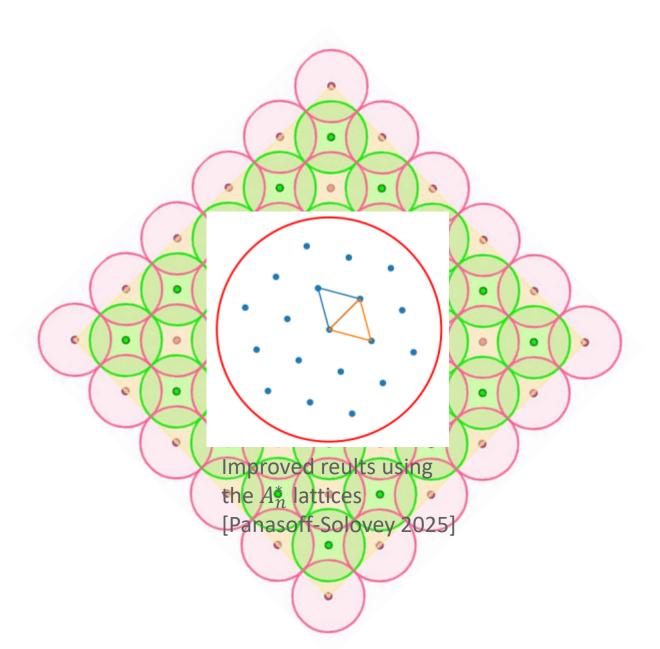
for every robot  $1 \leq i \leq R$ . Then  $(\vec{\mathcal{X}}, \vec{r})$  is  $(\varepsilon, \vec{\delta})$ -complete.

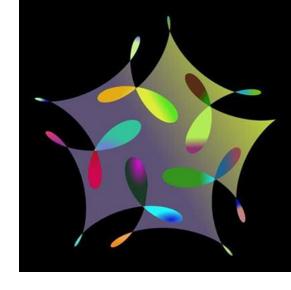
## Underlying sampling per robot: $\varepsilon$ -cover with staggered grids



## Surprise and news







# Optimizing the coordination of fleets of robots

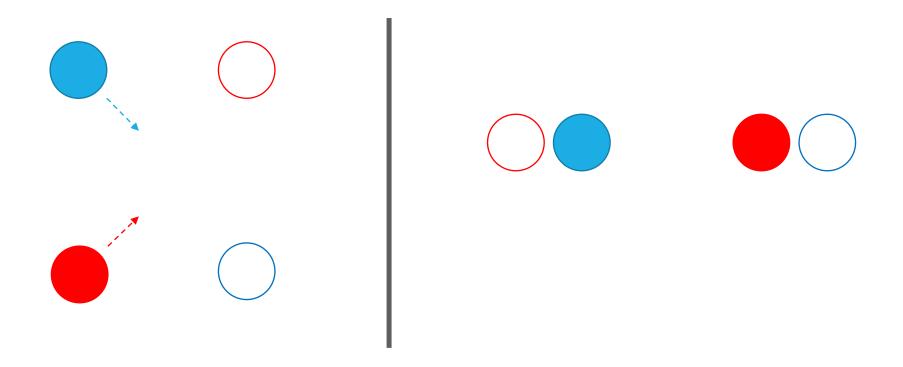
and a recent paper with Micha



• How about 2 robots?

#### Riddle: MinSum

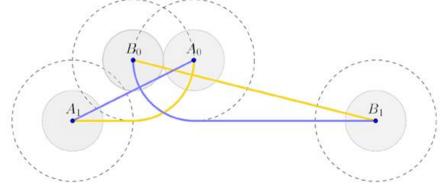
Given two Roomba's, each has to move from given start to goal positions, in a room without obstacles. What are the joint shortest paths (minimum total length)?



#### Riddle: MinSum

Given two Roomba's, each has to move from given start to goal positions, in a room without obstacles. What are the joint shortest paths (minimum total length)?

Answer:

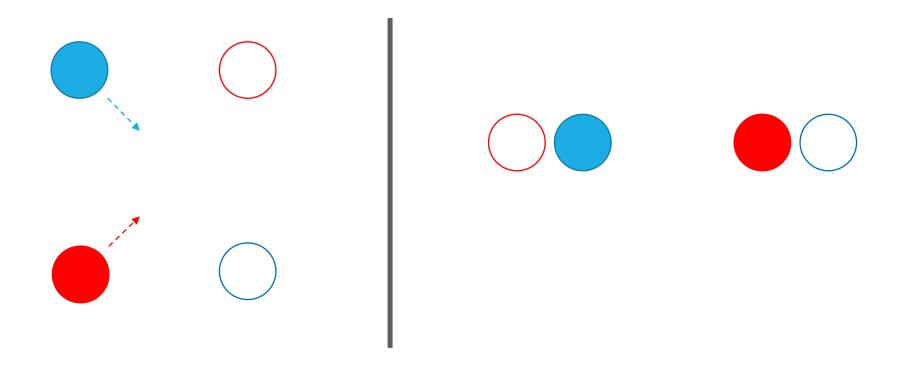


[Kirkpatrick-Liu, CCCG 2016]

2 squares: [Esteban-H-Silveira, Autonomous Robots 2025]

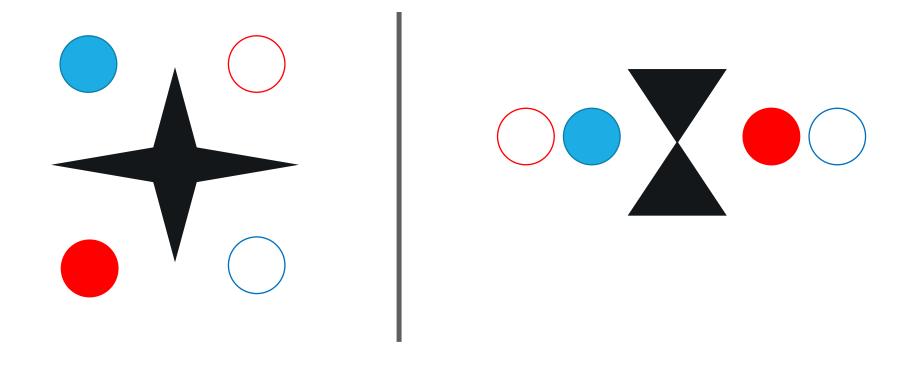
#### Open problem: MinTime

Given two Roomba's, each has to move from given start to goal positions, in a room without obstacles moving in unit speed. What is the shortest time plan (makespan)?



#### Open problem: MinSum with obstacles

If we add obstacles we not know how to efficiently compute the joint length (NP-hard?)



## Motion planning for (2) discs without optimization

- Jacob T. Schwartz and Micha Sharir: On the Piano Movers' Problem:
   III. Coordinating the Motion of Several Independent Bodies: The
   Special Case of Circular Bodies Moving Amidst Polygonal Barriers. The
   International Journal of Robotics Research, 1983
- Micha Sharir, Shmuel Sifrony: Coordinated Motion Planning for Two Independent Robots. Ann. Math. Artif. Intell. 3(1): 107-130 (1991)

## Algorithm for optimal motion of 2 squares among obstacles

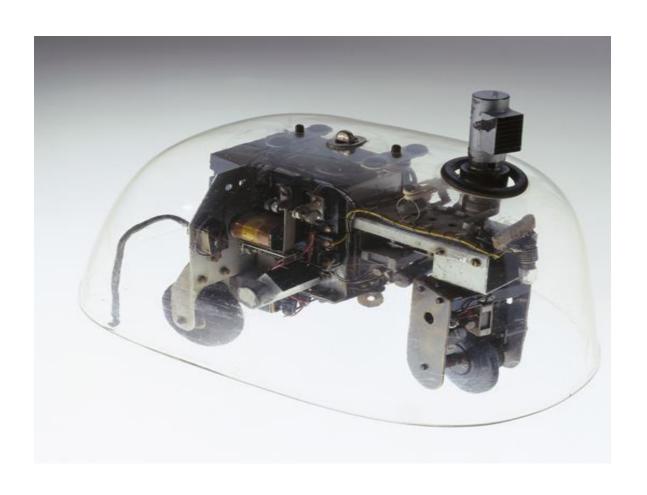
Pankaj K. Agarwal, Dan Halperin, Micha Sharir, Alex Steiger: Near-Optimal Min-Sum Motion Planning for Two Square Robots in a Polygonal Environment. SODA 2024: 4942-4962

- An  $n^2e^{-O(1)}\log n$ -time  $(1+\varepsilon)$ -approximation algorithm for this problem
- The first polynomial-time  $(1 + \varepsilon)$ -approximation algorithm for an optimal motion-planning problem involving two robots moving in a polygonal environment



## Final notes

### A little history from the 1950s



- Grey Walter's tortoises
- "Codebreaker Alan Turing's life and legacy" at the Science Museum 2012
- Turing's visit to the
   Science Museum 1951



#### 1994 (WAFR established) $\rightarrow$ 2024, 2026

Winds of change



- WAFR 2026: Oulu Finland, June 15-17, 2026
- Deadline: January 15, 2026

## More hard problems

#### Ten Problems in Geobotics\*

Mikkel Abrahamsen

Dan Halperin

August 2024

#### Abstract

Robots sense, move and act in the physical world. It is therefore natural that algorithmic problems in robotics and automation have a geometric component, often central to the problem. Below we review ten challenging problems at the intersection of robotics and computational geometry—let's call this intersection *Geobotics*. What is common to most of these problems is that the prevalent algorithmic techniques used in robotics do not seem suitable for solving them, or at least do not suggest quality guarantees for the solution. Solving some of them, even partially, can shed light on less well-understood aspects of computation in robotics.

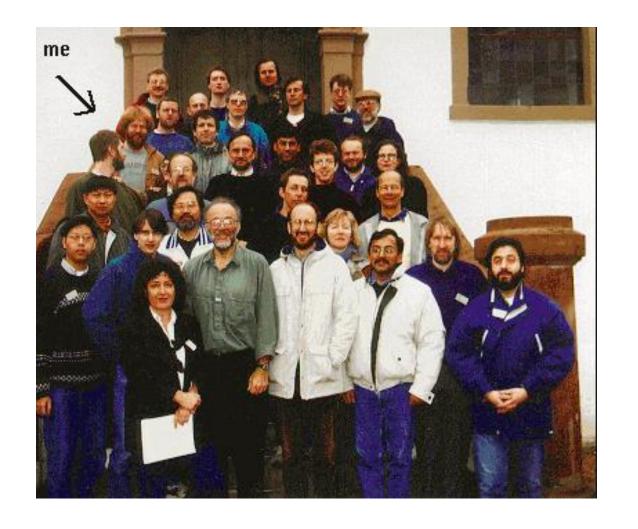
#### 0 Introduction

Robotics has persistently raised interesting problems for computational geometry. A pioneering and exemplary case in point is the 1980s series of papers "On the Piano Movers

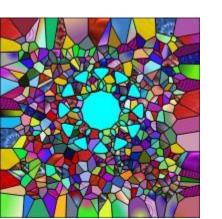
#### From a website by Nina Amenta

#### **me** = Nina Amenta:

"Here I am at a workshop with a lot of Computational Geometers who are taller than I am. You can just see my eye peeking out behind Micha Sharir."



## Thank you Micha!







[Art by AI. Jeb Gaither using CGAL arrangements]



